

UNIVERSITEIT VAN AMSTERDAM Institute for Logic, Language and Computation

Axiomatic Set Theory (Axiomatische Verzamelingentheorie)

2003/2004; 2nd Trimester dr Benedikt Löwe

Homework Set # 11

For these exercises, use the "inductive computation of κ^{λ} " (Theorem 5.20 in Jech's book): Cardinal exponentiation κ^{λ} can be computed by induction on κ as follows:

- (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$.
- (2) If there is some $\mu < \kappa$ such that $\mu^{\lambda} \ge \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$.
- (3) If $\kappa > \lambda$ and $\mu^{\lambda} < \kappa$ for all $\mu < \kappa$, then
 - (a) if $cf(\kappa) > \lambda$, then $\kappa^{\lambda} = \kappa$, and
 - (b) if $cf(\kappa) \leq \lambda$, then $\kappa^{\lambda} = \kappa^{cf(\kappa)}$.

Exercise 11.1 (Cardinal Arithmetic with exponent \aleph_1)

- (1) Show that $(\aleph_n)^{\aleph_1} = \aleph_n \cdot 2^{\aleph_1}$.
- (2) Show that $(\aleph_{\omega})^{\aleph_1} = (\aleph_{\omega})^{\aleph_0} \cdot 2^{\aleph_1}$.
- (3) Show that $(\aleph_{\omega+1})^{\aleph_1} = (\aleph_{\omega+1})^{\aleph_0} \cdot 2^{\aleph_1}$.

Exercise 11.2 (Cardinal Arithmetic under the assumption $2^{\aleph_1} = \aleph_2$)

In this exercise, we work in $ZFC + 2^{\aleph_1} = \aleph_2$. Keep the computations of # 5.1 in mind.

- (1) Compute $(\aleph_n)^{\aleph_1}$ for all values of $n \in \omega$. ("Computation" means: determine α such that $(\aleph_n)^{\aleph_1} = \aleph_{\alpha}$.)
- (2) Show that $(\aleph_{\omega})^{\aleph_1} = (\aleph_{\omega})^{\aleph_0}$.
- (3) Show that $(\aleph_{\omega})^{\aleph_0} \neq \aleph_{\aleph_1}$. (Hint. What is $((\aleph_{\omega})^{\aleph_0})^{\aleph_1}$? What is $(\aleph_{\aleph_1})^{\aleph_1}$?)
- (4) Assume in addition that $(\aleph_{\omega})^{\aleph_0} > \aleph_{\aleph_1}$. Show that under this additional assumption, we get $(\aleph_{\omega})^{\aleph_0} = (\aleph_{\aleph_1})^{\aleph_1}$.

http://staff.science.uva.nl/~bloewe/2003-II-ST.html