Axiomatic Set Theory

(Axiomatische Verzamelingentheorie)

2003/2004; 2nd Trimester
 dr Benedikt Löwe

Homework Set \# 7
Deadline: Thursday, March 4th, 2004
Exercise 7.1 (Ordinal Exponentiation).
Show that:

- $3^{\omega}=\omega$,
- $\omega^{\omega} \cdot \omega^{\omega}=\omega^{\omega \cdot 2}$, and
- $\left(\omega^{\omega}\right)^{\omega}=\omega^{\left(\omega^{2}\right)}$.

Exercise 7.2 (Different Ordinals)

Consider the following list of (terms for) ordinals. Some of them are equal (e.g., ω and $7 \cdot \omega$) some aren't (e.g., ω and $\omega+7$).
Sort them into blocks of equal ordinals and sort the blocks according to the size of the ordinals in them (i.e., the block containing ω before the block containing $\omega+7$):

$$
\begin{aligned}
& \omega, 7 \cdot \omega, \omega+7,7 \cdot\left(\omega^{7}+\omega\right), 7 \cdot(\omega \cdot 7)+7,7+\omega, \omega^{7} \cdot 7, \aleph_{7}, 7+7+7+(7 \cdot 7 \cdot \omega), \omega^{\omega^{7}}+\omega^{7} \\
& \omega^{7}+\aleph_{7}, 7, \omega \cdot 7, \omega \cdot(\omega+7),(\omega+7) \cdot \omega, \omega, \omega+7+\omega^{7}, \omega^{7},(7 \cdot \omega) \cdot 7+7,7+\omega+\omega^{7}, \omega+7, \\
& 7+\omega^{7}+\omega, \omega \cdot 7+7,7+7 \cdot \omega, \omega^{7}+\omega+7, \omega^{7}+\omega^{\omega^{7}}
\end{aligned}
$$

Exercise 7.3 (Fixed points).
Prove the following:
(1) ξ is a $\boldsymbol{\gamma}$-number if and only if for all $\eta<\xi$, we have $\eta+\xi=\xi$.
(2) ξ is a δ-number if and only if for all $0<\eta<\xi$, we have $\eta \cdot \xi=\xi$.

Reminder. An ordinal ξ is called a γ-number if it is a fixed point of the ordinal addition, i.e., if $\alpha, \beta \in \xi$, then $\alpha+\beta \in \xi$. It is called a δ-number if it is a fixed point of the ordinal multiplication, i.e., if $\alpha, \beta \in \xi$, then $\alpha \cdot \beta \in \xi$.

