

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Axiomatic Set Theory

(Axiomatische Verzamelingentheorie)

2003/2004; 2nd Trimester dr Benedikt Löwe

Homework Set # 8

Deadline: Thursday, March 11th, 2004

Exercise 8.1 (Regular Ordinal Operations).

Let Φ be a function-like formula. We call Φ an **ordinal operation** if

(1) For all $\alpha \in \text{Ord}$ there is a β such that $\Phi(\alpha, \beta)$.

(2) If $\Phi(\alpha, \beta)$, then α and β are ordinals.

If Φ is an ordinal operation, then we write $\Phi(\alpha)$ for the unique β such that $\Phi(\alpha, \beta)$. An ordinal operation Φ is called **regular** if

(1) If $\alpha < \alpha^*$, then $\Phi(\alpha) < \Phi(\alpha^*)$.

(2) If λ is a limit ordinal, then $\Phi(\lambda) = \bigcup \{ \Phi(\alpha) ; \alpha < \lambda \}.$

Show that for every regular ordinal operation Φ and every ordinal α there is an ordinal $\gamma > \alpha$ such that $\Phi(\gamma) = \gamma$.

Show that for each α and β there is some $\gamma > \alpha$ such that $\beta^{\gamma} = \gamma$ (ordinal exponentiation). Why is this supposed to remind you of ε_0 ?

Exercise 8.2 (Singular Cardinals; = *x12.18 in *Moschovakis*)

Show that for each regular cardinal κ there is a singular cardinal $\lambda > \kappa$ such that $cf(\lambda) = \kappa$. **N.B.** The simple solution $\lambda := \aleph_{\kappa}$ could run into trouble if $\kappa = \aleph_{\kappa}$.

http://staff.science.uva.nl/~bloewe/2003-II-ST.html