Dialogic Logic (1).

- Two players, the Proponent and the Opponent.
- In the round 0, the Proponent has to assert the formula to be proved and the Opponent can make as many assertions as he wants. After that, the opponent starts the game.
- In all other moves, the players have to do an announcement and an action.
- An announcement is either of the form $\operatorname{attack}(n)$ or of the form $\operatorname{defend}(n)$, interpreted as "I shall attack the assertion made in round n " and "I shall defend myself against the attack made in round n ".
- An action can be one of the following moves: assert (Φ), which one?, left?, right?, what if? assert (Φ).
- You can only attack lines in which the other player asserted a formula.

Depending on the formula, the following attacks are allowed:

- $\Phi \vee \Psi$ may be attacked by which one?,
- $\Phi \wedge \Psi$ may be attacked by left? or right?,
- both $\Phi \rightarrow \Psi$ and $\neg \Phi$ may be attacked by "what if?, $\operatorname{assert}(\Phi)$ ".

Dialogic Logic (2).

- You can only defend against a line in which the other player attacked.
Depending on the attack, the following defenses are allowed:
- If $\Phi \vee \Psi$ was attacked by which one?, you may defend with either $\operatorname{assert}(\Phi)$ or assert (Ψ).
- If $\Phi \wedge \Psi$ was attacked by left?, you may defend with $\operatorname{assert}(\Phi)$, if it was attacked by right?, you may defend with $\operatorname{assert}(\Psi)$.
- If $\Phi \rightarrow \Psi$ was attacked by "what if?, $\operatorname{assert}(\Phi)$ ", you may defend with assert(Ψ).
- You cannot defend an attack on $\neg \Phi$.

Dialogic Logic (3).

The rules of the constructive game:

- In each move, the action and the announcement have to fit together, i.e., if the player announces $\operatorname{attack}(n)$ or $\operatorname{defend}(n)$, then the action has to be an attack on move n or a defense against move n.
- In round $n+1$, the Opponent has to either attack or defend against round n.
- An attack is called open if it has not yet been defended.
- The Proponent may attack any round, but may only defend against the most recent open attack. He may use any defense or attack against a given round at most once.
- The Opponent may assert any atomic formulas.
- The Proponent may assert only atomic formulas that have been asserted by the Opponent before.

Dialogic Logic (3).

The rules of the classical game:

- In each move, the action and the announcement have to fit together, i.e., if the player $\operatorname{announces} \operatorname{attack}(n)$ or $\operatorname{defend}(n)$, then the action has to be an attack on move n or a defense against move n.
- In round $n+1$, the Opponent has to either attack or defend against round n.
- An attack is called open if it has not yet been defended.
- The Proponent may attack and defend against any round. He may use any defense or attack against a round at most once.
- The Opponent may assert any atomic formulas.
- The Proponent may assert only atomic formulas that have been asserted by the Opponent before.

Dialogic logic (4).

We say that Φ is (dialogically/classically) valid if the Proponent has a winning strategy in the (constructive/classical) game in which he asserts Φ in round 0 .

Example.

Dialogic logic (4).

We say that Φ is (dialogically/classically) valid if the Proponent has a winning strategy in the (constructive/classical) game in which he asserts Φ in round 0 .

Example.

0	-	$\operatorname{assert}(\neg \neg p \rightarrow p)$	
1	$\operatorname{attack}(0)$	what if? $\operatorname{assert}(\neg \neg p)$	
2			
3	attack (1)	what if? $\operatorname{assert}(\neg p)$	
4	what if? $\operatorname{assert}(p)$		
5	-	$\operatorname{defend}(1)$	$\operatorname{assert}(p)$

Obligationes (1).

Obligationes. A game-like disputation, somewhat similar to logic games. The origin is unclear, as is the purpose.
The name derives from the fact that one of the players is "obliged" to follow certain formal rules of discourse.

Different types of obligationes.

- positio.
- depositio.
- dubitatio.
- impositio.
- petitio.
- rei veritas / sit verum.

Obligationes (2).

- William of Shyreswood (1190-1249)
- Walter Burley (Burleigh; c.1275-1344)
- Roger Swyneshed (d.1365)
- Richard Kilvington (d.1361)
- William Ockham (c.1285-1347)
- Robert Fland (c.1350)
- Richard Lavenham (d.1399)
- Ralph Strode (d.1387)
- Peter of Candia
- Paul of Venice (c.1369-1429)

Obligationes (3).

- Walter Burley, De obligationibus. Standard set of rules.
- Roger Swyneshed, Obligationes (1330-1335). Radical change in one of the rules results in a distinctly different system.
responsio antiqua
Walter Burley
William of Shyreswood Ralph Strode
Peter of Candia
Paul of Venice
responsio nova
Roger Swyneshed
Robert Fland
Richard Lavenham

positio according to Burley (1).

- Two players, the opponent and the respondent.
- The opponent starts by positing a positum φ^{*}.
- The respondent can "admit" or "deny". If he denies, the game is over.
- If he admits the positum, the game starts. We set $\Phi_{0}:=\left\{\varphi^{*}\right\}$.
- In each round n, the opponent proposes a statement φ_{n} and the respondent either "concedes", "denies" or "doubts" this statement according to certain rules. If the respondent concedes, then $\Phi_{n+1}:=\Phi_{n} \cup\left\{\varphi_{n}\right\}$, if he denies, then $\Phi_{n+1}:=\Phi_{n} \cup\left\{\neg \varphi_{n}\right\}$, and if he doubts, then $\Phi_{n+1}:=\Phi_{n}$.

positio according to Burley (2).

- We call φ_{n} pertinent (relevant) if either $\Phi_{n} \vdash \varphi_{n}$ or $\Phi_{n} \vdash \neg \varphi_{n}$. In the first case, the respondent has to concede φ_{n}, in the second case, he has to deny φ_{n}.
- Otherwise, we call φ_{n} impertinent (irrelevant). In that case, the respondent has to concede it if he knows it is true, to deny it if he knows it is false, and to doubt it if he doesn't know.
- The opponent can end the game by saying Tempus cedat.

Example 1.

Opponent

I posit that Cicero was the teacher of Alexander the Great: φ^{*}.

Cicero was Roman: φ_{0}.

The teacher of Alexander the Great was Roman: φ_{1}.

Respondent

I admit it. $\quad \Phi_{0}=\left\{\varphi^{*}\right\}$.

I concede it. Impertinent and true; $\Phi_{1}=\left\{\varphi^{*}, \varphi_{0}\right\}$.

I concede it. Pertinent, follows from Φ_{1}.

Example 2.

Opponent

I posit that Cicero was the teacher of Alexander the Great: φ^{*}.
The teacher of Alexander the Great was Greek: φ_{0}

Cicero was Greek: φ_{1}.

Respondent

I admit it. $\quad \Phi_{0}=\left\{\varphi^{*}\right\}$.

I concede it. Impertinent and true; $\Phi_{1}=\left\{\varphi^{*}, \varphi_{0}\right\}$.

I concede it. Pertinent, follows from Φ_{1}.

Example 3 ("order matters!")

Opponent

I posit that Cicero was the teacher of Alexander the Great: φ^{*}.
The teacher of Alexander the Great was Roman: φ_{0}.

Cicero was Roman: φ_{1}.

Respondent

I admit it. $\quad \Phi_{0}=\left\{\varphi^{*}\right\}$.

I deny it

I deny it.

Impertinent and false; $\Phi_{1}=\left\{\varphi^{*}, \neg \varphi_{0}\right\}$.

Pertinent, contradicts Φ_{1}.

Properties of Burley's positio.

- Provided that the positum is consistent, no disputation requires the respondent to concede φ at step n and $\neg \varphi$ at step m.
- Provided that the positum is consistent, Φ_{i} will always be a consistent set.
- It can be that the respondent has to give different answers to the same question (Example 4).
- The opponent can force the respondent to concede everything consistent (Example 5).

Example 4.

```
Suppose that the respondent is a student, and does not know whether the King of France is currently running.
```

Opponent

I posit that you are the Pope or the King of France is currently running: φ^{*}
The King of France is currently running: φ_{0}

You are the Pope: φ_{1}.

The King of France is currently running: $\varphi_{2}=\varphi_{0}$.

Respondent

I admit it. $\quad \Phi_{0}=\left\{\varphi^{*}\right\}$.

I doubt it. Impertinent and unknown; $\Phi_{1}=\left\{\varphi^{*}\right\}$.

I deny it. Impertinent and false; $\Phi_{2}=\left\{\varphi^{*}, \neg \varphi_{1}\right\}$.

I concede it. Pertinent, follows from Φ_{2}.

Example 5.

Suppose that φ does not imply $\neg \psi$ and that φ is known to be factually false.

Opponent
I posit φ.
$\neg \varphi \vee \psi$.
ψ

Respondent
I admit it. $\quad \Phi_{0}=\{\varphi\}$.

Either φ implies ψ, then the sentence is pertinent and follows I concede it. from Φ_{0}; or it doesn't, then it's impertinent and true (since φ is false); $\Phi_{1}=\{\varphi, \neg \varphi \vee \psi\}$.
I concede it. Pertinent, follows from Φ_{1}.

positio according to Swyneshed.

- All of the rules of the game stay as in Burley's system, except for the definition of pertinence.
- In Swyneshed's system, a proposition φ_{n} is pertinent if it either follows from φ^{*} (then the respondent has to concede) or its negation follows from φ^{*} (then the respondent has to deny). Otherwise it is impertinent.

Properties of Swyneshed's positio.

- Provided that the positum is consistent, no disputation requires the respondent to concede φ at step n and $\neg \varphi$ at step m.
- The respondent never has to give different answers to the same question.
- Φ_{i} can be an inconsistent set (Example 6).

Example 6.

Suppose that the respondent is a student in Paris, and not a bishop. Write ψ_{0} for "You are in Rome" and ψ_{1} for "You are a bishop".
Opponent Respondent
I posit that you are in Rome or you are a bishop: $\psi_{0} \vee \psi_{1}$

You are in Rome or you are a bishop: $\psi_{0} \vee \psi_{1}$

You are not in Rome: $\neg \psi_{0} \quad$. I concede it.

You are not a bishop: $\neg \psi_{1}$. I concede it.

$$
\Phi_{0}=\left\{\psi_{0} \vee \psi_{1}\right\}
$$

Pertinent, follows from $\Phi_{0} ; \Phi_{1}=$ $\left\{\psi_{0} \vee \psi_{1}\right\}$.

Impertinent, and true; $\Phi_{2}=$ $\left\{\psi_{0} \vee \psi_{1}, \neg \psi_{0}\right\}$.

Impertinent, and true; $\Phi_{3}=$ $\left\{\psi_{0} \vee \psi_{1}, \neg \psi_{0}, \neg \psi_{1}\right\}$.
Φ_{2} is an inconsistent set of sentences.

positio according to Kilvington.

Richard Kilvington (d.1361).

- Sophismata, c. 1325.
- obligationes as a solution method for sophismata.
- He follows Burley's rules, but changes the handling of impertinent sentences. If φ_{n} is impertinent, then the respondent has to concede if it were true if the positum was the case, and has to deny if it were true if the positum was not the case.

impositio.

- In the impositio, the opponent doesn't posit a positum but instead gives a definition or redefinition.
- Example 1. "In this impositio, asinus will signify homo".
- Example 2. "In this impositio, deus will signify homo in sentences that have to be denied or doubted and deus in sentences that have to be conceded."

Suppose the opponent proposes "deus est mortalis".

- If the respondent has to deny or doubt the sentence, then the sentence means homo est mortalis, but this is a true sentence, so it has to be conceded.
Contradiction.
- If the respondent has to concede the sentence, then the sentence means deus est mortalis, but this is a false sentence, so it has to be denied. Contradiction.
- An impositio often takes the form of an insoluble.

1400-1550.

- 1453. The Fall of Constantinople.
- c. 1400-1468. Johannes Gutenberg.
- 1492. The Discovery of the Americas.
- 1483-1546. Martin Luther.

Pierre de la Ramée.

Pierre de la Ramée (Petrus Ramus; 1515-1572)

- Animadversiones in Dialecticam Aristotelis (1543).
- Professor at the Collège de France.
- Ramistic Logic. ars disserendi. Logic of natural discourse.
- Protestant. Died in the Massacre of St. Bartholomew (August 24th, 1572).

Port Royal.

- Cornelius Jansen (1585-1638), bishop of Ypres; Augustinus (1640), doctrine of strict predestination.
- Abbey of Port Royal, since 1638 centre of Jansenism.
- Pierre Nicole (1625-1695); Antoine Arnauld (1612-1694)

Port Royal.

- Cornelius Jansen (1585-1638), bishop of Ypres; Augustinus (1640), doctrine of strict predestination.
- Abbey of Port Royal, since 1638 centre of Jansenism.
- Pierre Nicole (1625-1695); Antoine Arnauld (1612-1694)
- 1662. La logique, ou l'art de penser. Opposing scholasticism, "epistemological turn".
- Comprehension vs Extension.
- Letters between Arnauld and Leibniz: 1687-1690.

Comprehension vs Extension.

- Comprehension of X. The set of properties that x has to have in order to be an X.
- Extension of X. The set of all X.
- An example.
- Universe of Discourse: $U=\{a, A, A, B, b\}$
- Properties: Consonant, Capital, Blue.
- Extensions:
- Consonant $\rightsquigarrow\{B, b\}$
- Capital $\rightsquigarrow\{A, A, B\}$
- Blue $\rightsquigarrow\{a, B, b\}$
- The Comprehension of Consonant in this universe of discourse includes the property blue.

Leibniz (1).

Gottfried Wilhelm von Leibniz (1646-

 1716)- Work on philosophy, mathematics, law (Doctorate in Law from the University of Altdorf (1667), alchemy, theology, physics, engineering, geology, history.
- Diplomatic tasks (1672).
- Attempts to build a calculating machine (1670s).

Leibniz (2).

- 1673-1677: Invented calculus independently of Sir Isaac Newton (1643-1727).
- Research politics; foundation of Academies: Brandenburg, Dresden, Vienna, and St Petersburg.
- 1710: Théodicée. "The best of all possible worlds".

Leibniz (3).

Properties.

- Identity of Indiscernibles: If $\{\Phi ; \Phi(x)\}=\{\Phi ; \Phi(y)\}$, then $x=y$.
- Primary substances ("Plato", "Socrates") can be expressed in terms of properties: a uniform language of predication.
- Connected to Leibniz' monadology (1714).

Relations.

- Call for an analysis of relations.
- Attempt to reduce relations to unary predicates:
"Plato is taller than Socrates"
"Plato is tall in as much as Socrates is short"

Taller (Pla, Soc)
Tall(Pla) $\oplus \mathbf{S h o r t}($ Soc $)$

Calculemus!

"quando orientur controversiae, non magis disputatione opus erit inter duos philosophos, quam inter duos Computistas. Sufficiet enim calamos in manus sumere sedereque ad abacos, et sibi mutuo (accito si placet amico) dicere: calculemus."
\rightsquigarrow Arithmetization of Language and Automatization of Reasoning

Arithmetization of Language (1).

- characteristica universalis: general notation system for everything, based on the unanalyzable basics.
- calculus ratiocinator: formal system with a mechanizable deduction system.
- "calculus de continentibus et contentis est species quaedam calculi de combinationibus"
- The properties correspond to the natural numbers $n>1$. The unanalyzable properties correspond to the prime numbers.
- Example. If animal corresponds to 2, and rationalis corresponds to 3 , then homo would correspond to 6 . If philosophicus corresponds to 5, then philosophus = homo philosophicus would be 30 .

Arithmetization of Language (2).

animal $\rightsquigarrow 2$, rationalis $\rightsquigarrow 3$, homo $\rightsquigarrow 6$, philosophicus $\rightsquigarrow 5$, philosophus $\rightsquigarrow 30$.

- All individuals are determined by their properties, so Socrates is represented by a number n. Since Socrates is a philosopher, $30 \mid n$.
- In general, "the individual represented by n has the property represented by m " is rendered as $m \mid n$.
- Now we can formalize $A \mathrm{a} B$ and $A \mathrm{i} B$. Let n_{A} and n_{B} be the numbers representing A and B, respectively.
- $A \mathrm{a} B: n_{A} \mid n_{B}$.
"Every human is an animal": $2 \mid 6$.
- $A \mathrm{i} B: \exists k\left(n_{A} \mid k \cdot n_{B}\right)$.
"Some human is a philosopher": $30 \mid 5 \cdot 6$.

Arithmetization of Language (3).

$A \mathrm{a} B: n_{A} \mid n_{B} ; A \mathrm{i} B: \exists k\left(n_{A} \mid k \cdot n_{B}\right)$.

- Barbara becomes: "If $n \mid m$ and $m \mid k$, then $n \mid k$." So, the laws of arithmetic prove Barbara.
- Darii becomes: "If $n \mid m$ and there is some w such that $m \mid w \cdot k$, then there is some w^{*} such that $n \mid w^{*} \cdot k$." (Let $w^{*}:=w$.)
- But: $A \mathrm{i} B$ is always true, as $n \mid n \cdot m$ for all n and m.
- If n represents homo and m represents asinus, then $n \cdot m$ would be a "man with the added property of being a donkey".
- This simple calculus is not able to deal with negative propositions.

