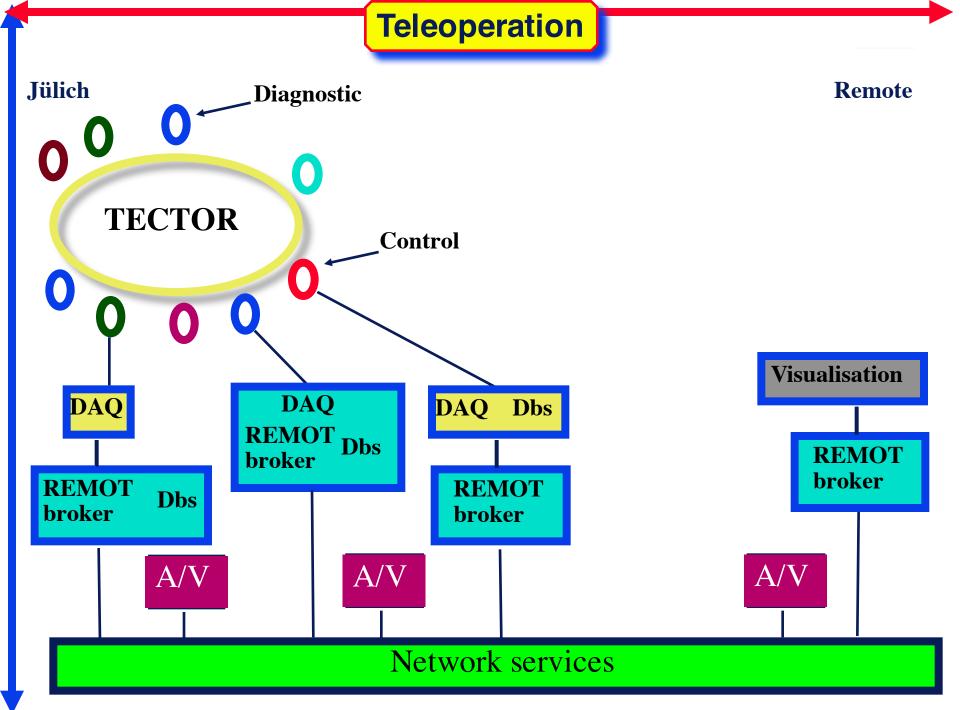
H.M.A. Andree, J. Habets, M. Koopmans, C.T.A.M. de Laat, W. Lourens, E. van der Meer and J. Venema **Faculty of Physics and Astronomy, Utrecht** M. Korten, G. Kemmerling **Forschungs Zentrum Jülich** W. Kooijman, A.A.M. Oomens FOM Instituut voor Plasmafysica, Rijnhuizen For the REMOT collaboration.

- **REMOT** project
- Services and Requirements
- Architecture
- Network Layer
- SURFnet4 projects to support REMOT
- Projects in progress
- ATM Virtual Path trial
- Problems ahead
- Conclusions
- Acknowledgements

• REMOT

- Remote Experiment MOnitoring and conTrol (RE1008)
- The REMOT project objective is to develop a system architecture to allow remote control of scientific experiments and facilities that require real time operation and multimedia information feedback, and using available or deploying communications infrastructure.


• DYNACORE

- DYNAmically COnfigurable Remot Experiment
- The DYNACORE monitoring & control application will allow scientists to access remote experimental facilities in order to perform scientific experiments in a similar way as if they were physically located at those facilities.

Services and Requirements

Experiment cycle

- load settings in the diagnostics
- negociations with TEC operator on properties of next pulse
- freeze all diagnostic and machine parameter
- load capacitors
- PLASMA pulse
- data readout
- look at data of your own diagnostic
- correlate with data of other diagnostics
- draw conclusions for settings on next pulse
- Cycle takes about 5 10 minutes
- Load capacitors, pulse, data readout take 3 minutes
- Data size: 10 100 MByte / pulse depending on active diagnostics

Real Time

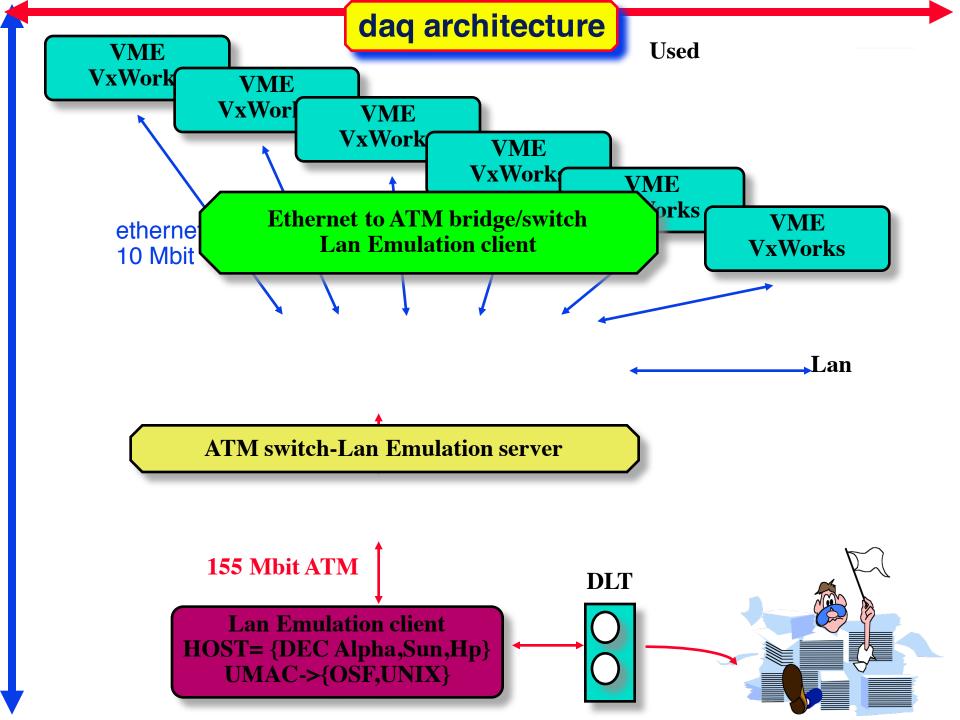
- time is limited between shots and decisions have to be made

- Scalable
 - there are about 20 diagnostics from several institutes

• Multicast

there are many one to one, one to many and many to many conferences going on

Solutions


- ATM (ip over ATM)
- ISDN
- IpV6, RSVP
- MBone

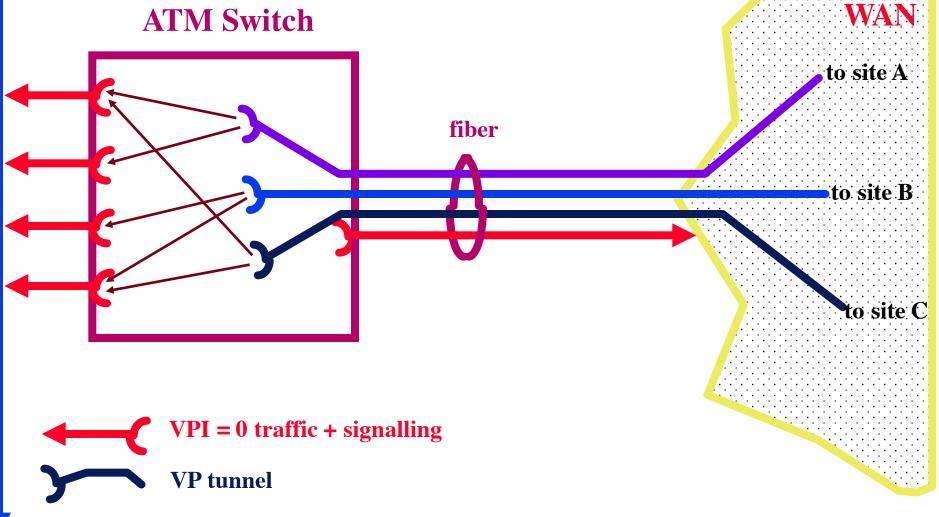
- TF-Ten
- JAMES

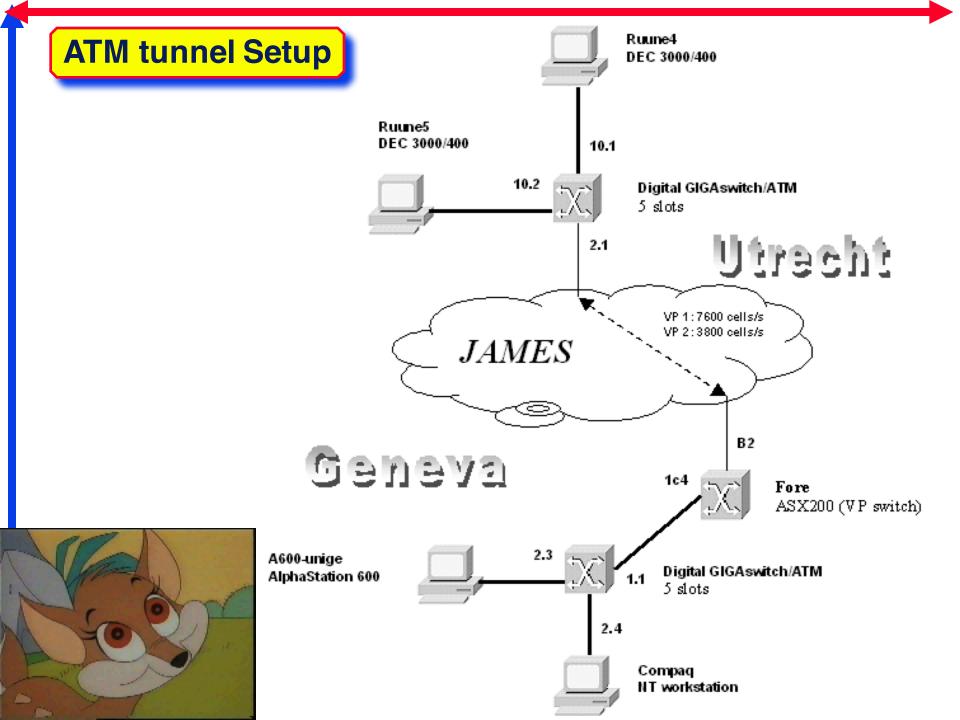
SURFnet4

- ATM LANE for DAQ systems
- ATM SVC in backbone
- ATM tunneling between Utrecht and Geneva
- Videoconference survey
- Groupware survey
- ATM multicast in the backbone
- ATM ABR traffic, policing and management
- IAS

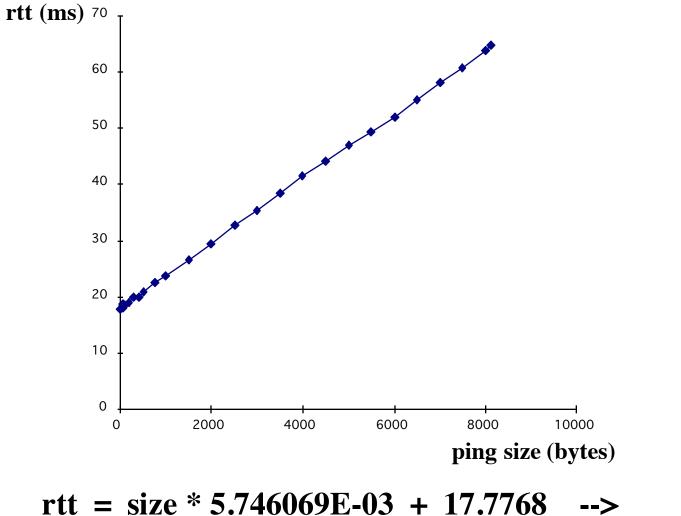
User and System load

User and system load in instructions per byte for the data transmitting and data receiving computers. The transmitting computers rate 142 MIPS (V2.1), the receiving computers rate 459 MIPS.


i = #MIPS * load / datarate


transmit	MTU	Rate	user	sys	user	sys
protocol		MByt/s	%	%	i/Byt	i/Byt
Ethernet	1516	0.47	1.7	6.6	5.1	20
LAN Emulation	1516	4.4	13	87	4.3	28
LAN Emulation	9234	8.2	27	73	4.6	13
Classical IP on ATM	9200	8.1	24	63	4.3	11
receive	MTU	Rate	user	sys	user	sys
receive protocol	MTU	Rate MByt/s	user %	sys %	user i/Byt	sys i/Byt
	MTU 1516			•		•
protocol		MByt/s	%	%	i/Byt	i/Byt
protocol Ethernet	1516	MByt/s 0.94	% 0.8	% 5.6	i/Byt 3.9	i/Byt 27

"Experiences with the Application of LAN Emulation in a Data Acquisition System" C. T. A. M. de Laat, P. G. Kuijer, H. P. Olthuis, V. J. Giesing, and J. Venema, IEEE TRANSACTIONS ON NUCLEAR SCIENCE [Aug 1997, Vol 44, Nump 04, p. 1635] **SVC tunnel principle**


ATM

round trip times

rtt = size * 5.746069E-03 + 17.7768 --> bw = 2 * 8 / (5.746069E-03 * 1.0E-03) = 2.78 Mbit/s

Traffic contracts

<-- FYS - ACCU - SURFnet - JAMES - DFN - FZJ - IPP -->

- shaping policing
- local flow control versus end to end
- requirements for edge switches ?
 - 1) UNI 3.1 support, migration to 4.0 support
 - 2) UBR, CBR, VBR en ABR support (ABR with flow control/UNI 4.0)
 - 3) EPD and PPD
 - 4) PNNI (IISP)
 - 5) VC switching
 - 6) VP switching
 - 7) VP tunneling support
 - 8) Shaping on VP and VC (also in VP)
 - 9) LANE support (?)
 - 10) Accounting (?)

- ATM is only option in the future
- use IP over the normal internet for demonstrators
- Video conferencing on MBone, later on specialized hardware such as the AVA/ATV or MESH
- Lot of basic ATM technology still needs to be tested

Acknowledgments

- This work is supported by
 - SURFnet bv
 - Digital Equipment
 - European Commission, DG XIII
 - » Telematics Applications Programme Telematics for Research
 - » RE 1008 REMOT
 - Association Agreements of Euratom with the partners in the Trilateral Euregio Cluster with financial support from NWO and Euratom.

The following persons made significant contributions to the project: A. Schindler, Peter de Nijs, Victor Reijs, Henk Mos.

