High Performance Networking for Grid Applications

www.science.uva.nl/~delaat

Cees de Laat

High Performance Networking for Grid Applications

www.science.uva.nl/~delaat

Contents of this talk

This slide is intentionally left blank

So what are the facts

- Costs of fat pipes (fibers) are one/third of equipment to light them up
 - Is what Lambda salesmen tell me
- Costs of optical equipment 10% of switching 10% of full routing equipment for same throughput
 - 100 Byte packet @ 40 Gb/s -> 20 ns to look up in 140 kEntries routing table (light speed from me to you!)
- Big sciences need fat pipes
- Bottom line: create a hybrid architecture which serves all users in one consistent cost effective way

The only formula's

 $\#\lambda \approx \frac{200 * e^{(t-2002)}}{4}$ rtt Now, as having been a High Energy Physicist we set **c** = 1 **e** = 1 $\hbar = 1$ and the formula reduces to: $\#\lambda \approx \frac{200 * e^{(t-2002)}}{200 * e^{(t-2002)}}$

(6 of 12)

Services

SCALE	2	20	200
	Metro	National/	World
CLASS		regional	
Α	Switching/	Routing	ROUTER\$
	routing		
B	VPN's,	VPN's	Routing
	(G)MPLS	Routing	
С	da <mark>rk fib</mark> er	Lambda	Sub-
(t-2002)	Optical	switching	lambdas,
$\#\lambda \approx \frac{200 * e^{-200}}{100}$	switching		ethernet-
rtt			sdh

Current technology + (re)definition

(9 of 12)

- Current (to me) available technology consists of SONET/SDH switches, 10 gig ethernet and dark fiber environments
- Optical switch on the way (customs)!
- DWDM+switching included
- Starlight/NetherLight deploy VLAN's on Ethernet switches to connect [exactly two] ports (but also routing)
- We want to understand routerless limited environments
- So redefine a λ as:

"a λ is a pipe where you can inspect packets as they enter and when they exit, but principally not when in transit. In transit one only deals with the parameters of the pipe: number, color, bandwidth"

Bring plumbing to the users, not just create sinks in the middle of nowhere

(**11 of 13**)

How low can you go?

(**12 of 14**)

lambda for high bandwidth applications

- Bypass of production network _
- Middleware may request (optical) _ pipe
- **RATIONALE:**
 - Lower the cost of transport per packet

Distributed L2

(14 of 15)

(14d of 15)

(Future) Projects

•National: •NCF Grid project •VLE •GigaPort-NG •LOFAR •European •DataGrid •DataTAG International •NetherLight •StarLight AnyLight, LowLight, BackLight •Optiputer

Transport in the corners

(**15 of 15**)

The END

Thanks to SURFnet: Kees Neggers UIC&iCAIR: Tom DeFanti, Joel Mambretti CANARIE: Bill St. Arnaud This work is supported by: SURFnet EU-IST project DATATAG

