Lambda-Grid developments

www.science.uva.nl/~delaat

Cees de Laat GigaPort **H**', [**University of Amsterdam**

Contents of this talk

•Demanding applications

•Model of Lambda networking

•Current experiments

Contents of this talk

•Demanding applications

•Model of Lambda networking

•Current experiments

VLBI

er term VLBI is easily capable of generating many Gb of data per

The sensitivity of the VLBI array scales w (adata-rate) and there is a strong push to a Rates of 8Gb/s or more are entirely feasible der development. It is expected that paralle prelator will remain the most efficient approa s distributed processing may have an applilti-gigabit data streams will aggregate into la or and the capacity of the final link to the da tor.

Westerbork Synthesis Radio Telescope -Netherlands

Lambdas as part of instruments

www.lofar.org

Techs in Paradise 2004, Honolulu / Cisco Optical Workshop / Jan 30-31

OptIPuter Project Goal: Scaling to 100 Million Pixels

JuxtaView (UIC EVL) for PerspecTile LCD Wall

- Digital Montage Viewer
- 8000x3600 Pixel Resolution~30M Pixels

Display Is Powered By

- 16 PCs with Graphics Cards
- 2 Gigabit Networking per PC

Source: Jason Leigh, EVL, UIC; USGS EROS

VLE middleware

iGrid 2002

September 24-26, 2002, Amsterdam, The Netherlands

- 28 demonstrations from 16 countries: Australia, Canada, CERN, France, Finland, Germany, Greece, Italy, Japan, The Netherlands, Singapore, Spain, Sweden, Taiwan, United Kingdom, United States
- Applications demonstrated: art, bioinformatics, chemistry, cosmology, cultural heritage, education, high-definition media streaming, manufacturing, medicine, neuroscience, physics, tele-science

- Grid technologies demonstrated: Major emphasis on grid middleware, data management grids, data replication grids, visualization grids, data/visualization grids, computational grids, access grids, grid portals
- 25Gb transatlantic bandwidth (100Mb/attendee, 250x iGrid2000!)

www.igrid2002.org

Note: iGrid2005 @ San Diego sept 2005

Contents of this talk

Demanding applications

•Model of Lambda networking

•Current experiments

The Dutch Situation

• Estimate A

- 17 M people, 6.4 M households, 25 % penetration of 0.5-2.0 Mb/s ADSL, 40 times underprovisioning ==> 20 Gb/s

AMS-IX

The Dutch Situation

• Estimate A

- 17 M people, 6.4 M households, 25 % penetration of 0.5-2.0 Mb/s ADSL, 40 times underprovisioning ==> 20 Gb/s

- Estimate B
 - SURFnet has 10 Gb/s to about 12 institutes and 0.1 to 1 Gb/s to 180 customers, estimate same for industry (overestimation) ==> 20-40 Gb/s

The Dutch Situation

- Estimate A
 - 17 M people, 6.4 M households, 25 % penetration of 0.5-2.0 Mb/s ADSL, 40 times underprovisioning ==> 20 Gb/s
- Estimate B
 - SURFnet has 10 Gb/s to about 12 institutes and 0.1 to 1 Gb/s to 180 customers, estimate same for industry (overestimation) ==> 20-40 Gb/s
- Estimate C
 - Leading HEF and ASTRO + rest ==> 80-120 Gb/s
 - LOFAR ==> \approx 26 Tbit/s

The only formula

 $200 * e^{(t-2002)}$

rtt

Compares very well with SURFnet's resources and Lambda's @ NetherLight

- 1 Transatlantic Lambda in 2001, now ~10 from EU+US
- 4200 km dark fiber in Holland \approx railway net

 $#\lambda(rtt,t) \approx$

So what are facts

- Costs of fat pipes (fibers) are one/third of cost of equipment to light them up
 - Is what Lambda salesmen tell me
- Costs of optical equipment 10% of switching 10% of full routing equipment for same throughput
 - 10G routerblade -> 200 k\$, 10G switch port -> 20 k\$, Mems dev port -> 1 k\$
 - 100 Byte packet @ 40 Gb/s -> 20 ns -> time to look up destination in 140 kEntries routing table (light speed from me to you!)
- Bottom line: look for a hybrid architecture which serves all classes in a cost effective way (A -> L3 , B -> L2 , C -> L1)
- Look at worldwide ethernet infrastructure:
 - Tested 10 gbps Ethernet WANPHY Amsterdam-CERN
 - http://www.surfnet.nl/en/publications/pressreleases/021003.html

UVA/EVL's 64*64 **Optical Switch** @ NetherLight in SURFnet POP @ SARA Costs 1/100th of a similar throughput router or 1/10th of an Ethernet switch but with specific services!

Services

	2	20	200
SCALE	Metro	National/	World
CLASS		regional	
Α	Switchin <mark>g/</mark>	Routing	ROUTER\$
	routing		
В	Switches +	Switches +	ROUTER\$
	E-WANPHY	E-WANPHY	
	VPN's	(G)MPLS	
С	dark fiber	DWDM, TDM	Lambdas,
	DWDM	/ SONET	VLAN's
	MEMS switch	Lambda	SONET
		switching	Ethernet

How low can you go?

Optical Exchange as Black Box

Optical Exchange

See Nov 2003 CACM For Articles on OptIPuter Technologies

The OptiPuter: A Revolutionary LambdaGrid Networking Architecture to Support Data-Intensive e-Science Research

Learn about the **OptiPuter** by reading the November 2003 issue of the Communications of the ACM in these articles:

UCIrv

Contents of this talk

Demanding applications

•Model of Lambda networking

•Current experiments

International lightpath network 1Q2004

Little GLORIAD

http://www.nsf.gov/od/lpa/news/03/pr03151.htm

Chicago

Bejing

Hong Kong

Zabajkal'sk/ Manzhouli

Novosibirsk

Amsterdam

Moscow

T. Schindler / National Science Foundation

Research on Networks (CdL)

• Optical Networking: What innovation in architectural models, components, control and light path provisioning are needed to integrate dynamically configurable optical transport networks and traditional IP networks to a generic data transport platform that provides end-to-end IP connectivity as well as light path (lambda and sub-lambda) services?

• High performance routing and switching: what

developments need to be made in the Internet Protocol Suite to support data intensive applications, and scale the routing and addressing capabilities to meet the demands of the research and higher education communities in the forthcoming 5 years?

- Management and monitoring: What management and monitoring models on the dynamic hybrid network infrastructure are suited to provide the necessary high level information to support network planning, network security and network management?
- Grids and access; reaching out to the user: what new

models, interfaces and protocols are capable of empowering the (grid) user to access, and the provider to offer, the network and grid resources in a uniform manner as tools for scientific research?

• **Testing methodology:** What are efficient and effective methods and setups to test the capabilities and performance of the new building blocks and their interworking, needed for a correct functioning of a next generation network?

Research topics

- <u>Optical</u> networking architectures and models for usage
- Transport protocols for massive amounts of data
- Authorization of complex resources in multiple domains
- Embedding in Grid environments

Example Measurements

Layer - 2 requirements from 3/4

TCP is bursty due to sliding window protocol and slow start algorithm. Window = BandWidth * RTT & BW == slow

Forbidden area, solutions for s when f = 1 Gb/s, M = 0.5 Mbyte^(20 of 22) AND NOT USING FLOWCONTROL

AAA based demo at SC2003

Conlusions

• Demanding applications

- (Science) data repositories mirroring
- Instrumentation grids
- Visualisation and collaboration support
- •Model of Lambda networking
 - Identify traffic types
 - Scales of infrastructure
 - Map efficiently to lower the cost/packet
- •Current experiments
 - NetherLight
 - VLE/eScience Amsterdam
 - Networking research (control plane, transport protocols, optical net models)

Transport in the corners

The END

Thanks to

Case Delaat

3/12/2003 9/00 AM - 3000 PM Wedgesday

SURF; net

Computing & Networking Services

Renef: Kees Neggers, UIC&iCAIR: Tom DeFanti, Joel Mambretti, CANARIE: Bill St. Arnaud

jkstra. Hans Blom, Leon Gommans, Bas van oudenaarde, Arie Taal, Pieter de Boer, Bert Andree, Martijn de Munnik, Antony Antony, Rob Meijer, VL-team.