Lambda-Grid developments

www.science.uva.nl/~delaat

Cees de Laat GigaPort **H**', [**University of Amsterdam**

Contents of this talk

- This page is intentionally left blank
 - Ref: www.this-page-intentionally-left-blank.org

VLBI

er term VLBI is easily capable of generating many Gb of data per

The sensitivity of the VLBI array scales w (adata-rate) and there is a strong push to a Rates of 8Gb/s or more are entirely feasible der development. It is expected that paralle prelator will remain the most efficient approa s distributed processing may have an applilti-gigabit data streams will aggregate into la or and the capacity of the final link to the da tor.

Westerbork Synthesis Radio Telescope -Netherlands

Lambdas as part of instruments

www.lofar.org

1 - 45 Tbit/s, http://www.lofar.org/p/systems.htm http://web.haystack.mit.edu/lofar/technical.html

Showed you:

- Computational Grids
 - HEP and LOFAR analysis requires massive CPU capacity
- Data Grid
 - Storing and moving HEP, Bio and Health data sets is major challenge
- Instrumentation Grids
 - Several massive data sources are coming online
- Visualization Grids
 - Data object (TByte sized) inspection, anywhere, anytime

The Dutch Situation

• Estimate A

- 17 M people, 6.4 M households, 25 % penetration of 0.5-2.0 Mb/s ADSL, 40 times underprovisioning ==> 20 Gb/s

AMS-IX

The Dutch Situation

• Estimate A

- 17 M people, 6.4 M households, 25 % penetration of 0.5-2.0 Mb/s ADSL, 40 times underprovisioning ==> 20 Gb/s

- Estimate B
 - SURFnet has 10 Gb/s to about 12 institutes and 0.1 to 1 Gb/s to 180 customers, estimate same for industry (overestimation) ==> 20-40 Gb/s

The Dutch Situation

- Estimate A
 - 17 M people, 6.4 M households, 25 % penetration of 0.5-2.0 Mb/s ADSL, 40 times underprovisioning ==> 20 Gb/s
- Estimate B
 - SURFnet has 10 Gb/s to about 12 institutes and 0.1 to 1 Gb/s to 180 customers, estimate same for industry (overestimation) ==> 20-40 Gb/s
- Estimate C
 - Leading HEF and ASTRO + rest ==> 80-120 Gb/s
 - LOFAR ==> \approx 26 Tbit/s

So what?

- Costs of optical equipment 10% of switching 10% of full routing equipment for same throughput
 - 10G routerblade -> 100-300 k\$, 10G switch port -> 10-20 k\$, MEMS port -> 0.7 k\$
 - DWDM lasers for long reach expensive, 10-50k\$ (???)
 - 64 Byte packet @ 10 Gbit/s -> 52 ns -> time to look up destination in 140 kEntries routing table (light speed from me to you (15 meter)!)
- Bottom line: look for a hybrid architecture which serves all classes in a cost effective way (A -> L3, B -> L2, C -> L1)
- Give each packet in the network the service it needs, but no more

UVA/EVL's 64*64 **Optical Switch** @ NetherLight in SURFnet POP @ SARA Costs 1/100th of a similar throughput router or 1/10th of an Ethernet switch but with specific services!

Services

	2	20	200	
SCALE	Metro	National/	World	
CLASS		regional		
Α	Switching/	Routing	ROUTER\$	
AMSIX	routing			
B	Switches +	Switches +	ROUTER\$	
	ETH-WANPHY	ETH-WANPHY		
	VPN's	(G)MPLS		
C V	da <mark>rk fib</mark> er	DWDM, TDM	Lambdas,	
NetherLight	DWDM	/ SONET	VLAN's	
	MEMS switch	Lambda	SONET	
		switching	Ethernet	

How low can you go?

Bring plumbing to the users, not just create sinks in the middle of nowhere

Optical Exchange as Black Box

Optical Exchange

Service Matrix

To From	WDM (multiple λ)	Single λ, any bitstream	SONET/ SDH	1 Gb/s Ethernet	LAN PHY Ethernet	WAN PHY Ethernet	VLAN tagged Ethernet	IP over Ethernet
WDM (multiple λ)	cross-connect multicast, regenerate, multicast	WDM demux	WDM demux*	WDM demux *	WDM demux *	WDM demux *	WDM demux *	WDM demux *
Single λ, any bitstream	WDM mux	cross-connect multicast, regenerate, multicast	N/A *	N/A *	N/A *	N/A *	N/A *	N/A *
SONET/SDH	WDM mux	N/A *	SONET switch, +	TDM demux *	TDM demux ⁶	SONET switch	TDM demux *	TDM demux *
1 Gb/s Ethernet	WDM mux	N/A *	TDM mux	aggregate, Ethernet conversion +	aggregate, eth. convert	aggregate, Ethernet conversion	aggregate, VLAN encap	L3 entry *
LAN PHY Ethernet	WDM mux	N/A*	TDM mux ⁶	aggregate, Ethernet conversion	aggregate, Ethernet conversion +	Ethernet conversion	aggregate, VLAN encap	L3 entry *
WAN PHY Ethernet	WDM mux	N/A *	SONET switch	aggregate, Ethernet conversion	Ethernet conversion	aggregate, Ethernet conversion +	aggregate, VLAN encap	L3 entry *
VLAN tagged Ethernet	WDM mux	N/A *	TDM mux	aggregate, VLAN decap	aggregate, VLAN decap	aggregate, VLAN decap	Aggregate, VLAN decap & encap +	N/A
IP over Ethernet	WDM mux	N/A *	TDM mux	L3 exit *	L3 exit *	L3 exit *	N/A	Store & forward, L3 entry/exit+

SURFnet on inspection in Science Park Amsterdam :-)

GLIF: Global Lambda Integrated Facility

- Established at the 3rd Lambda Grid Workshop, August 2003 in Reykjavik, Iceland
- Collaborative initiative among worldwide NRENs, institutions and their users
- A world-scale Lambda-based Laboratory for application and middleware development

GLIF vision: To build a new grid-computing paradigm, in which the central architectural element is optical networks, not computers, to support this decade's most demanding e-science applications.

Coordinated by UvA, SURFnet and UIC

GLIF Q3 2004

Visualization courtesy of Bob Patterson, NCSA.

IP network implementation

Light Paths provisioning implementation

SURF; net

LightHouse

Research topics

- <u>Optical</u> networking architectures and models for usage
- Transport protocols for massive amounts of data
- Authorization of complex resources in multiple domains
- Embedding in Grid environments

Example Measurements

AAA based demo at SC2003

Conlusions

• Demanding applications

- (Science) data repositories mirroring
- Instrumentation grids
- Visualisation and collaboration support
- •Model of Lambda networking
 - Identify traffic types
 - Scales of infrastructure
 - Map efficiently to lower the cost/packet
- •Current experiments
 - NetherLight
 - VLE/eScience Amsterdam
 - Networking research (control plane, transport protocols, optical net models)

Transport in the corners

SURFINEL: Kees Neggers, U Freek Dijkstra, Hans Blom, Leon de	U1 JIC&iCA Gommans Munnik,	te Tom DeFanti, Joel Ma s, Bas van oudenaarde, Ar Antony Antony, Rob Mei	ambretti, rie Taal, I jer, VL-t	E E E ND CANARIE: Bill St. Arnaud Pieter de Boer, Bert Andree, Martijn eam.
		RESERVED		
		Case Delaat 3/12/2003 9/00 AM - 3/00 PM. Wednesday	•	
Partially complete list: Caas Chase Cess Kess Case				SURF: net

