Lambda-Grid developments StarPlane

Cees de Laat

University of Amsterdam

Infrastructure

SCALE	2	20	200		
SCALE	Metro	Regional	World		
CLASS					
A	Switching/ Routing	Routers	ROUTER\$		
B	Switches VPN's E-WANPHY	Routing Switches (G)MPLS E-WANPHY	ROUTER\$		
C	dark fiber DWDM WSS Photonic switch	DWDM, TDM / SONET Lambda switching	VLAN's TDM SONET Ethernet		

In The Netherlands SURFnet connects between 180:

- universities;
- academic hospitals;
- most polytechnics;

- research centers. with an indirect ~750K user base

~ 6000 km scale comparable to railway system

Common Photonic Layer (CPL) in SURFnet6

supports up to 72 Lambda's of 10 G each future: 40/100 G.

Dispersion compensating modem: eDCO from NORTEL (Try to Google eDCO :-)

The challenge for sub-second switching

- bringing up/down a λ takes minutes
 - this was fast in the era of old time signaling (phone/fax)
 - $-\lambda 2\lambda$ influence (Amplifiers, non linear effects)
 - however minutes is historically grown, 5 nines, up for years
 - working with Nortel to get setup time significantly down
- plan B:

QOS in a non destructive way!

- Destructive QOS:
 - have a link or λ
 - set part of it aside for a lucky few under higher priority
 - rest gets less service

- Constructive QOS:
 - have a λ
 - add other λ 's as needed on separate colors
 - move the lucky ones over there
 - rest gets also a bit happier!

GRID Co-scheduling problem space **Extensively** under research CPU DATA New! Lambda's

The StarPlane vision is to give flexibility directly to the applications by allowing them to choose the logical topology in real time, ultimately with sub-second lambda switching times on part of the SURFnet6 infrastructure.

What makes StarPlane fly?

- Wavelength Selective Switches
 - for the "low cost" photonics
- Sandbox by confining StarPlane to one band
 - for experimenting on a production network
- Optimization of the controls to turn on/off a Lambda
 - direct access to part of the controls at the NOC
- electronic Dynamically Compensating Optics (eDCO)
 - to compensate for changing lengths of the path
- traffic engineering
 - to create the OPN topologies needed by the applications
- Open Source GMPLS
 - to facillitate policy enabled cross domain signalling

			Net Tet	its between 0	DAS-3 Hosts	ii .			
G Manap / remorandra uva nemenight	ni/itpi/dati/itab	er/net_cars	L'ADAN	Reason of Street of	. Antonina in	-	- We Coope	ANT. 3 Gauge	
and and a second a second second and a	C C Report	(Overview) (Load) (P	(Through	947) (se () (947) (se	nil Ine x) (cc) (x	2) Lant 7. >) 23 30 0	(ign 1))]	
			п	roughput (M	bit/s]				
		XU-083	V0-085	LIACS-125	LIACS-127	UxA-236	UvA-239		
	<u>YU-083</u>		4			4267.46			
	XU:085	+++	-	4674.64					
	LIACS-125		5143.93	-	-				
	LIACS-127						4284.89		
	UvA-236	3829.06		<u> </u>			(111)		
	UvA-239				4445.64	-	dan -		
			UDE	Data Rate []	Mbius)				
		YU-083	YU-085	LIACS-125	LIACS-127	15A-236	UxA-239		
	510-083	***	-			6440.39			
	XU-085	+++	+++	6549.51					
	LIACS-125		6548.28	-	-		2		
	LIACS-127	L					6528.95		
	UyA:236	6554.22					1.000		
	UvA.239		19		6551.25		440		
ad, roundtrip, throughput and UDP data series or	each scaled with	their prive	ste color d	istributions as	is displayed b	elew;			
load	0	0.25	0.5	0.75		1.25	1.5 1.75	2	
ping min (ms)	0.695	0.781	0.865	0.992	1.037	1.123	1.209 1.20	1.38	
throughput (M	NEW 3829.06	3993,419	4157.77	4322 136	4485 495 4	650.854	815 213 4000 5	5143.93	

Heterogeneous clusters

(# of unused ports)

	LU	TUD	UvA-VLE	UvA-MN	VU	TOTALS
Head						
* storage	10TB	5TB	2TB	2TB	10TB	29TB
* CPU	2x2.4GHz DC	2x2.4GHz DC	2x2.2GHz DC	2x2.2GHz DC	2x2.4GHz DC	46.4 GHz
* memory	16GB	16GB	8GB	16GB	8GB	64GB
* Myri 10G	1		1	1	1	40 Gb/s
* 10GE	1	1	1	1	1	50 Gb/s
Compute	32	68	40 (+1)	46	85	271
* storage	400GB	250GB	250GB	2x250GB	250GB	84 TB
* CPU	2x2.6GHz	2x2.4GHz	2x2.2GHz DC	2x2.4GHz	2x2.4GHz DC	1.9 THz
* memory	4GB	4GB	4GB	4GB	4GB	1048 GB
* Myri 10G	1		1	1	1	2030 Gb/s
Myrinet						
* 10G ports	33 (7)		41	47	86 (2)	2070 Gb/s
* 10GE ports	8		8	8	8	320 Gb/s
Nortel						
* 1GE ports	32 (16)	136 (8)	40 (8)	46 (2)	85 (11)	339 Gb/s
* 10GE ports	1 (1)	9 (3)	2	2	1 (1)	

Power is a big issue

- UvA cluster uses (max) 30 kWh
- 1 kWh ~ 0.1 €
- per year
- add cooling 50%
- Emergency power system

-> 26 k€/y -> 39 k€/y -> 50 k€/y

- per rack 10 kWh is now normal
- YOU BURN ABOUT HALF THE CLUSTER OVER ITS LIFETIME!
- Terminating a 10 Gb/s wave costs about 200 W
- Entire loaded fiber -> 16 kW
- Wavelength Selective Switch : few W!

Use AAA concept to split (time consuming) service authorization process from service access using secure tokens in order to allow fast service access.

StarPlane and NDL

While on topologies. SNE group is working on NDL - Network Description Language.

NDL is an RDF data model, based on idea of Semantic Web, for network topology descriptions.

In StarPlane we are researching use of NDL for topology exchange and topology requests from clients. ref: Talk from Paola Grosso on NDL/RDF

RDF describing Infrastructure

StarPlane Applications

- Large 'stand-alone' file transfers
 - User-driven file transfers
 - Nightly backups
 - Transfer of medical data files (MRI)
- Large file (speedier) Stage-in/Stage-out
 - MEG modeling (Magneto encephalography)
 - Analysis of video data
- Application with static bandwidth requirements
 - Distributed game-tree search
 - Remote data access for analysis of video data
 - Remote visualization
- Applications with dynamic bandwidth requirements
 - Remote data access for MEG modeling
 - SCARI

This slide courtesy of Richard Schilizzi <schilizzi@jive.nl>

US and International OptIPortal Sites

CineGrid@SARA

Tera-Thinking

- What constitutes a Tb/s network?
- CALIT2 has 8000 Gigabit drops ?->? Terabit Lan?
- look at 80 core Intel processor
 - cut it in two, left and right communicate 8 TB/s
- think back to teraflop computing!
 - MPI makes it a teraflop machine
- massive parallel channels in hosts, NIC's
- TeraApps programming model supported by
 - TFlops –> MPI / Globus
 - TBytes -> OGSA/DAIS
 - TPixels –> SAGE
 - TSensors -> LOFAR, LHC, LOOKING, CineGrid, ...
 - Tbit/s -> ?

Questions ?

Thanks to:

SURFnet, NWO (grant 643.000.504), NORTEL

Team: Li Xu, Jason Maasen, JP Velders, Leon Gommans, Paola Grosso, Herbert Bos, Henri Bal Special thanks to Kees Neggers.

