SC08 Holland Avond Next Generation Networks & eScience

Cees de Laat

University of Amsterdam

Hybrid Network Paradigm

- Capability to handle datatransport on different OSI layers
- Most NREN's now offer end-to-end Lightpath services to their users
- Last 2 years tremendous progress in control plane implementations.
- Commercial Internet world has >20.000 WSS's (ECOC2008)
- Differentiating factor: put user in charge!

Quotes from OnVector 2008

prof. Ken-Ichi Sato:

- It is very difficult to predict future services, however, video is expected to be the king media used for bit rate demanding services. High-quality video technologies are rapidly advancing.
- TCP/IP bottleneck is becoming more and more tangible. It will limit the future envisaged network expansion -the energy bottleneck and throughput bottleneck need to be resolved.
- Fast optical circuit/path switching will play the key role to create cost effective and bandwidth abundant future networks.
- Hierarchical optical path network and the node technologies are very important, and hence they need to be fully developed soon.

Quotes from OnVector 2008

• dr. Kazuo Hagimoto:

• NTT is developing a system that automatically generates metadata such as title, summary, and key words that are extracted from voice or subtitles.

dr. Shimizu:

- Applications for Tbit networks:
 - High Resolution Simulation
 - Weather Forecast
 - Earthquake Forecast
 - City Planning
 - Digital Engineering
 - Nano Device Engineering
 - Protein Structural Analysis

Quotes from OnVector 2008

prof. Larry Smarr:

 Interconnecting Regional Optical Networks Is Driving Campus Optical Infrastructure Deployment

prof. Ed Seidel:

- Petascale computing will not only provide huge data, but will demand new computing modalities
- Will place new demands on networking, data management, visualization, resource co- allocation
- Applications need to be configurable for the new type of infrastructure, need to be aware of environment
- If we don't solve these problems, people will use machines anyway, but science will suffer!

Bill s'Arnaud:

 "Optical networks (as opposed to electronic routed networks) have much smaller carbon footprint"

Programmable Deterministic Service

Sensor grid: instrumenting the dikes

First controlled breach occurred on sept 27th '08:

•30000 sensors (microphones) to cover Dutch dikes
•focus on problem area when breach is to occur

Mathematica enables advanced graph queries, visualizations and real-time network manipulations on UPVNs

Topology matters can be dealt with algorithmically Results can be persisted using a transaction service built in UPVN

Initialization and BFS discovery of NEs

Needs["WebServices`"] <<DiscreteMath`Combinatorica` <<DiscreteMath`GraphPlot` InitNetworkTopologyService["edge.ict.tno.nl"]

Available methods: {DiscoverNetworkElements,GetLinkBandwidth,GetAllIpLinks,Remote, NetworkTokenTransaction}

Global`upvnverbose = True; AbsoluteTiming[nes = BFSDiscover["139.63.145.94"];][[1]] AbsoluteTiming[result = BFSDiscoverLinks["139.63.145.94", nes];][[1]]

Getting neigbours of: 139.63.145.94 Internal links: {192.168.0.1, 139.63.145.94} (...) Getting neigbours of:192.168.2.3 Internal links: {192.168.2.3}

Transaction on shortest path with tokens

nodePath = ConvertIndicesToNodes[ShortestPath[g,

9, Node2Index[nids,"192.168.3.4"], Node2Index[nids,"139.63.77.49"]], nids];

Print["Path: ", nodePath]; If[NetworkTokenTransaction[nodePath, "green"]==True, Print["Committed"], Print["Transaction failed"]];

Path: {192.168.3.4,192.168.3.1,139.63.77.30,139.63.77.49}

Committed

ref: Robert J. Meijer, Rudolf J. Strijkers, Leon Gommans, Cees de Laat, User Programmable Virtualiized Networks, accepted for publication to the IEEE e-Science 2006 conference Amsterdam.

TouchTable Demonstration @ SC08

NDL + PROLOG

Research Questions:order of requestscomplex requestsUsable leftovers

•Reason about graphs

•Find sub-graphs that comply with rules

DAS-3 Cluster Architecture

DAS-4 Proposed Architecture

- needs
 repeatable
 experiment
- needs QoS & lightpaths
- needs capacity and capability
- needs

 infrastructure
 descriptions

Themes for next years

- 40 and 100 gbit/s
- Network modeling and simulation
- Cross domain Alien Light switching
- Green-Light
- Network and infrastructure descriptions & WEB2.0
- Reasoning about services
- Cloud Data Computing
- Web Services based Authorization
- Network Services Interface (N-S and E-W)
- Fault tolerance, Fault isolation, monitoring
- eScience integrated services
- Data and Media specific services

Questions ?

