SNE Security & Privacy

Guido van 't Noordende guido <at> science.uva.nl

room f2.44

Grids

- Networks faster and bigger / more bandwidth
- Easier and cheaper to tie multiple computers together
- Connect multiple clusters by fast networks and you have a Grid
- Useful for running compute and data intensitive (distributed) applications
- More compute power available than ever
- Applications: physics, biology, medical / imaging, ...

However...

- Grids are (widely) distributed over multiple administrative domains
- Grids/clusters are heterogenous
 - Multiple OS-es, multiple middleware installations/versions, different configurations, multiple administrators, ...
- Are grids secure?

Basics

- Example: UNIX Security model
 - UNIX: r/w/x bits, user/group/other
 - R is for *confidentiality*: who may read? -> privacy
 - W is for *integrity*: who may write/change?
 - Simple to understand
 - sufficient for most cases
 - UNIX kernel is reference monitor
 - Assume single system & administrator trusted
 - (relatively small) TCB

Grid (security) evolution

- Distributed resources (disks, clusters, ...)
 - Distributed management/owners/admins
- (meta)schedulers dispatch jobs to clusters
 e.g., WMS, ...
- Public key cryptography / PKI: GSI
 - Hosts can be authenticated using 'host certificates'
 - Jobs can be authenticated using proxy certificates (signed by 'user key')
 - Strong PKI backbone: Grid CAs, ...
- Not so small TCB

Anything wrong?

- What do we trust?
- Host certificate says nothing about the host
 - Nor its administration..
 - Nor its configuration..
 - Nor its (past) users..
 - Nor its physical safety..
 - Nor its vulnerabilities..
- Job proxy certificate binding flawed
 - Are we sure this certificate belongs to this job?
 - Jobs can be hijacked / modified..

Privacy (confidentiality)

- Needs the system (host) to enforce confidentiality
- What is 'the' system in a Grid?
 - Who owns/manages storage?
 - Where is the job?
 - Do we have any control as a data owner?
- Risk assessment
 - privacy/security requirements
 - Can a data owner trust the system?

Privacy Sensitive Applications

- Industrial apps, (bio)medical apps
 - (DNA, imaging, ...)
- Medical requirements (personal information)
 - Data protection regulations (95/46/EC)
 - Purpose binding / necessity / minimality
 - Consent for medical research data: purpose bound
 - Physician *legally responsible* for ensuring an *appropriate level* of security to protect data
- Similar laws / regulations in non-EU countries

- e.g., U.S. HIPAA, PIPEDA, ...

Medical apps

- Can we anonymize data?
 - DICOM header / strip names;
 - MRI data images
 - DNA data/sequences (BioBanking)
- Can we control distribution?
 - Replication policies (TSRB: storage system constrains which clusters can obtain data)
- Can we control/avoid copying?
- Can we control/avoid data leakage at all?

Trusted Storage System: TSRB

- ACL: what system can a job access data from
- Systems trusted by data owner:
 - Administrator/domain trusted (ACL)
 - Has safe configuration (HPL)
 - up-to-date config, /temp cleaning, encrypted swap, etc
 - job/certificate binding verification
 - Defining ACL/HPL manual task...
 - Microcontracts for auditing
- Assumes that if job owners are trusted -> jobs are trusted

Can we trust jobs?

- Most jobs are binary programs
- Can access local FS, invoke GridFTP, set up sockets to outside world,...
- Can contain back-doors (trojan horse), may even be unknown to researcher who submitted the job
- Risk assessment exercise: if you were a hospital director, would you trust the jobs that medical researchers submit to the Grid?

Can we trust jobs?

- Most jobs are binary programs
- Can access local FS, invoke GridFTP, set up sockets to outside world,...
- Can contain back-doors (trojan horse), may even be unknown to researcher who submitted the job
- Risk assessment exercise: if you were a hospital director, would you trust the jobs that medical researchers submit to the Grid?
 - What if you get sued?

Can we trust jobs?

- Most jobs are binary programs
- Can access local FS, invoke GridFTP, set up sockets to outside world,...
- Can contain back-doors (trojan horse), may even be unknown to researcher who submitted the job
- Risk assessment exercise: if you were a hospital director, would you trust the jobs that medical researchers submit to the Grid?
 - What if you get sued?
 - Where does this leave TSRB?

Good news

- Good news is: perhaps we can assume submitted programs to be trustworthy
- We could require jobs signed by their authors
 e.g., Sun, Microsoft, Linus, ...
- We can *jail* a job to avoid all obvious outbound channels
 - Control all actions by job at syscall entry point
 - disallow connects, only write to a temporary directory,
 - do something smart at job exit time
 - e.g., encrypt all written data using job owner's public key

Wrap-up for Grids

- We can harden Grids or the Grid's systems
- Ensure enforcement of policies and auditing such that Grid security gets tractable
- Implement mechanisms (e.g., confinement) that limit chances of abuse by unknown parties somewhere in the 'food chain'
 - e.g., software coders, compiler writers,
 - OS vendors / distributors, system administrators
 - The regular bunch of mistakes or vulnerabilities

But..

- Security does not come for free:
 - Sacrifice usability, cause inconvenience
 - Less performance than without security
 - Require sometimes difficult configuration
 - Manual work, risk assessments, ...
 - Require up-to-date systems and alert administrators
 - Solutions may not suit all applications
 - Current protocols need to be changed

Conclusion

- Yes, we can harden (distributed) systems
- But: still a lot of work to do..

Related (privacy) work

- Calculate / measure privacy or anonymity
 - In networks / overlays (TOR, anonymous remailers)
 - Entropy / information theory based calculations
 - K-Anonymity / re-identifyability of data sets
- Research existing systems/security
 - EPD, OV-chipcard (security + privacy)
 - Composition of systems containing data (UK: "database state", how about NL?)

Summary

- SNE: research on networks, security, privacy
- Network security solved to some extent (SSL)
- Higher layers are more complex, security in distributed systems hard to achieve,
- need to trust many many components in many many places
- Better protocols and solutions still needed
- More end-user control, auditing, ...
- For privacy, also composition / properties of combined systems to consider

Contact

- Guido van 't Noordende
- Guido <at> science.uva.nl
- f2.44