
Microscopic Examination of TCP Flows Over

Transatlantic Links

Antony Antony a, Johan Blom b, Cees de Laat b, Jason Lee b,
Wim Sjouw b

aNIKHEF, 409 Kruislaan, 1098 SJ Amsterdam, The Netherlands

bUniversteit van Amsterdam, 403 Kruislaan , 1098 SJ Amsterdam, The Netherlands

.

Abstract

Much of the recent research and development in the area of high speed TCP is
focused on the steady state behavior of TCP flows. However, our experience with
the first research only transatlantic 2.5 Gbps Lambda link clearly demonstrates the
need to focus on the initial stages of TCP. The work we present here examines the
behavior of TCP flows at microscopic level over high-bandwidth long delay networks.
This examination has led us to study the influence of the minute properties of the
underlying network on bursty protocols such as TCP at these very high speeds
combined with high latency. In this paper we briefly describe the requirements
for such an extreme network environment to support high speed TCP flows. We
also present results collected using transatlantic links at iGrid2002 where we tuned
various host parameters and used modified TCP stacks.

Key words: HSTCP, High Speed Long-latency TCP, iGrid2002, Long Fat Networks

1 Introduction

Grid applications in general can be
demanding in terms of bandwidth re-
quirements.

Email addresses: antony@nikhef.nl

(Antony Antony),
jblom@science.uva.nl (Johan
Blom), delaat@science.uva.nl
(Cees de Laat), jason@nikhef.nl
(Jason Lee), wsjouw@science.uva.nl
(Wim Sjouw).

A typical large scale scientific exper-
iment involves at least two parites:
a data producer and a data con-
sumer. Many of the large High En-
ergy Physics (HEP) experiments
coming online in the near future such
as LHC[16], D∅[12], CDF[11] and
BaBar[10] are all excellent examples
of this model of computing. In these
large experiments the data is mostly
produced at a few locations (the data
producers) and then many reserar-
chers analyze this data at their home

Preprint submitted to Elsevier Science 23 January 2003

institutes and universities (the data
consumers). Often the researchers
are geographically separated by large
distances. The throughput require-
ments for these experiments are high.

For example, the Europen Data Grid
(EDG) roughly estimates the peak
bandwidth of the network traffic
that will flow over it in the year 2005
to be 8000 Mbits/sec from a single
project (D0), and that this link will
have to be shared among several dif-
ferent HEP projects, all wishing to
dissimante their data. Not only does
this data need to be collected from
the experiment but a large part of
it needs to be transferred to various
locations over the network. Network
architectures are evolving to meet
this unprecedented demand. Herein
we present research on the scalabil-
ity of protocols to allow these kinds
of applications to reach the required
high-bandwidths on new network
architectures. One way to provide
this bandwidth is by provisioning
end-to-end paths, called Lambdas
[5], up to several Gbps. In the fall
of 2001 SURFnet[18] provisioned a
2.5 Gbps Lambda between Amster-
dam and Chicago to be used only for
research. Initial tests showed that
only increasing the speed of links,
switches and routers in the path was
not sufficient to obtain a throughput
at or near the available bandwidth.
We conducted extensive experiments
on this transatlantic link both to
understand how transport proto-
cols behave and what additional re-
quirements high speed flows, such as
TCP, impose on optical networks.
One architectural shift in our high-
speed networking experiments was

to minimize the number of routers
(devices which process packets at
layer 3 and above), and instead dele-
gate packet forwarding to switching
devices at layer 2 or below. Initial
throughput measurements of a sin-
gle TCP stream over such an ex-
treme network infrastructure (i.e.
the SURFnet Lambda) showed sur-
prisingly poor results. This led us to
further examination of the dynamics
of TCP at the microscopic level to
better understand its behavior. The
primary motivation of this work is
the demand from HEP community
to obtain maximum throughput over
long distance links using a single or
atmost a few TCP streams. Cur-
rently in the HEP community there
are several projects underway to try
to over come these limitations. How-
ever, these projects focus primarly
on increasing some of the default
parameters of TCP (SSThreash [7],
etc). Simply increasing network ca-
pacity does not always improve end-
to-end performance. The exclusive
availability of the SURFnet Lambda
for research has allowed us to inves-
tigate this problem.

The performance issues of TCP/IP
for large data transfers over high-
bandwidth long-latency path is a
well known problem [6]. The prob-
lem is to discover the bottleneck of
a TCP flow (the slowest link in a
chain of networks) between two PCs
connected using a long-latency high-
bandwidth path. There are several is-
sues related to this problem: network
characteristics (router, switches,
slow links), the implementation of
the TCP stack and specific parame-
ters passed to the TCP algorithm by

2

the hosts. In section 2 we examine
the characteristics of the equipment
and how this influences TCP and
what requirements TCP imposes on
the network. Section 3 briefly dis-
cusses some of the problems with the
TCP algorithm on high-bandwidth
long delay paths. In section 4 we dis-
cuss the effect of host and operating
system parameter tuning on perfor-
mance. Section 5 shows test results
from different modifications to the
TCP/IP algorithms and particular
those of HSTCP [4] implemented by
the Net100[17] project.

In the following sections we broadly
classify the various stages of a TCP
session into: bandwidth discovery
phase (aka slow start), steady state
[4], and congestion avoidance. In this
work we focus mostly on the initial
phase of a TCP flow, the bandwidth
discovery, as we believe that this
phase most influences the bandwidth
obtained using TCP.

2 Properties of underlying net-
work infrastructure

The initial configuration used for
the SURFnet Lambda (2.5 Gbps)
is shown in Figure 1. Two high-
end Personal Computers (PCs) were
connected using Gigabit Ethernet
via two Time Division Multiplexer
(TDM) switches and a router. The
TDM switches are capable of encap-
sulating Ethernet packets in SONET
frames up to the rate of the specific
SONET channel. The hosts were
connected at 1 Gbps to a first version
of the TDM switch. The linecard

routerOC48 Sonet Link

622Mbps Channel

GigE

GigE

GigE

GigE

TDM Switch TDM Switch

WS1
WS2

Fig. 1. Initial network setup. Two hosts connected back
via two TDM switches interconnected at OC48 Link (96
msec RTT), sub channeled into an OC12.

to backplane interface posed a 622
Mbps limitation on the datapath. In
a subsequent version this bottleneck
was alleviated. The Round Trip Time
(RTT) of the network was about 100
ms and thus a very high-bandwidth
delay. Initial TCP tests conducted
over this link between Amsterdam
and Chicago with the first version of
the TDM switch showed rather poor
results. Throughput obtained using
a single stream TCP session was an
order of magnitude less(about 80
Mbps) than the bottleneck capacity.
Tuning the TCP stack showed only
marginal improvements(110 Mbps).
On the other hand, a multi-stream
TCP session between the same two
hosts achieved a throughput of about
520 Mbps. Also a UDP stream us-
ing (iperf) obtained a throughput
a little higher than that of a multi-
stream TCP session. Note that this
path was exclusively used for re-
search so there was no possibility of
background traffic to influence the
results. Before shipping one of the
TDM switches to Chicago we had
tested a setup locally (back to back)
with a negligible round trip time and
the throughputs were also close to
linespeed (622 Mbps). This led us to
the conclusion that the problem lay
in the large RTT.

The approach we took to understand
the performance problem was to ex-
amine TCP at a microscopic level. A
quick look at the traces showed that

3

Fig. 2. relative arrival time (in µsec’s) at the receiver
vs packet number, for 5000 UDP packets sent using
UDPMon, from Amsterdam to Chicago

TCP is very bursty in nature during
the initial phase. We belive that the
TDM switch could not cope with the
large bursts and therefore was drop-
ping packets. Since there is an intrin-
sic bottleneck of 622 Mbps for the
TDM switch and the PCs are con-
nected at a higher speed than the
bottleneck, it is evident that the host
will be able to overflow the switch’s
memory on the input linecard. In the
tested configurations (hardware) flow
control was not operational. This is
discussed in great detail in section 3.
For the rest of this section we used
streams of UDP packets to simulate
the behavior of a TCP burst during
the initial phase.

In order to estimate the maximum
possible burstsize which does not
cause packetloss in the switch, we
used a tunable UDP stream. The
assumption here is that the burst is
similar to what occurs in a TCP flow
during its initial phase.

Our setup is shown in Figure 1.
Two personal computers one config-
ured as the sender (Amsterdam) and
the other configured as the receiver
(Chicago), were connected to the
TDM switches using a Gigabit Eth-
ernet link. The switches were then in-
terconnected over a high-bandwidth

delay product link.The RTT of the
link was about 100 msec and the pro-
visioned capacity of the link was 622
Mbps (STS12). If the sender sends
a continuous stream of packets as
fast as it can (about 900 Mbps, lim-
ited by PC) eventually a fraction of
the packets will be dropped at the
622 Mbps bottleneck in the TDM
switches.

Using UPDMon[20], we sent 5000 num-
bered UDP packets, each with a
length of a 1000 bytes, as fast as
possible from the sender to the re-
ciever. Figure 2 shows the result. The
horizontal axis shows packet num-
bers, and the vertical marks arrival
times. Dropped packets get an arrival
time of zero. Therefore, the shaded
area under the curve indicates lost
packets. The first loss occurs after
1500 packets. From then on approxi-
mately one out of every three pack-
ets is dropped. This points at the
bottleneck mentioned earlier since
the ratio of dropped packets agrees
with the bandwidth ratio. The curve
also shows that a continous block
of about 150 packets is lost after
this point. We assumed that these
packets are dropped by the receiver.
Studying the packet counters of the
switches in the path supported this
assumption. We believe that this is
due the limitations of the receiver.
The receiving PC is overwhelmed
by the rate and it drops a series of
packets from its input buffer. We as-
sume the packets are being dropped
while they are being copied from the
memeory of the Network Interface
Card (NIC) to the the memory of the
reciever process. A similar kind of re-
ceiver limitation is also discussed in

4

section 3.2. In the rest of this section
we focus on an intrinsic bottleneck,
namely the sender side TDM switch.

The number of packets dropped by
the switch, Nd, during a burst is re-
lated to the number of packets in the
burst, Nb. The speed of the incom-
ing interface(fast), f , the speed of the
outgoing interface(slow), s, and the
buffer memory available at the out-
put port of the bottleneck link, M .
We assume for simplicity an average
packet length of size, l. The loss can
then be expressed as:

Nd = Nb

(f − s)

f
−

M

l
(1)

Using equation 1, we set Nd = 0 and
Nb = 1500 as that is the maximum
burst which got through, and com-
puted the available memory on the
TDM switch to be approximately 0.5
MBytes.

Once we know the memory of the
bottleneck and the size of burst of
packets that can pass through the
TDM switch we can then calculate
the possible bandwidth a TCP flow
can achieve during the initial phase
without packet loss. We assume there
are no other bottlenecks in the end-
to-end path and the TCP has not
encountered a congestion event.

To first order, the throughput TCP
can obtain is approximated by:

B =
f

(f − s)

M

R
(2)

where B is the throughput that a
TCP flow can achieve and R is the

round trip time.

If we assume that TCP will try
to reach a stable state where the
throughput will be equal to the
speed of the slowest interface, we can
then substitute B=s into equation 2.
This leads to a memory requirement
to support a high-bandwidth delay
product TCP flow as:

M =
(f − s)

f
sR (3)

For the network shown in Figure 1
to support a 622 Mbps end-to-end
TCP flow the minimum memory re-
quired is 3.1 MBytes (f = 1Gbps, s =
622, R = 100msec). From our un-
derstanding of the currently available
Ethernet to TDM encapsulation de-
vices, they do not have the required
memory.

From preliminary discussions with
a few vendors, we understand these
devices are primarily designed for
high-speed Local Area Networks
(LAN) and Metropolitan Area Net-
works (MAN), where the RTT is
small (< 20ms), thus negating the
bursty nature of TCP flows during
the bandwidth discovery phase. The
problem arises when these LAN’s
and MAN’s are interconnected to
other high-speed long-latency net-
works and the traffic flows from
these larger networks traverse the
equipment in these smaller networks
that were designed with LAN’s and
MAN’s in mind, causing them to
become bottlenecks. The buffer re-
quirements for any device which has
traffic flows over it that are high-
bandwidth high-latency, and has dis-

5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000

M
em

or
y

in
 M

B

BW

(1024-x)/1024 * x * .1/8

Fig. 3. Required memory at a bottleneck for an incoming
speed of 1 Gbps and various output speeds for a RTT
of 100 ms.

proportional interface speeds, should
have enough buffer space to accom-
modate the difference of the input
speed and the output speed of the
interfaces for some large fraction of
the RTT of those flows. See equation
3 for how to compute the required
buffer sizes for these network devices.

Figure 3 shows the memory required
in the switches to support various
end-to-end speeds (for TCP) for a
given RTT (R = 100). If we solve
the quadratic equation 3 for s we
can compute the TCP throughput
for various values RTT for given
values of M and f under the as-
sumption there are no other bottle-
necks present and the TCP flow do
not encounter any othe congestion
event during the bandwidth discov-
ery phase.

s =
f

2

(

1 +

√

1 − 4M

fR

)

(4)

The result is plotted in Figure 3.

For example, using our TDM switch
and a 150 ms RTT (Amsterdam
to California) link, the end-to-end
throughput will be about 45 Mbps.
The area inside the curve is a forbid-

Fig. 4. Forbidden (shaded) area shows where packet
loss may occur in single stream TCP flows for a given
memory size of 0.5 MByte and an incoming speed of 1
Gbps. Horizontally is the round trip time of the desired
destination and vertically the provisioned ”slow” speed
at a TDM switch.

den area for TCP flows as packet loss
may occur. The values we get using
this formula also matched with the
throughput obtained in TCP tests
using iperf.

3 TCP

TCP is a sender-controlled sliding
window protocol [2]. New data up
to “window size” is sent when old
data has been acknowledged by the
receiver. The window size is limited
by the host and application param-
eters such as socket buffer size and
Cwnd [1]. TCP adjusts the Cwnd

dynamically using different algo-
rithms depending on which phase
the flow is currently in. We will focus
here on understanding the slow start
phase. We have tested various modi-
fications to the congestion avoidance
algorithm and presented some of the
results here.

6

3.1 Bandwidth discovery phase
(slow start)

This is the initial phase of a TCP
flow. After the protocol handshake
[8] the sender will try to discover
what the available bandwidth is so
that it can compute the correct value
for Cwnd. This discovery is done by
injecting data into the network until
a congestion event occurs. Fast con-
vergence and accuracy of bandwidth
discovery has a large influence on all
three phases of TCP. The Cwnd size
determines how fast a flow can reach
a steady state and the stability of the
flow once it has reached steady state.

If during this initial phase no conges-
tion events are generated, the Cwnd

effectively doubles every RTT. Thus
a flow should only be limited by an
intrinsic bottleneck (i.e. packet loss).
If the limiting bandwidth between
two hosts is the speed of the send-
ing host (i.e. slow NIC, slow CPU)
then the bandwidth discovery phase
will always work correctly. However,
if the connection between the hosts
is limited by some other factor (i.e.
router buffer, network capacity, etc)
then the bandwidth discovery phase
will fail due to the fact that the dou-
bling of the congestion window can
overrun the bottleneck buffer by a
large number of packets [3], thus
causing large packet loss. The packet
loss can be computed using equation
1 if we know the bottleneck speed and
buffersize at the bottleneck. Using
limited slow start is a good solution
to avoid buffer over run problems
during bandwidth discovery. Lim-
ited slow start works by stopping the

Fig. 5. Time Sequence graph showing instantaneous speed
of flow

doubling of the congestion window
after the window reaches a prede-
fined threshold. After the congestion
window reaches this threshold, it
continues to open up, but at slower
rate that is based on the size of the
congestion window. This stops TCP
from overshooting the bottleneck
buffer by a large margin, and reduces
packet loss that occurs when it does
overflow the bottleneck buffer. Un-
fortunately this requires some sort of
a priori knowledge of the bottleneck
speed.

In Figure 9 we show our observa-
tion of large packet loss caused by a
bottleneck. Note that after 9 RTT a
burst of 512 packets leave the PC;
at 10 RTT this is doubled to 1024
and this amount overruns the buffer,
causing large packet loss.

The HSTCP extensions may be an
excellent alternative. We believe that
proposed algorithm [4] is a good
starting point. In an over-provisioned
network one could use a faster al-
gorithm to increase Cwnd. The re-
quirement of such an algorithm is to
do bandwidth discovery as fast as
possible with minimum or no packet
loss.

7

3.2 Receiver Limitations

Typically most PC hardware exhibits
the property that the receiver capac-
ity is less than the sender for iden-
tically configured machines. This is
due to the difference in overhead of
sending a packet versus receiving a
packet. Take, for example, two identi-
cal PCs connected back-to-back, one
configured as the sender and other as
the receiver. If the sender sends data
as fast as possible, the receiver may
not be able to keep up. When receiver
is overloaded in this manner, it will
start to drop packets, which in turn
cause a TCP congestion event.

Figure 5 shows the instantaneous
speed of a flow during slow start us-
ing a Time Sequence Graph (TSG).
Notice that after 8 RTTs 512 pack-
ets leave the host. The sending host
sends this data as IP packets as fast
as it can. In this case the 512 packets
are sent in about 4 ms, yielding an
instantaneous speed close to 1 Gbps,
which is line-speed. This overruns
the receiver buffer and causes the
flow to fall out of the bandwidth dis-
covery phase into congestion avoid-
ance phase. Therefore, this case is
similar to that of a buffer overflow
at the TDM switch as discussed in
the previous subsection. A solution
would be to pace out the packets in
such manner that the average speed
approximately equals that of the
bottleneck in the path.

Figure 6 shows the combined time
sequence graph of packets leaving
the sender and the receiver. It clearly
shows that the inter-packet delay is

700000

600000

500000

400000

800.000 ms795.000 ms790.000 ms

sequence offset

relative time

gwgsara0:39124_==>_prusin.sl.startap.net:5001 (time sequence graph)

Fig. 6. combined traces from sender and receiver

very small at the receiving process.
This may be due to the effects of
interrupt coalescing on the NIC.

4 Host Parameters

Implementations of the TCP algo-
rithms vary between operating sys-
tems. The behavior of TCP depends
on the particular implementation
and architecture of the PC, such as
host bus speed, devices sharing the
bus, Network Interface Card (NIC),
interrupt coalescing, inter-packet de-
lay, [20] etc. Thus using the same
values as described in [19] on two
different configurations can still pro-
duce varying results, especially dur-
ing the bandwidth discovery phase.
These differences may become less
noticeable if we average these values
over long periods of time.

We refer to values specific to a con-
figuration of a PC as the host param-
eters. This also includes the TCP
implementation. From our experi-
ence it has been observed that some

8

seemingly slower hosts, in terms of
CPU and bus speed, are not neces-
sarily the slowest for TCP transfers.
We assume this is due the fact that
the slower hosts pace out the packets
better than a faster PC, hence there
is less chance for overflowing bottle-
neck queues in the path. The TSG
in Figure 10 shows a comparison be-
tween Mac OS X and Linux 2.4.19 as
sender. The data was captured at the
receiver side, Linux, using tcpdump.
It clearly shows the Mac sends pack-
ets better paced than Linux. Section
5.1 discuss the advantages of pacing
the packets.

4.1 Results from tuning TX queue
length

Tuning the length of the Transmit
Queue (TXQ) of the sending device
had a noticeable effect on the high-
bandwidth high delay path. This
parameter can be adjusted using
the Linux command ifconfig with
the option txqueuelen <length>,
though one should keep in mind that
the device is limited by the amount
of available memory. We found that
even though tuning of this variable
can improve the performance of TCP
by several factors, the results are not
very predictable and there doesn’t
seem to be an easy way to precom-
pute what the length should be.
Figure 7 shows the results of testing
throughput over a high-bandwidth
high-delay network with several hun-
dred different queue lengths. The
default queue length is around 100
packets, while, as shown in the graph,
we continued to get increased per-

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000 6000

M
bp

s

TXQueue in MSS

12 MB

Fig. 7. TXQ in MSS vs throughput in Mbps. Steps used
32. using Net100 kernel capable of AIMD

formance until about 1500 packets.
Having a large transmit queue is
very helpful during the bandwidth
discovery phase in absence of a con-
gestion event since it allows one to
reach the maximum throughput very
quickly. If a congestion event does
occur, the flow will fall back into the
congestion avoidance phase. This
is the same reaction as if it was in
steady state. The stream will then
act as it normally would over a long-
latency long-latency link and it will
take many RTTs to recover.

In Figure 7 it can be seen that
through adjusting the transmit
queue one can clearly obtain im-
proved throughput, but the through-
put is not always very predictable.
By monitoring the Web100 variable
BytesRetrans during the tests we
tried to identify packet loss to see if
a failure in the bandwidth discovery
phase was occurring. This was done
to test if the oscillations in through-
put were due to packet retransmis-
sion. However, it turned out that
there were no retransmissions during
the tests. We now assume that the
variances may be due to the dynam-
ics of TXQ which causes an early
congestion event (i.e. premature end
of the bandwidth discovery phase)

9

and low throughput.

Net100 has coded a workaround in
the Linux TCP implementation to
obtain an effect similar to tuning
the transmit queue. This is done by
brute force, where the influence of
TXQ on TCP’s Cwnd computation
is removed from the TCP stack. Re-
sults using these modifications are
show in Figure 12.

To test if host behavior varies be-
tween architectures a few tests were
done using an Apple laptop (used as
sender) connected at 1 Gbps. Initial
results look very promising. In one
case we were able to get 354 Mbps
between Amsterdam and Chicago.
A closer look at the traces captured
from the receiver is shown in Figure
10. It clearly shows that the Apple
host behaves differently than the
Linux host during the bandwidth
discovery phase of TCP. Apparently
OSX on the Apple paces the packets
better than Linux, putting a larger
inter-packet delay between the pack-
ets. This could be due to slightly
different implementation of TCP or
differences in hardware architecture
such as the NIC, motherboard, CPU,
etc.

5 Modifications to TCP/IP al-
gorithm

5.1 Pacing out packets at device
level

From the discussions in the preced-
ing sections it is clear that some sort

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20

S
um

 T
hr

ou
gh

pu
t [

M
bi

t/s
]

Delay [us]

keeshond => prusin; #1; t: 5 s

Win: 01 MB
Win: 12 MB
Win: 16 MB

Fig. 8. Bandwidth vs. delay using iperf for a duration
of 5 sec for varying socket sizes

of pacing of the packets should im-
prove performance. We implemented
a delay at the device driver level, i.e.
a blocking delay of O(µ)secs. Results
are shown in Figures 8 and 11. From
the results we conclude that the
sender should not burst packets, but
try to shape the flow according to a
leaky bucket algorithm. Though this
may be hard to implement in the OS
since it requires that the OS main-
tain a timer per TCP flow with µsec
resolution, which could incur lots of
overhead. Our initial suggestion is
that future OS kernels should dele-
gate the task of pacing the packets
to NICs and allow the NIC to im-
plement this feature at the hardware
level.

5.2 HSTCP modification

The HSTCP modifications [4] dis-
cussed here are still in the develop-
ment stage. Most HSTCP extensions
are aimed at improving performance
for steady state congestion avoid-
ance, yet it appears that the band-
width discovery phase may also ben-
efit indirectly from this work. This is
because if the bandwidth discovery
phase ends prematurely (i.e. before

10

Fig. 9. Time sequence graph showing initial phase and
congestion event after 10 RTTs

Fig. 10. TSG comparing initial phase of Linux and Mac
OSX (red is Linux, and blue is Mac OS X).

full utilization of the resources), the
bottleneck utilization will be low,
and then HSTCP modifications will
improve utilization by ramping back
up faster then traditional TCP algo-
rithms. From the discussions above
it is clear that in many cases initial
stages end prematurely before com-
pleting bandwidth discovery. Using
HSTCP modifications, Cwnd in-
creases more slowly instead of dou-
bling. In effect TCP flow continues
to discover bandwidth more quickly,
without overrunning the network
buffers.

Figure 12 shows the results using
HSTCP. We have run an iperf ses-
sion for 180 seconds and created a
congestion event at the receiver after
60 seconds. Congestion was created

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16

th
ro

ug
hp

ut
 M

bp
s

TCP socket size in MB

keeshond and prusin throughput reported by iperf

Lambda, delay 5 usec
Lambda, no delay

Fig. 11. Bandwidth vs socket buffer size using iperf, with
delay (5 µ sec) and without delay

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140 160 180

M
bi

ts
/s

ec

Time (seconds)

no IFQ, no AIMD
with IFQ, no AIMD
no IFQ, with AIMD

with IFQ, with AIMD

Fig. 12. bandwidth vs time using HSTCP and IFQ
modifications using Net100 kernel between Amsterdam
and EVL, Chicago. Congestion was introduced at 60 sec
by overloading receiver

by sending approximately 800 Mbps
UDP from another host to the re-
ceiver. In the first case (red line) no
IFQ modifications and no AIMD [4]
modifications were enabled. Due to
the short transfer queue length the
flow exits the bandwidth discovery
phase very early, at about 80 Mbps,
and then continue in steady state
where it increases Cwnd at a rate of
1 MSS per RTT. After 60 seconds
the flow encounters the induced con-
gestion and drops to about 40 MBps
and recovers from it at the rate of
one MSS per RTT. In the second
(green line) case Net100 was used
to turn off the transmit queue con-
gestion detection. This improves the
bandwidth discovery phase, which
now quickly enters high-speed steady
state at about 618 Mbps. After the

11

induced congestion event at 60 sec-
onds it enters normal congestion
avoidance phase and drops down to
about 35 Mbps and recovers at the
rate of 1 MSS per RTT. In the third
case (pink) Net100 was again used to
disable the transmit queue conges-
tion detection of the NIC and turned
on AIMD modifications in the ker-
nel. The bandwidth discovery phase
is same as in the previous test. After
the induced congestion event at 60
sec the flow drops to about 40 Mbps.
While recovering from this AIMD
comes into effect causing Cwnd to
increase based on the factor AI com-
puted using values specified in [4].
Effectively the flow recovers from the
congestion event much quicker. The
recovery response time is dependent
on the characteristics of the TCP
flow, see [4] for a full description.

The fourth and last case (blue) was
with the transmit queue congestion
detection on the NIC enabled and
AIMD turned on. Again the band-
width discovery phase ends prema-
turely as in case one. Since AIMD is
active and there are no more conges-
tion events the Cwnd increases by
the factor specified by AI. Note that
there are some dips in the curve.
Our understanding is that this is due
to the poor default interface queue
management.

HSTCP modifications and better
control of IFQ clearly improves avail-
able bandwidth utilization. Figure
13 shows the bandwidth utilization
(2 seconds average) of a long run-
ning running (3000 seconds) flow
between Amsterdam and Chicago,
USA. This test was running over a

 300

 320

 340

 360

 380

 400

 420

 440

 460

 480

 0 500 1000 1500 2000 2500 3000

M
bp

s

time sec

iperf NIKHEF -> ANL over 410/622Mbps vpn (dg01) Oct 25,2002

running avg
inst

Fig. 13. bandwidth vs time for a long term iperf session
between NIKHEF and ANL over 622Mbps VPN

622 Mbps transatlantic VPN with a
background traffic at about 35 Mbps.
The cumulative average is about 405
Mbps, while the 2 second average
oscillates between 320 to 460 Mbps
showing that HSTCP improves the
utilization by responding to conges-
tion events faster than traditional
non-AIMD enabled TCP.

6 Conclusion

We have shown that tuning the host
parameters and HSTCP are very im-
portant when trying to make best
use of available bandwidth over high-
bandwidth long-delay networks. The
maximum throughput obtained over
the Trans-Atlantic link (96 msec
RTT) was 730 Mbps using a single
TCP stream. Initial tests show that
these modifications don’t adversely
affect other flows, but this still needs
closer examination in an isolated en-
vironment with a large number of
heterogeneous flows. Also we have
shown that for the current Linux
TCP implementation the specifica-
tions of the underlying network in-
frastructure in terms of (artificial)
bottlenecks, provisioned long haul

12

forwarding paths, queue lengths and
shaping properties define the upper
limit of the single stream throughput
no matter how well tuned the host
parameters are.

7 Acknowledgments

The transatlantic links used for
conducting this research are pro-
vided to us by SURFnet, TYCO and
LEVEL3. Antony Antony and Hans
Blom are funded by the IST Pro-
gram of the European Union (grant
IST-2001-32459) via the DataTAG
project. Jason Lee was supported in
part by the Director, Office of Sci-
ence, Office of Advanced Scientific
Computing Research and Mathe-
matical, Information and Computa-
tional Sciences Division under U.S.
Department of Energy Contract
No. DE-AC03-76SF00098 The au-
thors would like to thank Richard
Hughes Jones, Brian Tierney and
the Net100/WEB100 collaboration
for instrumenting TCP with mod-
ifications. We especially thank the
iGrid2002 organizers for providing
an excellent and exciting test bed.

References

[1] Mark Allman, et al., “TCP
Congestion Control”, RFC2581

[2] Tom Dunigan, Matt Mathis, Brian
Tierney, A TCP Tuning Daemon
http://www.sc2002.org/
paperpdfs/pap.pap151.pdf

[3] Sally Floyd, “Limited Slow-Start
for TCP with Large Congestion
Windows”,
http://www.icir.org/floyd/hstcp.html

[4] Sally Floyd, S. Ratnasamy and S.
Shenker, “Modifying TCP’s
Congestion Control for High Speeds”,
http://www.icir.org/floyd/hstcp.html
2001

[5] Cees de Laat, Erik Radius, Steven
Wallace, “The Rationale of the
Current Optical Networking
Initiatives”, submitted for
publication in FGCS special issue on
iGrid2002, 2002.

[6] Jason Lee, D. Gunter, B. Tierney,
W. Allock, J. Bester, J.Bresnahan,
S. Tuecke, “Applied Techniques for
High Bandwidth Data Transfers
across Wide Area Networks”,
Proceedings of Computers in High
Energy Physics 2001 (CHEP 2001),
Beijing China, LBNL-46269.

[7] J.P. Martin-Flatin and S. Ravot.
TCP Congestion Control in Fast
Long-Distance Networks. Technical
Report CALT-68-2398, California
Institute of Technology, July 2002.

[8] RFC 793, “Transmission Control
Protocol”, Editor Jon Postel.

[9] 10Gbps, (OC192) link to iGrid2002
http://www.startap.net/starlight/
PUBLICATIONS/news-
level3support.html

[10] BaBar http://www-
public.slac.stanford.edu/babar/

[11] CDF http://www-cdf.fnal.gov/

[12] D∅ http://www-d0.fnal.gov/

[13] EU DataGrid,
http://www.eu-datagrid.org

13

[14] EU DataTag,
http://www.datatag.org

[15] iGrid2002,
http://www.igrid2002.org/

[16] LHC, http://lhc-new-
homepage.web.cern.ch/

[17] Net100, http://www.net100.org

[18] SURFnet 2.5 Gbps Lambda to
Chicago, Press release
http://www.surfnet.nl

[19] TCP Tuning Guide, http://www-
didc.lbl.gov/TCP-tuning/

[20] UDPMon,
http://www.hep.man.ac.uk/ rich/net/

[21] WEB100, http://www.web100.org

14

