Framework for

Path Finding
in

Multi-Layer Transport Networks

Amsterdam

O
h.q

I NetherLight
-,

Freek Dijkstra

Framework for

Path Finding

m

Multi-Layer Transport Networks

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
Mw. prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel
op donderdag 18 juni 2009, te 12.00 uur

door Freek Dijkstra

geboren te Hilversum.

Promotor: Prof. dr. P.M.A. Sloot
Co-promotor: Dr. Ir. C.T.A.M. de Laat

Overige Leden: Prof. dr. P.W. Adriaans
Prof. dr. Th.A. DeFanti
dr. P. Grosso
Prof. dr. R.J. Meijer
dr. P. Vicat-Blanc Primet

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam

Science Park 904

1098 XH Amsterdam

The investigations were supported by the GigaPort project, which is led by
SURFnet and funded by the Dutch Ministry of Economic Affairs under grant
number BSIK03020.

Copyright © 2009 by Freek Dijkstra
Some rights reserved. This work is licensed under the Creative Commons
Attribution-Non-Commercial 3.0 Netherlands licence.

Typeset by XqI4TEX. Printed and bound by your printer.

This thesis is also available for download at http://www.macfreek.nl/work/.

ISBN: 978-90-814160-1-6
NUR code: 986 (data communication and networks)

http://creativecommons.org/licenses/by-nc/3.0/nl/deed.en_GB
http://creativecommons.org/licenses/by-nc/3.0/nl/deed.en_GB
http://www.macfreek.nl/work/

Hackers, slackers, generation-X backpackers
Tribesmen and rock-stars on silicone screens
Virtual emotions, digital dreams

Rushing for tomorrow where the future used to be

I see the picture; I feel strong
I see the river flowing on

Do you see the picture? Do you still feel strong?
Do you see the river flowing on and on and on?

Blue electric oceans
Information streams
Webs and nets in motion
Connecting you and me

Into the system
Into the light
Into tomorrow
Into the light
Into the future
Into the night

From the lyrics of Into the Picture by Johnny Clegg on his album New World
Survivor (South Africa, 2002)

Contents

1

Introduction

1.1 Computer Networks

1.2 e-Science Applications Lo

1.3 Hybrid Networking

1.4 Research Overview

1.5 Thesis Overview
1.5.1 Papers and Topics Covered
1.5.2 Research Question
1.5.3 Methodology
1.5.4 Chapter Outline

Optical Exchanges

2.1 Network Terminology
2.1.1 Photonic Networks
2.1.2 Optical Networks and Transport Networks
2.1.3 Hybrid Networks

2.2 Exchanges
2.2.1 Peering, Exchanges and Members
2.2.2 Classification L 0oL
2.2.3 Internet Exchanges
2.2.4 Internet versus Optical Exchanges

2.3 Incompatibilities o o
2.3.1 Progressing Technology
2.3.2 Impact on Optical Exchanges

Contents

<

Q0 00 00 =~ W N — =

—_
o O

CONTENTS

2.3.3 Services e 23
2.3.4 Control Plane Services 24
24 Ownership 25
2.4.1 Owner, Operator and Users 25
2.4.2 Open Control 26
243 Domains. L e 27
2.5 Transparencyo 27
2.6 Conclusion e 28
Going in Loops 31
3.1 Algorithms 32
3.1.1 Breadth-first and Depth-first 32
3.1.2 Bellman-Ford and Dijkstra Algorithms 33
3.1.3 Constrained Shortest Path First 33
3.1.4 Path-Constraint Algorithms 33
3.1.5 k-Shortest Path 34
3.2 Routing Protocols oo 34
3.2.1 Distributed Path Finding 34
3.22 Thelnternet 35
3.2.3 Public Switched Telephone Service 35
3.2.4 Generalized Multiprotocol Label Switching 36
3.3 Path Finding in Multi-Layer Networks 37
3.3.1 Practical Example 39
3.3.2 Path-Constrained Problem 43
333 Graphs 44
3.3.4 Multi-Layer Representations 46
3.4 Path Finding in Transport Networks 48
3.5 Multi-Stage Path Finding 49
3.6 Conclusion e 51
Multi-Layer Network Model 53
4.1 Introduction L Lo 53
4.2 Related work 54
4.2.1 Generalized Multi-Protocol Label Switching 56
4.2.2 Common Information Model 56
4.3 ITU-T G.805 Concepts . . . v v v v v v v i it et e e 56
4.3.1 Functional Elements 57
4.3.2 Connection Point and Layer 58
4.3.3 Connections 58
4.3.4 Adaptation and Termination 59

CONTENTS

4.3.5 Multiplexing Lo o 61
4.3.6 Connection Partitioning 61
4.4 Network Model 62
4.4.1 Mapping to Functional Elements 63
4.42 Notation. 65
4.4.3 Channel Labels 0. 66
4.4.4 Capability Model L. 68
4.4.5 Validation of Network Connections 69
4.4.6 Well Typed Adaptations 72
4.5 Validation Lo e 73
4.6 Extensions of the Model 76
4.6.1 Layer Properties 7
4.6.2 Inverse Multiplexing 77
4.6.3 Broadcast and Multicast 78
4.6.4 Physical Layer Properties 78
4.6.5 Uniqueness of Layers 79
4.6.6 Tunnels L o 79
4.6.7 Uniqueness of Adaptations 79
4.7 Conclusion e 80
Network Description Language 81
5.1 Introduction. 81
5.2 Introduction to the Semantic Web 82
5.2.1 Resource Description Framework 82
5.2.2 RDF Schemata, 83
5.2.3 RDF versus XML 85
5.3 Network Description Language 85
5.3.1 Topology Schema 85
5.3.2 Domain Schema 87
5.3.3 Distributed Repositories 90
534 Addressing oo 90
5.3.5 Extensibility 0o 0o 91
5.4 Applications oL o 91
5.4.1 Visualisation using RDF tools 91
5.4.2 Path Finding and Google Mash-up 92
5.4.3 Lightpath Planning in SURFnet6 93
5.4.4 Lightpath Monitoring in NetherLight 94
5.5 Conclusion L 94

CONTENTS

6 Multi-Layer NDL
6.1 Goal e
6.1.1 Scope
6.1.2 Technology Independence
6.2 NDL Schemata
6.2.1 NDL Topology and Domain Schema
6.2.2 NDL Layer Schema
6.2.3 NDL Capability Schema
6.3 Technology Schemata
6.3.1 Encodings oo
6.3.2 Layers and Labels
6.3.3 Wavelength Division Multiplexing
6.3.4 Signal Degeneration
6.3.5 Shared Risk Link Groups
6.3.6 Packet Layers
6.3.7 Ethernet L.
6.4 Conclusion
7 Path Finding Algorithms
7.1 Imtroduction.
7.2 Terminologyo
7.2.1 Definition of a Network
7.2.2 Granularity Lo
7.2.3 Technology Stacks
7.2.4 Definition of a Graph 0oL
7.3 Multi-layer Network Model
7.3.1 Example Network
7.3.2 Device-Based Network Description G,
7.3.3 Layer-Based Network Description G
7.3.4 Stack-based network description G,
7.4 Path Selectionin Gy
7.5 Path Selectionin Gy
7.6 Extension to Multiple Labels
7.6.1 Extension to Graph G;.
7.6.2 Extension to Graph Gy
7.7 Discussion and Comparison
7.7.1 Commonalities
7.7.2 Differences
7.7.3 Time Complexity
7.8 Conclusion

CONTENTS

8 Path Finding Implementation 147
8.1 Modelling the Network 147
8.2 Software Framework 150
8.3 Path Finding Software 151

8.3.1 PathFindinginGy 151
8.3.2 Software Logic 151
833 Path Walk, 152
8.3.4 Switch Matrix Properties 153
8.3.5 Multi-Domain scalability 155
836 Result 155
8.3.7 Ambiguity of Labels 156
8.4 Optimization 157
8.5 Conclusion 161

9 Discussion and Conclusion 163
9.1 Context and Goals, 163
9.2 Contributions to the Field 163
9.3 Strengths and Weaknesses 164

9.3.1 Architecture 164
9.3.2 Modelling 165
9.3.3 Pathfinding. 167
9.4 Claims and Statements 168
9.5 Conclusion e 170

A Algorithm Time Complexity 171
A.1 Running Time of Multi-Layer Path Finding 171
A.2 Multi-Layer Dijkstra’s Algorithm 172
A.3 Running Time of Multi-Layer-Dijkstra 173
A.4 Running Time of Multi-Layer-Breadth-First 174
A.5 Running Time of Multi-Layer-k-Shortest-Path 177

Bibliography 181
B.1 List of Author’s Publications 181

B.1.1 Covered in this Thesis 181
B.1.2 Other Publications 183
B.2 References to Scientific Publications 184
B.3 Technical References 189
B.3.1 Normative References (Standards) 189
B.3.2 Informative References (Technical Reports) 195

B.4 Miscellaneous References 197

CONTENTS

Samenvatting
Abstract
Acknowledgment

Biography

199

201

203

207

Chapter 1

1.1 Computer Networks

Communication networks are ubiquitous in our society: we use them to make
phone calls, send e-mails, and browse the web. In all cases an underlying
physical infrastructure of wires, fibres, switches and routers provides network
services for applications on the network.

Network services can be classified as circuit switched and packet switched
network services. The public switched telephone service (PSTN), also known
as plain old telephone service (POTS), is a circuit based switching technology.
The Internet on the other hand is largely based on packet switched technology.
Both technologies have their merits. Packet switched networks are very robust
against failures, but can not guarantee a certain quality. Packets switched
networks are like highways where all cars use the same roads, and may end
up in traffic jams. The analogy for a circuit switched networks would be a
dedicated highway between certain origins and destinations. Cars on these
dedicated highways may not drive faster, but it is guaranteed that they do not
encounter traffic jams.

The work described in this thesis focuses on networks for applications that
require better quality of services (QoS) than the regular Internet can offer.
Such applications may require so much bandwidth that if they use the regu-
lar Internet, it causes congestion and they fail to run smoothly or they dis-
rupt other Internet traffic. These applications require dedicated network con-
nections, such as the circuits in the above analogy. This work masters and
manages the complexity of the networks that are offered to these demanding
applications.

Introduction

CHAPTER 1. INTRODUCTION

1.2 e-Science Applications

Distant
quasar

Radio telescope

COARSE SEARCH PUNCTION (256x128)

Radio telescope

Correlator

Figure 1.1: Schematic diagram of very large baseline interferometry (VLBI).

One of the applications that requires a better service than the regular
Internet can offer is very large baseline interferometry (VLBI). Two or more
far apart radio telescopes pick up signals from the sky, as shown in figure 1.1.
The received data is sent to a correlator for processing. The resolution of the
correlated signal improves with the distance between the telescopes. Ideally,
the telescopes are located on different continents.

Historically, the data is shipped on tape from the telescope to the correl-
ator. Experiments in 2004 have shown that the data can be transmitted over
networks [p38, p42, p34]. Transmitting the data in real time requires a band-
width of 1 to 10 Gb/s. Since the raw measured signal is nearly white noise, it
can not be compressed.

VLBI with data transport over a network (e-VLBI) is an example of an
e-science application, a scientific application that heavily relies on computer
networks [s54]. Sending the data over the regular Internet is not always possible
for e-science applications [p23, all]. This means that the data must be sent
over a dedicated network connection.

Typical observation times for telescopes are in the order of hours, and

1.3. HYBRID NETWORKING

different experiments may link different telescopes together. It is undesirable to
change the hardware to reconfigure the network topology for each experiment.
Ideally, radio astronomers create a dedicated network connection in software
for each experiment with the same ease as it takes to establish a telephone
connection.

ﬁ \
3
2 3/\
Network Network
4

Provider

Radio
astronomer

Radio
astronomer

>
>

Figure 1.2: Steps required to set up a network connection between two radio
astronomers.

Figure 1.2 shows the steps that needs to taken to establish a network
connection between a radio telescope and a correlator.

The first step is to decide on the end-points, and the characteristics of
the required network connection (e.g. the amount of bandwidth required).
Secondly, the astronomer makes a request to his or her network provider. The
network provider then must find a path that falls within the specified paramet-
ers. If the source and destination of the required connections fall in different
administrative network domains, the involved domains must collaborate in
finding a path. After a valid path is found, the fourth step is to provision this
path in the network. Finally, the astronomer can use the network connection
to transport his or her data from the telescope to the correlator.

The third step in this process, finding a valid path from source to destina-
tion, is covered in this thesis.

1.3 Hybrid Networking

The idea of providing e-science applications with deterministic point-to-point
connections was fostered by a community of research networks, later organised
in the Global Lambda Integrated Facility (GLIF) [u8]. The ideas in this com-

Ia

CHAPTER 1. INTRODUCTION

munity led to the concept of hybrid networking, the offering of both packet
switched (IP) services as well as circuit switched connections over the same
physical network infrastructure, the transport networks.

Figure 1.3: GLIF world map of May 2008, with all network connection offered
by NRENSs participating in the GLIF. Source: Patterson, Brown [u/].

Since most e-science applications operate in a large-scale environment, with
collaborators at different universities, the networks required for these applic-
ations are nearly always multi-domain networks. De Laat estimated in 2000
that a typical network connection for a physics experiment crosses seven do-
mains [p22]. To achieve interdomain operation, the different networks have to
collaborate. For dedicated network connections, this collaboration is done in
the GLIF community. In a few years time a few dozen international network
connections have been established to provide the interdomain connectivity.
Figure 1.3 shows a collection of the interconnections provided by partners in
the GLIF community as of May 2008.

1.4 Research Overview

The concept of circuit switched networking potentially puts users and applica-
tions in the driver seat. Grid applications already treat computing and storage
as dynamic resources, and they may want to treat the network as a dynamic
and manageable resource.

1.4. RESEARCH OVERVIEW

The paradigm shift to offer dedicated network services to specific applic-
ations has lead to many new questions, including questions on usage models,
implementation models, manageability and interoperability of multi-layer net-
works. Common models, shared by all parties are especially important, given
that applications must now interface with the network, and network connec-
tions cross multiple domains. All parties involved must somehow share inform-
ation and act accordingly.

Rather than reinventing the wheel, network engineers turn to existing solu-
tions to model and manage hybrid networks and their circuits.

This brings us to the main research question in this field: Is there a
fundamental difference between hybrid networks and the Internet
or the telephony network? Can existing models and algorithms be re-
used or should new models and algorithms be developed? Section 1.5.2
shows which part of this research is covered in this thesis.

The final goal of this research is to fully automate the use of dedicated
network connections, as sketched in the radio astronomy example of section 1.2.

The GLIF community provides useful input to break down the research
question in smaller questions. In particular the issues analysis provided by
Bos et al. [t6] gives an excellent overview of the problems encountered in the
field.

In addition, we can draw from our own experience in setting up and using
dedicated network connects across the globe [p13]. The Dutch national super-
computing centre SARA [u13] also provided us with insights [p29]. From these
experiences, we can categorise these problems by simply looking at the steps
that are typically taken when the user or an e-science application wants to get
a dedicated network connection:

1. The user must formulate the requirements, including the end points
and the network characteristics like bandwidth, latency, jitter, minimum
packet size (if applicable), reliability, etc.

2. These requirements must be communicated to their upstream network
provider, usually the national research and education network (NREN).

3. The network provider must gather information about available resources,
including the resources in other networks, as the two end-points are typ-
ically in different networks (the multi-domain aspect of the question).

4. The network provider must, in collaboration with the other network
owners, determine a valid path that uses available resources, and is within
the specs of the user.

Ia

CHAPTER 1. INTRODUCTION

5. The resources needed for the path must be reserved for all involved net-
works.

6. The reserved resources must be configured in the networks.

7. The end-to-end path must be tested, and in case of faults the faults must
be examined and resolved.

8. The network provider informs the user, and the user must configure the
end nodes (e.g. configure the IP addresses and set the routing table).

9. The user runs the applications.

This short overview is not complete and makes a few assumptions. First
of all, it assumes that the network provider of the user takes a central role in
orchestrating the available network resources across domains. This is called the
master contractor role, and is similar to the role of an agent who acts on behalf
of the user [t11,]. Secondly, this process only deals with the provisioning
(set up), not with the reconfiguration and deprovisioning (tear down) or the
service monitoring after it is in service. For instance, it does not deal with
protection, recovery and restoration. Finally, this overview is focused at the
administrative control of the network, not at technological developments of
the data transport itself.

We can organise the above steps in three categories:

Architectural work, including the design of the network, modelling of the
data plane and control plane, and network descriptions to share the
information between each entity. This is required before a user can even
formulate a question for a network connection.

Path configuration, the actual path finding and provisioning of the network
connections. This includes the process of debugging, and monitoring the
state of the network and sharing that state with neighbours as input for
a scheduling mechanism or for debugging purposes.

Application usage, the use of a network connection by an application. This
includes the transport protocols, node addressing and co-allocation of
different kind of resources (network, CPU, storage, etc.)

Figure 1.4 gives a schematic overview of the different topics in our field of
research. Solid arrows represent dependencies between the topics. The boxes
represent topics and subdivisions of a larger topic in subtopics.

1.4. RESEARCH OVERVIEW

Connections through multi-domain multi-layer transport networks

Architecture

Modelling

Data Plane (Ch. 2)

Control Plane (Ch. 2)

Network Descrlptlok /

Multi-domain network
description model (Ch. 5)

Multi-domain network
description syntax (Ch. 5)

v

Multi-layer network description
model (Ch. 4)

Multi-layer network description
syntax (Ch. 6)

[J Multi-Domain
Network
Architecture

[Multi-Layer
Path Finding

[C] Research not
presented in
this thesis

|

Path Configuration

Path Finding
Multi-Layer Path Finding Algorithm Optimization
(Ch.3,7&8) (Ch.7&8)

Provisioning and Scheduling

Scheduling

Policy-based Decisions

Fault Detection

Monitoring

Fault Isolation

Application Usage

e-Science Applications

/

Node naming

Transport Protocols

Addressing

Figure 1.4: Topics covered in this manuscript compared to the research field,
and dependency relations between the various topics. Ch. denotes the chapters.

Ia

CHAPTER 1. INTRODUCTION

1.5 Thesis Overview

1.5.1 Papers and Topics Covered

Figure 1.4 not only gives an overview of the research field as a whole, but also
shows the contribution of this thesis to the field.
The colours in figure 1.4 denote the sections in this manuscript:

Slanted Light Yellow boxes represent work not covered in this thesis.

Light Green boxes represent topics on Multi-domain Network Architecture.
This part contains mostly the architectural work.

Dark Red boxes represent topics on Multi-layer Path Finding. This part in-
cludes path finding work, as well as the architectural work that is related
to creating model for path finding in multi-layer networks.

The reason I focus myself to architectural problems and multi-layer path
finding is twofold. First of all, there has been no common architectural model
used by the different researchers and network providers, and this has hampered
interoperability across domains, even though this interoperability is required
for most applications. Current tools for provisioning circuit switched networks
found out the hard way [t13], and only recently is there a move towards
standardisation and interoperability in communities like the GLIF, OGF and
GEANT [u2, , t9]. During the course of our research, we were surprised to
find that there was only very little research on modelling multi-layer computer
networks. The only model in broad use is graph theory, but it turns out that
this can only be used for single-layer computer networks.

The second motivation is that there currently are not many multi-layer
path finding algorithms, so there is no baseline to begin with. Rather than
trying a heuristic approach (which may be the best solution in the long run),
we attempted to establish a baseline by first giving an exact algorithm.

Table 1.1 gives references to all my co-authored papers, including topics
not covered in this thesis. In addition, this table lists which articles have been
at the basis of each chapter.

The work in chapter 5 has been done in collaboration with Van der Ham [a3,

, p16] and the work in chapter 7 in collaboration with Kuipers [a12].

1.5.2 Research Question

The goal of this thesis is to answer the following research question:

1.5. THESIS OVERVIEW

Is it possible to use the same path finding algorithms in
multi-layer transport networks as those in use for the In-
ternet and telephony networks? If not, what kind of al-

gorithm is required?

This question will be covered in detail in chapter 3.

Architecture Papers Thesis Chapter
Modelling
Data Plane [al] Chapter 2

Control Plane

Network Description

Multi-domain network description model
Multi-domain network description syntax
Multi-layer network description model
Multi-layer network description syntax

Chapter 2

Chapter 5
Chapter 5
Chapter 4
Chapter 6

Path Setup

Path Finding
Multi-Layer Path Finding
Algorithm Optimization
Provisioning
Scheduling

Policy-based Decisions
Signalling

Fault Detection
Monitoring

Fault Isolation

Chapters 3, 7 and 8
Chapter 7 and 8

Application Usage

e-Science applications
Transport protocols
Node naming
Addressing

]

)

]

Chapter 5

Table 1.1: Relation between research topics, published papers and chapters in

this thesis.

CHAPTER 1. INTRODUCTION

1.5.3 Methodology

The goal of our work is to find fundamental differences between the architecture
of circuit switched networks and other network models, such as graphs or
models in use for the Internet, and telephony network. This means that we
first must make a model to describe circuit switched networks.

The first step we take in this modelling is to define a concise terminology.
If possible, we re-use terminology. If that fails, we turn to network standards.
We validate our work by comparing our model with practical applications and
actual networks. In particular, we use the networks in the GLIF community
to validate our models and principles. If our model is not consistent with the
use in the GLIF community, we modify our model until it is.

The creation of a model is partly a logical deduction from relations between
terminology, and partly an engineering craft. The scientific value lays in the
understanding of the subject at hand — in this case a certain type of computer
networks. To make the scientific output more clear we make series of claims
closely related to the research question defined in section 1.5.2.

We will prove our claims using any of the standard logical means available
to use. For example, a negative claim can be proven using a counter example.
Positive claims are harder to prove. In general, we prove those using an im-
plementation that shows it can be done. The risk of such proof is that we
inadvertently only prove a special case, rather than the general case. We solve
that by using strict boundary conditions.

1.5.4 Chapter Outline

The first chapter of this thesis describes the larger context of the transport
networks, and gives the basic model for these networks.

Chapter 2, Optical Exchanges looks at the design of optical exchanges
and the difference between Internet exchanges. This chapter makes two
claims: Exchanges can only be ignored during pathfinding if the
connections through an exchange are modelled as direct con-
nections, and the exchange does not define a usage policy on its
own. This chapter also defines the terminology used later in this thesis.

The main body of this thesis (chapters 3 to 8) builds upon the observation
in chapter 2 that transport networks are inherently multi-layer networks.

Chapter 3, Going in Loops: Path Finding in Multi-Layer Networks
introduces the problem of path finding in multi-layer networks, and

1.5. THESIS OVERVIEW

makes the claim: Link-constrained algorithms are not sufficient
for path finding in multi-layer networks, if links are 1:1 mapped
to edges. This is interesting, since most solutions use such a heuristic
link-constrained algorithm. This claim is proven by a counter example.
In addition, this chapter claims that for all practical purposes, graphs
can not be used for path finding in multi-layer networks, even
though it is very common to use graphs to describe single layer networks.

Chapter 3 also makes the claim that Path-constrained algorithms are
sufficient for path finding in multi-layer networks. This is proven by an
implementation, which is covered in chapters 4, 6, 7 and 8.

Chapter 4, Multi-Layer Network Model introduces a model to describe
multi-layer networks, based on ITU-T recommendation G.805 and the
label concept in Generalized Multi-Protocol Label Switching (GMPLS).
It thus provides an alternative to graphs, which can not be used for
multi-layer networks.

Chapter 5, Network Description Language builds upon the terminology
in chapter 2 and forms the basis for the research presented in chapter 6.
This chapter claims that it is possible to create a distributed net-
work description, without a central repository. It shows this by
building on the semantic web technology. En passant, this work solves
the issue of naming of end-nodes by using uniform resource identifiers
(URIs). This work is a collaboration between Jeroen van der Ham and
myself.

Chapter 6, Multi-Layer Network Description Syntax describes a syn-
tax and implementation of the model described in chapter 4, and exam-
ines if the model is sufficient to describe all technologies that are in use
in the networks within the GLIF community.

Chapter 7, Path Finding Algorithms introduces two path-constrained al-
gorithms that can be used to find path in multi-layer networks.

Chapter 8, Path Finding Implementation shows how one of the algorithms
of chapter 7, applied to any network with the technologies of chapter 6
indeed is capable of finding paths through a multi-layer network, prov-
ing the claim that Path-constrained algorithms are sufficient for
path finding in multi-layer networks.

Finally, this thesis discusses and summarises the results in a concluding
chapter.

CHAPTER 1. INTRODUCTION

Chapter 9, Discussion and Conclusion summarises the claims and research
question in the individual chapters and concludes this thesis.

Chapter 2

This chapter is based on Optical Exchanges by F. Dijkstra and
C.T.A.M. de Laat [a1] and on A Terminology for Control Models at Optical
and Internet Exchanges by F. Dijkstra, B. van Oudenaarde, B. Andree,
L. Gommans, P. Grosso, J. van der Ham, K. Koymans and C. de Laat [a4]

In the introduction chapter, we have seen that national research and education
networks (NRENSs) responded to the demand for dedicated network connec-
tions by building hybrid networks, which provide both packet switched TP
connections as well as circuit switched point-to-point connections.

This chapter dives into the design of these networks. In doing so, it estab-
lishes a model and terminology that is later used in chapter 5. Section 2.1 of
this chapter introduces the concept of optical and hybrid networks.

The rest of this chapter is focussed on the interconnection points between
existing hybrid networks, the network exchanges. By comparing the functions
and services between Internet exchanges on one hand and so-called optical ex-
changes that are deployed in emerging transport networks, the differences and
commonalities will become clear. During this comparison, this chapter answers
the following side question: Can optical exchanges, just like Internet ex-
changes, be completely transparent to a path finding algorithm in
circuit switched networks?.

The layout of this chapter is as follows. Section 2.2 examines the functional
differences between exchanges for optical networks, and existing Internet ex-
changes. Section 2.3 discusses how technological incompatibilities affects func-
tions and services of an optical exchange. Section 2.4 introduces a terminology
for the owner and operator of exchanges, which facilitate descriptions of ex-

Optical Exchanges

CHAPTER 2. OPTICAL EXCHANGES

changes. Section 2.5 answers the research question and section 2.6 ends with
conclusions.

2.1 Network Terminology

2.1.1 Photonic Networks

Originally, the term optical networks or photonic networks was used to denote
fibre based networks, with laser light as the transmission technology. Examples
of an optical transport technology are optical carriers (OC) in synchronous
optical network (SONET) [s1] and wavelengths in wavelength division mul-
tiplexing (WDM). Articles dealing with optical transmission as well as some
network design articles such as Saleh et al. [p35] use the term optical in its
original sense, photonics. Others use optical to not only describe optical trans-
mission such as optical carriers in synchronous optical network (SONET) [s1],
but also use optical to describe the electrical components in otherwise optical
networks, such as the SONET switches, resulting in some confusion.

2.1.2 Optical Networks and Transport Networks

Because of the wavelength division multiplexing (WDM) capabilities of optical
networks, the term optical network was also used to describe networks that
could provision dedicated network circuits. The term lambda (after the symbol
A for wavelength), which originally meant a single wavelength on a fibre [p5],
started to be used for any link segment, and the term lightpath was used
to refer to end-to-end circuits over these networks. This idea exists at least
since 1992 [p7]. Optical BGP as defined by St. Arnaud et al. [s31] clearly
uses optical in a non-photonic sense. Nowadays, the scope of the term has
so broadened that it also includes non-optical technologies such as Ethernet.
Authors such as DeFanti, De Laat and Smarr use the term optical networks
to refer to networks providing lightpaths, circuit-switched based services [p37,

, , , L15]. This is consistent with the use of word optical, lambda and
light in projects like OptIPuter, Global Lambda Integrated Facility (GLIF),
NetherLight, StarLight, etc. [p36, u8, ,].

To avoid confusion with photonic networks and actual optical transmission
technologies, we will use the term transport networks to refer to networks
providing circuit-switched based services, regardless of the use of optical or
other transmission technologies.

2.1. NETWORK TERMINOLOGY

Transport networks can be created with any circuit-switched technology.
Example technologies included wavelength division multiplexing (WDM), time
division multiplexing (TDM) technologies such as synchronous digital hier-
archy (SDH) [s40] and synchronous optical network (SONET) [s1], Optical
Transport Network (OTN) [s44, s39], Asynchronous transfer mode (ATM) [s18].
In addition, the connection oriented properties of some packet switched tech-
nologies can also be used to create virtual circuits. Examples of the later
technologies include MPLS [s15], Ethernet with the use of IEEE 802.1Q tags
(VLAN tagged links) [s3] and Ethernet with Provider Backbone Bridge Traffic
Engineering (PBB-TE) (the addition of quality of service to VLAN tagged
links) [s5].

This thesis will not use the terms ‘lightpath’ and ‘lambda’ but use the
terms ‘dedicated network connection’, or simply ‘network connection’ for end-
to-end dedicated network connection and ‘link connection’ for a segment of a
dedicated network connection. This terminology is in line with the one used
in the ITU-T G.805 recommendation [s42] (see section 4.3.3 for the precise
definitions).

Whereas a lightpath refers to a single network connection, a collection of
lightpaths for the same user or organisation is referred to as an optical private
network (OPN) for that organisation. Just like a virtual private network (VPN)
is an overlay network over the regular Internet, an optical private network is
an overlay network over a transport network.

2.1.3 Hybrid Networks

National research and education networks (NRENs) such as SURFnet (Nether-
lands) and Canarie (Canada) have responded to the need for dedicated network
connections by building hybrid networks [p25, |. Hybrid networks in this
context are networks that provide both regular Internet as well as point-to-
point connections using the same physical infrastructure. Figure 2.1 shows a
basic layer stack for such hybrid networks.

Example implementations of hybrid networks include SURFnet6 (Nether-
lands), CAnet4 (Canada) and National Lambda Rail (USA) [t4, , ub].

This use of the term hybrid network as a network providing both packet
and circuit based services, should not be confused with the same term mean-
ing partial wired and wireless networks, as can be commonly found in the
literature.

Hybrid networks utilise the property that most computer networks are
layered, where services on a lower layer are offered to a client on a higher
layer. For example, in figure 2.1 the fibre infrastructure provides services to

CHAPTER 2. OPTICAL EXCHANGES

IP connectivity

Optional multiplexing | Dedicated connection
layer (Ethernet or TDM) | (e.g. Ethernet or TDM)

l I

Transport technology (e.g. WDM)

Fibre infrastructure

Figure 2.1: Dual stack for a hybrid network example: the underlying infra-
structure provides services at multiple layers.

the Wavelenght Division Multiplexing (WDM) layer. The OSI model [s53] is a
multi-layer model that is commonly referred to in network modelling, although
the actual layer stack that it defines has hardly gained any use. The TCP-IP
network stack has been more common since the rise of the Internet. Unless
otherwise noted, the term multi-layer network in this thesis refers to a network
that is configurable at multiple layers. Hybrid networks are an example of a
network which can be reconfigured both at a circuit switched layer and the IP
layer.

2.2 Exchanges

The Internet is literally a collection of interconnected networks. Due to eco-
nomic advantages the interconnections between networks often cluster at spe-
cific locations [p6, pl8, p28]. This argument holds for all interconnections
between networks, not just the regular Internet.

This section examines the commonalities and differences between intercon-
nection points in the Internet and in transport networks.

2.2.1 Peering, Exchanges and Members

Peering, in most literature, is limited to providing connectivity to each other’s
networks and to the customers of the other network, but not to other des-
tinations. Transit on the other hand implies that the traffic is handled for

2.2. EXCHANGES

all destinations, usually for a fee [p28]. In this thesis, we do not differentiate
between these relations, and simply speak of peering to refer to the exchange
of data between two networks.

The most trivial interconnection point is a co-location that provides no
other functionality than rack space and power. This already gives the networks
at the co-location the ability to initiate bilateral peerings with other networks
at the same facility.

Our research focus is not these simple co-location facilities, but on ex-
changes, networks dedicated to facilitate the interconnections between differ-
ent networks. We use the term member for the networks connected to an ex-
change. In our terminology member does not imply an organisational structure
of the exchange. The term is common in the Internet exchange community.
The GLIF community has no particular term, although autonomous optical
domains is used in some descriptions.

2.2.2 Classification

Based on the functions, rather than the technical implementation, we observe
four types of interconnection points:

o Internet exchange points (IXP),

o Mobile roaming exchanges (MRX),

o GLIF Open Lambda Exchange (GOLE), and
 Points of presence (POP).

An Internet exchange point (IXP), or simply Internet exchange serves
as an interconnection point to exchange packet data between individual mem-
bers. The members have one or a few physical connections to a central core
infrastructure. The core network can be Ethernet LAN, SONET, ATM, or
MPLS-based. The Ethernet variant is by far the most common variant [t2]
and is stateless, while the other three are stateful and require that the in-
dividual members set up a path between them. Such a path is a channel in
the physical connection. Internet exchanges are known in the USA as Network
Access Points (NAP).

Mobile roaming exchanges (MRX), such as GPRS roaming exchanges |
and UMTS exchanges, exchange packet data for respectively 2.5th and 3rd
(3G) generation mobile telephony. In telecommunications, however, the term
exchange is different from the usage in this thesis and refers to a transit pro-
vider rather than an interconnection point. An exchange point between mobile

Ia

CHAPTER 2. OPTICAL EXCHANGES

roaming exchanges is technically not different from a packet-based!' Internet
exchange.

GLIF Open Lambda Exchanges are interconnection points where mem-
bers exchange traffic at OSI layer 1. The switched circuits through the ex-
changes are part of larger circuits — the lightpaths. Most GLIF Open Lambda
Exchanges (GOLEs) use SONET/SDH technology to provide the circuits, al-
though some create pseudo-circuits using Ethernet VLANs. The term GOLE
is used within the GLIF community since 2005. Examples of GOLEs are: Neth-
erLight in Amsterdam, StarLight in Chicago, MAN LAN in New York, T-LEX
in Tokyo, HKOEP in Hong Kong, UKLight in London, NorthernLight and Pa-

cific Wave [u8]. The later two exchanges are geographically distributed (along
Scandinavia and the East coast of the USA respectively).
In this thesis, we use the term optical exchanges [al] instead of GOLE

since that term will also be recognised outside the GLIF community. Optical
refers to optical networks, and does not require that the switching technology
is purely photonic. Optical exchanges are also known as grid exchange points
(GXP), since they focus on switching circuits on transport networks for use in
Grid-based applications. GMPLS Internet exchanges (GMPLS-IX) as defined
by Tomic and Jukan [p39] share the concept of circuit-switched interconnection
points, but have not been implemented yet.

Points of presence (POP) are interconnection points where access net-
works connect with a transit network provider. While the transit network
provider may connect to multiple networks, we do not regard it as an ex-
change, since the function of the transit network is not primarily to facilitate
data exchange between the members, but between a member and itself.

We will examine Internet exchanges and optical exchanges in more detail,
and see where they differ in function and technology.

2.2.3 Internet Exchanges

There are currently three types of Internet exchanges [p18,] defined:

LAN-based Internet exchanges: The most common exchange [t2], creat-
ing a Local Area Network (LAN) that connects the routers of the member
networks with each other. The network is usually a star topology with
a layer 2 Ethernet switch at the core, though earlier variants had a ring
topology (based on Fiber Distributed Data Interface). This is the only
stateless exchange. Congestion is possible if multiple members want to
send traffic to the same member at the same time.

LGPRS and UMTS are packet based. The older CSD system is circuit switched.

2.2. EXCHANGES

ATM-based Internet exchanges: A stateful exchange, with an asynchron-
ous transfer mode (ATM) network. The member networks are connec-
ted with each other with permanent virtual circuits (PVCs) through the
ATM network. PVCs in an ATM network can either be variable bit rate
or constant bit rate [s19]. If variable bit rate (VBR) circuits are used,
there is no guaranteed congestion-free transmission. Usage of constant
bit rate (CBR) on the other hand, results in very inefficient usage of
resources and poor scalability.

MPLS-based Internet exchanges: Stateful packet based exchange, based
on Multiprotocol Label Switching (MPLS) [s15]. The destination of in-
coming packets is determined by a lookup at the IP routing table at the
ingress edge label switching router (LSR). This is a relative expensive
operation for very-high bandwidth data streams.

Given their properties, these types of exchanges are not designed to support
few high bandwidth flows that do not require routing. Either it is technically
impossible (for LAN-based Internet exchanges) or it yields unnecessary and
costly overhead (for ATM- and MPLS-based Internet exchanges).

2.2.4 Internet versus Optical Exchanges

Table 2.1 highlights the differences between Internet exchanges and optical
exchanges.

Members at an Internet exchange interconnect to exchange IP traffic. This
is shown at the first two rows in the Internet exchange column in table 2.1. An
Internet exchange contains exactly one circuit per peering relation between
two members. In contrast, a transport network supports circuits between end-
users, so at an optical exchange there is a circuit between members for each
end-to-end connection that goes through the exchange. The table further em-
phasises that for an optical exchange, these circuits can carry any layer 1 or
layer 2 traffic. Differences in function and purpose lead to different choices
in technology between Internet exchanges and optical exchanges. Finally, the
table highlights that an optical exchange may offer more advanced services
than an Internet exchange.

There is no clear boundary between the different interconnection points
since each interconnection point may take multiple roles. We expect that the
differences listed in table 2.1 will change over time, as new technologies become
available and are implemented. For example, customers at a POP may also
directly peer with each other, a function typically seen at exchanges. Circuit

Ia

CHAPTER 2. OPTICAL EXCHANGES

Internet Exchange

Optical Exchange

OSI Layer Transports traffic at layer 2, Transports traffic at layer 1 or
members connect with layer 3 layer 2, members connect at
devices that same layer.

Traffic IP traffic only Any packet data or any data at

type a specific framing or bit rate

End- Connection between two mem- Connections are part of a lar-

points ber networks ger circuit between two end-

hosts

Dynamics Stateless, or state changes State changes for each data
only when (peering) relation transport
between members changes

Technology Often packet switched, some- Circuit or virtual-circuit
times label-switched (with vir- switched (e.g. using SONET
tual circuits like MPLS and or VLANS)

ATM)
Services Only data transport Data transport and other ser-

vices, like the conversion of
data between different formats
and layers

Table 2.1: Functional differences between Internet exchanges and current
optical exchanges. These characteristics will change over time, as new techno-
logies become available and are implemented.

switching is typically associated with optical exchanges, but not a technical
necessity: ATM- and MPLS-based Internet exchanges are also circuit switched
and it might be possible to create a non-circuit switched optical exchange using
optical burst switching (OBS) [p32].

In fact, we have reason to believe that the distinction between Internet
exchanges and optical exchanges will disappear as time progresses. First of
all, it is economically beneficial to build optical exchanges at a location where
a large number of member networks are already present. The location where
most networks are present is at Internet exchanges, since networks that con-
nect to optical exchanges are often hybrid networks that are also connected
to Internet exchanges. Secondly, Internet exchanges also tend to offer more
services that are now regarded as optical exchange functions, like private cir-
cuits between two members. For example, the Amsterdam Internet Exchange
(AMS-IX) already provides private interconnects and closed user groups [t1].

2.3. INCOMPATIBILITIES

Third, optical exchanges must often provide all sorts of services, as we will see
in section 2.3.3. Multiparty peering like in a LAN-based Internet exchange, is
just another service.

2.3 Incompatibilities

2.3.1 Progressing Technology

The interfaces in a network may be of different type. For example, one in-
terface may be used to carry undefined traffic over 32 wavelengths using
dense wavelength division multiplexing (DWDM) [s36], while an other inter-
face may only carry one signal at 1310 nanometre, which carries SDH-framed
traffic [s40]. A third interface may be LAN-PHY based Ethernet [s0], where
traffic must reside in the 192.0.2.0/24 subnet.

Most of these types map to different network layers, and some devices
may deal with layer 1 functions, while another device may deal with layer
2 functions. A device that deals with higher layer functions will nevertheless
make use of the lower layer functions to transport data on its interfaces. In
the above example the SDH framed traffic was carried over a 1310 nanometre
wavelength.

This variety of encodings at different network layers would not be a problem
if everyone would use the same encoding for each layer. Unfortunately, there are
many, possible incompatible ways to transport data. There are multiple ways
to carry signals in one fibre using DWDM, due to the variety of wavelength
bands and channel spacings. Similarly not all devices encapsulate Ethernet in
the same way over a SONET/SDH connection.

Networks can only communicate with each other if they agree on a specific
encoding of their data. A common interface may be agreed upon if one techno-
logy has been proven to be robust and sufficient for all network operators. If a
new network is built, the operator will choose that particular technology. For
example, the de-facto standard on the Internet is IP, and alternatives such as
the OSI protocols [s53] are no longer used.

If technologies are still in development and new possibilities are introduced
on the market as time progresses, network operators may choose to use the
new technology instead, which may be incompatible with the technologies from
networks that have been built while that technology was not available. This
has a severe impact on the design of networks, as networks using two different
technologies can not communicate by default, and the data must be translated
to an agreed upon encoding.

Ia

CHAPTER 2. OPTICAL EXCHANGES

Technology advances are rather common. For example, during the time this
thesis was written, multiple technologies have been used to create dynamic cir-
cuits: MPLS [s15], GMPLS [s20], Ethernet VLANSs[s3], SONET/SDH [s1, s40],
and Ethernet PBB-TE [s5]. Also technologies that were considered stable for
decades still change. For IP there is a distinction between IPv4 and IPv6 [s12],
and recently the size of AS-identifiers has changed from 2 bytes to 4 bytes [s29],
causing potential incompatibilities.

Summarising, we can conclude that the use of multiple technologies
causes incompatibilities. In addition technologies evolve over time,
thus incompatibilities will continue to exist.

2.3.2 Impact on Optical Exchanges

While technologies evolve, this gives rise to possible incompatibilities, and
the design of an exchange should take that into account. Either the exchange
should decide on a common technology, or only members with the same tech-
nology can communicate, or the exchange must contain a service to enable the
interworking between different technologies.

Network engineers avoid technology incompatibilities as much as possible.
Indeed, it is very uncommon to see incompatibilities within a single domain,
but it is very common to see them across domains. Networks are not built
at the same time, and network owners may have different opinions about the
best technology. This means that exchanges must take potential incom-
patibilities into account to avoid non-working network connections.

If an exchange must perform one of the services mentioned above, it must
also be aware about the possible incompatibilities between the different in-
terfaces, as explained in section 2.3. At a minimum, it must know about the
layer and framing of the interface. For example, it must know the difference
between 1 Gbit/s and 10 Gbit/s Ethernet links, and must know how to extract
the Ethernet frames from the carrier. A more advanced incompatibility is the
different ways in which Ethernet can be encapsulated in SDH and SONET
channels.

Exchanges try to avoid incompatibilities by standardising the interfaces
to the members. For GLIF Open Lambda Exchanges (GOLEs), the optical
exchanges in the GLIF community, exchanges either switch individual VC-
4 timeslots (for SDH), or use Ethernet VLANs to switch. The embedding
of Ethernet channels in VC-4 timeslots is standardised using Framed Gen-
eric Framing Procedure (GFP-F) [s15], virtual concatenation (VCAT) [s47]
and Link Capacity Adjustment Schema (LCAS) [s46]. The effect of all these
standards is that egress timeslots can be chosen independently of the ingress

2.3. INCOMPATIBILITIES

timeslots, and thus are less possible incompatibilities. Nevertheless, some ex-
changes standardise on Ethernet, others on SDH, and others on GMPLS. Thus
technology conversions are still required for end-to-end connections.

2.3.3 Services

Since it is undesirable that only members of an exchange with the same tech-
nology can communicate, and because technology conversions are still required
for end-to-end connections, exchanges may offer interworking services. The fol-
lowing list gives a partial overview of the different services that may exist for
optical exchanges.

Cross connect: The basic functionality of any exchange is to transport traffic
from one member to another member. For interfaces of equal type, this
can be accomplished using a simple cross connect between the two in-
terfaces.

Adaptation: If a signal goes in at one layer and goes out at a different layer,
the optical exchange effectively acts as an ‘elevator’, lowering or raising
traffic to different layers. For example if a signal comes in as a wavelength
using DWDM, and is injected in a VLAN, the signal is elevated from
layer 1 to layer 2.

Multiplexing: Combining different signals into a single carrier is called mul-
tiplexing. The extraction is called de-multiplexing. For example, com-
bining multiple wavelengths into a single fibre.

Interworking: Conversion between different incompatible technologies, for
example, conversion between WAN PHY Ethernet and LAN PHY Eth-
ernet or between a wavelength with 50 GHz and 100 GHz spacing.

Wavelength conversion: A special case of Interworking. Changing the col-
our (wavelength) of a lambda

Signal regeneration: Either simple amplification or attenuation of the power
levels to match a certain output power level, or full regeneration consist-
ing of reamplification, reshaping and retiming (3R) of the signal.

Optical multicast: The ability to duplicate an optical signal as-is. This can
only be done one-way, not for bidirectional connections (at least not
without merging the return signals, or ignoring all but one).

Ia

CHAPTER 2. OPTICAL EXCHANGES

Traffic aggregation: Traffic may be aggregated as packets into a single data
stream. This is a special case of multiplexing. Aggregation with (IP or
Ethernet) packets, (ATM) cells or optical burst switching may lead to
congestion and packet loss.

Store-and-forward: One way to reduce blocking chances is to transport
large chunks of data on a hop-by-hop basis, rather than reserving the
entire end-to-end path. The data may first be transported along a first
segment of the end-to-end path, stored at an intermediate location, and
transported along the rest of the path as soon as that section of the path
becomes available for the data transport.

2.3.4 Control Plane Services

So far we only discussed data plane services.

The data plane of a network is where all data transport functions take place.
The control plane of a network is where the operational control takes plane,
and externally influenced state changes of the network are processed. The
control plane includes the routing and signalling protocols that react to state
changes in the network (e.g. links coming up or down, external connectivity
announcements), and to connectivity requests by users or applications (e.g.
path requests and tear down messages).

The control plane may also contain services for users or applications. These
control plane services may include:

Provisioning service: set up or tear down of a network connection based on
a user’s request

Scheduling service: checking the availability of certain resources and mak-
ing future reservations;

Authentication service: verifying the usage policy on a resource and au-
thorising their usage;

Index server: listing the available resources;

Broker service: combining different resources together necessary to fulfil an
entire request.

The resources in the list are typically network resources, but could be other
types of resources, like storage or computational resources.

The services offered by the control plane are sometimes also referred to as
the service plane.

2.4. OWNERSHIP

2.4 Ownership

In this section we will introduce a concise terminology to describe exchanges,
in particular the facilitating role of exchanges where the members rather than
the exchange decide on the business policy. We need this terminology later in
chapter 5.

One feature often quoted by exchanges is that they take a neutral role, and
do not prefer one member over another. While neutrality is often seen as a
commercial aspect, there are also technical aspects at stake. We need to define
different roles to distinguish between the different aspects.

We relied as much as possible on existing terminology. In particular, the
ownership terminology in section 2.4.1 builds upon the management layers in
Telecommunication Management Network (TMN) [s50] and current practice
in economic and legal communities [t10], while the term open exchange draws
upon discussion in the GLIF community [t8].

2.4.1 Owner, Operator and Users

Network element is a generic term to include network devices, links, interfaces
and hosts.

We distinguish between legal owner, economic owner, operator and user(s)
for each network element. The legal owner of a network element is the entity
that purchased the device and the economic owner is the entity that acquired
the usage rights from the legal owner.

The economic owner determines its policy for the network, a set of rules
to control access to the network resources [s16]. This entity carries the re-
sponsibility for the behaviour of a device and has the final responsibility in
case of hazards and abuse. In addition, each network element can also have a
separate operator, the person, organisation, or software component that con-
figures and operates the device on behalf of the economic owner. The economic
owner determines the policy for a network element; the operator enforces this
policy. Finally, the users may use or invoke an element, if their request is in
compliance with the active policy.

In this thesis, we use the terms network administrator and network operator
interchangeably. This is in line with the Telecommunication Management Net-
work (TMN) standard, which notes that “the expression ‘Administration’ is
used for conciseness to indicate both a telecommunication administration and
a recognized operating agency”. Network operators in the GLIF community use
the term network administrator to mean network economic owner. To avoid
confusion, we prefer the term network operator.

Ia

CHAPTER 2. OPTICAL EXCHANGES

We assume that each network element has exactly one legal owner, one
economic owner, and one operator, but may have multiple users over time
(though typically only one at a specific time).

2.4.2 Open Control

Often the legal owner, economic owner, and operator of a network element are
the same entity. For example, in the Internet, a transit provider is typically
owner and operator of its network. But this is not always the case.

If an organisation leases a trans-oceanic fibre from a carrier to lease a fibre
for a year, the carrier is the legal owner, while the other organisation is the
economic owner.

If an organisation outsources the maintenance of its network, the economic
owner and operator of this network are different entities.

An exchange may be neutral. Rather than applying its own policy, it out-
sources the policy decision to allow or deny a connection request between two
interfaces to the domains that are connected to those interfaces. Therefore,
members of an open exchange have the ability to configure ‘their’ interface in
the exchange and thus can decide who connects to their network. We call this
concept open control, and exchanges that apply such a policy are called open
exchanges.

Bnet Bnet

(a) Closed control model (b) Open control model

Figure 2.2: Comparison between the closed control model and the open control
in the same network.

Figure 2.2 shows an example of a closed and an open control model. While
control model on the left follows the physical topology of the operational do-

2.5. TRANSPARENCY

mains, the control model on the right follows the owner domains. In the open
control model, there is no owner domain for the exchange, because not the
exchange, but its members decide on policies.

2.4.3 Domains

We define a domain as a set of network elements. A set of network elements
may even be disjoint. An owner domain is a set of network elements with the
same economic owner. An operational domain is a set of network elements
with the same operator. Observe that this definition does not require that an
operational domain contains all network elements with the same operator.

An exchange network is an operational domain within an interconnection
point whose primary goal is to transport data between all its members. Ex-
changes tend to be neutral, and are policy-free. Exchange networks are of
special interest throughout this chapter and we use the term exchange to refer
to a core network and its operator.

2.5 Transparency

So far, we investigated the properties of Internet and optical exchanges in
detail. It is time to answer our research question: Can optical exchanges,
just like Internet exchanges, be completely transparent to a path
finding algorithm in circuit switched networks?

The routing protocol on the Internet is the Border Gateway Protocol
(BGP) [s24]. It works by distributing reachability paths, consisting of lists
of individual networks, the autonomous systems (AS). These lists of AS num-
bers do only contain autonomous systems with routers. It does not included
Internet exchanges, since Internet exchanges typically don’t contain a router.
Thus, Internet exchanges are transparent for the path finding algorithm in the
Internet.

It is desirable that exchanges are neutral. The members of an exchange
expect that an exchange has a facilitating role, and does not have its own
policy.

An exchange is transparent to a path finding algorithm if the path find-
ing algorithm needs no knowledge of the exchange. Thus, if the path finding
algorithm regards two members as directly connected. This is true if two con-
ditions are met. First of all, the members must be able to connect at will.
Thus, the exchange must have a facilitating role, and not have a policy on its
own. Secondly, the connections through the exchange must behave as a direct

Ia

CHAPTER 2. OPTICAL EXCHANGES

connection. So, the interfaces must be of the same type and the exchange does
not offer any services. Exchanges can only be ignored during path find-
ing if the connections through an exchange are modelled as direct
connections, and the exchange does not define a usage policy on its
own.

Optical exchange can, like Internet exchanges, be transparent. The condi-
tion is that the optical exchange does not provide a policy of its own. If the
path finding algorithm finds a path between these two domains, then the do-
mains are responsible to signal the exchange to provision a connection between
the two members, just as the members are responsible for setting up the con-
nection through their own network. If the optical exchange would have its own
policy, then the members can not be sure that the exchange adheres to their
request, and the exchange must be visible to the path finding algorithm. Given
that exchanges have a facilitating role, this condition is typically true.

The second condition is that a path finding algorithm can treat the con-
nection through the exchange as a direct connection between the members.
This condition may not be true: if the two interfaces are of different type, or if
the exchange offers services besides simple cross connects, then the exchange
can not be regarded as a direct connection, and it is necessary that the path
finding algorithm is aware of the exchange.

2.6 Conclusion

In this chapter, we investigated the fundamental differences between the In-
ternet and transport networks. We created a definition framework that makes
comparisons between exchanges possible, not only between Internet and op-
tical exchanges, but also between different optical exchanges. Our terminology
on circuits and lightpaths, the service overview in section 2.3.3 and the classi-
fication in section 2.1 helped the discussion in the community. The distinction
between hybrid network and multi-layer network was not obvious before these
definitions. Furthermore, We were the first to define the concept of ‘open con-
trol” and relate that the difference between an owner and an operator of a
network.

The most obvious distinction between the Internet and transport networks
is that the Internet is packet based, while transport networks are circuit based.
This difference also has implications for the exchanges in these networks.
While Internet exchanges and optical exchanges may use the same techno-
logies (e.g. Ethernet and SONET), an important distinction is that optical
exchanges change state with each connection request, while the state of Inter-

2.6. CONCLUSION

net exchanges only change when peering relations change.

Since technologies change over time, and so do networks, incompatibilities
will continue to occur. Exchanges must take potential incompatibilities into
account to avoid non-working network connections. Services like adaptation
and interworking must be offered by exchanges or elsewhere in the network
to solve incompatibilities. This last implication means that optical exchanges
may offer services, such as interworking between different interfaces, and mul-
tiplexing of channels. If such services are offered, they are relevant to a path
finding algorithm, and optical exchanges can not be transparent to a path
finding algorithm, as Internet exchanges are.

It is possible for an optical exchange to retain its facilitating role, even
when it is considered to be a regular domain by a path finding algorithm. In
this case, the policy of the domain would not be to always grant access, but
instead, to delegate the decision making to the affected neighbours.

Ia

CHAPTER 2. OPTICAL EXCHANGES

Going in Loops: Path Finding
in Multi-Layer Networks

This chapter is based on A Path Finding Implementation for Multi- Layer
Networks by F. Dijkstra, J.J. van der Ham, P. Grosso, and C.T.A.M. de
Laat [a13].

The provisioning of circuit switched network connections is a three-step pro-
cess:

Routing: the distribution of topology and network state across different do-
mains;

Path finding: the calculation of the shortest viable path;

Signalling: the provisioning of the actual network elements across the chosen
path.

A routing protocol is a network protocol that is responsible for distributing
information about the state of a local network or node to neighbouring net-
works or nodes. A path finding algorithm will use that information to calculate
a shortest path.

This chapters also articulates the main research question of this thesis:

Is it possible to use the same path finding algorithms in
multi-layer transport networks as those in use for the In-
ternet and telephony networks? If not, what kind of al-
gorithm is required?

-

CHAPTER 3. GOING IN LOOPS

In order to answer this question, we describe a few common protocols in
section 3.1, and summarise which algorithms are used in the Internet and
telephony networks work in section 3.2. Section 3.3 describes how this differs
from path finding in multi-layer networks. Sections 3.4 and 3.5 discuss the
different kind of constraints in path finding. Section 3.6 ends this chapter by
summarising the conclusions.

3.1 Algorithms

This section describes the most common path finding algorithms in use [pY],
the shortest path first (SPF) algorithms. All described algorithms find a path
in a graph.

3.1.1 Breadth-first and Depth-first

Breadth first and depth first search algorithms are two distinct approaches to
walking down a tree graph, given the root of the tree.

Figure 3.1: A simple tree graph

Breadth first search algorithm starts with the root, and first traverses the
direct child nodes, before traversing the child nodes of the child nodes. In the
tree of figure 3.1, it would traverse the vertices in the order A, B, D,C, E, F.

Depth first search algorithm starts with the root, and traverses child nodes
recursively. It first traverses an entire branch of one child before proceeding
to another child. In the tree of figure 3.1, it would traverse the vertices in the
order A,B,C,E,D,F.

3.1. ALGORITHMS

3.1.2 Bellman-Ford and Dijkstra Algorithms

The Bellman-Ford [p3] and Dijkstra [p11] algorithms are both single source
shortest path first algorithm published in the late 1950s, and are still in wide
use today [pY].

Both algorithms find all shortest paths in a graph, given a certain source
vertex. The Bellman-Ford algorithm can deal with vertices with negative weight,
while the Dijkstra algorithm can not. The Bellman-Ford algorithm scales
with O(|E| x |V]), which is worse than the scalability of Dijkstra’s algorithm
O(|E| xlog|V]), with |V| the number of vertices in a graph and | E/| the number
of edges in a graph.

3.1.3 Constrained Shortest Path First

Constrained Shortest Path First (CSPF) algorithms find shortest path ful-
filling a certain constraint. For example, only edges with a minimal available
bandwidth can be part of the shortest path. The solution is to prune all edges
that do not meet the constraint from the graph before calculating the shortest
path.

Kuipers et al. published a performance comparison of different constrained
shortest path first algorithms [p20].

We have not defined what “shortest” path means. Usually, either the hop
count is used (the number of edges or number of vertices in a path), or each
edge has a given metric, the “weight” of an edge.

All algorithms above assume that a subsection B ~» C' of a shortest path
A ~ D is also the shortest path from B to C. This is true if the total metric
of a path is the sum of the metric of each individual edge. Kuipers and Van
Mieghem developed the SAMCRA algorithm, which can deal with multiple
constraints, where this assumption does not have to be valid [p19, p26].

3.1.4 Path-Constraint Algorithms

Constrained shortest path first algorithms only deal with a specific kind of
constraint: link-constraints that apply to a particular edge. These constraints
can be filtered out in the initialisation phase of the algorithm.

Path-constraints are constraints that are based on a particular combination
of multiple edges. This type of constraints can not be solved in the initialisa-
tion phase of an algorithm because it does not apply to single edges but to
combinations of edges. For example, it may be allowed to use the edge A — B,
but not in combination with the edge B — C.

CHAPTER 3. GOING IN LOOPS

We distinguish between these two constraints in this thesis by referring
to link-constrained path finding algorithms and path-constrained path finding
algorithms.

Examples of path-constrained algorithms can be in a routing problem with
different forms of transportation. For example, it may always be allowed to
travel from A to B on a map by foot, but it is only possible to continue the
travel from B by car if there is a car parked at B. Another practical example
of such algorithms is in analysing formal languages [p2]. For example, the code
of a programming language may only contain an ‘end’ statement if it was first
preceded by a corresponding ‘begin’ statement

3.1.5 k-Shortest Path

Usually, we are only interested in the shortest path between two nodes. How-
ever, in some circumstances, it is desirable to find a list of shortest paths.
An algorithm that finds the first k& shortest paths is called a k-shortest path
algorithm.

3.2 Routing Protocols

3.2.1 Distributed Path Finding

The algorithms in the previous section take a graph as input. Thus, before
applying an algorithm, it first needs to have full topology knowledge. While
this may be feasible for path finding within a domain, it does not scale to a
worldwide solution.

Algorithms can only be applied on a world-wide scale if they are able to do
path finding without having full topology knowledge. A common solution is to
let each node make a local path finding decision based on a limited amount of
information, but in such a way that the final result is still a shortest path.

There are three common routing protocols in use on the Internet: link-state
routing, path distance routing and path vector routing.

All these routing protocols build a routing table. This table, which is dif-
ferent for each node, contains a list with all destinations and the next hop for
the shortest path to that destination.

A link state routing protocol will distribute all topology knowledge. With
that information, each node can apply an exact algorithm such as Dijkstra’s
algorithm for a path finding request, and find the complete end-to-end path.

3.2. RouTING PROTOCOLS

A host using the distance vector routing protocol does not distribute the
full topology knowledge between neighbours, but only announces the distance
in which it can reach a certain destination. A host that receives distance in-
formation to a particular destination from multiple neighbours only needs to
pick the neighbour with the shortest distance. Distance vector routing proto-
cols are a variant of the Bellman-Ford algorithm, and are sometimes referred
to as the Ford-Fulkerson algorithm [p12]. Dijkstra’s algorithm can not be used
with a distance vector protocol.

The path vector routing protocol is very similar to the distance vector
routing protocol, but distributes the information about the shortest path next
to the distance. The advantage is that this allows easy detection of cycles, and
solves the problem that the slow convergence with the distance vector problem
if a link goes down.

3.2.2 The Internet

The routing protocol between domains on the Internet, the Border Gateway
Protocol (BGP) [s24,], uses a path vector algorithm. It keeps a routing
table, a list of destinations with the associated next hop. Before a route is
added to the routing table, and before it is announced to neighbours, it is
filtered using a policy.

Multiple protocol standards exist to distribute routing information within

a domain, each with a different routing protocol. OSPF [s10] and IS-IS [s7]
are link-state routing protocols, while RIP [s11] is a distance vector routing
protocol.

3.2.3 Public Switched Telephone Service

The telephony network reduces the information required by the routing al-
gorithm by standardising on a single technology, so there are no incompatib-
ilities. Scheduling constraints are solved using a route congestion statue, and
by massively overprovisiong the system.

The routing algorithm in Signalling System 7 (the control plane of the
telephone network) uses a routing table with prefixes (of the telephone num-
ber) [s51,]. The routing protocol is similar to the is approach is similar
to the distance vector routing protocol. Policies (e.g. transfer-prohibited) are
distributed across a limited set of nodes.

Ia

CHAPTER 3. GOING IN LOOPS

3.2.4 Generalized Multiprotocol Label Switching

Generalized Multiprotocol Label Switching (GMPLS) is a set of protocols un-
der development by the Internet Engineering Task Force (IETF) for a control
plane that supports data forwarding based on labels [s20]. GMPLS supports
switching at different technology layers, and specifically mentions time division
multiplexing (TDM), wavelength and spatial (fibre) switching.

The GMPLS framework works as follows:

¢ A routing protocol distributes topology knowledge across the network.
o This information is stored in Traffic Engineering Databases (TED).
o Users and applications can send path setup requests to the network.

o A path computation element (PCE) in the network takes responsibility
for the computation of the actual network connection [s27].

e The signalling of the decided path to the network elements that do the
actual provisioning is done with a signalling protocol.

While this framework does not enforce a specific routing or signalling
protocol, the de-facto standards are Traffic Engineering (TE) extensions to
Open Shortest Path First (OSPF) and Resource Reservation Protocol (RSVP),
OSPF-TE and RSVP-TE respectively [s23, s18]. The path computation ele-
ments (PCE) framework in GMPLS also does not enforce a specific path find-
ing algorithm [s27].

GMPLS describes the network topology using OSPF-TE Link State An-
nouncements (LSAs). The connections through this network are built using
Label Switched Paths (LSPs), which reside on a single layer. All hops of an
LSP can be described using a Record Route Object (RRO) in RSVP-TE.

Since GMPLS uses OSPF-TE, the full topology information is distributed
across all nodes. Without modifications this does not scale for larger networks,
let alone multi-domain scenarios. RFC 4655 says (section 4.9.1) “PCE is not
considered to be a solution that is applicable to the entire Internet. That is,
the applicability of PCE is limited to a set of domains with known relation-
ships.” [s27, 528, s30].

GMPLS deploys three mechanisms to confine scalability within reasonable
limits:

Choice of labels during signalling: Instead of distributing information about
available labels in the routing protocol, a list of k-shortest paths is chosen
without this information. During the signalling phase, the ReSerVation

3.3. PATH FINDING IN MULTI-LAYER NETWORKS

Protocol (RSVP) announces the available labels, such as wavelengths or
VLAN tags, to its neighbours. The given paths are then tried in order
until a path is found where an unused label is available.

Loose hops: The path computation can be done per-layer. Instead of provid-
ing a list of strict hops, it is possible to use loose hops in the Explicit
Route Object (ERO), and only specify hops on the same layer, and let
another path computational element (PCE) deal with the hops on an-
other layer.

Abstraction of domains: The size of the graph can be reduces by abstract-
ing the topology information per domain or per OSPF area. For example,
the DRAGON project [p24] contains a Network Aware Resource Broker
(NARB) that abstracts the topology in either a set of edge nodes (nodes
connected to a neighbouring domain) or even one node per domain [t3].

Unlike OSPF, IS-IS, RIP en BGP, the network model of GMPLS is not
based on a graph but mostly on ideas in the ITU-T, such as G.805 and
G.800 [s42, s41].

3.3 Path Finding in Multi-Layer Networks

The Internet and the telephony network as examined in the previous section are
essential single layer networks with very few incompatibilities (the distinction
between IPv4 and IPv6 is a notable exception). GMPLS deals with complexity
by assuming that incompatibilities are rare: it only applies to single or few
domains, with one or only few different technologies, and it uses k-shortest
path heuristics to deal with potential incompatible labels.

The use of multi-layer networks leads to additional technology constraints.
Technology constraints are potential incompatibilities such as incompatible
packet size leading to packet loss, a laser transmitting light at a wavelength
undetectable by a receiver, or two devices supporting a different adaptation,
the encapsulation of data of one layer into another layer.

These technology constraints are important for two reasons. First of all, we
argued in section 2.3 that technology constraints will continue to exist. Ideally,
transport protocols will evolve to a single de-facto standard, eliminating in-
compatibilities. However, as technologies evolve over time, incompatibilities
will continue to exist. This surfaces in multi-domain networks, as engineers in
different domains choose different technology standards. For example, one net-
work may provide dynamic switching capabilities using MPLS, while another

Ia

CHAPTER 3. GOING IN LOOPS

network may provide dynamic switching capabilities using Ethernet PBB-TE,
and a third network using DWDM lightpaths. So as long as technologies evolve,
multi-domain networks are also multi-layer networks.

Secondly, technical incompatibilities for multi-layer networks can exist between

two geographically separated domains. They are not limited to domains dir-
ectly connected with each other, and thus can not be solved locally, but needs
to be announced across multiple domains. We will see an example of such a
geographically separated incompatibility in the example later in this section.

At the beginning of this chapter, the question was raised if it is possible
to use the same path finding algorithms in multi-layer transport networks
as those in use for the Internet and telephony networks. The Internet and
telephony networks rely on graph theory for modelling and algorithms that
find a shortest path through a graph in polynomial time.

We have not yet given an exact problem statement for path finding in
multi-layer networks, as currently no all-encompassing model for multi-layer
networks exists (chapter 4 will define such a model). For now, all we know
is if graph theory and shortest-path algorithms in graphs are to be sufficient
to be used in multi-layer networks, they must deal with dynamic capabilities
as described in section 2.3.3 and technology constraints such as incompatible
packet size, lasers with different wavelength, etc. We will now claim that graph
theory and algorithms in graphs are not sufficient to deal with this.

First of all, graphs can not be used for path finding in multi-layer
networks. To be precise, we claim that graphs can not be used for path finding
in multi-layer networks, if it is required that (1) the outcome of the path finding
algorithm is sufficient to reconstruct the original path in the network; (2) the
graph can be created from the actual network in polynomial time; and (3) a
path finding algorithm as discussed in section 3.1 can be used.

A network is not a graph. A graph is merely a representation of a net-
work, and it is possible to map the same network onto multiple graphs. This
distinction is causes the three conditions in the above claim.

Secondly, it is not possible to use existing path finding algorithms
as used on the Internet and telephony network for multi-layer net-
works. To be precise, we claim that link-constrained algorithms are not
sufficient for path finding in multi-layer networks, if links are 1:1
mapped to edges, but that path-constrained algorithms are sufficient
for path finding in multi-layer networks.

The above claims are proven in the following subsections.

The root of both claims is that path finding in single layer networks is a
problem in complexity class P, that is, a decision problem that is verifiable
in polynomial time by a non-deterministic Turing machine. Algorithms like

3.3. PATH FINDING IN MULTI-LAYER NETWORKS

breadth first search and Dijkstra are non-deterministic Turing machines, and
not only verify but find the solution in polynomial time (their running time
is O(n) and O(n x log(n)) respectively, with n the number of vertices in the
graph). On the other hand, path finding in multi-layer networks is a NP-
hard problem, that is, a decision problem whose time-complexity is at least
as large of that of NP-complete problems. In a joint paper, Kuipers recently
proved that the 3SAT problem can be mapped onto the multi-layer path finding
problem [a12]. Since 3SAT is a known NP-complete problem, this proves that
that the multi-layer path finding problem is NP-Hard. Thus, path finding in
a single layer network belong to a different complexity class (P) than
path finding in a multi-layer network (NP-hard). The exact complexity
class to which this problem belong is yet unknown, and will depend on the
exact formulation of the multi-layer path finding problem. The problem to
find a path in a multi-layer network shorter than a given length is easy to
verify, making that problem NP-complete. The problem to find the shortest
path in a multi-layer network may be harder to verify. That problem has either
NP-complete, EXPTIME or NEXPTIME complexity.

3.3.1 Practical Example

We first turn to our original question, is it possible to use the same path
finding algorithms in multi-layer transport networks as those in use for the
Internet and telephony networks? We claim that this is not true. path finding
algorithms in use for the Internet and telephony networks are based on graphs,
as described in section 3.1. Each edge in these graphs represents a single links
in the network. The essence of path finding algorithms in graphs, is that a
shortest path can not contain cycles in the graph. If the existing algorithms
can be used in a multi-layer network, this means that no shortest path exists
which the same link twice.

We will now give a counter-example where the shortest path does traverse
the same link twice.

Figure 3.2 introduces an example network, which is used throughout the
remainder of this thesis. Each circle in the picture represents an operational
network domain. The domains are interconnected by links: the edges in the
figure. Each domain is a participant in the Global Lambda Integrated Facility
(GLIF). University of Amsterdam and Université du Quebec are universities,
CAnet is a National Research and Education Network (NREN), and StarLight,
MAN LAN and NetherLight are optical exchanges. All these domains collab-
orate to provide researchers with circuit switched connections, the lightpaths.

While this example is based on a historic scenario, the topology is modified

CHAPTER 3. GOING IN LOOPS

can adapt GE in STS-24c

Université
du
Quebec

CA*net
Canada

University of
Amsterdam

0C-192
(87 free)

0C-192 GE

(22 free) 2x OC-192

(63 free)

StarLight
Chicago

MAN LAN
New York

NetherLight
Amsterdam

0C-192
(38 free)

can adapt GE in STS-24c or STS-3c¢c-7v can adapt GE in STS-3c-7v

Figure 3.2: Ezample of a multi-layer and multi-domain network.

to emphasise our point, and the mentioned incompatibilities are not present
at these specific domains in real-life.

The network in the example is not only a multi-domain network, but also
a multi-layer network. The connection between the Université du Quebec and
CAnet, as well as the connection between the Universiteit van Amsterdam and
NetherLight is a Gigabit/second Ethernet (GE) connection.

While Ethernet is a common technology in domains and between universit-
ies and their access network, the international connections are currently mostly
based on SONET and SDH. These technologies provide the monitoring cap-
abilities that Ethernet lacks, but which are required for such long distances.
The Ethernet packets are transported over the SONET/SDH network. This
encapsulation of data of one layer (Ethernet) in another layer (SONET) is
called adaptation. The extraction of the data is called de-adaptation.

The links in SONET and SDH are optical carriers (OC), and the OC-192
variant is divided in 192 timeslots, referred to as STS channels. The total
capacity of an OC-192 connection is 9.8 Gigabit/second, and each timeslot is
51 Megabit/second. 51 Megabit/second is less than the 1 Gigabit/second for
Gigabit Ethernet, so each Gigabit Ethernet connection needs to be packed in
multiple STS channels.

There are at least five different standards to encapsulate Gigabit Ethernet
in STS channels'. CAnet supports a Cisco-developed variant that can embed

LGE over STS3c-7v/VC4-7v using GFP-F [545]; GE over STS-24c using LEX [s9]; GE
over STS-24c using Cisco HDLC [s57]; GE over STS-24c using PPP/BCP [s19]; GE over
STS-24c using Ethernet in HDLC framing over PPP over SONET [s8, s13]; and GE over

3.3. PATH FINDING IN MULTI-LAYER NETWORKS

Gigabit Ethernet in 24 concatenated STS channels (an ST'S-24c) [s57]. Neth-
erLight supports a ITU-developed variant called Generic Framing Procedure
(GFP) [s45] which embeds Gigabit Ethernet in 7 VC-4 containers, each in 3
concatenated STS channels: 21 STS channels in total (an STS-3c¢-7v). Star-
Light supports both methods to adapt Ethernet in STS channels.

In this example, an application wants to have a Gigabit/second Ethernet
(GE) connection between the Université du Quebec in Montreal (Canada)
and the University of Amsterdam (the Netherlands). This can be achieved by
creating a switched circuit through a set of the interconnected networks. Not
all 192 STS channels in this example are available. The numbers next to the
links show how many channels are free.

can adapt GE in STS-24c

Université
du
Quebec

University of
Amsterdam

(87 free)
(22 free) 2x 0C-192
(63 free)

StarLight
Chicago

(38 free)

can adapt GE in STS-24c or STS-3c-7v can adapt GE in STS-3¢-7v

Figure 3.3: An invalid network connection: the adaptation of gigabit Ethernet
(GE) in 24 STS channels (STS-24c) is incompatible with the adaptation of
gigabit Ethernet in 21 STS channels (STS-3¢-Tv).

If we would treat figure 3.2 as a graph, the shortest path from the Université
du Quebec to the University of Amsterdam would traverse CAnet, MAN LAN
and NetherLight respectively, as shown in figure 3.3. However, in practice this
would be a non-functioning network connection since the adaptation performed
at CAnet, which adapts the GE in 24 STS channels, is incompatible with the
adaptation of GE in 21 STS channels, as performed in NetherLight.

In this example network, StarLight is able to convert gigabit Ethernet (GE)
in 24 STS channels (STS-24c) to gigabit Ethernet in 21 STS channels (STS-
3c-7v). Nevertheless, the network connection from Université du Quebec via
CAnet, StarLight, MAN LAN, and NetherLight to the University of Amster-
dam, as shown in 3.4, is also non-functioning: there are only 22 STS channels

STS-24c using PPP [s13]. This ignores another four variants that use STS3c-8v/VC4-8c
instead of STS-24c using VCAT [s47]

CHAPTER 3. GOING IN LOOPS

can adapt GE in STS-24c

Université
du
Quebec

University of
Amsterdam

(87 free)

2x OC-192
(63 free)

(38 free)

can adapt GE in STS-24c or STS-3¢-7v can adapt GE in STS-3¢-7v

Figure 3.4: An invalid network connection: there are only 22 STS channels
available between CAnet and StarLight, while 24 are required.

available between CAnet and StarLight, while 24 are required.

can adapt GE in STS-24c

Université
du
Quebec

University of
Amsterdam

0OC-192

OC-192 (87 free)

(22 free) \ 2x 0C-192
’ \ (63 free) ,‘
MA NetherLight

Amsterdam

(38 free)

can adapt GE in STS-24c or STS-3c-7v can adapt GE in STS-3c-7v

Figure 3.5: The shortest valid network connection from Université du Quebec
to University of Amsterdam through the example network of figure 3.2.

In fact, the shortest functional path between the Université du Quebec
and the University of Amsterdam is shown in figure 3.5, and traverses the link
between CAnet and MAN LAN twice. Once as Gigabit Ethernet in 24 STS

O channels, and the second time as Gigabit Ethernet in 21 STS channels.

If we define a ‘loop’ in a network connection as a network connection that
traverses the same physical link twice, then we can say that the shortest net-
work connection between the Université du Quebec and the University of Am-
sterdam has a loop.
a2/ So we now have a multi-layer network where the shortest path does traverse
N7 the same link twice. This proves our claim that the algorithms used in the

3.3. PATH FINDING IN MULTI-LAYER NETWORKS

Internet and telephony network can not be used for path finding
in multi-layer transport networks, if links in the network are 1:1
mapped to edges in the graph.

3.3.2 Path-Constrained Problem

We earlier mentioned that path finding in a single layer network is a problem
in complexity class P, while path finding in a multi layer network is a NP-hard
problem.

Fundamentally, path finding in multi-layer networks contains conditional
constraints based on the chosen path. In the given example, it is only pos-
sible to extract Ethernet data from the SONET layer if the Ethernet data
was earlier embedded in the SONET layer with the same adaptation function.
A corresponding problem is travel problem with multiple transport vehicles
where you can always depart by bus or train from Amsterdam central sta-
tion, but only by bike if you somehow first managed to get your bike at the
station. This means that path finding in multi-layer networks requires a path-
constrained algorithm. The algorithms in use for single layer networks such as
the Internet and telephony network are link-constrained algorithms. This is
the fundamental reason why path finding algorithms as used in the Internet
or telephony network can not be used for multi-layer path finding.

Our earlier claim that the algorithms used in the Internet and telephony
network can not be used for path finding in multi-layer transport networks, if
links in the network are 1:1 mapped to edges in the graph, can be rewritten
as link-constrained algorithms are not sufficient for path finding in
multi-layer networks, if links are 1:1 mapped to edges.

Similarly, the third condition in the claim that graphs can not be used for
path finding in multi-layer networks, that a path finding algorithm as discussed
in section 3.1 can be used, can now also be rewritten by the condition that a
link-constrained path finding algorithm is used.

The full claim is now: graphs can not be used for path finding in
multi-layer networks, if it is required that (1) the outcome of the
path finding algorithm is sufficient to reconstruct the original path in
the network; (2) the graph can be created from the actual network in
polynomial time; and (3) a link-constrained path finding algorithm
is used.

We can proof this claim by contradiction. Lets assume that graphs could
be used for path finding in multi-layer networks, while all conditions hold. By
condition (3), path finding in the graph would be solvable (and thus also verifi-
able) in polynomial time, as link-constrained path finding algorithms (without

CHAPTER 3. GOING IN LOOPS

further conditions) have P complexity. By condition (1), this would give a
solution for the original problem, and by condition (2) the solution for path
finding in multi-layer networks would be solvable in polynomial time as well.
However, Kuipers has shown that the multi-layer problem is NP-hard, so this
would lead to a contradiction. So we must conclude that our claim is true.

Our example network has two conditional constraints. First, a de-adaptation
may only be used if the corresponding adaptation occurred earlier in the path.
Secondly, a link may only be (re)used if the capacity is sufficient.

The incompatibility caused by the two adaptation functions occurred between
StarLight and NetherLight. These domains are not direct neighbours. This
implies that multi-layer incompatibilities can not be resolved locally.
Information about these incompatibilities needs to be distributed across do-
mains.

Multi-layer path finding algorithm must not only have information of the
layers and adaptations of its direct neighbours, but also of the layers and ad-
aptations of domains further down the path. Another way to look at this is
that a path finding algorithm must not only take the topological neighbours
into account, thus the neighbours at the physical layer, but also the technolo-
gical neighbours: the neighbours on higher layers (for instance StarLight and
NetherLight as seen in figure 3.3).

Individual domains deal with multi-layer complexity by choosing to switch
at a single technology layer only, but since different domains choose different
layers, the complexity remains in the system as a whole.

We have proven the that link-constrained algorithms are not sufficient for
path finding in multi-layer networks, if links are 1:1 mapped to edges, and
now postulate the theorem that path-constrained algorithms are suffi-
cient for path finding in multi-layer networks. So far we only made
this theorem plausible by the describing of the problem and have proven it
for one example only. In order to prove it for networks, we must show that a
path constrained algorithm can be applied to all network examples, using any
technology. We will construct such a path-constrained path finding algorithm
that can be used for all technologies in the remainder chapters, in particular
in chapter 7.

3.3.3 Graphs

The counter example in section 3.3.1 contains a shortest path where a certain
link is used twice. The proof relied on the fact that we mapped each link in
the network to a single edge in the graph. Using this condition, we could map
loops in a network to cycles in a graph.

3.3. PATH FINDING IN MULTI-LAYER NETWORKS

This mapping between a network and a graph is important: A graph is
merely a representation of a network, and it is possible to map the same
network onto multiple graphs.

Earlier, we proved the following claim: graphs can not be used for path
finding in multi-layer networks, if it is required that (1) the outcome
of the path finding algorithm is sufficient to reconstruct the original
path in the network; (2) the graph can be created from the actual
network in polynomial time; and (3) a link-constrained path finding
algorithm is used.

All three conditions in this claim are essential. If any of these conditions is
left out, it is possible to use graphs for path finding in multi-layer networks.
We will now prove this for the first two conditions, and get back to the third
condition in the next subsections.

The first condition, the outcome of the path finding algorithm is sufficient
to reconstruct the original path in the network, is required to only allow useful
mappings from networks to graphs.

University
of
Amsterdam

Université
du Quebec

StarLight
Chicago

Figure 3.6: Graph where each edge represents the shortest path in the network
of figure 3.2.

Figure 3.6 shows a mapping from network to graph where this condition is
not met. In this figure, all Ethernet domains are mapped onto a vertex, and the
shortest path between each Ethernet domain is mapped onto an edge. In this
graph each edge represents a series of links in the network. Path finding in this
graph can be done with conventional algorithms, and is trivial: For example
the single edge between Quebec and Amsterdam represents is the shortest
path between these two locations and represent the full network connection
described in figure 3.5. Of course, this graph is not very useful: the graph is so
condensed that it is not possible to determine the actual path in the network
from a path in the graph.

Ia

CHAPTER 3. GOING IN LOOPS

The second condition, the graph can be created from the actual network in
polynomial time is also required. It is possible to create a graph that retains all
information about the network, but only requires a conventional path finding
algorithm. Given a source device, construct a tree graph, starting with a vertex
representing this device. Extend the tree by an edge for each link connected
to the device. Each new vertex represents not only the connected device, but
also the state of the network so far. Disallow vertices that yield conflicting
states (for example because the link is used twice, while not enough capacity
is left in the network). Recursively construct the branches of the tree until the
destination is reached in each branch. Path finding in this graph is trivial, but
it would take an exponential time to construct this graph. This graph does not
so much represent the network as well as the result of a path finding algorithm,
and we want to disallow it for that reason.

3.3.4 Multi-Layer Representations

A common representation of a network is to map nodes or domains to vertices
and links to edges. If we would do this with the network of figure 3.2, we get
a graph with 6 vertices and 7 edges. Such a graph lacks essential information
about adaptation in the network and can no be used for multi-layer path
finding.

Université GE CA*net
du Canada
Quebec

potential GE _ -+~ !

can adapt GE in STS-24c

CA*net
Canada
0C-192
StarLight MAN LAN NetherLight
- - NetherLight Chicago New York Amsterdam
Amsterdam
can adapt GE in STS-24c or STS-3¢-7v can adapt GE in STS-3¢-7v

(a) Ethernet layer (b) SONET layer

University of
Amsterdam

GE

Figure 3.7: Two layers of the multi-layer network of figure 3.2. This still does
not visualise the adaptations between the two layers.

Figure 3.7 describe the example multi-layer network as multiple graphs: one
graph per layer. Edges in such a graph would represent channels rather than
physical links. Observe that the topology of the network is different at each
layer, and such a multi-graph description makes this explicit. This is also not
complete because it does not explicitly describe the adaptation functions, and

3.3. PATH FINDING IN MULTI-LAYER NETWORKS

thus also not the compatibilities and incompatibilities caused by adaptation
functions.

It is possible to abstract the possible and impossible connections on the
SONET layer in figure 3.7b and place these as edges in the Ethernet layer
in subfigure 3.7a. Besides that the generation of this graph is non-trivial (all
possible links at a lower layer need to be determined, before the higher layer
graph can be created), it also needs information about possible links that can
not be created together if the run over the same limited capacity link.

The recurring problem is that information about the relation between dif-
ferent network layers is lost in the mapping from network to graph. The fun-
damental limitation of graphs is that graph theory only provides two basic
building blocks, edges and vertices, while multi-layer computer networks have
at least three building blocks: links, devices and adaptations, and perhaps four
if interfaces are counted as well.

With only two building blocks, vertices and edges, the following choices
must be considered when mapping multi-layer networks onto a graph:

e A vertex in a graph may either represent a device, a physical interface,
a logical interface, an adaptation stack at an interface, or even a link (in
bipartite graphs).

o An edge in a graph may either represent a link, a channel in a link (for
instance wavelength 1310 nm in a fibre), or an adaptation function.

Given this dissimilarity between multi-layer networks and graphs, we ask
ourselves the following question:

Are there other network models, beside graphs, that
can describe multi-layer networks? Can such a model be
technology-independent?

Either a new model needs to be chosen, or the graph model needs to be
extended to contain all information, and the path finding algorithm needs to
be adjusted to take this additional information into account.

It is possible to map both links and adaptations to edges. Figure 3.8 gives
such a representation for our example network. In order to describe adapta-
tions, the network elements that provide an adaptation must be described as
multiple logical vertices: at least one for each layer, with an edge in between
them. Multi-layer network description must distinguish between physical in-
terfaces and logical interfaces, and between physical links and logical channels
in these links. This leads us to the following claim: multi-layer networks

Ia

CHAPTER 3. GOING IN LOOPS

Quebec CA™net StarLight NetherLight Amsterdam

MAN LAN %

Figure 3.8: The network of figure 3.2, modelled as graph with edge properties.

can only be mapped to a graph if devices are mapped to multiple
vertices, or if information about the adaptation is lost.

This graph in figure 3.8 shows that the third condition in the claim that
the graph can be created from the actual network in polynomial time is also
required. This graph does provide all information, if all edges and vertices
are labelled (which is necessary to distinguish between adaptation and de-
adaptation and incompatible adaptation functions). However, we still need a
path-constrained algorithm to find the shortest path in that graph.

Links and adaptations have different properties, even though they are both
mapped onto edges in figure 3.8. It is non-trivial to represent multiplexing
adaptation functions (adaptations with multiple channels over a single link).
In the next few chapters we will attempt to overcome these shortcomings and
find a more suitable approach to model multi-layer networks.

3.4 Path Finding in Transport Networks

So far, we have looked at the technology constraints caused by the multi-layer
nature of transport networks. We will continue to do so in the next chapter,
but for the moment, we take a step back and look at the other properties of
transport networks.

We claim that path finding in multi-layer transport networks is different
from path finding in the regular Internet or the telephony network, because of
the circuit-switched nature of transport networks.

Transport networks consist of scarce resources, which can be reserved for
existing services. This means that links may not be assumed to be available
at all time. As a consequence, the pair of end-nodes is not enough to compute
a path, but the state of the network must be taken into account for each path
setup request.

In fact, at least four different types of information may be required to find

3.5. MULTI-STAGE PATH FINDING

a valid path:

Topology information — the interconnections between devices and between
domains;

Technology information — the potential technical incompatibilities;
Scheduling information —the simultaneous availability of required resources;
Policy information — the user authorisation level on the available resources.

Path Finding Software

Whilst it is possible to distribute all this information in a routing protocol,
that would give a routing table that scales with the product of the number of
each constraint type (topology, technology, scheduling and policy).

3.5 Multi-Stage Path Finding

Because transport networks as described in this thesis are still relatively new,
it is yet unknown which constraints are important and which can be ignored.

In case all constraints are relevant, a possible routing table would not scale.
Since the different constraints are orthogonal to each other, the size would
scale with the product of each number of constraints, O([[, |C;|) with |C;]| the
number of different values for constraint C;. Thus the number of destinations,
the number of incompatibilities, the number of potential time slots and the
number of per-user policies. Clearly, if different constraints are relevant and
orthogonal to each other, using a routing table will not scale.

If not all path request can be pre-computed in a routing table, then for
each path set up request a new path needs to be calculated at the time of the
request. It can not be done by distributing all routing information beforehand.

One of the questions to ask is if it is possible to create a scalable multi-
domain path finding algorithm without relying on a routing table (path vector
algorithms) or on knowledge about each domain (link state algorithms which O
require full topology knowledge)? If so, does this alternative approach have
advantages over current path vector or link state algorithms?

Torab et al. did show that other algorithms than shortest path first (SPF)
are possible [p40]. In particular, they distinguished between (1) no collabor-
ation, (2) collaboration but no cooperation, (3) model-based cooperation and \ a9 /
(4) ad-hoc cooperation.

Ia

CHAPTER 3. GOING IN LOOPS

no collaboration: only intradomain calculation. Each domain independently
determines the egress (exit) port, without consulting the domain where
it leads to in this decision. No path information exchange between PCE
in each domain.

collaboration but no cooperation: receive time frame or event based to-
pology and resource availability information. No per-request information
exchange.

model-based cooperation: limited information ("model”) of dynamic info
of few neighbouring domains, and additionally availability information
exchange.

ad-hoc cooperation: information exchange as soon as a request comes in.
No a-priori information.

Independent from Torab et al., we turned to a very basic algorithm for our
path finding problem: a broadcast algorithm. The basic idea is that domains
simply forward a path setup request by checking if the request can be accom-
modated, and for each possible egress interface, forwarding the path request
along with the possible path so far to the next domain. While we anticipate
that this is not a very efficient algorithm, it is a first approach and it may be
possible that all sorts of constraints will limit the flooding of such an algorithm.

The broadcast algorithm would effectively be a breadth first search al-
gorithm that checks all possible paths in parallel. Alternatively, it is possible
to intelligently try one egress domain at a time, making it a depth first search
algorithm, with some sort of back-track algorithm in case of dead ends.

Our ideal approach is very similar to the model-based co-operation, and
was partially inspired by a talk by Lehman [t12].

In our view, domains should push ‘static’ and ‘non-sensitive’ information to
their neighbours (e.g. “this is our topology”), and they should provide a service
to either get more information (e.g. “there is a link here, what wavelengths are
still available?”) or provide a (web)service where to ask a specific configuration
question (e.g. “can I use wavelength 1552 nm for this link for the next hour,
for a user in my virtual organisation?”)

In particular, domains should announce (push) the following information to
their neighbours, for each type of information (topology, technology, scheduling
and policy information):

o either the information itself; or

e an access method to retrieve this information; or

3.6. CONCLUSION

e an access method to check for usage availability.

Our vision is that a path computation element acts as a broker and uses
these information services from different domains to stitch a working end-to-
end path together.

3.6 Conclusion

Multi-layer networks give rise to technology incompatibilities. Individual do-
mains deal with multi-layer incompatibilities by choosing to switch at a single
technology layer only, but since different domains choose different layers, the
complexity remains in the system as a whole.

We have shown that algorithm as used in the Internet or telephony networks
can not be used for multi-layer path finding. To be precise, we have proven
that Link-constrained algorithms are not sufficient for path finding
in multi-layer networks, if links are 1:1 mapped to edges. We have
shown this using a counter example.

In addition, we have shown that graphs can not be used for path finding in
multi-layer networks, if it is required that (1) the outcome of the path finding
algorithm is sufficient to reconstruct the original path in the network; (2) the
graph can be created from the actual network in polynomial time; and (3) a
link-constrained path finding algorithm is used.

The standard mapping of one link to one edge leads to loss of information
in the graph, and other mappings from a network to a graph have similar
problems. The bottom line is that path finding in a single layer network and
path finding in multi-layer network belong to different complexity categories.

The rest of this thesis is devoted to prove that Path-constrained al-
gorithms are sufficient for path finding in multi-layer networks. In
order to prove this claim, we present a path-constrained algorithm in the next
chapters, and show that it can find path in multi-layer networks for all tech-
nologies known to us.

Ia

CHAPTER 3. GOING IN LOOPS

Chapter 4

This chapter is based on A Multi-Layer Network Model Based on ITU-
T G.805 by F. Dijkstra, H.M. Andree, K. Koymans, J.J. van der Ham,
P. Grosso, and C.T.A.M. de Laat [a10].

4.1 Introduction

In this chapter we examine abstract representations of multi-layer networks.
Network models can help users and applications to understand the complex-
ity of multi-layer networks. In particular models can support path finding,
scheduling, fault isolation, and visualisation applications.

Path finding in multi-layer networks requires knowledge about the relation
between different network layers (the adaptation).

The most common representation of a network is a graph. As we saw in
the previous chapter, a simple graph with devices represented as nodes and
links as edges is not able to describe multi-layer networks, so we turn to more
elaborate models.

For our network model, we set two goals: first, such a model should be able
to explicitly describe multi-layer networks, including the relation between the
layers, and second, it should be able to find valid potential connections through
a given network. For example, it should be possible to distinguish between the
invalid paths and the valid paths in the example networks presented in the
previous chapter.

Since we did not find suitable models to describe multi-layer computer
networks, we developed a new model, which is technology independent, but

Multi-Layer Network Model

CHAPTER 4. MULTI-LAYER NETWORK MODEL

layer aware. This network model is based on functional elements as defined
in ITU-T Recommendation G.805 [s42], combined with the label concept in
GMPLS [s20] and the addition of capability information. Furthermore, we
show that it is possible to use a simple algebra to verify the validity of an
end-to-end network connection, traversing multiple layers.

can adapt GE in STS-24c

Université
du
Quebec

CA*net University of
Canada Amsterdam

StarLight MAN LAN NetherLight
Chicago New York Amsterdam

can adapt GE in STS-24c or STS-3c-7v can adapt GE in STS-3c-7v

Figure 4.1: Example of a multi-layer and multi-domain network.

We will explain the model using the example network in figure 4.1. This is
the same example as we have seen in the previous chapter, but we will ignore
the availability constraints for now.

Each circle in the picture represents an operational domain. The domains
are interconnected by links: the edges in the figure.

The organisation of this chapter is as follows. Section 4.2 starts with the
related work. In section 4.3 we will introduce I'TU-T Recommendation G.805.
The network model is introduced in section 4.4, along with a simple algebra
to verify validity of network connections through the network. Section 4.5
demonstrates the usability of the network model by an example network and
section 4.6 describes a few possible extensions of this model. Finally, we present
related work and conclusions in section 4.7.

4.2 Related work

The great advantage of technology-independent network description is that a
path finding algorithm only needs to know about the generic concepts such as
‘layer’ and ‘adaptation’, but not about the specific technologies. It does not
need to be tuned or adjusted as new network technologies come along.

4.2. RELATED WORK

Since new technologies and thus incompatibilities will come along as time
progresses (see our claim in section 2.3.1), our interest lays in technology inde-
pendent, multi-layer network description. Table 4.1 shows some of the related
work.

Technology Specific | Technology

Independent
Single Layer most network models Graphs
Multi Layer GMPLS model, CIM, | ITU-T G.805, G.800

network simulators

Table 4.1: Categorization of related work. Single layer technology specific
models are not listed, since they are of no interest to us.

ITU-T Recommendations G.805 and G.800 and graph theory are all tech-
nology independent: they can be applied to any technology.

G.805 is the first standard to clearly define the terms adaptation and ter-
mination to describe the relation between different layers. G.805 is based on
transport networks and can only be applied to circuit-switched data networks.
ITU-T G.809 [s13] extends these definitions to include packet switched net-
works.

The few models that take multiple layers into account are often geared
towards very specific cases (for instance simulation of a few specific layers, like
in network simulators).

As early as 1995, Laarhuis developed a model where the network was di-
vided in three layers [p21]. The physical media layer containing all network
components and fibres, the optical layer consisting of wavelength channels,
and the electrical layer which uses the virtual topology of the optical layer
to obtain connections. Like us, he based his work on ITU-T G.805 functional
elements.

G.800 [s11] is a recent extension of ITU-T G.805 that adds the concepts
of domains, symbols and labels. Both G.805 and G.800 provide functional
elements to describe the state of a network. Neither provides a description
how the state can be changed, and by whom. For path-finding, the information
how to change a network is just as crucial as knowing the current state. The
capability of a network describes how the state can be changes, while the policy
defines who may change the state.

Whereas Graphs, and the functional models in G.805 and G.800 are techno-
logy independent, there are many more models that are specific for a limited
set of technologies. We describe two of these models that have generated a

CHAPTER 4. MULTI-LAYER NETWORK MODEL

considerable momentum at the moment of this writing, the model in General-
ized Multi-Protocol Label Switching (GMPLS) and the Common Information
Model (CIM).

4.2.1 Generalized Multi-Protocol Label Switching

Generalized Multi-Protocol Label Switching (GMPLS) is a set of protocols
for routing and signalling in circuit switched networks [s20, s22, s18]. Its path
finding properties were already discussed in section 3.2.4, and this section
concentrates on its network model only.

GMPLS does not specify a formal network model, but merely specifies
parameters for different technologies, as required by a network control plane.

GMPLS can describe the layers and switching capability of devices at a
layer. However, it currently only has a limited concept of adaptation, by using
a Generalized Protocol IDentifier (G-PID) to specify the payload of the chan-
nels. But this information is only used during the signalling phase, when the
path is already established. In agreement with our findings, it was independ-
ently determined that the advertisement of the internal adaptation capability
of hybrid nodes is required in the routing protocol [s32]. A proposal for these
routing extensions is in draft as of this writing [s31, s33].

4.2.2 Common Information Model

The Common Information Model (CIM) [s2] is a schema defined by the Dis-
tributed Management Task Force (DMTF). CIM is an object oriented schema,
which can describe hardware elements in high detail. It can describe networks
and has a collection of schemes to describe a configuration of IP, BGP, OSPF,
Ethernet (including VLAN), NAT, pipes and filters.

This makes CIM a very useful tool for describing a (network) configuration
in detail. In particular, it makes a great database for access networks, especially
if tools like SNMP can automatically generate the data.

CIM is less suitable for core networks since it can not describe DWDM
or TDM networks. CIM is a technology specific model, which makes it less
suitable for our purpose: a technology independent model.

4.3 ITU-T G.805 Concepts

This section serves as a short explanation to ITU-T G.805 terminology [s42]. A
few concepts are simplified for readability. For example, we do not distinguish

4.3. ITU-T G.805 CONCEPTS

between a link, and the transport entity across a link. The section on functional
elements and connection partitioning are our own additions.

4.3.1 Functional Elements

The process of creating an abstract description of a network involves two steps,
as shown in figure 4.2.

Network | | Functional

Elements Elements Syntax

<ndl:Device rdf:about="#Force10">
<ndlhasinterface rdf resource=
"#Force10:6/0">
<Indl:Device>
<ndkInterface rdf:about="#Force101e6/0">
<rdfslabel>te6/0</rdis labet>
<ndi:capacity>1.25E9</ndl:capacity>
<ndiconf:multiplex>
<ndicap:adaptation rdf.resource=
"#Tagged-Ethernet-in-Ethernet'>
<ndlconf:serverPropertyValue
dfires MTU-1500byte"’>

dleth:hasVlan>
<ndiconf:swi df:resource=
“#Force10:gi5/ vian7"/>
<Indiconf:Channet>
</ndiconf:hasChannel>
<indlInterface>

Figure 4.2: The two steps required to create an abstract description of a
network.

The first step consists of the creation of an abstract representation of the
physical network elements. Individual components in the abstract representa-
tion are so-called functional elements, like device and interface. The mapping of
network elements to functional elements is called information modelling [s17].
A second step is the mapping of the functional elements to a certain syntax.
In this chapter, we only examine the first step, the modelling.

The distinction between model and syntax is important for interoperab-
ility. If two control planes use a different syntax, but the same model it is
straightforward to translate between the to syntaxes. It is hard, and some-
times impossible without making assumptions, to translate between two dif-
ferent models.

ITU-T G.805 provides a set of generic functional elements, without actually
specifying this mapping between network elements and functional elements.
Neither does it provide a syntax to describe the functional elements.

The functional elements defined by ITU-T G.805 allow one to describe a

CHAPTER 4. MULTI-LAYER NETWORK MODEL

circuit switched network connection through multiple layers, or a network at a
single layer. In addition, ITU-T G.809 [s43] allows the same for packet switched
network connections. However, in our view, G.809 tries to map the terminology
of circuit switched networks to packet switched networks, ignoring important
characteristics of packet switched networks like packet sizes or buffer sizes. We
mostly ignore packet switched networks in this chapter.

4.3.2 Connection Point and Layer

ITU-T G.805 defines a connection point as a source and sink for data transport.
A good way to think about it is as a hop or (virtual) interface on a network
connection. One physical interface can consist of multiple logical interfaces.
For instance one for each distinguishable data flow.

A layer is defined as the set of all possible connection points of the same
type. Two connection points are of the same type if a data-transport function
can be created between them. So each connection point resides at one specific
layer.

4.3.3 Connections

Informally, a connection point can be thought of as a vertex in a graph, and
a link connection as an edge in the graph. A tandem connection is a series of
contiguous link connections (a path in graph theory), and a network connection
is a tandem connection between two connection points where the connection
is terminated for that layer: an end-to-end connection on a certain layer.

More formally G.805 defines a link connection as “a transport entity that
transfers information between parts across a link”. A network connection is
defined as “a series of contiguous link connections and/or subnetwork connec-
tions between termination connection points”.

The termination connection point in the previous definition means that the
network connection is an end-to-end connection on that layer.

Subnetworks can represent parts of the network at a single layer. In gen-
eral, subnetworks may be partitioned into smaller subnetworks interconnected
by link connections. The minimal subnetwork in G.805 is called a matriz. A
connection through a subnetwork is called a subnetwork connection. An indi-
visible subnetwork connection is called a matriz connection. As subnetworks
and matrices are defined at a single layer, subnetwork connections and matrix
connections can only be described at a single layer as well.

We will later use subnetworks to represent network devices.

The diagrammatic conventions are depicted in figures 4.3a and 4.3b.

4.3. ITU-T G.805 CONCEPTS

one) connection point

® O subnetwork with
subnetwork connection
(a) connection point and subnetwork connection

subnetwork

. . . . connection . .
link connection link connection link connection

(b) link connection, tandem connection and network connection

Figure 4.3: Graphical representations of functional elements.

4.3.4 Adaptation and Termination

If we want to send data belonging to layer X over a different layer Y, the
data needs to be transformed. This transformation is defined by an adaptation
function.

Client layer Client layer
O
Adaptation Adaptation
is equivalent to
Termination Termination
O
Server layer Server layer

Figure 4.4: Graphical representation of the adaptation and termination func-
tions. In this chapter we will use the simplified representation shown at the
right.

ITU-T G.805 defines the adaptation function and the termination function.

Ia

CHAPTER 4. MULTI-LAYER NETWORK MODEL

The adaptation function defines how data belonging to a client layer (the
‘higher’ layer) network is embedded into data of a server layer (the ‘lower’
layer) network. The termination function adds monitoring information to the
server layer network connection, taking care of a reliable data transmission.

The trail termination function is defined by G.805 as a transport processing
function that consists of the trail termination source where monitoring inform-
ation is added and the trail termination sink which removes the monitoring
information. So in short, a termination function just adds monitoring inform-
ation. For example, a termination function adds a checksum field to each data
packet.

A graphical representation of these functional elements is depicted in fig-
ure 4.4. The adaptation function is visualised by the upper part of the triangle
and the termination function is visualised by the lower part of the triangle.

Adaptation and termination have analogies in the real world. For example,
we want to send five pairs of wooden shoes from Amsterdam to Quebec. Rather
than sending them as-is, we wrap them in a box for shipping. This is the ad-
aptation. However, a box can only contain 3 pairs of shoes, so we use two boxes
and mark them as ‘box 1/2” and ‘box 2/2’. This allows the recipient to verify
that the shipment arrived complete and unmodified. This is the termination.

link connection

Figure 4.5: A network connections on the server layer with two adaptations
functions yields a link connection on the client layer.

Figure 4.5 shows how adaptations can be used to build network connections
on a higher layer, the client layer, using network connections on an underlying
layer, the server layer. According to the G.805 definition, a link connection
“represents a pair of adaptation functions and a trail in the server layer net-
work”, where the trail is a termination network connection. So if there is a
network connection on a (lower) server layer network, and both ends have the
same termination and adaptation functions, then there is a link connection at

4.3. ITU-T G.805 CONCEPTS

the client layer above.

The embedding of data of one layer into another is a recursive process. For
example, the OST model [s53] defines 7 network layers where the data of each
layer is embedded in the layer directly underneath. We call such a sequence of
adaptation in adaptation an adaptation stack.

4.3.5 Multiplexing

channel n

channel 3
channel 2
channel 1 O

Adaptation

Termination

Figure 4.6: Implementing multiple connections over a network link is equi-
valent with multiplexing at the adaptation function.

Channeling, implementing multiple connections over a network link, is equi-
valent to multiplexing at the adaptation function in G.805. As figure 4.6 shows,
the adaptation function may consist of specific processes for each channel at
the client layer and one common process that converts these adapted client
layer channels to the server layer. Each logical channel interface is represented
as a connection point on the client layer, while there is only one (termination)
connection point at the server layer.

4.3.6 Connection Partitioning

Figure 4.7 repeats the two different ways how a connection can be partitioned.
A tandem connection can be split in multiple tandem connections, up to the
smallest unit, a link connection. This is a partitioning on a single layer, and
we refer to it as horizontal partitioning. Horizontal partitioning is ambiguous.
For example, the connection A — B — C' — D can either be split in A — B — C

Ia

CHAPTER 4. MULTI-LAYER NETWORK MODEL

tandem connection

oz e o Lo ®
tandem connection tandem connection
o Lo I e ez
tandem tandem .
connection connection tandem connection
ez Rtshata O + Orteersiesee O + Oeerrevmsesnes @D ez

(a) Horizontal partitioning of a tandem connection

link connection

(b) Vertical partitioning of a link connection

Figure 4.7: Two partitionings of a connection in smaller parts.

and C' — D orin A— B and B — C — D. The chosen partitioning depends on
organisational reasons like the boundary of the operational domains.

The other partitioning is of a link connection on a client layer into a network
connection on another layer. This is partitioning between different layers, and
we refer to it as vertical partitioning. It is determined by the actual technology

O and therefore unambiguous, not driven by organisational decisions.

4.4 Network Model

L2 / The ITU-T G.805 recommendation can be used for describing connections in
multi-layer networks. The model we present here is based on the ideas in G.805,

4.4. NETWORK MODEL

and the label concept in GMPLS. In addition, we model the capability, thus
how the state of a network can be changed.

4.4.1 Mapping to Functional Elements

Table 4.2 shows an overview of our mapping from real-life network elements
(for instance links, and devices with interfaces) to G.805 functional elements.
We model the switching core of a network device as a subnetwork. A network
device contains interfaces, which are modelled as multiple connection points
(one or more for each layer) and optional adaptation capabilities. Finally, we
map links between interfaces to link connections in G.805.

Network Element Functional Elements

Domain Subnetwork(s)

Device Matrix (Subnetwork)

Interface Connection point(s) and
adaptation function(s)

Link Link connection

Table 4.2: Mapping of network elements to G.805 functional elements

An interface is modelled as multiple connection points, one for each channel
on each layer. For example, an OC-192 interface in a SONET device is modelled
as 194 connection points: one connection point representing the interface at
the fibre layer, one connection point representing the wavelength, and 192
connection points representing the 192 available STS channels.

The switching capability of a device is modelled as a switch matrix on a
specific layer. For example, an SDH device which is capable of switching data
with the granularity of STS channels has a switch matrix at the STS layer,
while an SDH device which is capable of switching data with the granularity
of virtual tributaries groups (VTG) has a switch matrix at the VTG layer.

Domains are treated as ‘virtual’ devices, and modelled as subnetworks,
just like devices are. A difference is that physical devices in general can only
switch on one granularity, represented by a subnetwork at a specific layer,
while a domain may switch at different granularities, represented by multiple
subnetworks.

Physical links are modelled as link connections on one of the physical layers.
So a fibre is modelled as a link connection at the fibre layer and an unshielded
twisted pair (UTP) cable is modelled as a link connection at the UTP layer.

CHAPTER 4. MULTI-LAYER NETWORK MODEL

An adaptation function defines the relation between the connection points

that represent the different layers of an interface.
-

Ethernet
Layer
A Network
@D GE in
STS-24¢
-,
GE in GE in
ST-24c or STS-3¢-7v
STS-3¢-7v SONET
Layer
Network

Figure 4.8: The network of figure 4.1, modelled as functional elements.

Figure 4.8 shows an example network description using functional elements.
The network is a slightly simplified version' of the network described in fig-
ure 4.1. Unlike figure 3.7 in the previous chapter, we explicitly modelled the
adaptation functions. The two layers are separated vertically, while the differ-
ent domains are separated horizontally. For example CAnet is represented by
one subnetwork, five connection points and one adaptation function: the device
is represented as a subnetwork, each SONET interface as one connection point
and the Ethernet interface as two connection points (one on the Ethernet layer,
one on the SONET layer), with an adaptation function in between.

Since StarLight can both switch at the Ethernet layer as well as the SONET
layer, it is represented as two subnetworks: one at the Ethernet layer, one at
the SONET layer. In this drawing, each interface only has one adaptation
function (either STS-3c-7v or STS-24c), while in practice it may be possible

IFor simplicity, the Ethernet-in-STS-channels adaptation is modelled as a one-to-one
relation, instead of the actual one-to-many relation.

4.4. NETWORK MODEL

to dynamically switch between these two adaptation functions at the same
interface. It is possible to model this as two adaptation functions with a multi-
point connection point (MPCP) to dynamically switch between them. These
kind of choices needs to be made in order to turn the information model of
this chapter into a data model. We will come back to these decisions in the
next chapter.

4.42 Notation

We define the function that combines the adaptation of data flow 1" from client
layer to data flow U at the server layer, and the termination of the data flow
U as

A: T U™

with n and m equal to 1 for regular adaptation functions, n > 1 for multi-
plexing adaptation functions, and m > 1 for inverse multiplexing adaptation
functions. For simplicity, we will simply write A : T" — U, and refer to both
the data as well as the layers as T and U.

Except for section 4.4.6, we will simply refer to the combined adaptation
and termination function as the adaptation. This implies that A is noncom-
mutative.

Given an adaptation function A : T' — U, then by definition a de-adaptation
function® D : U — T exists such that Do A=14d: T — T.

VA:T—-U)3(D:U—-T):DoA=id:T—T (4.1)

Two adaptation functions A; and Ay are considered a pair if A5 YoAy = id.
Typically, because A1 = Ay
We will denote the adaptation performed between connection points cplt

at the client layer T" and cplu at the server layer U as Aggﬁ T — U.

The corresponding de-adaptation function will be named D! : U — T, or

cplt
equivalently, (Ai%i)_l U —T.
Unless noted otherwise, a function A will refer to an adaptation function,
and a function D to a de-adaptation function.
Figure 4.9 shows an example of a description of a network connection
between two computers. As we can see, both interfaces are modelled (as con-
nection points) on all applicable layers. For instance for interface if1, as cplf

at the fibre layer, cple on the Ethernet layer and cpii at the IP layer.

2 In mathematical terms D is a retraction or a split epimorphism.

Ia

CHAPTER 4. MULTI-LAYER NETWORK MODEL

link connection
P |epliGO---—bmmm -
link connection
Ethernet | cple OO--+-------=------
. network connection
Fiber | cplf QOH-—--------=----

Figure 4.9: Example of a multi-layer network connection. Interfaces if1 and
1f2 are modelled as connection points at all three layers. The relation between
the connection points is defined by the adaptation and termination functions.

4.4.3 Channel Labels

In 4.4.1 we wrote that each channel is represented as a connection point. So an
0C-192 interface has 192 STS connection points, a tagged Ethernet interface
has 4096 VLAN connection points and an ATM VPI can contain 65536 VCI
channels.

Seemingly, this does not scale very well. However, that would be a misun-
derstanding, since it is often not needed to describe all individual connection
points in a syntax. Only the channels that are configured or actively in use
need to be described in detail. The other channels can simply be described as
a set or range of available channels. This is an important distinction between
the model and the syntax describing a model: a model can be verbose,
while the syntax is compact.

The use of channels requires an addition to our model. Consider the ad-

; : cpltseplteseplts;...;epltn | m cp2ti;eplta;eplts;...;cp2ty |
aptations pair A7, :I" — U and A5, :
T™ — U in figure 4.10. This is an example of a multiplexing adaptation func-
tion with client layer connection points cpits; cpite; cpits; . . . ; cpit, with asso-
ciated notation.

From the logic of section 4.3.4 it follows that since there is a network con-

4.4. NETWORK MODEL

................................

Adaptation

Termination

Figure 4.10: Channels correspond with multiple link connections at the client
layer over one link connection at the server layer.

nection on layer U and the two adaptations are equal, there is a link connection
on layer T'. However, it is not obvious between which pair of connection points
there is a link connection. Without further specification, it could for example
be between cplt; and cp2ts. As a remedy, we introduce the concept of labels,
inspired by GMPLS [s20].

Each connection point has two associated labels for each link connection
connected to it: the ingress label and egress label. These labels uniquely identify
the channel of an adaptation. Examples of labels would be STS timeslots, IEEE
802.1Q (VLAN) tags or wavelengths.

>N T s >
ingress egress
connection point link connection connection point

Figure 4.11: The ingress and egress part of an connection point with respect
to a link connection.

Figure 4.11 shows two connection points and a link connection. For la-
bels, we distinguished between the two uni-directional link connections that
constitute a bi-directional link connection.

CHAPTER 4. MULTI-LAYER NETWORK MODEL

For uni-directional connections a link connection from ¢p1 to ¢p2 can only
exist if the egress label of connection point cp! is equal to the ingress label
of connection point c¢p2. For a bi-directional link connection, we also require
that the egress label of connection point c¢p2 is equal to the ingress label of
connection point cpl.

For bi-directional circuit switched connections, the ingress and egress label
are typically the same, and we simply talk about the label of a connection
point, meaning both the ingress and egress label.

We define the functions:

o Lbyyi(cp) to be the egress label of connection point cp.
e Lbiy(cp) to be the ingress label of connection point ¢p.

If the egress and ingress labels are equal, as for bi-directional circuit switched
network connections, we can define the equality:

Lb(cp) := Lbout(cp) = Lbipn(cp) (4.2)

If an interface does not have a particular label, we consider it to have an
“empty” label, €. For all other purposes, we consider € just to be a regular
label.

4.4.4 Capability Model

The functional elements of G.805 and G.800 only allow a description of the
state of a network at a certain point in time. The capability describes how the
state of a network can be changed.

In our model, there are only two parameters that can change:

o the labels of a connection point and
¢ the subnetwork connections within a subnetwork.

A label can only be changed to a predefined value. Each connection point
has an egress and an ingress labelset, Ls,:(cp) and Ls;,(cp) respectively. The
label of a connection point ¢p can be changed to any value Lb(cp) € Ls(cp).

A subnetwork is a set of connection points. A subnetwork connection ex-
ists between two connection points in this set. Rather than allowing subnet-
work connections between all connection points in a subnetwork, we place a
restriction on it. Subnetworks can have either or both of the switching and
swapping capability. The switching capability refers to a switch matrix that

4.4. NETWORK MODEL

can forward data as long as the label is the same. For example a WDM device
without wavelength conversion, or an Ethernet switch that can not convert
between VLAN tags. The swapping capability refers to a switch matrix that
can forward data while changing the label. For example a WDM device with
wavelength conversion capabilities or an SDH device with virtual concatena-
tion (VCAT) [s47] and Link Capacity Adjustment Schema (LCAS) [s46] sup-
port that can forward data from one timeslot to another timeslot without
constraints.

4.4.5 Validation of Network Connections

In this section, we introduce a mathematical concept to check the validity of
a network connection. We use a recursive definition to verify that a network
connection is wvalid.

Given connection points ¢pl and ¢p2, we will define the following binary
relations:

o L(cpl, cp?) < a directional Link from cp! to cp2 exists;

o SNC(cpl,cp2) <= a directional Subnetwork Connection from cpl to
cp?2 exists;

o LC(cpl, cp2) < adirectional Link Connection from cp! to cp2 exists;

o TC(cpl,cp?) <= a directional Tandem Connection from cp! to cp2
exists.

We postulate a network N = (CP, L, SN, A) as a set of connection points
CP, physical links L, subnetworks SN, and adaptations A. The network con-
figuration C' = (LB, SC) is a set of labels LB, and subnetwork connections
SC. Given these basic premises N and C, we deduce the link connections and
tandem connections: the valid connections through the network.

G.805 defines a tandem connection as a transport entity formed by a series
of contiguous link connections and/or subnetwork connections. We define a
tandem connection recursively to be either a link connection, a subnetwork
connection or a tandem connection followed by another tandem connection.

A link connection is defined either to be a link or a combination of an
adaptation source, a terminated tandem connection at the server layer, and
an adaptation sink.

Mathematically the definitions of tandem connection and link connection
can be written as:

Ia

CHAPTER 4. MULTI-LAYER NETWORK MODEL

LC(epl, cp2) V
TC(cepl, cp2) = { SNC(cpl, cp2) V
deps: TC(epl, ep3) N TC(cp3, cp2)
and

L(epl, cp2) vV
Jep3, epd, T, U, APL D4

cp3r T cp2
TC(cp3, cp4) N
Azgé T —-UN
LC(epl, cp?) = op
Dcp2 U —=TA
DFo AL =1d:T — T A

Lbout(epl) = Lbiy(cp2) A
me(cpl) = Lbout(Cpg)

(4.4b)

For simplicity, we will now restrict ourselves to bidirectional connections.

Thus:
L(epl, cp2) — L(cp2, cpl)
LC(epl, ep2) — LC(cp2, cpl)
TC(epl, cp2) — TC(cp2, cpl)
SNC(cpl, cp2) — SNC(cp2, cpl)
and even:
(A :T—U) = (DG :U—T)

with

DePIv G APIt g T T

cplt cplu

(4.7)

These definitions can easily be transformed to those for uni-directional

aptation functions.

connections, or explicitly allowing multiplexing and inverse multiplexing ad-

These recursive definitions, in particular the one for link connections, need
a short explanation. We will refer to figure 4.12 to illustrate the concepts.

70 / This figure shows a network N, with links, five link connections, nine tandem

connections and one subnetwork connection in total.

4.4. NETWORK MODEL

subnetwork connection
through subnetwork
link connection link connection

cpit cp2t

_,7 \. link

U connection
link

V 5D eeeeee

cplv cp2v V v

link

w 3w D e

Figure 4.12: example of a valid network connection. A valid tandem connec-
tion consisting of two link connections and a matriz connection.

Formally, we postulate the network N, = (CPey, Legy SNeg, Aez) as the
sets:

CP., = {cplt, cpt, cpSt, cp4t, cplv, cp2v, cpdu, cplu, cpdw, cpiw},
Loy = {L(cplv, cp2v), L(cpSw, cpiw)},

S = (e o)t

Aes = {AG 10 Acpaw Ai%u’ Aiﬁ%fﬁﬁgéﬁiﬁﬁ}-t ,

In this network, Agh7! = APZ AT = APY and ALY = AP

The configuration Cey = (LBeg, SCey) of network N, are the sets of labels
and subnetwork connections: LBe, = {Vepecp,, @ Lb(cp) with Lb(cp) = € (no
explicit labels defined)}, and
SCer = {SNC(cp2t, cpst)}.

The most simple link connection is simply a link. So L(cplv, cp2v) im-
plies LC(c¢p1v, cp2v) and L(cp3w, cp4w) implies LC(cp3w, cp4w). By definition
of a tandem connection, a link connection is also a tandem connection, so
LC(eplv, ep2v) and LC(epSw, cpjw) imply T'C(eplv, cp2v) and TC(cpSw, cpjw)
respectively.

We just saw that TC(cplv, cp2v) holds. Furthermore, AE%Z = Azggi, thus:

Do AT =1d:T — T (4.8)

with Dgg: = (Aiggi)_l. Therefore, from equation 4.4 we must conclude that

CHAPTER 4. MULTI-LAYER NETWORK MODEL

LC(eplt, cp2t). In G.805 terminology, the adaptation source cplt and the ad-
aptation sink cplv are paired.

Similarly, LC(cp8u, cpfu), and therefore TC(cp3u, cpu) hold because TC(cpSw, cpiw)
and D(cpjw, cpiu) o A(epSu, cpSw) = Id : U — U, and LC(cpSt, cp4t) holds
because TC(cp3u, cpju) and D(cpfu, cpit) o A(cp8t, cpdu) = Id: T — T.
Furthermore, LC(cplt, cp2t), SNC(cp2t, cp3t), and LC(cp3t, cpit) respect-
ively imply TC(cplt, cp2t), TC(cp2t, cp3t), and TC(cp3t, cp4t). Two consec-
utive tandem connections are also a tandem connection, so from this follows
that TC(cplt, cp3t) and TC(cp2t, cp4t). Finally, TC(cplt, cp4t) holds because
LC(eplt, cp2t) and TC(cp2t, cpit).

4.4.6 Well Typed Adaptations

So far, we combined the adaptation and termination function.

We did so to make our definition of LC(¢ep1, ¢p2) in equation 4.4 compatible
with the definition of link connection in G.805, where a link connection “rep-
resents a pair of adaptation functions and a trail in the server layer network.”
Since a trail is a terminated network connection in G.805, the adaptation and
termination functions are always combined.

For validation, in the definition of link connections we required that the
server layer network connection was terminated. In this section we will loosen
this restriction. We call a link connection that is formed by a combination of
an adaptation source, a server layer tandem connection, and an adaptation
sink well-typed, even if the server layer network connection is not terminated
as required for validity.

Refer to figure 4.13 for a well-typed, but invalid link connection between

cpltand cp2t. An example of such an invalid link connection could be if Aigﬁ,

adds a header to a packet, and Af}" adds a tail to the result. Then, DY

first removes the header and finally DE;’Z‘ removes the tail. While the result is
the very same packet, the intermediate result for adaptation and de-adaptation
was different: a packet with header (layer V) during adaptation and a packet
with tail (layer U) during de-adaptation. Since cplv and cp2u are on different

. . . . cplt cplu
layers, no termination is possible at Acpw and D5,

Loosening the restriction that each adaptation function is followed by a
termination function has consequences for a possible definition of atomic or
combined adaptation functions. We will not pursue this idea further, but as-
sume that each adaptation function is followed by a termination function.

4.5. VALIDATION

T O_C_P_T_t_____.__..__'!r_‘_"._?.‘?f‘_r_‘_‘?.c.t."?.r.‘ cp2t
D &zt
U/ AZL
U cp2u

if1 if2

Figure 4.13: Exzample of a well typed, but invalid connection. U and V are
different layers.

45 Validation

In the introduction, we sketched an example network which had some restric-
tions in the validity of connections through the network. We will now show
how the model in section 4.4 can be used to make this explicit.

Quebec CA™net StarLight MAN LAN NetherLight ~ Amsterdam
Ethernet

layer

SONET
layer

GEinSTS24c § GEinSTSBc-7v oo

Figure 4.14: A network representation of the network of figure 4.1, using
functional elements. Dark-gray adaptation functions represent adaptation of
Gigabit/second Ethernet (GE) over STS-24c, while light-gray adaptation func-
tions represent GE over STS-3c-7v. StarLight is capable of either adaptation
function.

Ia

CHAPTER 4. MULTI-LAYER NETWORK MODEL

Figure 4.14 gives a representation the network N, of figure 4.1 as functional
elements, using the mapping of table 4.2.

This network is identified by Ny = N4(CPy, Eg, SNy, Ag)), with:

CP, = {q1,cl,c2 c3, c4,cb, 51,52 83,54, ml, m2,m3, m4, ms,nl, n2, n3, ng,
at},

— {L(q1, c1), L(c3, 3), L(cd, m2), L(c5, m3), L(s4, m1), L(m4, n2), L(m5, n3),
L(n1, al)},

SNy = {{c2, 3, ¢5} {s1, s2},{m1, m2 m3, m4, m5},{n2, n3, n4}}, and
Ay = A%, A3 A AT} where AS) = STS24c and Ajj = STS3cv.

The shortest path (traversing fewest link connectlons) between connection
point ¢I at the Université du Quebec and connection point al at the Uni-
versity of Amsterdam traverses StarLight, MAN LAN and NetherLight. This
would result in connection 1 in the figure 4.14. Formally, connection 1 is data-
flow through the network elements [L(qI, c1), AL, SNC(c2,c5), L(c5,m3),
SNC(m3,m5), L(mb,n3), SNC(n3,n4), D', L(ni,al)] and is identified by
the subset C1 = {SNC(c2, ¢5), SNC(m3, m5), SNC(n3,n4)} of the network
configuration.

Given the above sets, we can use the definitions of section 4.4.5 to derive
the valid link connections and tandem connections in this network.

equation 4.3b

SNC(c2, c5) ————— TC(c2, ¢b) (4.9

equation 4.4a equation 4.3a
_— _—

L(c5, m3) LC(c5,m3) TC(c5, m3)

equation 4.3b
kbt

SNC(m3, mb)

equation 4.4a LC’(m5 n3)

SNC(n3, n4)

TC(m3, m5)

equation 4.3a
e

(
(

L(m5,n8) C(m5, nS) (4.12
(

equation 4.3b
—— T

C(n3,n4)

TC(c2, c¢5) A TC(eh5, m8) A TC(m3, mbd) A TC(mb, nd) A TC(n3, n)

equation 4.3c recursive

TC(c2,n4) (4.14)

However, from A¢L, TC(¢2,n4), DI does not follow LC(c1, n1) since D™ o
Acl = STS3cTw ™ o STS24c # Id : Ethernet — Ethernet. Therefore, connec-
tion 1 does not lead to a valid tandem connection from Quebec to Amsterdam,
given these links and subnetwork connections:

N, C1l/ TC(q1,al) (4.15)

4.5. VALIDATION

StarLight is capable of supporting either adaptation function. This is mod-
elled in figure 4.14 using two multi-point connection points (MPCP). A%l is
either equal to STS24c, or to STSScTv.

Let’s now consider connection 2, identified by the subset C2 = {SNC(c2, ¢3),
SNC(s1,s2) , SNC(m1, m4), SNC(n2,n4)} of the network configuration, A%% =

STS24c and Aﬁf = STS3cT

SNO(c2, ¢3) <L 250, 12, ¢8) (4.16)

L(637 53) equation 4.4a LC(&S), 83) equation 4.3a TC(Cg, 53) (417)
TC(c2, c8) A TC(c8, 8) <L 15¢, (2, 59) (4.18)

AL = §T§2 e L1 10, pss — 9782 0! (4.19)

TC(c2,s3) A (4.20)

D330 A%L = 8TS24c™" 0 STS2{c = Id : Ethernet — Ethernet A (4.21)
Lboyi(cl) = € = Lbiy(s3) A (4.22)

Lbin(cl) = € = Lboyi(s3) (4.23)

equation 4.4b TC(C], 51) (424)

Similarly for the connection between s2 and n1:

equation 4.4a equation 4.3a
- -

L(s4,m1) LC(s4,m1 s4,m1)

TC(
SNC(m1, m4 TC(m1, m4)
equation 4.4a equation 4.3a TC(

L(m4,n2) LC(m4,n2

)
cquation 4.3b
) equa
)
) equation 4.3b
_

(
(

m4, n2) (4.27
(

SNC(n2, n4 TC(n2,n4)

TC(s4,m1) N TC(m1,m4) N TC(m4,n2) N TC(n2,n4)

equation 4.3c

TC(s4,n4) (4.29)

equation 4.6
_

Al = STSScv DM = STS3cw ™ (4.30)

CHAPTER 4. MULTI-LAYER NETWORK MODEL

TC(s4,n4) N (4.31)

DM o Agf = STS3¢™ ' 0 STS3¢7v = Id : Ethernet — Ethernet A (4.32)
Lbout(52) = € = Lbin(nl) A (4.33)

Lbin(s2) = € = Lboy(nl) (4.34)

cauation 2, LO(s2, ni) (4.35)

We can now combine the derived truth statements LC(c1, s1) and LC(s2, n1)
with other statements in the network description IV, and it’s configuration C2:

equation 4.3a
-

L(ql, c1) <1t 220 T 0(q1, 1) TC(q1, 1) (4.36)
LC(cl, s1) S0 250, e, s1) (4.37)

SNC(s1, s2) 2 230 51, 52) (4.38)

LC(s2, n1) <Lt 250 10(s2, n) (4.39)

L(nt, af) 20" 220 1 Olnd, ag) <2250 100, al) (4.40)
(4.41)

TC(ql,c1) A TC(cl,s1) N TC(s1,52) A TC(s2,n1) A TC(nl, al)

equation 4.3c
L

TC(q1,al) (4.42)

Thus TC(q1,al) is true. This proves that there is now a valid tandem
connection from ¢l at the Université du Quebec to al at the University of
Amsterdam:

N, C2F TC(q1,al) (4.43)

4.6 Extensions of the Model

This section highlights a few of the possible extensions to our current model.

One of our goals is to describe actual networks in a technology-independent
way. In order to implement some of the extensions mentioned in this section,
it is likely that some of the (mathematical) simplicity of the current model
will be lost while gaining a model able to describe additional technologies, or
additional logic used in some technologies only. Care should be taken to retain
the basic logic.

4.6. EXTENSIONS OF THE MODEL

4.6.1 Layer Properties

One motivation to describe networks is to make incompatibilities between in-
terfaces specific. We did so for incompatible adaptations (for instance Ethernet
over STS-24c or over STS-3¢-7v), and for incompatible labels (for instance a
wavelength with label ‘1310 nm’ or a wavelength with label ‘850 nm’.)

This does not cover all possible incompatibilities. For example, a network
connection may not be possible due to a difference in the allowed packet size
(for instance Ethernet packets with an MTU of 1500 bytes or 9000 bytes, or
anything in between).

It is technically possible to model this as a few thousand different ad-
aptation functions, but this is not efficient. An alternative is to define the
layer properties, and extend the model by defining when two values cause an
incompatibility. This later approach is used by the stitching framework in
GEANT? [19]. This stitching framework defines a “method of logic” for each
property (same, different, comparable, overlapping, open, different, min, or
sum).

4.6.2 Inverse Multiplexing

Both G.805 as well as our model support inverse multiplexing: the adapta-
tion of one data stream in multiple channels. Ethernet in STS channels, as
described in examples in this chapter, is an instance of inverse multiplexing.
The model as presented in this chapter is limited to a single underlying net-
work connection. For inverse multiplexing, ¢p3, cp4 in equation 4.4 needs to be
changed to ¢p8y, ..., cp3n, cP4ys ..., D4, and TC(cp8, cp4) must be changed
toVie[l,...,n]: TC(cpS;, cp4;)-

Furthermore, the use of inverse multiplexing can lead to a sequence of de-
adaptation and adaptation at the same interface. For example, a wavelength is
demultiplexed from a signal on a fibre, and Ethernet packets are demultiplexed
from the wavelength. This is the de-adaptation. Then, the Ethernet packets are
inverse multiplexed (adapted) in multiple STS channels at the same interface.

Such sequences of demultiplexing and inverse multiplexing gives two ad-
aptation stacks at the same interface. We coined these the external and the
internal adaptation stack.

Tt is simple to prove that there are at most two (de-)adaptation stacks for
valid descriptions of an interface: one de-adaptation stack and one adaptation
stack. Two adaptation stacks can be collapsed to a single adaptation stack,
and two de-adaptation stacks can be combined into a single de-adaptation
stack. Furthermore, a single adaptations followed by the inverse de-adaptation

Ia

CHAPTER 4. MULTI-LAYER NETWORK MODEL

function cancel each other out, and for a (de-)adaptation stack this process
can be repeated. Thus an adaptation stack followed by a de-adaptations stack
can be collapsed till one of the stacks is fully cancelled out, and only a single
adaptation or a single de-adaptation stack remains. Unless of course, an ad-
aptation was followed by a different de-adaptation, which would leave us with
an invalid (non-working) interface description.

4.6.3 Broadcast and Multicast

ITU-T G.805 does not explicitly support broadcast and multicast. Our model
can describe broadcast networks using multiple subnetwork connections. This
scales with O(n?) with n the number of nodes. Since this only works fine
for small broadcast networks, we added a specific description for broadcast
networks to our syntax to support Ethernet VLANs. For IP and MAC layers,
it is probably inevitable to define a more elaborate model for switch matrices,
including lookup tables, and hop-by-hop routing.

4.6.4 Physical Layer Properties

According to G.805, a concatenation of link connections and subnetwork con-
nections placed in series form a valid tandem connection, which is able to
transport data. We followed this concept in section 4.4.5.

This assumption is not generally true on the physical layer. For example,
the power loss of two individual link connections may fall within acceptable
limits, but the power loss of the serial-compound link may fall outside the
specified range.

G.805 implicitly considers human-engineered networks only, by assuming
that if all link connections, adaptations and terminations are applied correctly,
indeed everything functions properly. This is generally true on higher layers
(TDM and above), but not on the physical layer, where signal degradation is
an important factor to take into account.

In order to apply G.805 on the physical layer, including wireless networks,
layer parameters as mentioned in subsection 4.6.1 must be defined for the
network elements. For the lower layers, this includes power levels, signal de-
gradation, cable length, and optical dispersion. For higher layers, parameters
like delay and jitter may also be defined.

4.6. EXTENSIONS OF THE MODEL

4.6.5 Uniqueness of Layers

ITU-T G.805 defines a layer in section 4.3.2 as the set X of all possible con-
nection points of the same type. Two connection points are of the same type,
if a data-transport function can be created between them.

This definition, which is taken from G.805, is ambiguous. Imagine three
connection points a, b and ¢, where data-transport between a and b and
between b and c is possible, but not between a and c. In this case, it is unclear
if we are dealing with one, two or even three layers.

An example of such ambiguity is if a, b and ¢ are Ethernet interfaces with
a supporting untagged Ethernet, b supporting both tagged and untagged Eth-
ernet at the same time and ¢ supporting only tagged Ethernet.

Another example is if a, b, and ¢ are all Ethernet interfaces, with interface
a operating at a capacity of 10 Mbit/s, ¢ at 100 Mbit/s and b auto-sensing
supporting both 10 Mbit/s and 100 Mbit/s.

Our solution to this problem is to define interfaces with potential incom-
patibilities as two or more different layers. In the later example, a 10 Mbit/s
Ethernet layer and a 100 Mbit /s Ethernet layer. Interface b would then support
two adaptations functions. We have in fact shown this earlier in figure 4.14,
where the interfaces at StarLight supported two adaptation functions.

46.6 Tunnels

Because there is no ordering in the layers in the G.805 model, it is entirely
possible to model layer A over layer B over layer A, effectively describing
network tunnels.

4.6.7 Uniqueness of Adaptations

One of our goals is to be able to describe potential incompatibilities we like to
expose to path finding algorithms. We already mentioned in chapters 2 and 3
that technologies and incompatibilities change over time.

The progress in technology makes that potential incompatibilities come
and go. If everyone would use 850 nm lasers, there is no need to describe
the wavelength, since there are no incompatibilities. As soon as lasers with
other colours are deployed, this might lead to incompatibilities, so it has to
be described. However, as soon as every device is able do colour conversion on
the fly, the incompatibility would again disappear.

At first Ethernet over an optical fibre may be described as an adaptation of
Ethernet over fibre. However, later on, the same adaptation may be described

Ia

CHAPTER 4. MULTI-LAYER NETWORK MODEL

as Ethernet over a wavelength over a fibre. A mechanism is needed to described
that these two representations are in fact the same.

47 Conclusion

At the beginning of this chapter we set two goals: a model for multi-layer
networks and an algebra to validate potential connections through a given
network.

We fulfilled the first goal with a mapping from network elements to function
elements. We satisfied the second goal with a simple algebra, without relying
on complex path constraints.

Our mapping from network elements to functional elements is based on
previous work in the ITU-T G.805, G.800 and GMPLS standards. Our contri-
bution is the use of the subnetwork matrix to represent the switching capability
of a device, the integration of the label concept, the distinction between the
switching and swapping capability. Furthermore, we supplemented the model
with an algebra, and confirmed the mapping with two example networks.

To validate a network connection, we postulate a network as a set of con-
nection points, label values, and links, and the network configuration as a set
of subnetwork connections and labels. Using this information and a recursive
definition for link connections and tandem connections, we can deduce inform-
ation about the validity of network connections.

In section 4.5, we have explained how our approach is successful in detecting
possible and impossible network connections in case of multiple incompatible
adaptation functions in the network.

A technology-independent network model, as we defined in this chapter,
means that a path finding algorithms only needs to know about the generic
concepts such as ‘layer’, ‘label’ and ‘adaptation’, but not about the specific
technologies. The advantage is that path finding algorithms does need to be
tuned or adjusted as new network technologies come along.

This chapter is based on Using RDF to Describe Networks by J.J. van
der Ham, F. Dijkstra, F. Travostino, H.M.A. Andree and C.T.A.M. de
Laat [a3] and on A Distributed Topology Information System for Optical
Networks Based on the Semantic Web by J.J. van der Ham, F. Dijkstra,
P. Grosso and R. van der Pol, A. Toonk and C.T.A.M. de Laat [29].
This chapter would not have been possible without the kind permission
of Jeroen van der Ham to include part of his work here.

5.1 Introduction

The routing step, which is required for provisioning of circuit switched network
connections, is responsible for distributing topology information and network
state across different domains. This chapter examines the distribution of topo-
logy information. It presents the Network Description Language (NDL), which
builds upon the Resource Description Format (RDF) [112] and its linking cap-
abilities to produce a distributed Topology Knowledge Base (TKB) [p41]. It
is worth to emphasise that proposed network description language is only a
method to describe topology information. It does not enforce a specific way
of distributing this information, nor does it eliminate the need for a control
plane for signalling and provisioning.

The modelling process, as outlined in figure 4.2 in the previous chapter 4,
consists of two steps, the mapping from network to model and the mapping
from model to syntax. In chapters 2 and 4 took the first step. Chapter 2 defined
the terminology and model for transport networks and chapter 4 defined a
model for multi-layer networks. In this chapter and the following chapter we

Network Description Language

-

CHAPTER 5. NETWORK DESCRIPTION LANGUAGE

take the second step. This chapter defines a syntax for describing (a single layer
of a) transport network, while the next chapter defines a syntax for describing
multi-layer networks.

5.2 Introduction to the Semantic Web

The World Wide Web has allowed us to publish and share documents and
information with other people in the world. However, because the web has
become so popular and so widespread, it has almost become the victim of
its own success. Because of the large-scale and the abundant availability of
data, it becomes very hard to find what we want. Search-machines, such as
Google or Yahoo, have come to the rescue and have indexed the data. However,
computers still have no common sense, so the search capabilities of the search
machines are rather limited. Consider for example the following two sentences:

e A is connected to B.

e There is a connection between A and B.

Even humans can differ in opinion whether these two sentences have the
same meaning. So there is no way that a computer without common sense
will understand that these two lines mean the same thing. This is where the
Semantic Web comes to the aid of computers (and people). The following is
an excerpt of the activity statement of the Semantic Web initiative [ul4]:

The goal of the Semantic Web initiative is to create a universal
medium for the exchange of data where data can be shared and
processed by automated tools as well as by people. For the Web to
scale, tomorrow’s programs must be able to share and process data
even when these programs have been designed totally independently.

In 2000 the Semantic Web initiative was started by the World Wide Web
Consortium (W3C). Since then they have been working on several specific-
ations to publish and share (meta)data, including the Resource Description
Framework (RDF) [ul2]. In the following section we provide a brief introduc-
tion to RDF. Examples of RDF are given later on in section 5.3.

5.2.1 Resource Description Framework

The Resource Description Framework (RDF) is a method for representing
information about resources on the Web. It provides a common framework for

5.2. INTRODUCTION TO THE SEMANTIC WEB

expressing metadata so that it can be exchanged between applications without
loss of meaning.

Information in RDF is expressed as statements. Each statement is a triplet,
with the following elements:

Subject The resource being described
Predicate The property of the subject that is described
Object The value of the property for the subject

A set of triplets is called a graph. Using the property that an object can also
be the subject of another triplet, complex graphs can be created. An example
of such a graph is shown in figure 5.1. This graph shows that Thesis is written
by Freek Dijkstra and it also provides some additional information about
him, his name, affiliation and email address.

author

family name affiliation
email

"Dijkstra"

"fdijkstr@science.uva.nl"

Figure 5.1: A simple RDF graph (source: Jeroen van der Ham)

The graph shown in figure 5.1 still has the same problem as the two lines
as shown before; we have provided an abstract way of defining relations, but
we still use plain English as labels for identifying these relations. Consider
for example the author relationship, we could also have expressed this as
creator without much loss of meaning to human readers. RDF solves this
terminology problem by using Uniform Resource Identifiers (URIs). Related
terms are usually defined using the same URI-prefix, taking the form of XML
namespaces. See for example the Dublin Core Metadata Initiative [s5H8].

5.2.2 RDF Schemata

CHAPTER 5. NETWORK DESCRIPTION LANGUAGE

1| <http://www.science.uva.nl/~fdijkstr/thesis/> <http://purl.org/dc/elements/1.1/creator>
<http://wuw.macfreek.nl/freek/#freek>.

2| <http://www.macfreek.nl/freek/#freek> <http://xmlns.com/foaf/0.1/family name> "Dijkstra”.
3| <http://www.macfreek.nl/freek/#freek> <http://xmlns.com/foaf/0.1/mbox>
"fdijkstr@science.uva.nl”.

4| <http://www.macfreek.nl/freek/#freek>
<http://www.w3.org/2002/01/p3prdfvi#thirdparty.employer> <http://www.uva.nl/>.

Listing 5.1: The N3 representation of the semantic graph of figure 5.1.

Listing 5.1 describes the semantic graph of figure 5.1. Each triplet contains
three URIs followed by a dot to indicate the end of a triplet. The notation
used in this listing is N-triplet, which is a subset of the Notation3 syntax [t5].

The predicates defined in this list are URIs with a well-defined meaning.
For example, the author relationship is defined by the URI http://purl.org/
dc/elements/1.1/creator, which is defined by the Dublin Core Metadata
Initiative [s58] in their Metadata Element Set. Related terms are defined in the
same XML namespaces with the URI-prefix http://purl.org/dc/elements/
1.1/.

-

<http://www.macfreek.nl/freek/#freek> <http://wuw.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person>.

Listing 5.2: Use of the rdf:type predicate.

An XML namespace with definitions of related terms is called an RDF
schema. RDF schemata define the URIs and properties of RDF classes and
RDF predicates. RDF classes define the types of subjects and objects. List-
ing 5.2 defines Freek Dijkstra to be (an instance of) a person. RDF predicates
define the properties of attributes of instances. For example the Dublin Core
definition for creator gives a name, description, type and version information.
A predicate definition can also contain the compulsory classes for the subject
(the domain of a predicate) and object (the range of a predicate).

It is possible to state triplets, but only if these statements use predicated
and classes defined in RDF schemata, a computer can reason about its mean-
ing. For example, a computer can find other documents created by the same
author, or reason that the range of an author is a human being, and the author
of this thesis is Freek Dijkstra, then Freek Dijkstra must be a human being.

5.3. NETWORK DESCRIPTION LANGUAGE

5.2.3 RDF versus XML

There are several ways of expressing RDF graphs, one is the graphical form as
in figure 5.1, and another is the statements of triplets in Notation3 in listing 5.1.
The most common textual form is RDF /XML [s55], where the graph is encoded
in an XML format. Throughout this thesis we use the RDF /XML notation,
which allows us to leverage tools for XML as well as RDF. Examples and
explanation of the RDF/XML syntax are given in the next section.

Besides that RDF allows reasoning about statements, it also has a few other
technical advantages over other descriptions languages, such as plain XML.

Unique Identification Objects in RDF are identified by a URI. This is an
advantage in multi-domain environments, since it makes it easy to clearly
and uniquely define network elements in requests.

Flexible Graph Structure The relations between network elements can lead
to cycles in the relation-graph. RDF extends the tree structure of XML
with reference pointers so that it is able to deal with cycles.

Distributed Descriptions In order to describe inter-domain connections,
the interrelation of different (operational) network domains must be de-
scribed. Each domain must be able to independently publish its own
network information and point to other network domains. The RDF
seeAlso predicate provides an elegant solution for this problem. We will
get back to this in section 5.3.3.

Extendable RDF schemata are easily extensible. That is, it allows users
to publish all information they care about, and mix it with network
schemata. The extensibility applies to both current schemata (e.g. geo-
graphic information or organisational information in geo and vcard), as
well as future schemata.

5.3 Network Description Language

Given that we want to describe extensible, distributed network descriptions,
we set out to create a simple ontology in RDF to describe networks. The result
of this work is the Network Description Language (NDL).

5.3.1 Topology Schema

The Network Description Language consists of multiple schemata, each de-
scribing a separate part of the ontology.

Ia

CHAPTER 5. NETWORK DESCRIPTION LANGUAGE

The topology schema of the network description language is the ontology
we created to describe the topology of computer networks. An overview of the
classes and properties of the topology schema is given in figure 5.2.

locatedAt haslnterface capacity

connectedTo linkTo switchedTo

Figure 5.2: Ouverview of the classes and predicates in the NDL topology schema

NDL has eight classes, shown at the top, that define what kind of resources
can be described. The three main classes are:

Location Physical places where devices are located.
Device Devices that are part of a network.

Interface The interfaces with which devices are connected to a network.

NDL has six properties, shown at the bottom in the figure, to define the
relations between instances of the classes and other information.

located At A relation between resources and their location.
hasInterface A relation between devices and interfaces.

linkTo A relation between two interfaces, describing that they are externally
connected with a direct link.

connectedTo This property is similar to linkTo, but the connection does not
have to be direct; the interfaces may be connected by a series of links.

86 switchedTo This property is used to describe cross connects, internal con-
nections within a device.

5.3. NETWORK DESCRIPTION LANGUAGE

In addition, the predicates label from the RDF schema, and description
from the Dublin Core schema can be used to describe the name and description
of network elements.

A more extensive definition of the different classes and predicates can be
found in the NDL schemata itself [u3].

5.3.2 Domain Schema

The topology schema allows the description of physical network topologies.
The NDL domain schema also allows group description of devices, links and
interfaces in networks. The classes and predicates of the domain schema are
shown in figure 5.3.

|

has service in admin domain has device

service stage

access method information view
realm scope time out
— » e > —

Figure 5.3: Overview of the classes and predicates in the Network Description
Language domain schema

The two main classes in the domain schema are:

NetworkDomain is a collection of network elements. It behaves very similar
to a Devices in the topology schema, but describes a domain rather than
a physical device.

AdministrativeDomain is a organisational entity that is responsible for the
operational control of resources (including network resources).

CHAPTER 5. NETWORK DESCRIPTION LANGUAGE

While a network domain is focused on the physical network, the opera-
tional domain is focused on the organisation of the control plane. An operator
domain as defined in section 2.4.3 translates to a NetworkDomain (a collec-
tion of network elements with the same operator). The operator as defined in
section 2.4.3 translates to the AdministrativeDomain'.

Using the combination of the topology and domain schema, it is possible
to create descriptions of network domains. An example of such a description is
shown in listing 5.3. The picture in figure 5.4 shows what is being described.

y 7/ y 7/

[S]l eth0 port3 ports eth0 [g]l
f— f—
[—] [=]
y 7 y 7
Rembrandt3 Glimmerglass Rembrandt5

Figure 5.4: A simple network.

Lines 14 to 18 of listing 5.3 define the device Rembrandt3. The #-prefix
on line 14 states that the device is defined in the local namespace. Line 15
provides a human readable name and line 16 states that this device is loc-
ated in the location Lighthouse (defined on lines 11 to 13). Finally, line 17
defines that Rembrandt3 has an interface, Rembrandt3:ethQ. This interface is
defined on lines 19 to 22. The connection to another interface is defined using
the 1inkTo property on line 21, in this case it is defined to be connected to
Glimmerglass:port3. The Glimmerglass device is defined similarly on lines
23-38, and the Rembrandt5 device on lines 39-47.

The connection between the Rembrandt3 and the Glimmerglass is defined
in both directions. This is used to denote a duplex connection and further
ensures the consistency of the description.

Our network description does not only contain a topology description,
but also describes the current configuration of the Glimmerglass device. The
switchedTo statement in line 32 states that the Glimmerglass:port3 has an
internal connection to Glimmerglass:port5.

Just like the 1inkTo property, the switchedTo property must be defined
in both directions. So the inverse switchedTo property from Glimmerglass:
portb to Glimmerglass:port3 is also be given on line 37. With the 1inkTo
and switchedTo statements as given above, we have defined a path from the
device Rembrandt3 to Rembrandt5.

IThese class names resemblances an older terminology we used.

o B R R S

©

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

5.3. NETWORK DESCRIPTION LANGUAGE

<?xml version="1.0" encoding="UTF-8"7>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:ndl="http://www.science.uva.nl/research/sne/nd1#"
xmlns:domain="http://www.science.uva.nl/research/sne/ndl/domain#">
<domain:NetworkDomain rdf:about="#UvALight">
<rdf:label>UvA Light</rdf:label>
<domain:hasDevice rdf:resource="#Rembrandt3"/>
<domain:hasDevice rdf:resource="#Rembrandt5"/>
<domain:hasDevice rdf:resource="#Glimmerglass"/>
</domain:NetworkDomain>
<ndl:Location rdf:about="#Lighthouse">
<rdf :label>Lighthouse</rdf :label>
</ndl:Location>
<ndl:Device rdf:about="#Rembrandt3">
<rdf:label>Rembrandt3</rdf :label>
<ndl:locatedAt rdf:resource="#Lighthouse"/>
<ndl:hasInterface rdf:resource="#Rembrandt3:eth0"/>
</ndl:Device>
<ndl:Interface rdf:about="#Rembrandt3:eth0">
<rdf:label>ethO</rdf:label>
<ndl:1inkTo rdf:resource="#Glimmerglass:port3"/>
</ndl:Interface>
<ndl:Device rdf:about="#Glimmerglass">
<rdf :1abel>Glimmerglass</rdf :label>
<ndl:locatedAt rdf:resource="#Lighthouse"/>
<ndl:hasInterface rdf:resource="#Glimmerglass:port3"/>
<ndl:hasInterface rdf:resource="#Glimmerglass:port5"/>
</ndl:Device>
<ndl:Interface rdf:about="#Glimmerglass:port3">
<rdf:label>port3</rdf:label>
<ndl:1linkTo rdf:resource="#Rembrandt3:eth0"/>
<ndl:switchedTo rdf:resource="#Glimmerglass:port5"/>
</ndl:Interface>
<ndl:Interface rdf:about="#Glimmerglass:port5">
<rdf:label>port5</rdf:label>
<ndl:1linkTo rdf:resource="#Rembrandt5:eth0"/>
<ndl:switchedTo rdf:resource="#Glimmerglass:port3"/>
</ndl:Interface>
<ndl:Device rdf:about="#Rembrandt5">
<rdf:label>Rembrandt5</rdf:label>
<ndl:locatedAt rdf:resource:”#Lighthouse”/>
<ndl:hasInterface rdf:resource="#Rembrandt5:eth0"/>
</ndl:Device>
<ndl:Interface rdf:about="#Rembrandt5:eth0">
<rdf:label>ethO</rdf:label>
<ndl:1inkTo rdf:resource="#Glimmerglass:port5"/>
</ndl:Interface>
</rdf :RDF>

Listing 5.3: An example description of the network of figure 5.4.

CHAPTER 5. NETWORK DESCRIPTION LANGUAGE

5.3.3 Distributed Repositories

So far we have described how to create descriptions of (local) networks and
how to gather information from these descriptions.

In multi-domain environments there is a big potential for inconsistencies
if information for each domain is not centrally maintained, and each domain
replicates network descriptions of other domains. NDL addresses this issue by
creating a distributed topology description, where descriptions link to each
other. These links are provided using RDF’s seeAlso statement, which points
to other documents. An example of this is shown in listing 5.4.

<ndl:Interface rdf:about="#Glimmerglass:port27">
<ndl:name>Glimmerglass:port27</nd1:name>
<ndl:1linkTo rdf:resource="http://www.netherlight.nl/ndl.rdf#C6509:port7"/>
</ndl:Interface>
<!—— test ——>
<ndl:Interface rdf:about="http://www.netherlight.nl/ndl.rdf#C6509:port7">
<rdfs:seeAlso rdf:resource="http://www.netherlight.nl/ndl.rdf"/>
</ndl:Interface>

0 N U W N

Listing 5.4: Ezample of distributed repositories.

As shown before, lines 1 to 4 show the description of an interface of the
Glimmerglass. However, note that in line 3, this port is defined to be connected
to http://www.netherlight.nl/ndl.rdf#C6509:port7. On lines 5 to 7 is
the definition of the interface http://www.netherlight.nl/ndl.rdf#C6509:
port7. The rdfs:seeAlso statement is used to link to the network description
of NetherLight. An application or crawler can then follow this pointer to the
description of NetherLight and get more information about the interface there.

Concluding, it is possible to create a distributed network description, without
a central repository.

5.3.4 Addressing

RDF uses Uniform Resource Identifiers (URISs) [s21] to denote classes, proper-
ties, and instances of classes. For example, each Device or Interfaces is identi-
fied using a URI. This provides an elegant solution to make sure each object
is unique, since only the owner of a certain domain may publish authoritative
information of objects with an URI in his namespace.

In addition, the use of URIs along with explicit properties for each object
follows the separation of naming and addressing [t14, t7]. This is an important

5.4. APPLICATIONS

concept, since the name of an object does not change, even if its properties do
change.

Concluding, the use of semantic web provides the URI as a solution for
globally unique addressing of network resources. . The essential advantage is
that information is kept only at the owner of the resource.

5.3.5 Extensibility

The use of RDF allows easy extension of the topology and domain schema
with other schemata. In chapter 6 we will see extensions to layer and capability
descriptions.

Our vision is that a application will be able to consume the descriptions
of all the architectural components that form an end-to-end infrastructure.
This information include computing resources, storage resources, visualisation
resources, network resources, content descriptions, etc. etc. All resources can be
linked with loose couplings to allow a metascheduler application to orchestrate
all resources together in a combined effort [a6].

5.4 Applications

NDL provides a powerful language to solve many of the operational issues that
operators and users face in hybrid networks. It allows the automatic creation
of network maps; it facilitates path finding algorithms used by reservation
and network management systems; it enhances the interoperability and the
exchange of information between different operational domains.

This section highlights a few of these applications [p15, a9].

5.4.1 Visualisation using RDF tools

Network maps are a visual aid used by network engineers to design, examine
and troubleshoot circuits.

One of the advantages of using NDL as the language for description of
hybrid networks is the availability of semantic web tools for RDF, which can
parse and consume the information in each NDL file. This means that extract-
ing the information needed for network management is straightforward and
simple.

Van der Ham implemented a visualisation tool that takes a network descrip-
tion in NDL format, and uses a SPARQL query [s56] to get the connections
between the devices and their names. Using a small script, this data is then

Ia

CHAPTER 5. NETWORK DESCRIPTION LANGUAGE

converted to serve as input to GraphViz, an open source graph visualisation
tool [u9].

tdm4.amsterdam1.netherlight.net
57T

1
501/ 641
tdm1l.amsterdaml.netherlight netf2/1 %dm3.amsterdaml.netherlight.ne€>04/4 501 tdml.geneval.netherlight.net
671 50373

Figure 5.5: A graph of NetherLight resources, as extracted from a NDL file
(Source: Van der Ham [p15])

An example of such a graph is shown in figure 5.5. This is the map of
NetherLight [111], one of the network domains participating in the GLIF. The
script used to generate the graph can be found at the NDL homepage [u3].

5.4.2 Path Finding and Google Mash-up

At SuperComputing 2006, Van der Ham et al. demonstrated path finding in
the GLIF infrastructure [pl4]. This infrastructure consists of interconnected
optical exchanges. For this demonstration most of the GOLEs provided a de-
scription of their network in NDL format. A key feature is that each description
was published independently of the others, allowing GOLEs to stay in charge
of the data they publish. The descriptions defined the physical resources in
the GOLEs and the links to other GOLEs.

An application gathered all the NDL files from the different GOLEs, and
generates a list of endpoints. Using a web interface, a user can select two end-
points from this list, and the application applies the Dijkstra algorithm [p11]
to find the shortest path between the two endpoints. The resulting path is dis-
played in the web browser as a highlighted path through the network graph-
ically presented using Google Maps. A list of hops is also provided next to
the map. Figure 5.6 shows the example output for a path between Seattle and
Geneva.

This application is mostly a proof of concept, because there are still more
challenges with regard to inter-domain path finding. Issues such as policy and
multi-layer network need to be addressed, as well as information regarding
utilisation. The NDL domain schema can help here by providing pointers to
relevant information services on policy, utilisation, or reservations. This is part
of future implementations.

5.4. APPLICATIONS

Multi-Domain Pathfinding in GLIF

Below is an overview of the GLIF network (blue) and the path (red). The path is also enumerated below.

o to the Path Finding page to select another path

Hopi-stt-force 0:t0/1
Hopi-stt-force 1 0:t1/0
Hopi-chin-foreet 0004
Hopk-chin-foree 1 0:52/3
Netherlight-raptar 14142
Netherlight-raptar 1/2/2
Tdm3.amsterdam1.netherlight.net:if1
Tdm3 . amsterdam1.netherlight.net 30343
Tdm1.geneval.netherlight.net:12/1

@D R

Figure 5.6: Path finding in GLIF, presented in Google Maps.

5.4.3 Lightpath Planning in SURFnet6

SURFnet6 is the Dutch national research and education network. SURFnet6
is a hybrid network, offering both IP services and lightpath services. Toonk
and Van der Pol of the Dutch national supercomputing centre SARA have
written a tool for planning new lightpaths based on NDL [p30, p31]. In this
application they automatically generate an NDL topology description of the
SURFnet6 network based on information gathered from network devices us-
ing their TL1-Toolkit [u7]. Additionally, a network state database holds the
cross-connect information for each network element in the network. That is, in-
formation about currently provisioned lightpaths. This enables the application
to determine the amount of time-slots still available on each interface.

A network operator at the SURFnet 6 network operations centre (NOC)
can use a web interface to query for a lightpath between two endpoints of
the SURFnet6 network. The user first selects two endpoints from a list of the
available endpoints and specifies some properties for this new lightpath, such
as a name, the capacity and whether this should be a protected or unprotected
path. Subsequently, a software tool uses the information from the NDL file to
construct a graph of the network. Using the network state database, this graph
is pruned taking out sections that do not have enough bandwidth available.
Then the Dijkstra algorithm is applied using the current load of the network

CHAPTER 5. NETWORK DESCRIPTION LANGUAGE

as link metric.

5.4.4 Lightpath Monitoring in NetherLight

NDL can play an important role in lightpath monitoring as well. SARA de-
veloped Spotlight, a tool for lightpath monitoring in SURFnet 6 and in Neth-
erLight.

To monitor the lightpaths, SARA uses NDL to specify their topology de-
tails, and actively query the network elements involved. The output is stored
in a network state database with alarm and configuration information. This
enables us to correlate the configuration data with the alarm information and
determine whether a specific lightpath is up or down. If a failure is detected
somewhere in the lightpath route, this will be clearly indicated using a visual-
isation of the lightpath. The Spotlight application is available online, see [u5].

5.5 Conclusion

In this chapter we have introduced a way of applying the Resource Descrip-
tion Framework to describing networks by way of the Network Description
Language. By using the linking capabilities of RDF, a distributed Topology
Knowledge Base as described by Travostino [p41] can easily be created.

NDL unlocks the potential of machine-readable metadata about the net-
work for control-planes, service planes and other applications that require data
about the network. The goal of NDL is to provide a common topology inform-
ation base and thus facilitate interworking between networks.

By leveraging the seeAlso property in RDF| it is possible to create a
distributed (decentral) information system to describe networks.

The use of semantic web solves the addressing problem by providing URIs
as globally unique addresses.

The investment in codifying models and RDF vocabularies pays dividend
when new tools emerge that harvest upon these models, and unite network
descriptions across administrative boundaries. By building upon existing Se-
mantic Web techniques, applications are now appearing.

Chapter 6

Multi-Layer Network
Description Language

6.1 Goal

In section 3.3.3 of chapter 3 we asked ourselves if it is possible to create
a technology-independent model and syntax to describe current multi-layer
transport networks?

In the previous chapter, we introduced the Network Description Language
(NDL) to describe transport networks. However, the schemata presented there
did not provide tools to describe the multi-layer properties of these networks.
In this chapter we will extend the syntax by providing the multi-layer and
technology schemata. So far, we only applied the model to a simplified model
of STS, which did not contain inverse multiplexing. In this chapter, we also ex-
amine the extend to which we can apply the same model to other technologies.
Our explicit goal is to do so without sacrificing the technology independence
of the model.

We do so by mapping the functional elements defined in chapter 4 into a
syntax.

6.1.1 Scope

In this chapter, we will test the applicability of our model and apply it to as
many technologies as possible, including at least all technologies that are in
use in the GLIF community:

e FEthernet VLANS
« SONET and SDH
e WDM with wavelength selective switches

CHAPTER 6. MuLTI-LAYER NDL

o Photonic cross connects

Other technologies we examine are: MPLS, ATM, PPP, Ethernet Q-in-
Q [31], IP, VPN tunnel, wireless, and fibre bundles in a trunk.

6.1.2 Technology Independence

In section 2.3 we have seen that technologies (and thus incompatibilities)
change over time. Thus what needs to be described changes over time.

Any good path finding algorithm is network independent; it should not
need to be modified to take the specifics of a particular network into account.
Similarly, a multi-layer path finding algorithms should be layer inde-
pendent; it should not need to be modified to take the specifics of a particular
technology into account.

If a path finding algorithm is technology-specific, that means it needs to
be updated as new network technologies come along. In chapter 3 we claimed
that technologies and incompatibilities change over time. We have also seen
that multi-layer incompatibilities can not be resolved locally, but that it crosses

00 [} glifdemo.rdf

115 <rdf:type rdf:resource="| ttp://wwu.sc\er\ce,uvn,nl/reseurcn/sne/ndl/
<1-- configurable
<rdfs:label>IfL

L| topology.rdf

tbout="http://ww. science.uva.nl/research/sne/ndl#ConnectionPoint”
ledBy rdf:resource="http://www.science.uva.nl/research/sne/schema/|

<ndl “s/rannmia caltiflb-vea” /> Oint : 1ang-"e b
s A network schema e j;;”f] The topology schema ; ;!

<ndL:Interface rdf:about-"http://canarie.ca/#if2-fiber’> ISOF rdf:resource="http://ww.science.uva. n'l/vesenr(h/sne/nd'lﬂNetw
<rdf:type rdf:resource="http://ww.science.uva.nl/research/sne/ndl/|

="http://ww.science.uva.nl/research/sne/ndl#Interface"> 2

il NETp://ww. SCLence. uva. nl/research/sne/schema/|
il : lang="en">Interface</rdfs: Label>

‘canarie.ca/#ifZ-lambda"> xmi:lang="en">A network element(s) that can be represented as a
000 ww. science. uva.nl/research/! ="http://www.science.uva.nl/research/sne/ndl#Netw
oy <rarsi12? /> [F'http://wen.science.uva.nl/research/sne/ndl#Conn s
170 <rdfsil ement"/> </-- 1
171 <rdfsil /> b o
172 <rdfsi132 ¥ :about="http: //canarie. ca/#if2-0c"> | pkELement"/> < £ softTabs 4 1| — T
173 <layef! <rdf:type Qf: resource="http://www. science .uva.nl/r(_ lientCount>
174 <laye v Lnsto TN rverCount> e
176 | <layer:Layer F@FaHo /> A
= v
178 (3| <layer:AdaptationProperty rdf:aboQhttp://ww.science.uva.nl/research/sne/ndl/wimfoc192-in-Larbda"> > K-S The Layer SChema %
179 <rdfs:isDefinedBy rdf:resource="htip://Wmn. SCIENCE. Uva. N17TES earch/enes SCnema/wam. rar 7>
180 <rdfs:label xml:lang="en">0C-192 in Lambda</rdfs:label>

fuva. nl/ressnr(h/sne/ndl/layer‘ﬂ(llent(ount">

Lambda, using 64b/66b encoding, with standard Non-!
= 7Atechnology schema)/zz et repers
183 TUTSITONgE T Trencesuve. nl/research/sne/ndl#ConngCiians
184 <rdfs:range rdf:resource=" http //MVW science.uva.nl/resegoch dMVﬂ(lBZNEtWDV‘RElEMEV\t eI
- research/sne/ndl#ConnectionPoint™/>

/rﬂFS lnbeb
stion property is defined, it may be defined at most.)
Fience.uva.nl/research/sne/ndl/Layer#AdaptationPrope

185 <rdfsidonain i resource="nttp: /v, Sl sasereT c "
186 <dong ; gmievee7 7o, science . uva. nl/research/sne/ndL /wdm# LanbdaNetwarkE Lement /> < ~‘;“gﬁ 2?2; i%?i::{‘::;::g::n; oy '
187 <'Laye hent(aunt g dﬂtatyﬂe» fttp: /.03 .0rg/ 2001/ XML Schemattinteger ">1</ayer:clientCount> -org v i
188 R 7df : datatype="http: //win.w3 .0rg/ 200L/ XMLSChenarinteger ">1</Layer :serverCount> - |5 | o
189 </1ayer‘ Aduptutmn]’mperty» fiTass: 4t — ;T
Line: 185 CD\IH“H. 42 XML B v Soft Tabs: 4 5 — : WA

Figure 6.1: A network description relies on the topology and specific techno-
logy schemata. The technology schemata rely on the layer schema.

6.2. NDL SCHEMATA

multiple domains. This infers that if a new technology comes along, all domains
need to update their path finding algorithms. This is not realistic.

Graphs and the Network Description Language are network-independent.
They provide simple building blocks to describe networks. Similarly, we want
our multi-layer network description to be able to be layer independent by
providing building blocks to describe technologies.

This is a clear de-coupling of topology and technology information.

Figure 6.1 shows our implementation of the decoupling between topology
and technologies. A network description creates instances of classes defined
in the topology schema and in one or more technologies schemata (such as
Ethernet, WDM or TDM). The technology schemata are defined as subclasses
or instances of classes defined in the layer schema. A path finding algorithm
should only have knowledge of the topology schema and layer schema, and
learn about a specific network or about specific technologies by reading specific
descriptions based on these schemata. With that information, it can find a
path.

6.2 NDL Schemata

The implementation of the model is done in RDF. This is a natural extension
of the Network Description Language (NDL) presented in chapter 5, which
also uses RDF.

The new NDL classes and properties are organised in five modular schemata:

Topology schema that describes the concept of devices, interfaces and con-
nections between them on a single layer;

Layer schema that describes the concept of network layers, and the relation
between network layers;

Capability schema that describes device capabilities, rather than just the
current state of devices;

Domain schema that describes grouping of network elements in operational
domains, describes services, and allows an abstracted view of the network
in a domain;

Physical schema that describe locations and physical properties of network
elements.

Ia

CHAPTER 6. MuLTI-LAYER NDL

Location Service
address accessmethod
geo84 coordinates informationview
room 0.1 serviceStage
facility realm
rack locatedA scope
panel timeout

Physical Element inAdmnQomain hasService
blade 0.1
chassis z 0.1
slotnumber Administrative
manufacturer Domain
serialnumber address
hasSwit¢hMatrix hasBevice 0.1
* inAdminDomain
TransportNetwork M 0.. .
Element haslinterface [switchingCapability ! _
swappingCapability |. 0..1 |_Network Domain
hasCastType: rhasSwitchMatrix|
{UniCast, Multi- * o=
Cast, BroadCast} 7—
memoryBuffer 0.1
Broadcast
Segment haslIntegt
has|nterface

Connection Point erverinterface

Adaptation
clientinterface Function
1 [clientCount
connegtedTo ! |serverCount
\
1
- ITerace ‘\\ adaptation
linkTo —+ internallabel: Label N P
~+] ingresslabel: Label . -
A egresslabel: Label Adaptation
switchedTo Property
~ Configurable Static Interface Instantiated PotentialMux
h e Interface MuxInterface Interface
internalLabelSet: internalLabelSet:
LabelSet LabelSet
ingressLabelSet: ingressLabelSet:
LabelSet LabelSet
egressLabelSet: [Label b LabelSet | egressLabelSet:
LabelSet |] 1 | LabelSet

Figure 6.2: UML representation of the NDL schemas

6.2. NDL SCHEMATA

The precise schemata are defined in an RDF schema, published on their

designated URI [u3]. Figure 6.2 shows a representation of the most important
classes and properties of the schemata in the Unified Modelling Language
(UML).

In this figure, yellow classes appear in the topology schema, green classes
appear in the layer schema, purple classes appear in the domain schema, cyan
classes appear in the capability schema and red classes appear in the physical
schema!.

The physical schema is not relevant for path finding, and we skip its details.

6.2.1 NDL Topology and Domain Schema

We already discussed the topology and domain schemata in section 5.3 of
the previous chapter. It suffices to mention that we can formally describe the
1linkTo and connectedTo properties in ITU-T G.805 terms as unidirectional
link connection and unidirectional tandem connection.

Each Interface as defined in the topology schema is a connection point;
a logical interface, not a physical interface. Each channel on each layer is —by
default— represented as a single logical interface.

6.2.2 NDL Layer Schema

The layer schema defines the concepts of Layer, Adaptation, Label and La-
belSet. Our current implementation is to model Layers as a generic class. For
example, the Ethernet Layer is modelled as an RDF class EthernetNetworkEle-
ment. which is of type Class, as well as a subclass of Layer. The alternative
would be to make layers a class instance, and define an RDF predicate on-
Layer. The advantage of our approach is that we can use the domain and range
of a predicate to define the client and server layers of adaptations (see below).

Figure 6.3 shows the classes and properties in this schema. The layer schema
does not define actual adaptation functions, but instead provides a common
vocabulary to describe technologies, layers and the relation between layers.

A Layer is a specific encoding, or set of compatible encodings in network
connection.

Most Layers have an associated Label Set are used to distinguish between
different channels of a multiplexing adaptation function. For example, the
label on the Ethernet layer is a VLAN, and the labelset is the set on integers
0...4095.

I For historic reasons, the Location class appears in the topology schema, but semantically,
it belongs to the physical schema, and we classify it as such in this thesis.

Ia

=
2|

_—
\

CHAPTER 6. MuLTI-LAYER NDL

property ingress property egress property
label ingress label egress label
client count server count
client capacity server capacity

Figure 6.3: Classes and predicates in the NDL layer schema.

Each Adaptation describes a specific adaptation function, and has four
properties, besides its identifier: the client layer, the server layer, the client
count and the server count. The client (layer) and server (layer) refer to the
Layers before and after the Adaptation. The client count represents the max-
imum number of client layer interfaces. The server count represents the number
of required server layer interfaces. For 1:1 adaptations, the client count and
server count are 1. For multiplexing adaptations, the client count is greater
than 1, and the server count is 1. For inverse multiplexing adaptations, the
client count is 1, and the server count is greater than 1.

The client count of a multiplexing adaptation is usually equal to the size
of the label set for the client layer of the adaptation.

6.2.3 NDL Capability Schema

The NDL capability schema defines the concepts of Switch Matrix and Poten-
tial Interface.

Figure 6.4 shows the classes and properties in this schema. The capability
schema allows a descriptions of the capabilities, rather than the current state
of a network device or network domain.

A Switch Matrix represents a subnetwork in G.805 terminology. It rep-
resents the switching capability of a device or domain at a single layer. If a

6.2. NDL SCHEMATA

Potential
Interface

has switch matrix can adapt can adapt into
> _a >
switching capability > swapping capability > has cast type >
memory buffer > capacities - labels -
properties > ingress properties > egress properties >

Figure 6.4: Classes and predicates in the NDL capability schema.

domain or switch can switch with multiple granularity, it may have multiple
switching matrices: one for each layer. In general devices have exactly one
switch matrix.

By default, each switch matrix can be configured to forward data from one
logical interface to another logical interface. These configurations are repres-
ented by a switchTo property in NDL.

The switching capability of a switch matrix is defined by two orthogonal
properties:

Switching / swapping capability Some devices are not able to convert
between labels. For example, most WDM devices can not convert the
wavelength, and most Ethernet switches can not change the VLAN tag.
The switching capability represents the ability of a device to forward
data from one interface to another interface with the same label. Two
interfaces without a label are considered to have equal labels — both
the “empty” label, €. The swapping capability represents the ability of
a device to forward data from one interface to another interface with a
different label.

Cast type Most switch matrices can only unicast, meaning that it is possible
to make a cross connect from one to another unused interface. Multicast
switch matrixes can also make a cross connect from A to B, even if
there is already another cross connect with source A. Broadcast switch
matrices are entirely different: if two interfaces have the same label, then
they must exchange data. Most switch matrices can not only multicast,

\101/

Ia

L 102/

CHAPTER 6. MuLTI-LAYER NDL

but also merge data: there can be multiple source interfaces with the
same destination.

The Potential Interface, also defined in the NDL capability schema is an
optimisation. NDL defines four different interfaces in total:

Static Interface is a non-configurable interface. E.g. a laser at a 1310 nm;

Configurable Interface is has not only an actual value, but also a range of
possible values. E.g. a tuneable laser;

Potential Mux Interface is an abstract interface, and is semantically equi-
valent to a set of multiple optional configurable interfaces. For example
the set op potential tagged VLAN channels in Ethernet; non-configurable
interface. E.g. a laser at a 1310 nm.

Instantiated Mux Interface is an instantiation of a potential interface.

The static and configurable interface are defined in the topology schema.
The potential mux and instantiated mux interfaces in the capability schema.

4096 Configurable

Potential Interface 1 Potential Interface
Interfaces

Afew Instantiated Interfaces

Static Interface Static Interface Static Interface
(a) Ethernet VLANs as 4096 (b) Ethernet VLANs (c) 3 configured VLANs and
configurable interfaces. as 1 potential interface. 4093 potential others.

Figure 6.5: Use of a potential interface to describe Ethernet VLANs.

The potential interface is used to describe that a device can create one
or more logical interfaces on the fly. Typically, it is used as a shortcut for
multiplexing adaptation functions. Take for example Ethernet VLANs. That
would be described as 4096 logical channels in a single fibre. This could be
described as 4096 configurable interfaces over one static interface, as seen in
figure 6.5a. While this is fine for a model, it is not efficient for a syntax (a
model can be verbose, a syntax should be compact, see section 4.4.3). Instead
of saying 4096 times that a channel can be created, it is more efficient to
say once that a channel can be created 4096 times. This is described using a
potential interface, as seen in figure 6.5b. The count of 4096 can be deduced by
the number of available labels for the potential interface, as well as the client

6.3. TECHNOLOGY SCHEMATA

count in the adaptation function. Only if certain VLANs are actually in use,
then it is required to distinguish between the different configured VLANs. We
use an instantiated interface instead of a configurable interface to signify that
the interface is dynamically created and not permanent.

6.3 Technology Schemata

We proceeded to create a technology schema for each of these technologies: 1P,
Ethernet, ATM, PPP, MPLS, VPNs, copper, WDM, TDM (SDH/SONET),
fibre, fibre bundle, wireless.

All these schemata are technology specific. The success of our model is
determined by the ability to describe each of these schemata using only our
technology independent model. If we are successful in doing so, that means
that all technologies can be described using a technology independent model,
and we can say that our model and path finding algorithm are still technology
independent.

6.3.1 Encodings

As indicated in section 4.6.5 in the previous chapter, the choice of layers and
sublayers for a technology is to some extent arbitrary. Many technologies define
more than one possible encoding. An encoding defines the format of data on
a link (e.g. the header and the payload, or the framing).

For all practical purposes, we define two different encodings as incompat-
ible, and two equal encodings to be compatible.

[version 1 | length [label | data | 16 bit checksum |

[version 2 | length | label | data | 24 bitchecksum |

Figure 6.6: Sample of two encodings for the same layer.

Figure 6.6 shows a (fictitious) example of two encodings in a single tech-
nology: one with a 16-bit checksum, and one with a 24-bit checksum.

Table 6.2 lists a few more examples of layers and encoding types.

We have four options to describe different encodings, and thus to model
the possible incompatibilities between network elements:

e Each encoding is modelled as a different Layer;

\ 103/

\ 104 /

CHAPTER 6. MuLTI-LAYER NDL

Layer Incompatible Encodings
Ethernet untagged, tagged or Q-in-Q tags
Ethernet different maximum packet size (MTU)

DWDM spacing 100, 50 or 25 GHz spacing between wavelengths
Ethernet in UTP 10, 100, 1000 or 10000 Mbit/s

Table 6.1: Examples of encoding types for different layers.

¢ Each encoding is modelled as a different adaptation;
o FEach encoding is modelled as different labels;
¢ Each encoding is modelled as a layer property.

Each method has its advantages and disadvantages.

The advantage of different layers, different adaptations or different labels is
that the path finding algorithm remains technology-independent. Layer prop-
erties are technology specific, since clear rules about compatibilities and in-
compatibilities need to be defined

The advantage of the different adaptations, labels or the layer property is
that it allows the definition of an interface that is not aware of the difference in
encoding. For example, while most Ethernet interfaces can extract the packets
and the VLAN information, some can not. In chapter 3, we saw an Ethernet in
a SONET device, which has no knowledge of the difference between tagged an
untagged Ethernet; it simple adapt all data in STS channels, without knowing
the exact contents. If we would model tagged and untagged Ethernet as two
layers, it would not be possible to properly describe such an interface.

Finally, the advantage of the different layers, different labels and the layer
property is that they allow to describe incompatibilities at a single layer. For
example, if we want to describe the maximum packet size (MTU) of Eth-
ernet using different adaptations, it would not be possible to describe that
(in)compatibility without also describing the layer above Ethernet.

When deciding how to model a certain encoding, we used the following
approach:

1. If the two encodings can never appear in conjunction on the same link,
model it as two different layers. For example, it is unlikely that there
will be a SONET interface which can automatically switch from OC-48
to OC-192, so we modelled OC-48 and OC-192 as two distinct layers.

6.3. TECHNOLOGY SCHEMATA

2. Else, if the compatibility appears in different labels, model it as a label.
For example the difference between tagged and untagged Ethernet is the
presence or absence of a label.

3. Else, if the incompatibility has many distinct options (such as a MTU
from 1518 to 16114 bytes), then we model it as a layer property to avoid
an explosion of possible adaptations or possible layers.

4. If two encodings only occur in combination with one or a few other
layers, we model it as a different adaptation. For example, we model the
different spacings of WDM systems (CWDM, DWDM with 25, 50 or
100 GHz spacing) as distinct adaptations.

5. If all alternatives are exhausted, model it as a (technology-specific) layer
property.

In addition to the above, we define layer properties that are not directly
associated with different encodings. For example, we define the power level
for fibres. While this information is ignored by a technology-independent path
finding, it can be used by a technology-specific path finding or fault isolation
software. The advantage of RDF is that it can easily be extended with these
kind of properties.

6.3.2 Layers and Labels

Table 6.2 lists the layers and label types of the technologies we modelled.
The schemata are available from the NDL website [13]. Note that there is no
hierarchy in this list: in our model, all layers are treated equally.

Most of the choices are straightforward, given the method described in the
previous section. In particular, MPLS, ATM, and SONET are all straightfor-
ward to model.

For SONET and SDH, we relied on the sublayering chosen by GMPLS, as
defined in RFC 4606 [s26]. ATM (Asynchronous Transfer Mode) is modelled
as four layers, with two VPI (Virtual Path Identifier) layers, since there are
two possible VPI labels (8-bit and 12-bits long), and they are never mixed on
the same link as far as we are aware.

The next few subsections discusses the technologies where the mapping to
our model is not straightforward.

\ 105/

\ 106 /

CHAPTER 6. MuLTI-LAYER NDL

Technology (Sub)Layer Label type
1P 1P IPv4 address
P 1P IPv6 address
MPLS MPLS MPLS label
Ethernet MAC MAC address
Ethernet Ethernet 802.1q (VLAN) tags
ATM AALO layer VCI

ATM VPI (UNI) 12-bit VPI
ATM VPI (NNI) 8-bit VPI
ATM ATM cell layer none
SONET/SDH VT1.5 / VC-11 layer M label
SONET/SDH VT2 / VC-12 layer M label
SONET VT3 layer M label
SONET/SDH VT6 / VC-2 layer none
SONET/SDH VTG / TUG-2 layer L label
SONET/SDH STS-1 SPE / VC-3 layer U label

SDH TUG-3 layer K label
SONET/SDH STS-3c SPE / VC-4 layer none
SONET/SDH STS-3 / AUG-1 layer stm
SONET/SDH OC-1 layer none
SONET/SDH OC-3 layer none
SONET/SDH OC-12 layer none
SONET/SDH 0OC-48 layer none
SONET/SDH 0OC-192 layer none
SONET/SDH OC-768 layer none
SONET/SDH 0OC-3092 layer none

WDM lambda layer wavelength
WDM fibre layer strand identifier
UTP/STP copper layer strand identifier
PPP PPP layer none

L2TP L2TP layer none

802.11 802.11 layer SSID

Fibre bundle

bundle layer

none

Table 6.2: Examples of label types for different layers.

6.3. TECHNOLOGY SCHEMATA

6.3.3 Wavelength Division Multiplexing

Wavelength Division Multiplexing (WDM) technology is relatively straight-
forward to model. Using the switching and swapping capability, it is possible
to distinguish between a wavelength selective switch (WSS) that can switch
individual wavelengths. With the swapping capability it is also possible to de-
scribe a device that is able to convert between wavelengths, something which
is currently not possible in commercially available devices.

The only difficulties in WDM technologies comes from the continuous (non-
discrete) nature of wavelengths, the different spacings between wavelengths
and differences in switching granularity. In general, the following WDM sys-
tems exist:

e A single wavelength per fibre;
e One wavelength in each optical window: 850 nm, 1310 nm, and 1550 nm;
e One wavelength in each of the O, E; S, C, L and U bands;

o Coarse Wavelength Division Multiplexing (CWDM) as defined in ITU-T
G.694.2, with a spacing of 20 nm [s38];

o Dense Wavelength Division Multiplexing (DWDM) as defined in ITU-T
G.694.1, with a central frequency of 193.1 THz and a spacing of 100 GHz
between different frequencies [s37];

e DWDM as defined in ITU-T G.694.1, with a spacing of 50 GHz between
different frequencies;

e DWDM as defined in ITU-T G.694.1, with a spacing of 25 GHz between
different frequencies;

e DWDM as defined in ITU-T G.694.1, with a spacing of 12.5 GHz between
different frequencies.

Since wavelengths are intrinsic properties of the wavelength layer, they are
modelled as different labels. The different spacings on the other hand can either
be implied by the different wavelengths (which means that 1552.52 +0.41 nm
and 1552.524+0.21 nm are different labels), by modelling it as layer properties,
or as different adaptation functions of a wavelength over a fibre.

Our first attempt modelled this as a layer property, but we later realised
we could model it as different adaptations, which would allow us to model
different spacings in the technology independent model.

\ 107/

108/

CHAPTER 6. MuLTI-LAYER NDL

In this model, the adaptation using one spacing and de-adapt in an inter-
face with a different spacing would be considered impossible, while in practice
it may work. Also, with only two layers (wavelength and fibre layer), it is not
possible to describe a switch that switches with the granularity of a group of
wavelengths. Both are reasonable restrictions, and it is possible to alleviate
these restrictions by another choice of layers and adaptations, without modi-
fying the underlying model.

A more fundamental problem is the description of available wavelengths.
For most multiplexing adaptation functions, the client count is equal to the
size of the label set for the client layer of the adaptation. That is not true for
WDM, since the label set is continuous (a float representing the wavelength)
rather than discrete (such as an integer for VCI, VPI, VLANs or MPLS labels).

One way to solve this is to require the label to be an integer, defined
in the context of the adaptation function, rather than the wavelength itself.
For DWDM, this would be the integer n in the equation for the wavelength

A= m with ¢ the speed of light (299792458 m/s), fo the central frequency
(193.1 THz), and f the spacing (12.5, 25, 50 or 100 GHz).

We choose to use the wavelength in nanometre as the label, in correspond-
ence with the proposed choice in GMPLS [s35]. This allowed us to compare
wavelengths regardless of their adaptation. The consequence is that our imple-
mentation always says there are available wavelengths -floats are continuous-
as long as the client count of the adaptation is not set.

Finally, the switching granularity of WDM may not be static. While most
devices can switch individual wavelengths, some may switch waveband: a con-
tinuous group of wavelength in a frequency range. This can be solved by mod-
elling an additional layer. However, since this is an uncommon technology, we
decided to ignore wavebands.

6.3.4 Signal Degeneration

Layer properties such as power levels have been defined in our schema, and are
used for fault isolation, the localization of network configuration error [p33].
However, these properties are technology-specific. A technology-independent
path finding algorithm can not use them. Our model does not define a logic
for signal degeneration, and this is thus not taken into account in our path
finding algorithm.

6.3. TECHNOLOGY SCHEMATA

6.3.5 Shared Risk Link Groups

The generic approach of our model allow the description of shared risk links.
A shared risk link is a set of fibres that use the same duct. Backup connections
should not use two fibres in the same risk group because a digging machine
may break both fibres in the same accident. We modelled this as a multiplexing
function of multiple fibres adapted in one duct. We use the optional ‘strand’
label to distinguish between channels (fibres) in the same duct.

6.3.6 Packet Layers

All technologies we discussed so far create bidirectional connections, with the
same label in both directions. The SONET timeslot is the same for both dir-
ections. This is generally not true for packet switched layers that use lookup
tables for routing. For example, the MAC and IP layers use the destination
MAC address and destination IP address to find the egress interface in a
switch. In our model, we distinguish between the ingress and egress labels (see
figure 4.11 in the previous chapter).

The modelling of MAC and IP requires routing tables, and many logical
interfaces to describe all connections in terms of circuits. While we are tech-
nically able to distinguish between the ingress and egress labels, we found that
the description of MAC and IP layers as circuits yields so many logical in-
terfaces that we feel our model is not suitable. While it is certainly possible
to extend the RDF schema to describe these kind of switches, it would also
require a new logic, which we have not defined yet.

The reason for this limitation lays in the routing table nature of MAC and
IP layers, not in their packet switched nature. For example, Ethernet VLANs
does not suffer from this scaling issue.

6.3.7 Ethernet

It turns out that it is non-trivial to model Ethernet according to our model
for three reasons: (1) Ethernet can be tagged or untagged, (2) Ethernet has
different labels (VLAN and I-SID) and (3) Ethernet is a broadcast technology
as opposed to a unicast or multicast technology.

As we mentioned in section 6.3.1 above, we had to model Ethernet as a
single layer; otherwise we would not be able to describe an Ethernet interface
in a STS device. Another advantage of this approach is that we could model
tagged Ethernet as 4096 Ethernet channels in Ethernet, and similarly Q-in-Q
is modelled as Ethernet in Ethernet in Ethernet.

\ 109 /

CHAPTER 6. MuLTI-LAYER NDL

While the client layers in the Ethernet in Ethernet adaptation has labels,
the server layer Ethernet generally does not. There is a distinction that Eth-
ernet makes between labels which is uncommon for other technologies:

Internal labels are used to decide if a cross connect can be made. In case of
a switch matrix with switching, but no swapping capability, both ends of
the cross connect (the subnetwork connection) must have equal labels.
This is the VLAN for both tagged and untagged Ethernet.

External labels are used to distinguish between channels in a multiplexing
adaptation function. This is the 802.1Q tag in tagged Ethernet, but is
not defined for untagged Ethernet.

So in order to support Ethernet, a distinction must be made between in-
ternal and external labels, and untagged Ethernet interfaces must be marked
as not using an external label. Alternatively, we can add the logic that a link
connection over a 1:1 (non multiplexing) adaptation function does not carry a
label, and thus can covert label on the wire. We prefer the explicit notation.

A second complexity is that the Ethernet switch matrix is a broadcast
switch matrix. While a regular unicast switch matrix (without swapping cap-
ability) may make a cross connect between interfaces with same label, a Eth-
ernet switch matrix must have a cross connect between interfaces with the
same label.

With the addition of this logic, we were able to implement Ethernet VL ANs.

6.4 Conclusion

We successfully applied the model of the previous chapter to MPLS, ATM,
SONET, SDH, UTP, PPP, WDM and fibre trunk technologies. In addition,
with some additional logical on broadcast matrices it was possible to model
Ethernet VLANSs technologies.

Since the technologies in use within the GLIF community are Ethernet
VLANs, SONET, SDH and WDM, we conclude that the model we presented
in chapter 4 provides a technology-independent way to describe multi-layer
networks.

Chapter 7

Path Finding Algorithms

This chapter is based on Path Selection in Multi-Layer Networks by
F. Kuipers and F. Dijkstra [a12]. The comparison between the two al-
gorithms in this would not have been possible without the kind permission
of Fernando Kuipers to include part of his work here.

7.1 Introduction

In the previous two chapters, we created a network model and syntax. The goal
in this chapter is to define a path finding algorithm based on this model and
syntax. We consider two algorithms: path finding in G; in section 7.4, developed
by us, and an alternative algorithm proposed by Kuipers, path selection in G
in section 7.5.

Both algorithms operate on a graph, although the graphs (G; and Gy) are
different for each algorithm. In addition, we define a third mapping from the
model we presented in chapter 4 to a graph, resulting in the graph G.

This chapter is organised as follows. Section 7.2 explains the terminology
and notation that is used and section 7.3 presents three graph representations
of a multi-layer network. In sections 7.4 and 7.5 we discuss several path se-
lection algorithms for multi-layer graphs consisting of two layers. Section 7.6
extends this work to incompatible labels and an arbitrary number of layers. 111
We end with the conclusions in section 7.8.

CHAPTER 7. PATH FINDING ALGORITHMS

7.2 Terminology

7.2.1 Definition of a Network

Section 4.4.5 of chapter 4 defines a network N = (CP, L, SN, A) as a set of
connection points CP, physical links L, subnetworks SN, and adaptations A,
and its configuration C = (LB, SC) as a set of labels LB, and subnetwork
connections SC.

For simplicity, we ignore the details of subnetwork connections in this
chapter, and replace connection points and subnetwork connections by the
more generic concept of nodes. This simplification allows us to focus on the
principles of the algorithms without going in too much detail.

The network technology description in this chapter uses the following sets:

The set Y of |Y| layers A layer y € Y is set of related encodings, whose only
difference may be in the payload, the label (as defined in section 4.4.3),
or the encapsulation of the data from a higher layer;

The sets A(y) of | A(y)| adaptation functions for each layer y with y the
server layer of the adaptation function. Each item a € A(ys) is a tuple
(Ye, Ys, bs) with y.,ys € YV representing an adaptation from client layer
Yo to server layer ys and b, the required bandwidth usage at the server
layer. A(y) may contain multiple adaptation functions between the same
layer pair;

The sets L£B(y) of |[LB(y)| possible labels for each layer y. The length of
each of these sets must be at least 1. If no labels are available, this is the
set {€} (e representing the empty label).

The network description in this chapter uses the following sets:

The set N of |N| nodes The definition of a node depends on the granular-
ity, as described below. Roughly, a node can be a domain, device or
physical interface;

The set C of |C| channels for each node n and the layers y for that node.
Each element ¢ € C' is a tuple (n,y) with n € N and y € Y. If a node is
a physical interface, this is the same as a connection point;

The set L physical links between two channels ¢, co and as defined in N =
(CP,L, SN, A). Each element [€ L is a tuple (c1,ca,b) with ¢1,¢0 € C
and b the available bandwidth on the link. A network can be either
unidirectional or bidirectional;

7.2. TERMINOLOGY

The set A of adaptations between channel ¢; and ¢y inside a node. Each
element a € A is a tuple (c1, co, @), representing the adaptation function
a € A from client layer ¢; to server layer co. We assume bidirectional
adaptations only: an adaptation from c¢; to co implies a de-adaptation
from cg to ¢;. Defined in the network description (CP, L, SN, A);

The set LB(c) of all available labels for each channel ¢ € C. Defined in
the network configuration (LB, SC). LB(c) is a subset of LB(y) with y
the layer of channel c.

Note that the set of adaptations A (in N = (CP, L, SN, A)) and the set of
adaptation functions A are different sets. A is the set of adaptation functions,
and describes the technology. A is a set of adaptations between two channels
in a node, and describes the implementations of this technology in a network.
Similarly, the set LB describes the available labels for a specific channel, while
LB describes the labels for a specific layer.

We define Ba((yc,ys,bs)) = bs, the required bandwidth b of the server
layer for each adaptation function (y.,ys,bs) € A.

For convenience, we also define C,,(n) C C for all n € N to be the subset
of channels in node n:

Cn(n) ={(n,y) [y € YA (n,y) € C} (7.1)

Furthermore, we define Y,.(c) € Y for all ¢ € C to be the layer of channel
¢, and Y, (n) to be the set of layers for node n:

Yu(n) ={Ye(c) | c € Cn(n)} (7.2)

We restrict the number of channels to one channel per node per layer:
CCNxY (7.3)
This restriction means that each layer can only be present once in Y, (n):
YneN:Y,(n)CY (7.4)

Also, this restriction allows us to give an upper limit to the size of C:
C1 < V] x |V (7.5)

The downside of this restriction is that the algorithms described in this
chapter do not support explicit descriptions of multiplexing and inverse mul-
tiplexing. However, the concept of bandwidth yields a surrogate way to define

\113/

CHAPTER 7. PATH FINDING ALGORITHMS

inverse multiplexing (surrogate, since multiplexing is not properly supported,
it is always assumed there is only one channel at the client layer). We also
allow that an edge is used twice for a path, so implicit multiplexing is still
supported.

7.2.2 Granularity

Each of the mappings from model to graph can be done using a different
granularity.

Domain granularity corresponds to mapping of domains to vertices, ig-
noring the intra-domain connections. With this granularity, each node
n € N is a domain.

Device granularity maps devices to vertices, ignoring the cross connects
within a device. With this granularity, each node n € A is a physical
device.

Interface granularity maps interfaces to vertices, without any abstraction.
With this granularity, each node n € N is a physical interface.

For granularity of devices, Y,,(n) are the layers of the switch matrices SC,
as well as the layer of the interfaces in the device. For granularity of interfaces,
Cr(n) are the different connection points CP that constitute the interface. For
example, the layers Y, (n) of a node n which represent a Ethernet interface in a
SONET switch is {Ethernet, STS} or perhaps even {Ethernet, STS, lambda, fibre}

Chapter 8 describes an implementation of the first algorithm with the gran-
ularity of individual interfaces (so it can take the intrinsic details of switch
matrices into account). In this chapter, we will map domains to vertices, since
that corresponds to the example network we have seen in chapter 3. This also
reduces the complexity of the examples.

7.2.3 Technology Stacks

An adaptation function describes the technology how data from a client layer
can be embedded in the data of a server layer. An adaptation stack describes
a sequence of adaptations. A technology stack, or protocol stack, describes a
list of layers, where each layer acts as a server layer of the previous layer in
the list.

Figure 7.1 shows three representations of a fairly common technology de-
scription. It includes four layers: Y = {Ethernet, STS, UTP, WDM} (fig-
ure 7.1a). Furthermore, there are two ways to encapsulate Ethernet over STS,

(a) Protocol stack (b) Technology diagram, (e) Tree of all possible technology stacks
with adaptations and labels

7.2. TERMINOLOGY

thernet
over STS

thernet
over STS

Figure 7.1: Three representations of a technology diagram.

and there are two different labels at the WDM layer: A(STS) = {3c7v, 24c}
and LB(WDM) = {1310nm, 1550nm} (figure 7.1b). While this diagram uses
G.805 graphical convention to describe adaptations, a technology diagram can
be represented as a directed graph with layers for vertices and edges from
a client layer to a server layer (in the Layer schema of NDL, adaptations are
predicates from server layer to client layer, only because that results in smaller
RDF /XML files). This technology diagram leads to in total 8 possible adapt-
ation stacks, provided that the top layer is Ethernet (figure 7.1c):

Ethernet

Ethernet over UTP

Ethernet over STS with 24c adaptation

Ethernet over STS with 3c7v adaptation

Ethernet over STS with 24c adaptation over 1310nm
Ethernet over STS with 24c¢ adaptation over 1550nm
Ethernet over STS with 3c7v adaptation over 1310nm
Ethernet over STS with 3c7v adaptation over 1550nm

Given a technology description (the layers), and for all layers y the ad-
aptations A(y) and labels £LB(y)), and a choice for a ‘root’ layer, we can create

\115/

Ia

CHAPTER 7. PATH FINDING ALGORITHMS

a technology diagram, as displayed in figure 7.1b. The choice of root layer is
significant. For example, had we chosen STS to be the root, the three possible
adaptation stacks would have been:

¢ STS
e STS over 1310nm
e STS over 1550nm

We define a technology t € T as a tuple (layer, adaptation function, label).
T={(y,a,1b) [ye YNae Aly) ANlbe LB(y)} (7.6)

For convenience, we define T'(y) C 7 as all technologies with layer y:
T(y) = {(y, e, 1) | v € A(y) Alb € LB(y)} (7.7)

The number of technologies per layer is the product of the number of
adaptations and the number of different labels for that layer:

T ()| = [A(y)] x [£B(y)] (7.8)

For example, consider the tributary group layer in time division multi-
plexing. Seven of these groups can be embedded in the underlying layer, each
identified by a different label. Thus |£B(y)| = 21. In addition, there are two
way to embed tributary groups in the underlying layer: SONET packs the 7
Virtual tributary groups (VIGs) in one STS-1 SPE, while SDH packs the 7
Tributary Unit Group (TUG-2) in one TUG-3. If we model this as incompat-
ible adaptations, then |A(y)| = 2, and thus |T'(y)| = 14.

A technology stack s is an ordered list of technologies [to,t1,...,t,], from
highest to lowest layer, with each consecutive layer the server layer of the
previous layer (the client layer adaptation of ¢;;1 must have the same layer as
technology t; and its server layer must be the same as the layer of t141)

For example, Ethernet over STS with 24c adaptation over 1310nm is:

s= [(Ethernet, NIL, €), (STS, 24¢c,€), (WDM, STS over WDM, 1310.0)]

In this example, NIL means there is no higher layer, and thus no adaptation
from a client layer. e means the empty label.

The set of all adaptation stacks is S.

For convenience, we define Y;(s) for every stack s € S as the layer of the last
technology in the stack s. For example, Y;([(Ethernet, NIL, €), (STS, 3c7vc, €)])

7.2. TERMINOLOGY

= STS. Similarly, we define A;(s) to be the adaptation function of the last
item of the stack s, and L£B;(s) to be the label of the last item of the stack s.

A root technology t; consists of an given (root) layer y;, no adaptation
function, and a given label lb;. Given the root technology t1, we can formally
define the set of all technology stacks, S as a recursion:

[(y1, NIL, Iby)] V (7.9a)
Sy,) = ¢ {s+ . b)][t=(y,alb) €T Na=(ye,y,bs)A

s € S(y1,) Ny =Ys(s)} (7.9)

Equation 7.9b denotes that any valid extension of a technology stack s € S
that leads to a new valid technology stack.

While the choice of the root layer is usually obvious (in the above example,
Ethernet is the only layer that is not a server layer to another layer), this is
not always true. In fact, the technology diagram can contain cycles in case
of tunnels: the embedding of one technology in itself. For example, IP over
Ethernet over IP for IP tunnels, or —in our model in section 6.3.7— Ethernet
over Ethernet over Ethernet using stacked (Q-in-Q) VLAN tags.

Cycles in a technology diagram lead to an infinite size of the adaptation
stack tree. In order to avoid this problem, if we work with adaptation stacks,
we will require that there are no cycles in the (directed) technology diagram.

7.2.4 Definition of a Graph

Graphs G(V,) consist of a set V of |V| vertices and a set € of |€] edges. A
specific edge in the set £ between nodes u and v is denoted by (u,v).

A path P is a sequence of edges, rather than a sequence of nodes.

Each edge e = (u,v) € £ from node u to node v is characterised by one or
more weight parameters W, (e). The distance of a path d(p) is a function of the
weight parameters of each edge, typically the sum of the individual weights
We(e) for all e € P.

Finally, we define B.(e) as the bandwidth b of edge e.

Graphs can be directed or undirected. For a undirected graph, the edges
(u,v) € € and (v, u) are the same edge. Some definitions of undirected graphs
require that there can only be one edge between every pair of vertices. We ex-
plicitly require that there can be more edges between the same pair of vertices.

\117/

CHAPTER 7. PATH FINDING ALGORITHMS

7.3 Multi-layer Network Model

In this section we provide three network descriptions. The first is a commonly
used model in which each network device or network domain represents one
vertex in a graph G, and physical network links are represented as edges.
The second model represents each network device as multiple vertices in a
graph G; one for each ‘layer’. In this model, links still represent edges, but
adaptations also represent edges. Finally, a model where we transform the
multi-layer network into a graph G consisting of vertices and links on different
‘encodings’.

7.3.1 Example Network

Can adapt GE in
24 STS channels

0C-192
22 free STS

0C-192
87 free STS

GE

0OC-192
38 free STS

2x 0OC-192
29+34 free STS

Can adapt GE in 21 Can adapt GE in
or 24 STS channels 21 STS channels

Figure 7.2: An example of a multi-layer network, equal to the example in
chapter 3. GE refers to Gigabit/second Ethernet, OC-192 are SONET-based
optical carriers carrying 192 STS channels.

Figure 7.2 is a representation of the example network we presented in
chapter 3. This network consists of 6 domains, the nodes N' = {A, B,C, D, E, F'},
and we only consider two layers Y = {Ethernet, STS}, ignoring the optical car-
rier (OC) layer for simplicity. There are two incompatible adaptations: Gigabit
Ethernet (GE) can either be adapted in 24 STS channels or in 21 STS chan-

7.3. MULTI-LAYER NETWORK MODEL

nels (7 virtually concatenated groups of 3 concatenated channels). Since the
network definition of section 7.2.1 can not explicitly represent (inverse) mul-
tiplexing, we use the concept of bandwidth instead. A(STS) = {24¢, 3c¢Tv} =
{(Ethernet, STS, 24), (Ethernet, STS, 21)}. A(Ethernet) = @.

Devices A and C are only aware of the Ethernet layer, and not of the STS
layer, while device E only has knowledge about the STS layer, and has no
knowledge about Ethernet: Y,,(A) = Y,,(C) = {Ethernet}; Y,,(E) = {STS};
Y, (B) = Y,(D) = Y, (F) = {Ethernet, STS}. We will denote the channels
as Agtn, Brwh, Bsts, etec. Not all devices support all adaptations: A4 =
AcAg = @, Cp = {(Bgwm., Bsts, 24¢), (Dgwm, Dsts, 24¢), (Dgw, Dsts, 3c¢Tv),
(FEw, Fsts, 3c¢Tv)}.

The network has 6 physical links, as shown in figure 7.2 (L = {(Ag, Bgw, 1),

(CEths Frth, 1), (Bsts, Dsts, 22), (Bsts, Ests, 87), (Dsts, Ests, 38), (Ests, Fsrs, 29),

(Ests, Fsts,34)}).

As we have shown in section 3.3.1, the shortest correct path in this example
isA—B—FE—-D—-B—FE—F—C. This shortest path uses the edge Bgsrs —
Egrg twice. Consequently, our path finding algorithm will have to take the
(de)adaptation functions into account.

As we have stated in chapter 3, path finding in multi-layer networks is
a path-constrained problem. One of the consequences is that a segment of
a shortest path does not have to be a shortest path in itself. For
example, a segment of the shortest path between A and C'is D — B— E — F.
However, the shortest path between D and F is D — F — F', also if adaptation
and channel availability is taken into account.

7.3.2 Device-Based Network Description G,
We define the graph G, = (V,,&,) (p for physical) as follows:

V,=N

7.10
& = {(n1,n2) | ((n1,31), (n2,y2),b) € L} (7.10)

This is a fairly common way to describe the physical properties of a net-
work, with nodes represented as vertices, and (physical) links as edges (£, = L
for all practical purposes; the formal difference is that L has 3-tuples and is
between channels (¢; = (n1,y1) and co = (n2,y2)), while &, has 2-tuples and
is between nodes (n; and ng).

If the network is bidirectional, then the graph can be bidirectional. If the
network is not fully bidirectional, the graph must be undirected.

\119/

\ 120/

CHAPTER 7. PATH FINDING ALGORITHMS

Observe that G, may have multiple edges between the same pair of nodes,
like the edge F — F' in the example. Some definitions of graphs do not allow
this.

The bandwidth Be(e) of edge e is the bandwidth b of link (ny,ns,b) € L

The information on (de)adaptation capabilities is not explicit in the graph
defined by G, or in another format readable for regular path finding al-
gorithms. Therefore, as we already saw in section 3.3.3, this graph is not very
suitable for path finding.

In the next two sections, we present the graphs G; and G4 which do contain
(de)adaptation information.

The graph G, encodes information on the nodes N and links L. For path
finding, we would additionally need information about the channels C, adapt-
ations A and labels LB.

7.3.3 Layer-Based Network Description G,

Given the set A of network nodes, and the sets Y (n) of layers for each node
n, we construct the graph G; = (V;, &) (I for layer) as follows:

v,=C
S =&aU&EDPUEL
with &4 = {(c1,¢2) | (c1,c2,a) € A} (adaptations) (7.11)

Eip ={(ca,c1) | (c1,c2,a) € A} (de-adaptations)
and & = {(c1,c2) | (c1,c2,b) € L} (links)

The set V; consist of all (logical) channels ¢ = (n,y) for all devices n € N/
and for all layers y €) that the node ‘has knowledge of’. The notation we use
for vertices v € V is n,. For example, node B in our example network maps
to two vertices By, and Bsrs

The set & is the union of adaptations &4, de-adaptations &p and (uni-
directional) physical links &,. Only physical links are represented as edges,
not derived (logical) links at a higher layer.

For adaptations (vclient7 vserver) € Aa the order is important~ If (Uclienta vserver) €

Eia is an adaptation, then (Vseryer, Velient) 18 @ de-adaptation rather than an
adaptation. Since we want to be able to distinguish between adaptations and
de-adaptations, the resulting graph must be directed, even if the network is
fully bidirectional.

The adaptation A.(e) of edge e € mathcalE}4 is the adaptation function
a of (¢1,ce,a) € A, which is by definition associated with e € mathcalE;4.

7.3. MULTI-LAYER NETWORK MODEL

The bandwidth B.(e) of edge e € &, is the bandwidth b of link (vy,vs,b) €
&, We assume that the adaptations have no bandwidth restrictions, and set
Be(e) of edge e € 4 U & p to oo.

Note that the functions A.(e) and Be(e) require that each edge has at least
two parameters per edge: the bandwidth and the adaptation.

24c y‘y 3c-7v

22 DsTs 38
N4

Ethernet

SONET layer

87

Figure 7.3: The layer-based representation G; of graph G in figure 7.2, with
adaptation symbols signifying the direction of adaptation edges, rather than
using directed edges.

Figure 7.3 shows the graph G; for the network described in figure 7.2. The
vertices are vertically grouped by layer, and horizontally by node.

For good comparison with the other algorithms, we decided to draw the
graph with single edges for each bi-directional network connection, instead
of using two directed edges. We signify the direction of the adaptation by
the triangles in the edges. This is the standard graphical representation of
adaptation in ITU-T G.805 [s42], as we have seen in section 4.3.4.

The number of vertices is (using equation 7.5) [V| = |C] < |N| x |Y|. In
our example, |[N| x |Y| =6 x 2 =12, but C is only 9 vertices: nodes A and C
are not aware of the STS layer, and node E has no knowledge of Ethernet.

The number of edges |&| is |JAU DU L’|. However, since there is no overlap
between A, D and L’ (an adaptation is never a link or de-adaptation): |&] =
|A| + |D| + |L].

The network in our example is bidirectional, while the graph is directed. So
|L'| = 2|L|, and |A| = |D|, and therefore |&| = |A| + |D| + |L/| = 2|A| + 2|L|.
For a good comparison with the other graphs G, and Gy, this compares to
|A] 4+ |L| undirected edges, as we can see from figure 7.3.

Vil < IN|x |V

7.12
|€| = |A] + |L| for bidirectional edges ()

In our example network, L consists of 6 physical links, so L’ contains 12

\121/

\122/

CHAPTER 7. PATH FINDING ALGORITHMS

directed edges. Furthermore, this network contains four adaptations: nodes B
and D support the 24c adaptation, while nodes D and F support the 3c7v
adaptation. Since each adaptation results in 2 directed edges, this results in
another 8 directed edges in &;.

The graph G; encodes information on the nodes N, channels C, links L
and adaptations A. For path finding, we would additionally need information
about the labels LB.

7.3.4 Stack-based network description G

The last model, proposed by Kuipers and developed in collaboration with us,
explicitly models the possible technology stacks. Our goal is to come to a,
in the algorithmic sense, simple network description, which only consists of
vertices and edges.

In our example network we can identify three different technology stacks:
Ethernet, Ethernet over 24 STS channels, and Ethernet over 21 STS channels:

S = {[(Ethernet, NIL, €)],
[(Ethernet, NIL, €), (STS, 24c¢, €)],
[(Ethernet, NIL, €), (STS, 3c7vc, €)]}

Again, NIL means there is no higher layer, and € means the empty label.
We first define the graph G5 = (Vs, &) (s for stack). The set of vertices Vs,
of graph Gy is defined as follows:

Vs ={(n,s) [me€ NAseSA

(7.13)
(Jc € Cu(n) : Y(s) = Ye(c) A LBs(s) € LB(c))}

Note that:
Vs CN xS (7.14)

Due to the definition of Vs, we can associate one of more channels Cy,(v) C
C with each vertex v = (n, s) € V;:

Cy(v) = Cy((n,s)) ={c| c € Cp(n)AYy(s) = Ye(c)\LBs(s) € LB(c)} (7.15)

The definition in equation 7.13 states that each vertex v € V is defined
as a tuple (n,s) with n € N and s € S. And thus, each vertex v € V; has
exactly one tuple (n,y) with n € N and y = Yi(s) € Y. If we apply the
restriction of equation 7.3, there may be only one channel per (node,layer)
tuple, which means that the size of Cs(v) in equation 7.15 is at most one.

7.3. MULTI-LAYER NETWORK MODEL

Since the definition of vertices v € V; requires that there is at least one such
channel, we must conclude that, with this restriction, the length |C,(v)| =1
for every v € V.

Using the definition of C\,(v) we can now define the edges & of graph Gg:

Es =€ U&sa
with &, —{((nl,sl) (ng)) | v1,v2 = (n1,81), (N2, s2) € VsA
((c1,¢2,b) € L:cy € Cp(v1) Acg € Cp(v2)A
)
(

S
Bua(Au(s1)) > 1)) (7.16)
and E,4 ={((n1, s1), (n2, s2)) | v1,v2 = (n1, 51), (N2, 52) € VsA
(3(e1,c0,a) € A ey € Cy(v1) Az € Cy(v2)A
A(s2) = a A LBy(s2) € LB(c2))}

Esr 1s the set of edges representing physical links and & 4 is the set of edges
representing adaptations. Both definitions state that an edge exists if a cor-
responding link or adaptation function exists. In addition, only physical links
with enough bandwidth are present, and only adaptations with the correct
adaptations function and matching label are present in the graph.

The bandwidth B.(e) of edge e € &, is the sum of the bandwidths b of
the associated links (¢1, ¢2,b) € L (plural, since multiple links may be mapped
onto the same edge e). The bandwidth B.(e) of each edge e € &4 is oo.

Ethernet

24c stack

3c-7v stack

Figure 7.4: Representation of the network in figure 7.2 as a multi-layered
graph.

\123/

\124/

CHAPTER 7. PATH FINDING ALGORITHMS

Figure 7.4 shows the graph G for the network in figure 7.2. The vertices
are grouped according in a matrix with each node n in a column, and a row for
each of the three technology stacks (Ethernet, Ethernet over 24 STS channels,
and Ethernet over 21 STS channels). Such grouping has also been deployed in
the context of wavelength routing in WDM networks [pg].

Node B can only adapt Ethernet in 24 channels (and de-adapt back), while
node F' can only adapt Ethernet into 21 channels. Thus, there is an edge
between By, and Bgy., but not between By and Bg.z,. This is a direct
result of the condition A4(s3) = « in the definition of 4.

When comparing this graph with figure 7.3, it is clear that the row for each
stack s in figure 7.4 corresponds to the row for the associated layer Yi(s) in
figure 7.3. The only difference is that in G, there is only one edge per pair of
vertices. This is because the definition for £y, which states that an edge exists
if a corresponding link exists, but not that there must be an edge for every
corresponding link. This is an optimisation to reduce the size of G for path
finding. While a shortest path may contain two links between two nodes can be
used twice, it will never be with the same encoding (‘loops’ in a shortest path
are only present if a remote host performs an unavoidable conversion between
two encodings).

The dotted line between Bg;. and Dy, states that in theory these nodes
should be able to communicate with each other, but in this case not enough
(22 < 24) channels are available, and due to the link constraint B, (As(s1)) > b
in the definition of &1, the actual edge is disregarded in the graph Gj.

The number above edges in represent the available bandwidth for the asso-
ciated links. The number beneath each edge represent the required bandwidth
as determined by the adaptation function. In this case of multiple links between
two nodes, the edge weight is the sum of all link capacities.

The set of technology stack S is not a local property of the nodes, but
depends on the choice of the (root technology of the) end-nodes. For example,
node E has only knowledge of the STS layer, and for path finding between D
and F, the only encoding would be [(STS, NIL, €)]. However, for path finding
between A and C|, the possible encodings are [(Ethernet, NIL, €), (STS, 24¢, €)]
and [(Ethernet, NIL, €), (STS, 8c7vc, €)]. Because S depends on the choice of
the root technology, the graph G is different if the layer of the end-nodes is
different.

In order to give an estimate of the number of vertices and edges in G, we
first prove that there is only one channel associated with each vertex v € Vi,
and then proceed to give an estimate of the size |S| of S. We need these
numbers to estimate the running time of the algorithms.

The number of possible stacks |S| highly depends on how the technology

7.3. MULTI-LAYER NETWORK MODEL

diagram looks like. We define S, C S to be the set of all stacks with lowest
layer y:

Sy={s|seSAY,(s) =y} (7.17)

Furthermore, we define the set of client layers for a given (server) layer y;
as:

Yetient(ys) = {¥e | e € Y A 3(ye, ys) € Alys)} (7.18)

Given the recursive definition of stacks in equation 7.9b, we can see that a
stack s with lowest layer Y;(s) can only be formed by appending an adaptation
and label to an existing stack s., with Ys(s¢) € Yepient(Ys(se)) (for all non-root
stacks):

Sy={s|seSAY,(s) =y}
= {sc + (% We, v),)] | (s (Yes v), 1) €T Asc € S Nye = Ys(s)}
= {sc + [(¥, We, ¥), O)] | (Y, (Y, v), 1) € T Asc €Sy, }
= {sc + [(¥, We; ¥),)] | (¥, (Ye, y), 1) € T(y) A sc € Sy, }
= {sc + (¥, (Ye,), W)] | b € LB(Y) A (Ye,y) € A(y) A se € Sy}
={sc+[(y, o,)] | Ibe LB(y) N € A(Y) AN Ye € Yetient(y) A sc € Sy, }

(7.19)

Using equations 7.19 and 7.8, we can express the size of Sy, in the size of
its client stacks:

Syl=" D IS IxILB)IxAWI= Y IS,

Ye € Yetient(y) Ye € Yetient(y)

x |T(y)| (7.20)

In order to make further estimates of |S|, we will now assume that the pro-
tocol stack is an ordered set of layers, ordered from ‘highest’ to ‘lowest’ layer,
without any branches. There must be at least one adaptation between consec-
utive layers in the list, and there may be only one root technology (thus the
root layer has only one label). We denote this list of layers Y = [y1, y2, .- ., yv]
(with Y = |)|), and denote); the list of only the first 1 > ¢ > |Y| layers:
[Y1, Y2, ..., y;]. With this constraint, each (non-root) layer has only one client
layer: Yeient(yi) = {yi—1}, and thus equation 7.20 reduces to

|Sy;

=[Sy | X [T(y:)] (7.21)

\125/

N 126/

CHAPTER 7. PATH FINDING ALGORITHMS

Now we can easily calculate the number of different technology stack for
layer y;:
|Syz| = |Syi—1| X ‘T(yl)‘
1Syl X i) [T ()| = ...

=18yl I 1Tl (7.22)
- 11 1w

The last step uses the fact that |S,, | = 1, since there is only one technology
at the highest layer.
Since both |A(y;)| > 1 and |£B(y;)| > 1, also |T'(y;)| > 1:

‘Syl| = |Syi—1| X |T(yl)| > ‘Sy'i—1| (723)

The number of all technology stacks for an ordered list of layers is:

S1=> I8ul=> II 1Tl (7.24)

Yi €Y yi €Y 1555t

Equation 7.23 gives an upper limit for each |S,,
on |S|

, and thus an upper limit

s1=>" I 17wl < I [TITw) (7.25)

yi€Y 1<5<i yey
The estimate for |S| is considerable lower, as |S| ~ |Sy, |, provided that
|T(yy)| >> 1, with yy = yy| the ‘lowest’ network layer.

|Syi| < [Syy | for all y; € Y (7.26)
SIZ IS l= TI 1Tw)l=1] 17w (7.27)
1<5<|Y] yey

The upper limit of the number of vertices |V,| (using equation 7.14) is:
Vs| < INTx|S] (7.28)

If most of the nodes can carry all technology stacks (i.e. Vn € N : |C),(n)| ~
|V|), this upper limited becomes an estimate: |Vs| S |N| x |S|. The lower
estimate of equation 7.27 and upper estimate of equation 7.28 roughly cancel
each other out:

Vil = IN| < |8] = [N x [T IT(»)] (7.29)

yey

7.3. MULTI-LAYER NETWORK MODEL

Equation 7.29 results in an estimate of [Vs| ~ |[N| x [, ¢y, [T(y)| = [N] X
|T(Ethernet)| x |T(STS)| = 6 = 12 vertices, while G has in fact 13 vertices.

The number of edges in Gy is |Es| = |Esr| + |Esal. Physical links [=
(c1,c2,b) € L map to zero or more edges (v1,v2) € Esr. We define the layer
of link (c1,¢2,b) € L as Yi((c1,¢2,b)) = Ye(cr) = Ye(cz) (links must have
terminating channels at the same layer).

Given a channel (n,y) € C, there are exactly |S,| stacks s with Y,(s) =
y, by definition of equation 7.17. By definition of C,,(n) (equation 7.1), the
channel (n,y) € Cy(n). Also, for every tuple (n,s) with s € S, Y(s) = y.
Therefore, by definition of Vs (equation 7.13), every tuple (n,s) with s € S,
is a valid vertex with associated channel (n,y) € Cy(n) if the label of stack s
is a valid label of channel c. Thus, for every channel ¢ = (n,y) € C, there are
at most |S,| vertices in V:

Vee C: Hv|veVsAce Cy(v)} < |Sy, o)l (7.30)

Consequently, for every link (c1, c2,b) € L there are also at most |S,| edges
in &, with y = Yl((cl, cz)). Given that two physical links between the same
pair of nodes result in the same set of edges, we must only count unique links:

€] < ST Supl <D ISl (7.31)

unique link [€L leL

Given that we require that an adaptation exists between all subsequent
layers, the set S, contains at least one stack for every layer. This gives us the
lower limit |Egp| > |unique links in L|.

If all physical links are at the lowest layer yy, and there are no links between
the same channels (since that would result in an equal set of edges), then the
number of edges || is equal to the upper limit. This is a reasonable estimate:

Earl S 1L % Sy | = 121 x [1T W) (7.32)
yey

The estimate for |Es4] is similar to that of |€s.|, although the exact quan-
tification is more complex due to the added label restriction (not every vertex
pair as defined in equation 7.30 should have an adaptation). Nevertheless, each
adaptation a € A results in 1 to |Sy, | edges in Esa:

Al < [Eaal <A X Sy | = 1Al x [] IT(w)] (7.33)

yey

\127/

CHAPTER 7. PATH FINDING ALGORITHMS

This gives us an estimate of |&:

|A] + unique links in L] < [&,] < (|A] + |L]) x [] IT(®)] (7.34)
yey

Equation 7.34 results in an lower limit of |€;| > |A|+ |unique links in L| =
4+5 =9 edges, and a high estimate of || < (JA| + |L|) x [[, ¢y [T (y)| =
(JA| 4 |L]) x |T(Ethernet)| x |T(STS)| = (4 +6) x 1 x 2 = 20 edges. In reality,
G has 13 edges after removal of one edge due to bandwidth constraints (4
edges representing adaptations, and 9 representing links).

The graph Gy encodes information on the nodes N, channels C| links L,
adaptations A and labels LB. In addition, edge labels can be used for available
and required bandwidths. For multi-layer path finding, this is all the inform-
ation we need.

7.4 Path Selection in G|

Given a layer-based graph G; = (V;, &) and a source vertex vg,.. and a des-
tination vertex wgs; in V;, our objective is to find the path P* for which
W(P*) < W(P) for all feasible paths P between vg.. and vgs:. As discussed
in the previous section 7.3.3, we may pass through vertices and even edges
multiple times, and since GG; maps links 1:1 to edges, we can not simply use a
link-constrained algorithm (see our claim in section 3.3.2).

Algorithm 7.1 presents MULTI-LAYER-BREADTH-FIRST(G}, Vsrc, Vast) tO
compute the shortest path P* from vg.. to vgs in G;. We first explain the
general properties of the algorithm, than explain it line by line.

This algorithm has two main features: (1) we keep track of the stack of
(de)adaptations along the path and (2) multiple paths may be stored at a
single vertex (similarly to a k-shortest paths algorithm). So instead of working
with a queue of vertices, as in the breadth-first-search algorithm and Dijkstra’s
algorithm [p9,], the algorithm keeps a queue of paths. Basically, this al-
gorithm simply tries all possible paths P ordered by length, even those with
loops or already visited vertices.

The base of the algorithm is a queue @ of path objects. The algorithm
stores the following properties for each path object p € @:

1. Sequence of edges E[p];
2. The last visited vertex V,[p]
3. Current technology stack S, [p];

7.4. PATH SELECTION IN (3

Algorithm 7.1 MULTI-LAYER-BREADTH-FIRST(G|, Vsre, Vast)

1: p « new path with E[p] = @;V,[p] = vspe; Splp) = @; Blp] = 1; R[p] =
@; Bp,e] = @;d[p] = 0

2: ENQUEUE(Q, p) {Queue Q consists of paths}

3: while @ # @ do

4: p < DEQUEUE(Q) {Replace with EXTRACT-MIN for the shortest path}
5. v« V,[p] {The last vertex in the path}

6: if v =vgs and As(Sp[p]) = @ then

7: return p {Reached destination}

8: else

9: for all v € adj[u] do

10: DPnew < EXTEND-PATH(p, (u,v),v)

11: if ppew # unfeasible then

12: ENQUEUE(Q, Prew)

4. The available labels LB(.S,[p]) (this extension is discussed in section 7.6);
5. The list of used bandwidths Blp, €] for every edge e € E[p];

6. The set of visited (vertex, stack) tuples R[p];

7. Distance d[p].

Only the &[p] property is required, and all other properties can be deduced
from E[p] (except V,[p] if E[p] = @), but they are present for speed.

Lines 1-2 initialise the algorithm with a starting path starting at vertex vg.,
and without an adaptation in the technology stack. Lines 3-12 form the main
loop. It takes the path with the shortest length from the queue, and extends it
by one hop in all directions. Lines 6-7 checks if the shortest path ends at the
destination, and if so, returns that path as the result of the algorithm. Not all
extensions of a path with one hop will result in a feasible path. Line 11 checks
for this condition, and only considers feasible paths.

The actual extension of the path and the feasibility check is done in the
Extend-Path routine in algorithm 7.2. This algorithm takes the existing path
p and extends it via edge e to vertex v. It sets the six properties of the path
accordingly. In case of an adaptation (lines 5-6), the new adaptation is added
to the stack. In case of de-adaptation, the last adaptation is removed from the
stack (lines 7-10), but only if the de-adaptation is equal to the last adaptation
on the stack. If it is not, it is an unfeasible path. Lines 14-16 are an extension
to the base algorithm to check if two adjacent vertices have a common channel
label available for transmission of data.Lines 21-24 check if the vertex has been

\129 /

\ 130/

CHAPTER 7. PATH FINDING ALGORITHMS

Algorithm 7.2 EXTEND-PATH(p, e, v)

Require: p is a path, n an adjacent vertex, e the connecting edge
Require: The sets of edges &1, &4, and & p

Require: Adaptation A, for each edge e € 4 U&p

Require: The weight of all edges W (e)

Require: Set of possible labels per vertex LB(v)

ot

AW N e

N pne’u) — p

: E[Pnew] — Ep] + e {Extend ppe, with edge e}

: Vp[new) < U

¢ d[pnew] < d[p] + We(e) {Length of path increases. If W, is always 1, the

queue () remains sorted}

. if e € £ 4 then {Adaptation}

Sp(Prew) — Splp] + ¢ with ¢ = (y, o, Lb); y = Ye(v); o = Ac(e); Lb €
LB(v) {The choice of Lb is ambiguous if |LB(v)| > 1}

. else if e € &;p then {De-adaptation}

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:

if As(Sp(Prew)) # Ac(e) then {Wrong de-adaptation}
return unfeasible
else
POP-ELEMENT(S), (Prew)) {Remove last adaptation from the stack}
else {e € &, Link}
Sp(pnew) — Sp[p}
LB(SP(pnew)) N LB(SP(pnew)) N LB(v)
if LB(Sy(pnew)) = @ then {No compatible labels left}
return unfeasible
b < BANDWIDTH-REQUIRED(S,(Pnew)) {Determined by adaptation}
B[pnewa 6] — B[pv 6] -b
if B[pnew, €] < 0 then {No bandwidth available}
return unfeasible
if (Vp(Prew), Sp(new)) € R[p] then {Node V,(pnew) has been visited before
with the same stack}
return unfeasible
else

R[pnew] — R[p] U(Vp(pnew)7 Sp(pnew))

return ppey

7.4. PATH SELECTION IN (3

Algorithm 7.3 BANDWIDTH-REQUIRED(S)

Require: s is an adaptation stack
1: if A4(s) # NIL then

2 (Ye, Ys, bs) — As(s) {bs determined by the adaptation function}
3 b« by

4: else

5 b1

6: return b

covered earlier in the current path with the same stack, and if so, skip this
extension. This reduces the flooding nature of this algorithm.

The running time of a breadth first search algorithm is O(|V| + |€]) [pY].
However, this assumes that each vertex is processed only once. The running
time for this algorithm is considerably longer since each vertex can be covered
multiple times. In fact, in the worst-case scenario, the length of the queue @
can grow exponentially with the average out-degree of the vertices.

Kuipers showed that the multi-layer path finding problem is NP-complete [a12].

In contrast, path finding in a single layer network can be solved in polynomial
time (e.g. using Dijkstra’s algorithm or a breadth first search algorithm). This
is in accordance with an exponential running time.

The running time of algorithm 7.1 is (see appendix A.4):

O(Algorithm 7.1) = O(|Q]) x O(loop)) =
= 0(|Q]) x (O(DEQUEUE) + O(Jadj|) x O(EXTEND-PATH))
(7.35)

With O(DEQUEUE) caused by line 4, O(|adj|) by line 9, and O(EXTEND-PATH)
by line 10.

As we have seen in section 7.3.1, a segment of a shortest path may not be
a shortest path in itself. In order to limit the flooding nature of this algorithm
even further, it is possible to make this assumption. This makes the algorithm
faster at the cost that it sometimes will return a false negative (no path is
found, even though it exists). A proper replacement of this check would verify
if the vertex with that stack is already present in any path, instead of in path
p only. This check be accomplished by making R[p| a global variable, rather
than tied to a particular path p.

If we would restrict the search space of the algorithm using the above

\131/

\132/

CHAPTER 7. PATH FINDING ALGORITHMS

modification, the running time would reduce to (see equation A.15)

O(Algorithm 7.1) = O(|N|) x |Y| x TP x O(DEQUEUE)+

O((IN| x |¥| + |L]) x TP'1) x O(EXTEND-PATH)
O((IN] x [¥] + [L]) x TP x
o((

log(IN1) + log(|Y]) + V] - og(T)) + log((1b)))
(7.36)

22

The estimated average running time is (see equation A.16):

O(Algorithm 7.1) ~ O((|N| + |L|) x T x (log(IN| x T™I) + log((1b))))

V|
(7.37)
7.5 Path Selection in G4
If we would apply the Dijkstra algorithm [p11] to the graph Gy in figure 7.4,

we would find the path Agi, — Bein — Baae — Eoae — Dase — Duen — Dsery —
FEscry — F3ery — Feeh — Cpin, which relates to path A—B—-F—-D—-FE—F—C.
If the link between D and E would have enough capacity, this would result in
a feasible path, which is not the case here. The correct pathis A — B — FE —
D—B—FE—F—C. Consequently (contrary to the approach in [p8]), we have
to modify our algorithm to account for capacity on links traversed multiple
times.

Our goal is to come up with a simple path finding algorithm. The graph
Gs seemed a prime candidate for this purpose, given that a shortest path
in the graph G, will never contain the same vertex twice. This can easily
be proven. Assume a path Ps.._g4es¢ from src to dest contains the vertex v
twice. Then we can split path Pg.._g4est in three segments, Py.._, from src
to v, P,_, from v to v, and P,_g.s from v to dest. Given that the path
length d is additive, then d(Pspc—dest) = d(Psre—v) +d(Py—v) + d(Py— gest). The
path P! . .o = Psre—v + Py—dest has then length d(P., . ,..;) = d(Psre—v) +
d(Py—gest) < d(Psrc—dest) (provided that d(P,—,) > 0). Pl ._ ... is a valid
path, according to the definition in section 4.4.5 if the technology vertex v is
the same each encounter. This is true for a vertex v = (n,s) € G, as the
technology is uniquely defined by the adaptations stack s. This may not be
true for vertices in G, or in G} as the adaptation stack is not uniquely defined
for each vertex.

7.5. PATH SELECTION IN G

Given that a shortest path in the graph G5 will never contain the same ver-
tex twice, our first approach was to create a variant of the Dijkstra algorithm
(see appendix A). However, it turned out that such variant implicitly assumes
that a segment of a shortest path is also a shortest path, while we saw in
section 7.3.1 that this assumption is not true for multilayer networks.

Algorithm 7.4 MULTI-LAYER-K-SHORTEST-PATH (G5, Vsre, Vdst)

: r[v] « DIIKSTRA(G, v4st) {Lower bounds for all nodes}

: for all vertices v € V, do

counter{v] < 0

. maxlength «— oo

. counter(vgre] «— counter{vgre| + 1

. v, counter{vgyc]] «— NIL,NIL {Source vy, has no predecessor vertex and
index}

7: ENQUEUE(Q, Vgpc, counter{vg,.], 0, [verc]) {Queue @ consists of vertex,

path index, path length so far, and lower bound of the total path length}
8: while @) # @ do
: u,i,d «— EXTRACT-MIN(Q){Extract path with lowest lower bound of
the total path length}
10: if u = vys then

o Ul W

11: return path {Created by backtracing v,], starting with vgs, i}

12: else

13: for all v € adj[u] do {for each neighbour of u}

14: if d + w(u,v) + rv] < mazlength then {Skip paths that exceed
known maximum length}

15: if FEASIBILE(GS, u,?,v) then {Backtracking}

16: d' — d+ w(u,v) {Distance is sum of weights}

17: counter[v] « counter[v] + 1

18: m[v, counterv]] — u,i

19: ENQUEUE(Q, v, counter[v],d’,d + r[v])

20: if v = v45 and d’' + r[v] < mazlength then

21: mazlength — d' + r[v]

The algorithm MULTI-LAYER-K-SHORTEST-PATH(GY5, Uspe, Vdst), Which is
presented in listing 7.4 is a k-shortest path algorithm, and does not make the
assumption that a segment of a shortest path is also a shortest path. It employs
brute force to always return an exact answer, just as the algorithm for path
finding in G; which is discussed in the previous section. 1133/

Our objective is to find a shortest path from v, to vy in Gs. The MULTI- N—7

Ia

\ 134/

CHAPTER 7. PATH FINDING ALGORITHMS

Algorithm 7.5 FEASIBLE(G,u,,v)

Require: Available bandwidth B.(e) for the edge e = (u,v)

Require: Required bandwidth for the vertex v = (n, s), based on its stack s

Ensure: {Backtracking to check whether the path is loop-free and has enough
capacity available. u, 4 is our current node, v is the node under considera-
tion for extending our path with.}

1 t—u

2: j«—1

3: B — Be((u,v))

4: while 7[t, j] # NIL,NIL do

5. t',j" « =[t, j] {Previous hop}

6: if C,(t') = Cy(u) A Cy(t) = Cy(v) then {(u,v) and (¥,t) are the same
link}

7: (n,s) « t {Stack s determined by the vertex ¢}

8: B’ — B’ — BANDWIDTH-REQUIRED(s) {See algorithm 7.3}

9: t,j < 7[t,j] {Trace back}

10: if t = v then

11: return FALSE {loop}

12: (n,s) <« v {Stack s determined by the vertex v}
13: if B’ < BANDWIDTH-REQUIRED(s) then

14: return FALSE {no bandwidth available}

15: else

16: return TRUE

LAYER-K-SHORTEST-PATH algorithm is based on SAMCRA [p19, p26], and the
Multi-Layer-Breadth-First algorithm in listing 7.1. The two main variables are
a queue @ of paths, and a list of previous hops, stored in matrix 7. Multiple
paths can be stored at a vertex u, u,i is used to denote the i-th path at
node u. For example 7[F3.7,,1] may refer to Ds.r,, 1 while 7[Es5.7,,2] may
refer to Bsc7,, 1. By backtracking the predecessor list 7, an entire path can
be reconstructed, starting at the last hop. counter{v] refers to the number of
paths stored at node wv.

The queue @ keeps track of a path using the tuple (u,), and in addi-
tion keeps track of the length of the path. A feature taken from SAMCRA
is to use two search-space reduction techniques. First, the maxlength variable
keeps track of the maximum length of the end-to-end path. Second, the Dijk-
stra algorithm is used to give a lower bound of the path length. While both
techniques increase the running time in the worst-case scenario, they signi-

7.6. EXTENSION TO MULTIPLE LABELS

ficantly optimise the order in which all possibilities are searched, eliminating
possibilities that will never lead to a shortest path.

Lines 1-7 of the meta-code initialises all nodes. Line 1 computes the shortest
paths from vgs to all other nodes in the graph by one execution of the Dijk-
stra shortest paths algorithm that disregards any bandwidth constraints. The
weights of these paths serve as lower bound estimates, referred to as r[v] for all
nodes v € V,. Note that if the shortest path from v, to v is feasible, we can
stop the algorithm and return this solution. Else the algorithm should proceed.
Line 7 inserts the source node with predicted length d[vsye] + 7{[Vsre] = T[Vsre]
and predecessor NIL in the queue @, which was initially empty. The main al-
gorithm starts at line 8. Line 9 extracts the node v and index ¢ from the queue
that has the predicted length. Hop u,¢ can be regarded as the new scanning
node towards destination wvgg. If u = t we have found the shortest feasible
path, else we continue. Lines 13 to 19 perform the relaxation procedure [p9]
for each adjacent node v of u. Line 14 checks whether the length of the path
extended from u to v does not exceed mazlength, otherwise it is discarded
because we already have a better candidate. If this first test is passed, the
module FEASIBLE is called to check for loops (each vertex in G, should be
only used once in a shortest path) and for enough available bandwidth on the
link (u,v). If the result is a feasible path, we insert v into the queue.

The FEASIBLE algorithm is described in listing 7.5. B.(u,v) contains the
available bandwidth on the edge (u,v). b(u,v) gives the remaining available
bandwidth on the edge (u,v), which is initialised as B.(e) in line 3 and de-
creases in the course of the algorithm (lines 6-8). Lines 4-11 form loop through
all edges in the path, by backtracing 7 (line 9). If the path contains the same
vertex twice (line 10-11) or not enough bandwidth is left on edge (u,v) (line
13-14), the path is deemed unfeasible.

7.6 Extension to Multiple Labels

So far, we mostly looked at two layers, with the adaptations between the two
layers as the only technological incompatibility. All algorithms can easily be
extended to support multiple layers, and for the most part we already put
those extensions in the definitions. In this section we will illustrate this with
the example network in figure 7.5.

The example network of figure 7.5 consists of 7nodes, N = {A, B,C, D, E, F, G},

3 layers) = {Ethernet, SONET, WDM}, with two incompatibilities at the
SONET layer, the previously mentioned STS-24¢ and STS-3¢-7v adaptations,
A(STS) = {3cTv, 24c} and two incompatible wavelengths at the Wavelength

\ 136/

CHAPTER 7. PATH FINDING ALGORITHMS

2x 0OC-192 2x 0C-192
in 1310 nm in 1550 nm
0C-192 0C-192
GE /0 in1310nm in1310nm /7 GE
§ \2) © O/ e
Can adapt GE in ?: gg& 1n9mz Can adapt GE in
24 STS channels 21 STS channels
Can adapt GE in 21

or 24 STS channels

Figure 7.5: Fxample of a three-layer network..

Division Multiplexing (WDM) layer, LB(W DM) = {1310nm, 1550nm}. Nodes
A and G are pure Ethernet devices, nodes B, D, E and F are SONET devices,
with B, D and F capable of (de)adapting Ethernet in SONET, and C is an
optical cross connect. Nodes B and F' are equipped with 1310 nm lasers, node
FE is equipped with 1550 nm lasers, and node D has tuneable lasers.

The shortest working path from Ato Gis A—-B—-C—-D-C—-E—-C—
D —C — F —(G. B and F can not directly communicate due to the different
adaptation of Ethernet in SONET, and B and E and also F and F can not
communicate because of the different wavelengths.

7.6.1 Extension to Graph G

Graph G| of this network is given in figure 7.6. The shortest path through this
graph is AE’th — BEth — BST5(24C) - BWDM(ISIO) - OWDM(1310) — DWDM —
DSTS — DWDM(155O) — CWDM(155O) —Ewpm — ESTS(24071) — EEth(?)C —
™) —Esrs—Ewpu(1550) = Cw par (1550) = Dywpayr — Dsts — Dwpar (1310) —
Cwpan(1310)— Fyw par — Fsts(3¢—Tv™1) — Dy — Gen, with the label as used
on the following edge denoted between brackets. A few new characteristics of
G emerge. There is only a single adaptation between Dgrs and Dy pas, even
though that edge is used four times in the shortest path. In G; edges can be
traversed multiple times, as long as the available bandwidth is not exceeded.
On the other hand, there are 4 edges between Dy pys and Cw pay, since the
actual network has four different physical links.

7.6. EXTENSION TO MULTIPLE LABELS

Ethernet

SONET layer

1310
or 15650

WDM layer

1310 1310

Figure 7.6: Graph G; of the network of figure 7.5.

G| treats the various incompatibilities differently. In section 6.3.1 we dis-
tinguish between four distinct incompatibilities: (1) in layer, (2) in adaptation,
(3) in label (channel identifier), and (4) in other encoding characteristics (e.g.,
different MTU size for Ethernet). The graph G, represents different adapta-
tions as different edges, while different labels are represented as different labels
or label sets for the edges. See the algorithm 7.2 in section 7.4: the incompat-
ibility check for adaptation (line 15) is different from the incompatibility check
for labels (line 22). This is a conscious choice: usually there are only a few (if
any) incompatible adaptation functions, but many incompatible labels. In ad-
dition, G; allows for sometimes incompatible labels. For example, one node may
not be able to convert wavelengths, while another node may convert between
wavelengths without de-adapting and adapting the wavelength. This is also
referred to as label swapping. To support this, line 18 in the EXTEND-PATH
algorithm needs to be changed to an if statement:

if vertex v supports label swapping then
LB(Sp(Pnew)) < LB(v)

else
LB(Sp(prew)) < LB(Sp(Pnew)) N LB(v)

Furthermore, the list of visited channels, R[p], needs to be updated to
include the labels, not just the node and layer.

The estimate of the running time algorithm as we presented in section 7.4 is
not correct if we distinguish between labels and adaptations. In particular line
13 of algorithm takes one label LB € LB(v). This is ambiguous if |LB(v)| > 1.
One solution to solve this is to simply return a set of path extensions, one for
each label, rather than one label. In that case, the number of different stacks is

\137/

\138/

CHAPTER 7. PATH FINDING ALGORITHMS

approximately T, and the estimate for the running time is correct. However,
it is more efficiently to instead keep a set of allowed labels rather then a single
label in the technology stacks. Thus each entry LB in (y,a, LB) € S would no
longer be a single label, but a set of labels. In fact, the extension on lines 21-23
already does this: it reduces the set of allowed labels (or increases for devices
with swapping capability), instead of terminating paths with incompatible
label.

We define |(Lb)| as the number of different labels per layer, and |(A)| as the
number of different adaptations per layer. T, the average number of different
technologies per layer is:

T =~ |(Lb)]| x |(A)] (7.38)

The maximum number of adaptation stacks no longer depends on the la-
bels, and reduces from T to [(A)|?Pl. The running time for algorithm 7.2
increases from O(1) to O(|{Lb)|). Thus, the estimate of the average running
time of algorithm 7.1 in equation 7.37 changes to:

O(Algorithm 7.1) = O((|N| + M) x (AP x (log(IN| x T + log(|(Lb)])))

V|
(7.39)

7.6.2 Extension to Graph G,

Graph G of the network of figure 7.5 is given in figure 7.7. The first not-
able characteristic is the many different adaptation stacks. The five different
technologies (one for Ethernet, two for SONET and two for WDM) lead to
seven possible adaptations stacks: Ethernet, Ethernet in STS-24c, Ethernet in
STS-3c¢-7v, Ethernet in STS-24c¢ in 1310 nm, Ethernet in STS-24c¢ in 1550 nm,
Ethernet in STS-3c-7v in 1310 nm, and Ethernet in STS-3c¢-7v in 1550 nm.
(18I =7, and [T ey [T(y)| = 4)

The shortest path through the graph G is Agw, — B, — Boje— Baye;1510—
Coyc:1310— Doye;1310— D24c—Doye.1550 — Coye 1550 — Eoye 1550 — Eoye — Epen—
Escro— Escr 1550 — Cacrv 1550 — D3er 1550 — Dsero — D e 1310 — Cacrv 1310 —
Fsery 1310 — Fsem — Duth — GEth-

Many of the vertices in this graph only have two neighbours. One can filter
the topology by removing one-degree vertices and by removing two-degree
vertices and connecting their neighbours via a direct edge. However, in the
process of filtering, we would have to keep track of the adaptation. The graph
G5 can be considered as the memory needed to find a path in a layered network,
as it explicitly keeps track of adaptation stacks along the path.

7.6. EXTENSION TO MULTIPLE LABELS

Ethernet

24c stack

24c in 1310 stack

24c in 1550 stack

3c-7v stack

3c-7v in 1310 stack

3c-7v in 1550 stack

Figure 7.7: Graph G, of the network of figure 7.5.

A few of the vertices in figure 7.7 are greyed, and are not part of V5. This
is due to condition LB4(s) € LB(c) in the definition of V, (see equation 7.13).
These greyed vertices represent labels, which are not supported by that node.
Vertex E for example does not support 1310 nm lasers.

There are only few extensions required to support labels in G. In fact, both
labels and adaptations are simply instantiations of different technologies, which
are reflected in the different technology stacks. The only difference between
labels and adaptations is that in V,, the unsupported labels correspond to
missing vertices in the graph G, while unsupported adaptations correspond
to missing edges.

The changes to include label support do not change the time complexity as
mentioned in equation A.18. It only changes the value of T', which is already
present in this estimate.

\139/

Ia

CHAPTER 7. PATH FINDING ALGORITHMS

Contrary to Gy, the shortest path through Gy never traverses the same
vertex twice. In fact, this is a very useful property, since it means we can limit
the number of edges between two vertices to at most one edge, even if there
are multiple physical links. The resulting graph G is rather efficient. In fact,
removing all ‘dead ends’ in the graph of figure 7.7, ends up with only the
links of the shortest path, proving that there is only one shortest path in this
example. Such a proof would be very hard for G;.

In multi-layer networks, the number of incompatibilities may grow quite
large. In the given example, the WDM layer only has two wavelengths. How-
ever, for Dense Wavelength Division Multiplexing (DWDM), about 100 differ-
ent wavelengths are not uncommon. For Ethernet, there are 4096 incompatible
VLAN tags (incompatible, since it is uncommon for devices to be able to alter
the IEEE 801.1Q tag in packets). Tagged Ethernet over DWDM would thus
yield about 4096 4+ 100 x 4096 = 413696 rows in G,. This is contrary to G,
which would have 2 rows. Of course, the complexity is inherent to the net-
work itself, and emerges as increased memory use for path finding in G;. For
improved scalability, it may be possible to aggregate available channels into
groups. For instance, consider an interface with the following VLAN channels
available [1,50], [53], [89, 93], [106,123], [400, 530] and another interface with
the channels [20, 30], [50, 55], [100,110], [3000,4095]. An intersection of these
groups yields: [1,19], [20,30], [31,50], [51,52], [53], [54,55], [89, 93], [100, 105],
[106,110], [111,123], [400,530], [3000,4095] which can be represented by 12
(instead of 4096) rows. Both path finding in G5 and G; benefit from such
condensation of the topological constraints.

7.7 Discussion and Comparison

7.7.1 Commonalities

If we consider path finding in G; and path finding in G, there are more
similarities than differences between the two algorithms.

e Both algorithm keep track of stacks, and find a path starting at the
source, and extending the path hop by hop. G; does so by explicitly keep
track of paths, G5 does so by keeping track of the shortest route to the
source for each possible adaptation stack.

o Both algorithms are capable of finding paths with loops (that is, that
use the same physical link twice).

7.7. DISCUSSION AND COMPARISON

o Neither algorithm supports real multiplexing, but only has a concept of
bandwidth.

e Both network descriptions assume there is only one channel per layer per
node.

7.7.2 Differences

We summarise the differences between the graphs GG; and G5 and the associated
algorithms:

e G, has a simple graph in the algorithmic sense. It only extends vertices,
edges, with a bandwidth shared among those edges representing the same
physical link. The shortest path through G never visits the same vertex
twice, so there only has to be one edge between different vertices.

e G4 has multiple edges representing the same physical link. Algorithms
needs to be adapted to take this into account.

e The edges in G; representing an adaptation are directed, even in fully
bidirectional networks. Moreover, the shortest path through G; may tra-
verse edges and vertices multiple times.

e Path finding in G, assumes that the technology diagram has no cycles.
If there are cycles, the number of possible adaptation stacks becomes
infinite, and G4 can not be created.

e A local network node can be mapped to one or more vertices in G
without having further knowledge of the network. To map a local node
to one or more vertices in G, knowledge about the technologies of all
layers above is needed.

The last point requires some explanation. In our second example, to de-
scribe node C in Gy, knowledge is required about which layer C' is aware of
(the WDM layer), as well as all physical links connected to C. To describe
C in G, in addition knowledge is required about the incompatibilities on the
higher layer (e.g. STS-24c versus STS-3c-7v), to know that we need to describe
C as four vertices in G4. This property makes it difficult to update G is a
small aspect of the network topology changes.

The Multi-Layer-Breadth-First algorithm for G; does not require full know-
ledge of the whole network, only of the set V of vertices v at distance w(s,v) <

\141/

Ia

\ 142/

CHAPTER 7. PATH FINDING ALGORITHMS

w(P*), including all adjacencies ajd[v] of v, with s the start point of the al-
gorithm and P* the shortest path from s to ¢t. While in practice this set V
can easily span most of the network, it may be interesting for extremely large
multi-layer networks, and if s and ¢ are relatively close to each other.

7.7.3 Time Complexity

One of the assumptions that can be made in link-constrained algorithms is
that a segment of a shortest path is also a shortest path. As we have seen in
section 7.3.1, this assumption is not true. Both algorithms introduced in this
chapter can deal with this, but at the cost of severely diminished scalability.

The time estimates given in this chapter made the following assumptions,
even though the algorithms are not restricted to these cases:

o It is assumed that it is only necessary to keep track of shortest path per
technology stack per node.

e Path finding in G4 assumes that the technology diagram has neither
branches nor cycles.

The estimate number of vertices and edges, as well as the actual figures
for both example networks (figure 7.2 and figure 7.5) is listed in table 7.1. In
these numbers, multiple links between the same pair of nodes are counted once,
so we can more easily compare these figures. The numbers between brackets
count all individual links.

The number of iterations required for each algorithm is listed in table 7.2.
The shortest path in example 1 contains 12 vertices (11 edges). The shortest

Example 1 Example 2
(figure 7.2) (figure 7.5)
estimate real estimate real
Gp | Vp| = |N]| 6 6 7 7
1€p| = |L| 6 (7) 6(7) | 10(6) | 10(6)
G | Vil S IN| x|V 12 9 21 14
& =141+ L] 10 (11) | 10 (11) | 14 (18) | 14 (18)
Gy | [Vs| = |N| x T 12 13 28 27 (33)
[Al + L] < |&] £ 9-20 13 (14) | 14-72 | 26 (32)
(Al + |L]) x TV

Table 7.1: Estimates and real sizes of the graphs.

7.7. DISCUSSION AND COMPARISON

path in example 2 contains 23 vertices (22 edges).

Example 1 Example 2
(figure 7.2) (figure 7.5)
queue adj. hop | queue adj. hop
size | checks | iter. | size | checks | iter.
G; | Breadth First 17 43 284 836 3113 | 46321
Breadth First w/ 13 31 189 36 81 945
collapsed links
G, | k-Shortest Path 13 27 95 28 57 381
w /o node removal
k-Shortest Path 13 25 90 25 48 306
k-Shortest ~ Path 13 14 79 25 25 283
w/ previous adja-
cency skipping
k-Shortest ~ Path 13 24 89 24 45 298
w/ full distance
estimate

Table 7.2: Number of vertices and edges processed for path finding in two
example networks.

Each algorithm loops through a number of paths or vertices. For each of
these iterations, it checks all adjacent neighbours. The following variants are
tested:

Collapse Link By default, we model multiple links between the same pair of
nodes as one link, with the combined capacity. Alternatively, the links
can be individually described. In G all links are collapsed by default;

Node Removal The graph G, contains information about every possible ad-
aptation stack by default. This can be used to remove additional nodes,
such as F with 24 STS channels over 1310 nm (see figure 7.4);

Skip previous adjacency By default, all adjacencies are checked. In G, a
shortest path will never return to the node it was coming from, so that
adjacency can be skipped. In Gy this is not true. A valid path may return
over the previous edge in G if the node is capable of label conversion;

Estimate full distance By default, the EXTRACT-MIN procedure in both
algorithms extracts the path with the shortest length so far. However,

\ 143/

\ 144/

CHAPTER 7. PATH FINDING ALGORITHMS

the MULTI-LAYER K-SHORTEST PATH algorithm (listing 7.4) will instead
choose the path with the shortest estimate of the total length. The total
length is calculated by appending a lower bound (found with Dijkstra’s
algorithm) to the length of a path so far. Although it is possible to
implement such estimate in path finding in G, we have not implemented
that.

Only exact algorithms are listed. Variants such as the Multi-Layer-Dijkstra
(see appendix A.2) are not included in this table. In order to compare the al-
gorithms for G; and G, the variants Multi- Layer Breadth First with collapsed
links for G and Multi- Layer k-Shortest Path without node removal and without
Dijkstra’s algorithm for G5 should be examined, as these algorithms are basic-
ally the same, albeit using a different graph.

Barabasi-Albert Barabasi-Albert
(n = 30, single link) | (n = 30, double link)
queue adj. hop | queue adj. hop
size checks | iter. size checks | iter.
G, | Breadth First w/ | 196 245 762 191 237 737
collapsed links
G5 | k-Shortest Path 194 240 656 207 257 711
w/o node removal
k-Shortest ~ Path 21 29 37 21 29 36

w/0 node removal

Table 7.3: Average number of vertices and edges processed for path finding in
twenty random networks. The twenty networks were generated with 30 nodes
and up to 3 edges per new node. n = 30, m = 3. Both networks are single layer
networks.

Before we draw conclusions, we first must realise that that two example
graphs in this chapter are specifically crafted to contain many incompatibil-
ities. Table 7.3 gives the average results for 20 random networks, generated
according to the Barabési-Albert preferential attachment model. Each random
network was processed four times: once with a capacity of 1 per link, and once
with a capacity of 2 per link. All random graphs are single layer network,
and do not contain any incompatibility whatsoever. It remains to be seen how
this applies to real life networks. From these ‘incompatibility-free’ networks
we can conclude that indeed, the Multi-Layer Breadth First with collapsed
links algorithm and the Multi-Layer k-Shortest Path without node removal and

7.8. CONCLUSION

without Dijkstra’s algorithm have a similar running time. Also, it is immediate
clear that a breadth first search algorithms is very inefficient if it has no hint as
the direction of the destination. The trick used to use a lower bound using the
Dijkstra algorithm (first presented by Kuipers) certainly helps in this respect.

We expected algorithms in G5 to be marginally faster than algorithms
in GG;. While this is the case for single layer networks, it is not the case for
the manually crafted networks. In particular, the extremely high results for
the Multi-Layer Breadth First search in example network 2 were unexpected.
Apparently, the degrees of freedom caused by the abundance of links severely
degrades the running time in this particular example.

7.8 Conclusion

In this chapter we have discussed the problem of finding paths in multi-layer
networks. We have considered modelling a multi-layer network as a graph
based on nodes and layers (G;), and a graph based on nodes and technology
stacks (Gs). For each model we have discussed the problem of finding feasible
paths, given an algorithm and discussed the pros and cons of both approaches,
including an estimate of the running times of the algorithm.

We found that a shortest path can contain loops, and both algorithms can
deal with that situation.

In addition, a segment of a shortest path does not have to be a shortest
path in itself. Again, both algorithms can deal with that situation, but the
running time becomes exponential.

G is a simple graph in the algorithmic sense, and a shortest path can not
contain loops. Nevertheless, it is not possible to apply a simple algorithm such
as Dijkstra’s algorithm or a Breadth search first algorithm to G;.

Concluding, a graph based on layers and nodes is probably most suitable
to describe actual networks in a multi-domain environment, where domains
are reluctant to provide details about their own networks and there is no full
topology knowledge. However, the simplicity of the algorithm for the graph
based on nodes and stacks makes it more suitable for path finding calculations.

Whichever algorithm is used, we have conclusively proven that path finding
in multi-layer networks is far more complex than path finding in single layer
networks, and that assumptions valid for path finding in single layer networks
no longer hold.

\ 145/

Ia

CHAPTER 7. PATH FINDING ALGORITHMS

Chapter 8

Path Finding Implementation

This chapter brings the results of the previous chapters together: the model
in chapter 4, the syntax and technology applicability in chapter 6, and the
path finding algorithm in chapter 7. This chapter describes a software imple-
mentation of the algorithm, as well as description of the technology and a
network, and shows this input and algorithm indeed are capable of producing
the shortest paths in a given multi-layer network.

8.1 Modelling the Network

We turn to the example network in figure 3.2 of chapter 3, and model that
network in practice. Figure 4.8 already showed how to model this network
using functional elements. However, that model did not explicitly take inverse
multiplexing into account. A practical implementation should model that, and
may also describe the layers below the SDH/SONET layer.

Beside the topology, the technologies must also be described, and we did
so in chapter 6. In section 6.2 we saw the implementation of a conceptual layer
schema, and in section 6.3 we saw the implementation of technology schemata.
Our claim is that we described most technologies in a generic way, using only a
few classes (Layer, Label, and Adaptation). This allows the creation of a path
finding algorithm that does not have to be changed if new technologies come o—
along, by only relying on these three concepts instead.

Looking at table 6.2, we model the technologies in our example network
as the following layers: Ethernet, VC-4, STS-3, OC-192, Lambda, Fibre and
UTP, with the following adaptations: Ethernet in 8 VC-4, Ethernet in 7 VC-4,
VC-4 in STS-3, 64 STS-3 in OC-192, OC-192 in Lambda, Lambda in Fibre, 147
and Ethernet in UTP.

CHAPTER 8. PATH FINDING IMPLEMENTATION

Ethernet
Layer
Network

VC-4
Layer
Network

1l

L

o)

1b 2 =

) 4
4
=
% 355 etharS”7c 7
9 3 6 6 ight

ocC <—L;L
Ntsxz:k\ 40 14)

0
00

Lambda
Layer
Network

Fiber
Layer
Network

[e)
uTpP 1 1a
g Layer 4 7:%)
Network

Figure 8.1: Functional model (left) and graphical representation of the syntax
(right) of the network of figure 3.2. The use of potential interfaces (the grey
interfaces) reduces the number of logical connection points.

8.1. MODELLING THE NETWORK

If we also incorporate inverse multiplexing, we model the figure as seen in
figure 8.1 on the left.

In order to turn this functional model into the syntax, we use the RDF
syntax as defined in chapters 5 and 6. The result is a set of instances with
triplets to describe the relation between instances. We can visualise this by
using vertices for instances and edges for statements. If we group all instances
with the same layer property together, we get the image as seen on the right
of figure 8.1. Each circle is an instance of an RDF class; either a SwitchMatriz
(the named circles), ConfigurableInterface, StaticInterface (the white circles)
or Potentiallnterface (the grey circles). All lines are RDF properties, either
an adaptation properties we defined in the technology schemata, a switchTo,
linkTo, or hasInterface property.

While the general structure of the syntax is the same as the functional
model on the left, there are a few changes, beside the obvious change from
functional elements to RDF classes and properties.

The syntax on the right is more compact than the functional model on
the left due to the use of potential interfaces. Rather than describing each
channel, the VC-4 and STS-3 channels are described as a set of potential
interfaces for each physical interface.

interface #1

Ethernet
“Layer "
#Eth24c
adaptation
24x STS
L LN STS switch

: TDM device

Figure 8.2: Functional model an inverse multiplexing network interface.

In section 4.6.2 we discussed that there can be interfaces that have two
adaptation stacks. Interface 1 at CAnet (the one connected to Quebec) is
such an interface. Figure 8.2 shows an abstract representation of this interface.

149 /

Ia

1150/

CHAPTER 8. PATH FINDING IMPLEMENTATION

Incoming traffic is first de-adapted from the physical layer (in this example, the
UTP layer) to Ethernet. The Ethernet packets are subsequently adapted in 24
STS channels, which are connected to the switch matrix. While the connection
point after the de-adaptation is logically the same as the connection point just
before the adaptation, our network description modelled it as two Interfaces,
connected by a cross connect (switchTo property). In addition, the connection
points after the adaptation are modelled as two Interfaces, connected with a
link (linkTo statement). While this is not required by the syntax, and arguably
is not completely in line with the true meaning of the linkTo and switchTo
semantics, it makes our model easier to parse: with this restriction, all de-
adaptations lead to a switch matrix (or cross connect), while all adaptations
lead to a link. Also, no de-adaptation is immediately followed by an adaptation
(there is always a switchTo in between them).

8.2 Software Framework

In addition to the schemata for both the technologies and the network, we
created an experimental software framework in Python, called Python NDL
toolkit (Pynt). The framework implements classes for layers, adaptations, la-
bels, label sets, as well as devices, logical interfaces, switch matrices, links and
domains.

The Pynt software is freely available under a BSD-style license [ul].

This framework is intended for use in various tools:

e Description of the current configuration of our network, and trace net-
work connections;

¢ Generation of sample networks;
¢ Path finding of multi-layer connections through the network;
e Fault Isolation of errors in multi-layer network connections.

Using this framework, we were able to make multi-layer network descrip-
tions of the example network given in chapter 3.

In addition, we also modelled an Ethernet network with tagged and un-
tagged links, and our own network containing optical cross connects, Ethernet
switches and end hosts. The configuration of our network is automatically
generated from the state of the devices using a cron job. The other sample
networks were created by hand.

8.3. PATH FINDING SOFTWARE

The framework could be used to create a random network. However, it
is not obvious how a realistic random network generator would look like.
While algorithms such as Barabasi-Albert preferential attachment model [p1]
or Holme-Kim algorithm [p17] create realistic graphs with power-law degree
distribution, this only helps in a realistic network of devices or of domains,
thus a single-layer network. It does not help to generate a realistic layer
distribution— most multi-layer networks are far from random, since network
engineers consciously try to avoid incompatibilities. It is unclear how the dis-
tribution of incompatibilities is in practice.

8.3 Path Finding Software

The path finding algorithm is one of the modules of the whole software frame-
work.

8.3.1 Path Finding in G|

Using the software framework described in the previous section, we build a path
finding algorithm. We used the algorithm for path finding in G, as described
in section 7.4. The reason to choose for path finding in G; as opposed to G
is that it is is easy to map the network topology to the model, as explained in
section 8.3.5.

We did modify the algorithm as described in chapter 7 slightly: instead
using domains for nodes, we used interfaces for nodes. The advantage was
twofold: first this is closer to the model we defined (which does define physical
devices and logical interfaces, but not logical devices), and secondly it allows
us to take the switching and swapping capabilities of switch matrices into
account.

8.3.2 Software Logic

Input:
e URI of source and destination interface; and
e URL of network description that includes the source interface.
Output:

e Sequence of connection points, connection type between the connection
points (link, adaptation, de-adaptation or cross connect), and available
labels for each connection point; or

Ia

N 152/

CHAPTER 8. PATH FINDING IMPLEMENTATION

e Error, in case no shortest path can be found.

In the initialisation phase, the software reads the network description and
determines the technologies that are used for that network description. It then
downloads and parses those network descriptions before proceeding. Figure 8.3
shows the output of this initialisation phase for an example network.

Fetching technology descriptions

Parsing RDF input http://www.science.uva.nl/research/sne/schema/ethernet.rdf
Parsing RDF input http://www.science.uva.nl/research/sne/schema/tdm.rdf
Parsing RDF input http://www.science.uva.nl/research/sne/schema/wdm.rdf
Parsing RDF input http://www.science.uva.nl/research/sne/schema/copper.rdf
Building description of given network in memory

Figure 8.3: Output of the initialisation phase of the path finding software.

The main routine of the software keeps a list of possible paths, which is
initialised with one path consisting only of the source interface.

After initialisation, the software enters a loop where it continuously picks
the shortest path from the list and checks if it is a valid path from source to
destination. If so, it returns it as the shortest valid path. If not, it extends
the path with a hop to a neighbouring interface, and checks if that could lead
to a valid path, eliminating hops with incompatible labels or incompatible
de-adaptation functions. It adds these extended options to the list of possible
paths and continuous the loop. This is the MULTI-LAYER-BREADTH-FIRST
algorithm described in chapter 7.

8.3.3 Path Walk

The routine in the path finding algorithm that checks if an extension of a path
can lead to a valid path or is unfeasible contains the logic of the algorithm.
This is the EXTEND-PATH subroutine that is part of the Path selection in G|
algorithm, as described in chapter 7.

If we modify this subroutine, we can create other algorithms. For example,
we also created a path walk algorithm. This path walk algorithm does not
extend the path with possible connections, but extends it with currently con-
figured connections. The result is that it simply follows existing connections
(including point-to-multi-point connection in multicast or broadcast technolo-
gies such as Ethernet), rather than viable connections.

We use this path walk algorithm as the basis for a fault isolation framework,
which is able to detect anomalies in the published network configuration, and
thus detect and isolate faults across domains.

8.3. PATH FINDING SOFTWARE

8.3.4 Switch Matrix Properties

One of the findings whilst implementing the logic to determine if a path is
valid or unfeasible is more complex than we anticipated. For example, we
first defined that a bi-directional cross connect between cpl and cp2 exists
if there is an unidirectional cross connection from cpl to cp2, and there is
an unidirectional cross connection from ¢p2 to cpl. Now, for a uni-directional
loopback connection holds that ¢pl = ¢p2. Thus according to our definition,
this is also a bi-directional cross connection. However, this is not intuitive, and
we had to redefine our definition of “bi-directional” to explicitly exclude this
particular case.
The following section lists the properties of a switch matrix:

e switching capability: two interfaces with the same label can be
crossed.

e swapping capability: two interfaces with a different label can be
crossed.

e unicast: an interface can be crossed to another interface, provided
that the labels match, and no other cross connect exist for the source
or destination.

o multicast: an interface can be crossed to another interface, even if
other cross connects with the same source exist.

e broadcast: if and only if the labels of two interfaces match, they are
crossed. Broadcast is mutually incompatible with unicast.

The labels as defined above are the internal labels of interfaces. These
can be different from the external (egress and ingress) labels, even though
in practice the same channel identifier is used. An empty or undefined
labelset (@) is considered to be a labelset with one element, the empty
label ({e}).

Given the switching capabilities of a switch matrix, and the connected
interfaces, software can enquire about the following cross connects:

Actual cross connects returns currently configured cross connects.

Potential cross connects returns cross connect that can be made by
allowing any other cross connect to be broken. Takes label sets into
account, but ignores current labels and current cross connects.

Ia

\ 154/

CHAPTER 8. PATH FINDING IMPLEMENTATION

Available cross connects return cross connect that can be made
without affecting any existing traffic (cross connects). Honours label
sets, cross connects, but only labels if they are part of existing cross
connects.

By default all checks only verify if a unidirectional cross connect from
source to destination can be made. If the bidirectional modifier is given, it
checks for the reverse connection as well. This check significantly reduced
the number of possible cross connects for switch matrices with multicast
capability.

The request for cross connects set can be further modified by the mod-
ifiers:

bidirectional Makes sure the reverse cross connect is also in place or
is (potentially) available. (Applies to actual, potential and available
cross connects)

break own cross connect Do not honour cross connects originating
from source and (if bidirectional) destined to the source interface.
All other cross connects remain in place (including multicast and
broadcast cross connects that are part of the same group). (Applies
to available cross connects only)

allow data merger Allows cross connects that create new data mergers
(currently only supported for broadcast switch matrices with more
than two interfaces with the same label.) A merge may affect the
available bandwidth of existing connections. (Applies to available
cross connects only)

honour label Honour the current label of all interfaces, not just the la-
bels of interface that are part of cross connects. (Applies to potential
and available cross connects)

So a request for available bi-directional cross connect, for a unicast
switching matrix will not return cross connects with a connection point as
destination if that connection point is already in use by an existing cross
connect. If allow data merger is set, then it will return such cross connect.

While the exact details of the above logic are interesting, the main point

is that it shows that the logic to check for available network connections is

8.3. PATH FINDING SOFTWARE

far from trivial, despite our relative simple network model. The logic of a
technology dependent model would be even more complex, and it would indeed
be unfeasible to deploy such logic reliably in a multi-domain environment.

8.3.5 Multi-Domain scalability

We used the algorithm for path fining in G; as opposed to the algorithm for
path finding in G, since path finding in G5 would require the construction of
a graph incorporating every possible adaptation stack, which requires a-priori
knowledge of the whole network.

The algorithm for path finding in G only has to fetch information about a
domain if there is a path that leads to that domain, but not earlier than that.
For that reason, (G; scales better in a multi-domain environment, and that is
the reason we implemented that algorithm.

Basically, the path find and path walk algorithm find end-to-end paths by
following the links, adaptations and cross connects through domains. When
reading a network description, the algorithm stores information about the net-
work elements in memory, including information seeAlso statements pointing
from a given network element to external resource with further information
about that network element.

As soon as the path finding algorithm extends the path to a network ele-
ment that contains a seeAlso statements, it then loads that information, but
not earlier than that. In this way, the algorithm can follow the path through
multiple operational domains.

8.3.6 Result

If we feed the implemented algorithm in our example network, it is indeed able
to find the shortest valid path.

Figure 8.4 shows a graphical representation of the classes and properties
that make up the network description. Edges in figure 8.4 represent RDF
properties between the different instances in the model, which in turn represent
either link connections or adaptations in the network.

This vertices and edges in this figure should be exactly the same as the
right hand side of figure 8.1. The only difference is that the vertices (RDF in-
stances) in figure 8.1 are grouped by layer, while in figure 8.4 they are grouped
by domain. The different colours on the vertices represent the different layers.

The figure also shows the end result of path finding algorithm. The lighter
green edges are part of the resulting path. The part of the network between
CAnet and MAN LAN is used twice, as is represented by a thicker line.

Ia

\ 156/

CHAPTER 8. PATH FINDING IMPLEMENTATION

StarLight MAN LAN Amsterdam

s

NetherLight (/
e
-

Figure 8.4: The visual output of an automated path finding algorithm.

Indeed, this path is the shortest path as we have seen in figure 3.5 in
chapter 3.

Given that our algorithm is a path-constrained path finding algorithm,
the algorithm and implementation have no dependencies on the actual net-
work or technology, but only on the technology-independent multi-layer net-
work model, and given that we could describe all technologies that are in use
in the GLIF community in this model, then we must conclude that path-
constrained algorithms are sufficient for path finding in multi-layer
networks, at least for all technologies as used in the GLIF community.

This claim has implications for the information exchange between domains.
In case a path finding is done domain-by-domain (as opposed to having one
central orchestrator), each request must contain information about the final
source and final destination. If that information is not present, the request
may lead to false positives or false negatives.

8.3.7 Ambiguity of Labels

In section 6.3.7, we discussed that the label concept is used for two separ-
ate meanings: (1) to distinguish between channels in multiplexing; and (2) to
determine allowed cross connects in switch matrices using the switching and
swapping capability.

Recall that Ethernet labels are VLANs, and are either an integer in the
range 0 — 4095 or the empty label €. In all circumstances, connection points
have a label which is used in the second meaning, to determine valid cross

8.4. OPTIMIZATION

connects (the labels must be the same: it is not possible to exchange traffic
between two different VLANS). For untagged Ethernet, this VLAN label is not
present on the wire, and the external egress label is €. For tagged Ethernet,
modelled as Ethernet over Ethernet, the VLAN label is present on the wire
as the IEEE 802.1q label, and the external egress label must be set after the
cross connect.

We came up with the following logic to determine if the external egress
label is set:

o If alabel is set for an Interface, then it is assumed to be the internal label,
and used in the switch matrix to determine if a cross connect (switchTo)
is allowed.

o If a switch matrix has swapping capability, the label may change. The
next hop uses the label constraints of the interface. If the switch matrix
has no swapping capability, the next hop uses the intersection of the
label constraints of the interface and the path so far.

e In addition to label swapping in a matrix, labels may change along the
path if the label is not carried on the wire. For example, an untagged
Ethernet interface in VLAN 42 may be linkTo an untagged Ethernet
interface in VLAN 28. The logic to determine if a label is carried on the
wire is:

— there is a hasexternallabel property explicitly set to true

— if the interface is client of a multiplexing adaptation, the label is
carried on the wire.

— if the interface is client of a non-multiplexing adaptation, the label
is not carried on the wire (and may change)

— if there is no adaptation, but only a link, the label is carried on the

wire.

Since this logic is mostly deterministic, and not 100% accurate, it is now
recommended to explicitly set the hasexternallabel property, which signifies
if a specific interface is tagged or untagged Ethernet.

8.4 Optimization

Section 8.3.3 discussed the routine in the path finding algorithm that checks
if an extension of a path can lead to a valid path. This routine should never

Ia

158/

CHAPTER 8. PATH FINDING IMPLEMENTATION

return a path that is unfeasible. That is, a section of a path which can never
be part of a valid connection.
The software documentation describes this routine as follows:

Verifies if a path is valid. Only the last hop in the path has to be checked;
it can be assumed that the rest of the path has been checked earlier.
Typical checks to perform are:

e is the adaptation stack valid, especially if the connection is De-
Adaptation

e does the current connection point further restrict the number of
allowed labels

e are there more available labels left then the interfacecount

o does the current connection point restrict the number of layer Prop-
erties to None

e does it not give a loop (i.e. has the interface been used before in
the same path, with the same stack). This a non-obvious check in
multi-layer networks: data may get transported through two chan-
nels, which use the same physical interface.

e is the configuration not forbidden because an earlier configuration
(e.g., we can’t use the same VLAN if it was already used earlier in
the same path)

o Are there policy constraints.

e etc., etc.

However, there are no restrictions if it should only return a subsection of a
path which can never be part of the shortest valid connection. In fact, since it
does not know the shortest valid connection beforehand, it will regularly return
paths turn out to be “dead ends”, paths that are not part of the shortest valid
connection. It is possible to optimise this part.

We developed a few variants to our base algorithm.

Unrestricted flooding No optimisation. Practically impossible loopbacks,
such as A— B—C — B —C — D are not filtered out from the intermediate

8.4. OPTIMIZATION

results, although they never show up as final result since they are clearly
not shorter than A — B — C — D.

No loopbacks Do not allow a path to return in the direction it just came
from. E.g. A — B — C — B. Such loopbacks can be part of a shortest
path if C' is a potential interface in a switch matrix with label switching
capability.

Explicit direction Define two directions: inbound and outbound, and keep
track if a path is currently going inbound or outbound. A switch mat-
rix or cross connect changes the direction from inbound to outbound,
and a link connection changes it from outbound to inbound. Adaptation
are always outbound, de-adaptations always inbound. This simple check
eliminates the need to check for impossible loopbacks inside a device,
such as a cross connect followed by another cross connect.

No repeated stacks in path Broadcast suppression. If we reach an inter-
face with a certain stack, but this path already contains a hop with this
interface and the same stack, we can stop the algorithm.

All the above algorithms will come up with the correct shortest path. Cru-
cial to all above algorithms is the loop detection. Each interface may be used
multiple times if it contains enough available channels. These channels may
not be on the layer of the last connection point in the path, but may be avail-
able higher up the adaptation stack. This can be avoided by only checking
the available channel count check right after a cross connect of a potential
interface, which is the client interface of a multiplexing adaptation function,
and not to check at all other interfaces.

Besides these algorithms, we also developed a few heuristic algorithms that
contain a less elaborate loop detection mechanism, at the cost of given false
positives or false negatives.

Shortest path to stack only Broadcast suppression. If there are two ways
to get from A to B, then the second path that traverses along switch
matrix B stops there. This yields false negatives if the shortest path
uses a link that is required later. This optimisation greatly reduces the
flooding mechanism of breadth first search algorithm, but can not be
used if the goal is to find multiple (backup) paths.

Interfaces used once Interfaces may only be used once. This yields false
negatives if the shortest path contains a loop (that path will not be
found).

Ia

\ 160 /

CHAPTER 8. PATH FINDING IMPLEMENTATION

Adaptation Restriction only Do not check for the number of available
channels nor check for compatible labels. This will yield false positives
if the number of available channels affects the shortest path, such as in
our example network on the link between CAnet and StarLight.

Topology Restriction only Do not check the number of available channels,
compatible labels or compatible adaptations. This will yield false posit-
ives if the shortest path is restricted by the number of available channels,
or is restricted by an incompatible adaptation such as in our example
network between CAnet and NetherLight.

Table 8.1 shows the number of iterations that are required to find the
shortest path in the example network introduced in chapter 3.

Algorithm variant Number of iterations
Unrestricted flooding 1.6 x 10™° £ 36% iterations
No loopbacks 18 x 1012 4 27% iterations
Explicit direction 587 iterations
No repeated stacks in path 486 iterations
Shortest path to stack only 245 iterations
Interfaces used once No result found
Adaptation restriction only False positive after 219 iterations
Topology restriction only False positive after 134 iterations

Table 8.1: Number of iterations required by algorithm variants to find the
shortest path in our example network.

The unrestricted flooding and no loopback variants are extremely ineflicient,
and it was not possible to finish the algorithm run. Thankfully, the tree built
by the algorithm grows nearly exponentially (the correlation parameter R? is
between 0.9993 and 0.9998), and it is possible to estimate the finishing time
after running the algorithm for roughly 50,000 iterations, since we know that
the shortest path is 57 hops long (a metric length of 56.0 if adaptations, links
and switched all have a metric length of 1.0). The error in the table comes
from the sheer number of possible paths of 57 hops long, and it is unknown
if the correct path is found in the first or the last iteration, or somewhere in
between.

The explicit direction variant finds alternative paths. In our example, it
finds the path Quebec — CAnet — MAN LAN — NetherLight - MAN LAN —
StarLight — CAnet — MAN LAN — NetherLight — Amsterdam (with a pointless

8.5. CONCLUSION

extension MAN LAN — NetherLight - MAN LAN) after 1855 iterations. The
no repeated stacks in path variant does not finds alternative paths, and stops
after 317 iterations.

The explicit direction variant, which is the fastest exact variant, does return
two solutions, after 486 and 488 iterations. The second solution uses the second
link between MAN LAN and NetherLight. The shortest path to stack only
variant does not find this alternative path.

The adaptation restriction only variant finds the false positive Quebec —
CAnet — StarLight - MAN LAN — NetherLight — Amsterdam, as we predicted
in figure 3.4 in chapter 3. The topology restriction only variant finds the false
positive Quebec — CAnet — MAN LAN — NetherLight — Amsterdam, as we
predicted in figure 3.3.

The interface used once variant does not find a path, because the shortest
path in our example contains a loop: the same interface is used twice. In
order to compare this algorithm variant with others, we created an alternative
network example with two link between CAnet and MAN LAN, and additional
restrictions in available time slot labels. In this case, the interface used once
variant is able to find the solution after 6710 iterations. This a high number.
The no repeated stacks in path variant applied to the same networks finds the
shortest path after 534 iterations.

8.5 Conclusion

In conclusion, both network example gives us a clear indication that the no
repeated stacks in path variant of the algorithm is able to significantly restrict
the broadcast nature of our algorithm, and this seems like a very viable multi-
domain multi-layer path finding algorithm. Multi-layer, because it can cope
with constraints in layers, adaptation and labels. Multi-domain, because it
does not need full topology knowledge beforehand.

Further optimisation, including the use of completely different algorithms,
may be subject of further study. We have presented a model, syntax, algorithm
and software framework that are a good start for such research.

161/

Ia

CHAPTER 8. PATH FINDING IMPLEMENTATION

Chapter 9

Discussion and Conclusion

9.1 Context and Goals

A number of e-Science applications need deterministic point-to-point connec-
tions with very high bandwidth and predictable behaviour.

The need for dedicated network connections is in practice fulfilled by inter-
connecting multi-layer networks where the dedicated resources are allocated
for each network connection.

In this field of multi-layer multi domain transport networks there is (until
now) neither an agreed upon network model, nor a suitable end-to-end path
provisioning algorithm.

The aim of this work is to make a system level analysis of multi-domain,
multi-layer transport networks. In doing so, it contributes to the design of a
comprehensive control plane for these transport networks.

Actual contributions include the proof that graphs that simply represent
devices or domains as vertices and links as edges are not sufficient to describe
multi-layer networks, because that ignore the adaptation functions. We have
shown that that link-restriction algorithms are not sufficient for path finding
algorithms but path-restriction algorithms are sufficient.

Logical reasoning and the implementation and demonstration of path-
restriction algorithm is evidence of the correctness of our claims.

9.2 Contributions to the Field

This thesis contributes to the new field of hybrid networking, including the
modelling of optical exchanges, ontology for network descriptions with separa- 163
tion of topology and technology, and proof that link-constrained path finding

164/

CHAPTER 9. DI1SCUssSION AND CONCLUSION

algorithms do not work in multi-layer networks. The work is validated by im-
plementations and proof of concepts.

Path finding through multi-layer networks It was shown that link-constrained

algorithms in use for single layer networks such as the Internet and the
telephony network are not applicable for multi-layer networks. A path-
constrained algorithm was introduced that is suitable for path finding
in multi-layer networks. A shortest path in a multi-layer network can
contain a loop.

Modelling of optical exchanges Both practical models and a concise ter-
minology for exchanges was created. While the data plane for Internet
exchanges and optical exchanges are similar, there is a clear distinction
on the control plane. Optical exchanges can not be transparent to a path
finding if they offer services such as data conversion.

Ontology for network descriptions In order to describe networks and net-
work technologies, multiple ontologies were created. The ontologies are
built upon the resource description framework (RDF), and allow integ-
ration with other ontologies. The network description ontology is used
in network tools for visualisation, path finding and fault isolation, and
is used in production at the SURFnet6 NOC.

Separation of topology and technology information Separate ontologies
were created to describe networks topologies and network technologies.
It is possible to reason about topologies independent from the techno-
logies. The combination of the two allows network engineers to describe
compatibilities and incompatibilities in their network.

9.3 Strengths and Weaknesses

9.3.1 Architecture

When we started this work, the concept of hybrid networks was just estab-
lished [p23], but there was no concise model or even description of optical
exchanges or hybrid networks. In two peer-reviewed articles, we described the
architecture of optical exchanges, both at the data plane as well as the control
plane. This work was essential to establish a more formal model, as we later
did.

We asked ourselves two questions, a generic question and a specific ques-
tion. The generic question asks if there is a fundamental difference between

9.3. STRENGTHS AND WEAKNESSES

hybrid networks and existing networks such as the Internet or the telephony
network? The specific question narrows this to: Can optical exchanges, just
like Internet exchanges, be completely transparent to a path finding algorithm
in circuit switched networks?

We could answer our specific question with a reasoning about the termin-
ology for transparency. We conclude that exchanges that offer adaptation or
interworking services can not be transparent to a path finding algorithm.

This conclusion is relevant, as we also reason that most optical exchanges
will have to offer adaptation or interworking services. Technologies change over
time, which implies that incompatibilities between interfaces, adaptations and
layers will continue to occur. Exchanges must take potential incompatibilities
into account to avoid non-working network connections. Services like adapta-
tion and interworking must be offered by exchanges or elsewhere in the network
to solve incompatibilities.

Our work did not stop by answering this question alone. We found that
the distinction between Internet exchanges and optical exchanges lays at the
control plane, rather than at the data plane. While Internet exchanges and op-
tical exchanges may use the same technologies, they are different at the control
plane: optical exchanges change state with each connection request, while the
state of Internet exchanges only change when peering relations change.

9.3.2 Modelling

A large part of the work in this thesis is modelling of multi-domain and multi-
layer networks.

This work was initiated after we found that, to our surprise, there was no
comprehensive multi-layer network model available yet. Our work made three
distinct choices:

e The clear distinction between a network, a functional representation of
the network, and a syntax describing the functional description.

o The use semantic web technologies such as RDF [p411, a3].

e The use of G.805 functional elements and GMPLS labels to model multi-
layer networks.

Using the resource description framework (RDF) immediately solved two
engineering questions: naming of interfaces, domains and hosts, and the multi-
domain problem using a distributed knowledge base. In addition, it allowed
easy integration of the terminology we developed earlier into a formal ontology.

165/

Ia

166/

CHAPTER 9. DI1SCUssSION AND CONCLUSION

The very strict distinction between the physical network and the functional
representation of that network (the model) allowed us to see that graphs are
not sufficient to describe multi-layer networks, despite their use to describe
single-layer networks. As far as we are aware, we are the first to recognise this.

Not only did we recognise that graphs are not sufficient to describe multi-
layer networks, we also provided an alternative, using G.805 functional ele-
ments in combination with the label concept of GMPLS.

The distinction between model (using functional elements) and syntax was
also beneficial. While this distinction may seem trivial, it is extremely import-
ant when it comes to creating control plane software for those multi-domain
networks. As we write, each domain deploys their own control plane software
(for example, UCLP, DRAC, G-Lambda, AutoBAHN, DRAGON, etc.). If each
software uses a different syntax, but the same model, it is easy to translate
between the different network topology descriptions. However, if the model
is different, this translation is very hard, and sometimes even impossible. In
reality, it is often ever harder, since most software packages do not define a
formal network model in the first place. For example, GMPLS did not define
a formal model, but only a syntax to describe networks. Our work makes soft-
ware developers aware of this problem, and offers a solution by providing a
syntax-independent model.

The strict of modelling not only helps software designers, but also protocol
designers. Indeed, proof that our model is considered useful is the interest
for our model by members of the network markup language (NML) working
group in the Open Grid Forum (OGF), whose goal it is to come up with a
standard for network descriptions. In addition, the interest of external parties
for the work of the NML working group also shows the importance of such a
model [u2]. More and more, the value of a solid network model is recognised.

The network markup language (NML) working group has another benefit:
it allows a comparison between our model and the efforts of others. While our
model still lacks practical extensions such as change information (our model as-
sumes a static network, while in reality networks change over time), it appears
to have a few unique properties that make it stand out in comparison. First is
the technology independence: our model is the only that allows a path finding
algorithm that does not need specific knowledge about each technology. The
clear advantage is that our model is forward compatible: it is not only com-
patible with existing technologies, but also with future technologies, provided
that they can fit in our model. Secondly is our use of the label concept, we
took from GMPLS. This technology independent feature is considered a asset
of our model by others. Third, and finally, our model is one of the few that
distinguishes in terminology between the network at that data plane and the

9.3. STRENGTHS AND WEAKNESSES

domain at the control plane.

We have tested the technology independence of layers, adaptation and la-
bels for all network technologies we are familiar with (IP, Ethernet, PPP,
ATM, SONET/SDH, VPN tunnel, Wireless, DWDM and CDWM, OXC, Fibre
bundles). We concluded that the model works correct for circuit-switched tech-
nologies, including all technologies that are used at existing optical exchanges
(Ethernet VLANs, SONET/SDH, DWDM and fibre layers), while extensions
would be required for physical layers and packet switch technologies that use
a routing table. We believe this to be very strong result.

9.3.3 Path finding

By using logical reasoning, we have shown that link-constrained path finding
algorithms are not sufficient for path finding in multi-layer networks, if links
are 1:1 mapped to edges. We defined a shortest network connection with a
loop is defined as a shortest network connection that uses the same physical
link twice. We assert that link-constrained path finding algorithms never find
a solution with the same edge used twice. Therefore, our claim is valid.

Routing protocols such as BGP and SS7 use a path-vector algorithm and
the routing protocol in OSPF-TE/PCE (as used in GMPLS) uses a link-state
algorithm for path finding. Both are link-constrained algorithms, and can not
be used as-is in multi-layer networks.

We have given two path finding algorithms, both path-constrained, that are
designed to find paths in multi-layer networks. One of these is a broadcast-like
algorithm, which has the advantage that it uses a graph that is very similar
to the actual network topology. It does not a-priori need information about
other domains until it has to check for paths through those domains.

This variant is currently the only variant that is capable of dealing with
loops, as well as the assertion that a segment of a shortest path does not need
to be a shortest path in itself.

Our strength is that we not only defined a model and algorithm, but also
made an implementation of our algorithm. By applying this algorithm to a few
complex example networks that contain loops, we have shown its applicability.
We conclude that path-constrained algorithms are sufficient for path finding
in multi-layer networks.

This last proof is not a formal mathematical proof, but merely a proof of
concept. By strictly retaining the technology independence of the algorithm,
we have shown that the path-constrained path finding algorithm works for all
networks and technologies that can be described by our model. That includes
all relevant technologies, since those can all be described with our model.

\ 167/

168/

CHAPTER 9. DI1SCUssSION AND CONCLUSION

However, we did not formally prove that there is no future technology can be
invented that can not be applied to our model, and which would require an
even more complex algorithm.

We have seen examples of incompatibilities that are not described in our
model. Incompatible packet sizes in Ethernet, and incorporation of scheduling
and policy constraints have been explicitly mentioned. Our path-constrained
path finding algorithm can still handle those scenarios, by simply adding more
constraints to the “feasible path” constraint code. This is a trade-off between
the number of constraints that can be handled and the technology independ-
ence of the model and algorithm.

Our algorithm is basically a breadth first search algorithm. We have shown
a few optimisations that reduce the flooding mechanisms by dropping paths
that will not result in the shortest path for whatever reasons (e.g. we drop paths
with unnecessary loops). Further research may reveal radical new algorithms
that are even more efficient than these optimisations. Despite our collaboration
with renowned algorithmic experts from Delft University, such radical new
approaches have not surfaced yet.

9.4 Claims and Statements

We focused on one specific question in this thesis.

o Is it possible to use the same path finding algorithms in multi-layer trans-
port networks as those in use for the Internet and telephony networks?

The research we carried out in order to answer this and subsequent ques-
tions have accumulated in miscellaneous statements as we put forward in this
thesis.

o The use of multiple technologies causes incompatibilities (Section 2.3.1,
repeated in Chapter 3).

e Technologies evolve over time. Thus, incompatibilities will continue to
exist (Section 2.3.1).

o Exchanges must take potential incompatibilities into account to avoid
non-working network connections. These incompatibilities must be de-
scribed to deal with them (Section 2.3.2).

e Exchanges can only be ignored during path finding if the connections
through an exchange are modelled as direct connections, and the ex-
change does not define a usage policy on its own (Section 2.5).

9.4. CLAIMS AND STATEMENTS

Path finding in a single layer network belong to a different complexity
class (P) than path finding in a multi-layer network (NP-hard) (Sec-
tion 3.3, source: Kuipers [a12]).

the algorithms used in the Internet and telephony network can not be
used for path finding in multi-layer transport networks, if links in the
network are 1:1 mapped to edges in the graph (Section 3.3.1).

Link-constrained algorithms are not sufficient for path finding in multi-
layer networks, if links are 1:1 mapped to edges (Section 3.3.2).

Graphs can not be used for path finding in multi-layer networks, if it is
required that (1) the outcome of the path finding algorithm is sufficient to
reconstruct the original path in the network; (2) the graph can be created
from the actual network in polynomial time; and (3) a link-constrained
path finding algorithm is used (Section 3.3.2).

Each of the conditions in the above claim is essential for the claim (Sec-
tion 3.3.3 and 3.3.4).

Multi-layer incompatibilities can not be resolved locally, but need to be
distributed across domains (Section 3.3.2).

Path-constrained algorithms are sufficient for path finding in multi-layer
networks (Postulated in section 3.3.2, proven in section 8.3.6).

Multi-layer networks can only be mapped to a graph if devices are
mapped to multiple vertices, or if information about the adaptation is
lost (Section 3.3.4).

G.805 and G.800 allow descriptions of the state of a network. No model
exists to describe how to change that state, and who may do so (Sec-
tion 4.2).

It is easy to translate between two different syntaxes with the same
model. It is hard to convert between two models (Section 4.3.1).

A model can be verbose, while the syntax is compact (Section 4.4.3).

It is possible to create a distributed network description, without a cent-
ral repository (Section 5.3.3, source: Van der Ham [a3]).

The use of semantic web provides the URI as a solution for globally
unique addressing of network resources (Section 5.3.4, source: Van der
Ham [a3]).

Incompatibilities change over time, and what needs to be described
changes over time (Section 6.1.2).

\169 /

\170/

CHAPTER 9. DI1SCUssSION AND CONCLUSION

o A multi-layer path finding algorithms should be layer independent (Sec-
tion 6.1.2).

¢ A segment of a shortest path in a multi-layer network does not have to
be a shortest path in itself (Section 7.3.1).

9.5 Conclusion

In chapter 1, we put forward a general research question of the research in this
thesis is only a small part of, Is there a fundamental difference between hybrid
networks and existing networks such as the Internet or the telephony network?
Which of the existing models and approaches can be re-used and which can
not?

Given the statements we made in this thesis and repeated in the previous
section, we can only conclude that indeed there are fundamental differences
between hybrid networks and existing networks such as the Internet or the
telephony network. The concept of networks, and operational domains remains
the same. Hybrid networks encompass both circuit switched as well as packet
switched technologies. The largest difference between hybrid on one hand, and
the Internet or telephony network on the other hand is not packet versus
circuit switching, but the fact that the circuit switched technology of hybrid
networks is a multi-layer network service. This multi-layer nature gives
rise to interworking services to stitch technological incompatibilities together.
This causes that optical exchanges that offer these interworking services are
visible to a path finding algorithm, and that link-constrained path finding
algorithms as used for single layer networks can no longer be used. Instead,
we have shown that path-constrained algorithms are required, and that simple
graph as common to describe single layer networks can not simply describe
the multi-layer networks.

All these differences mean that if no single specific technology for hybrid
networks is chosen, new multi-layer models and path finding algorithms needs
to be developed.

Given that technologies evolve, and thus incompatibilities continue to exist,
no single layer or single technology is standardised, and multi-layer network
models and path finding algorithms continue to be needed for hybrid networks.

Appendix A

A.1 Running Time of Multi-Layer Path Finding

In both the Multi-Layer-Breadth-First and Multi-Layer-k-Shortest-Path al-
gorithms (listings 7.1 and 7.4 respectively) the running time will mostly depend
on the size of the queue @. The best estimate we can give is to first estimate
the length of the shortest path, and than estimate the number of paths of that
length. Since the algorithms are basically a flooding mechanism, we assume
that the path branches at each hop, and the number of branches after i hops
is O(r?), with r the number of branches per hop. If we ignore all suppres-
sion mechanisms, as we should for the worst-case scenario, the queue length is
proportional to the number of branches, O(r?). The number of branches per
hop r is roughly proportional to the average out-degree and to the number of
possible labels |(Lb)| per layer. The average out-degree is the average number
of adjacencies:

1€

Now we can estimate the queue length.
o(lQl) = o)
_ &) x [(Lb) V!
AN XY (L)) x [y VD
- O((NT<]))

Assuming that our network is a small world network, the average path
length is O(log(]V|) [p1]. While the estimate of the worst-case remain the

Algorithm Time Complexity

171

\172/

APPENDIX A. ALGORITHM TIME COMPLEXITY

same, the estimate for the average running time would reduce i from |V| to
log(|V]):

o(Ql) = o(r")
_ |&| x [(Lb)| log(|V])
o(H5)) "
N XYL L) x (LB N D
- O((INT < V]))

Such exponential behaviour is typical for a NP-complete problem, such as
a path-constrained path finding algorithm.

A.2 Multi-Layer Dijkstra’s Algorithm

Listing A.1 shows MULTI-LAYER-DIJKSTRA, a variant of the Dijkstra algorithm
applied to the graph Gy as defined in section 7.5.

This algorithm is an improvement over Dijkstra’s algorithm [pl1]. Dijk-
stra’s algorithm applied to the graph Gy in figure 7.4 would find the path
Agth — Bgih — Basc — Eose — Dose — Dt — D3cry — Escry — Faery — Feen — CEin
as shortest path from A to C. This is not correct, due to the limited capacity
between D and E. The Multi-Layer-Dijkstra algorithm in listing A.1 would
find the correct shortest path, Agin, — Brin — Bose — Eose — Dose — Dgin —
D37y — Bsero — Fzero — Faero — FEth — C’Eth-

Nevertheless, the Multi-Layer-Dijkstra algorithm is still imperfect. For ex-
ample, while it finds the shortest path from A to C, it will not find the shortest
path from C' to A. The reason is that this algorithm does check for the used
bandwidth, but it only keeps track of the bandwidth usage as a global variable,
rather than per path. This means that it adds edges to the list of used band-
width, even if that edge later turns out not be used anymore. This condition
is too strict, resulting in false negatives, such as the above.

Lines 1-6 of the meta-code initialises all vertices and edges. Line 7 inserts all
vertices in the queue). The main algorithm starts at line 8. Line 9 extracts
the vertex w from the queue that has the shortest weight (i.e., du] < d[v]
Yu # u € Q). Vertex u can be regarded as the new scanning vertex towards
destination vgs:. Consequently, we have to reduce the bandwidth of the last
edge in the path to vertex v with the amount of consumed bandwidth (which
in this case we take from the edge parameter B, (e)). Lines 13 and 14 make sure
we only retrieve the shortest path between a source and a single destination (as

A.3. RUNNING TIME OF MULTI-LAYER-DIJKSTRA

Algorithm A.1 MULTI-LAYER-DIJKSTRA (G5, Vsre, Vdst)

Require: Available bandwidth B.(e) for each edge e
Require: Required bandwidth for each vertex v = (n, s)
1: for all vertices v € V, do

2: d[v] « oo {The distance to v}

3: w[v] < NIL {the predecessor vertex to vs,}

4: for all edges (u,v) € & do
b((u,v)) = Be((u,v)) {Still available bandwidth}
6: d[vgre] — 0

7: Queue @ «— V

8: while @ # @ do

9: u «— EXTRACT-MIN(Q)
10: if 7[u] # NIL then

o

11: (n,s) —u

12: b(u, 7[u]) < b(u, w[u]) — BANDWIDTH-REQUIRED(S)

13: if u = vg4y then

14: return path {Created by backtracing 7[v], starting with vgs:}

15: else

16: for all v € adj[u] do {for each neighbour of u}

17: if d[v] > d[u] + w(u,v) then {Distance is sum of weights}

18: if b(u,v) > 0 then

19: d[v] < dlu] + w(u,v) {Since @ =V, this changes the queue}
20: 7[v] — u

21: ENQUEUE(Q, v)

is our purpose). Lines 16 to 20 perform the relaxation procedure [p9] for each

adjacent vertex v of u. Line 18 is not present in the original Dijkstra algorithm,
but is necessary to check for enough available bandwidth on the scanned link.
Line 21 is an extension to the original Dijkstra algorithm, which is necessary
to cope with negative edge weights. It inserts v back into the queue, if it was
previously extracted.

A.3 Running Time of Multi-Layer-Dijkstra

The running time of algorithm A.1 is slightly longer then Dijkstra’s algorithm
due to the extension in line 20, which re-inserts edges into the queue. If we

\173)/

\174/

APPENDIX A. ALGORITHM TIME COMPLEXITY

ignore this extension, the running time is:
O(Algorithm A.1) = O(|Vs] x O(EXTRACT-MIN) + |&;| x O(INSERT) (A.4)

In here, O(EXTRACT-MIN) is caused by line 9 and O(INSERT) is caused by
line 21. If he graph is sufficiently sparse (|€| < |V|?) [p9], this equation reduces
t0 O(Va| x log(([Val) + || x O(1)) = O(IV| - log([Vy]) + €.]).

Equation 7.34 estimates || ~ (JA| + |L|) x T1Y!, and we assume that
O(JA|) = O(|N| x |Y|). Equation 7.29 gives the upper limit |Vq| ~ |[N| x |S| =
IN| x |V x T with T = (|T(y)|) the average number of technologies for each
stack.

The running time of algorithm A.1 with constant edge weights W (e) is:

O(Algorithm A.1) = O(|&| + |Vs])

(4] + |L]) x TP+ |N| x] x T

((IN] % 9] + L] x TP+ [N x | 9] x T/
((IN] x (Y] +]L]) x TP

(A.5)

(@]
O
o

Q

The running time of algorithm A.1 with variable edge weights W, (e) is:

O(Algorithm A.1) = O(|&]| + |Vs]| - log(|Vs]))
= O((|A| + |L)) x TP + [N| x || x TV
x log(IN| x || x [¥] x TP')) (A.6)
= O((IN| x [Y| + |L]) x TPT 4 |N| x Y] x T
x (log(IN|) +log(|¥|) + (Y] - 1og(T)))

A.4 Running Time of Multi-Layer-Breadth-First

The rough estimate of the running time in the previous section does not provide
many insights. In this section, we will assume that the segment of a shortest
path is also a shortest path. This means we can abort any path if it contains
a (node, adaptation stack) tuple that we encountered before. Such algorithm
would be comparable to Multi-Layer-Dijkstra, as described above. This allows
us to do a more thorough comparison of running times between path finding
in G; and path finding in Gs.

If we can abort a path if the current vertex has been processed with the
same adaptations stack s, then each vertex is processed at most |Sy| times,

A.4. RUNNING TIME OF MULTI-LAYER-BREADTH-FIRST

with |Sy| the number of possible technology stacks for layer Y.(v) of vertex v.
The worst-case of [Sy| is |Sjy||, or [],cy |T'(y)| according to equation 7.26.
Recall that average adjacency can be found by dividing the number of edges
by the number of vertices in a graph (equation A.1).
According to equation 7.35, the running time of algorithm 7.1 is:

O(Algorithm 7.1) = O(|Q]) x O(loop) =
= 0(|Q|) x (O(DEQUEUE) + O(|adj|) x O(EXTEND-PATH))

o(é&l)
o(wil)

= 0(|Q|) x (O(PEQUEUE) + x O(EXTEND-PATH))

(A7)

With the restriction in place, the queue size is limited to one adaptation
stack per node. Since there are at most |S| adaptations stacks, the upper limit
of |@Q] is equal to

O(IN| < 1S])
S O(IN| x Y x T

o) "

|Q] is equivalent to |Vg|, since Vs is also determined by the number of ad-
aptation stacks per node. We have seen in equations 7.25 and 7.27 that the
estimate of |S| is lower than its upper limit by a factor of |Y|. The estimate
average of |Q| is equal to

o(lef) = O(IN| x |S])
= O(|N| x TV
These results apply to both the Multi-Layer-Breadth-First and Multi-Layer-
k-Shortest-Path algorithm with restricted search space.

If we assume O(|A]) = O(|N| x |Y|), and use equation 7.12 as the estimate
of |V;] and |&|, we can expand equation A.7:

(A.9)

O(Algorithm 7.1) = O(|Q|) x (O(DEQUEUE) + 88]8;'; x O(EXTEND-PATH))
I
= O(N| x V] x TW)x
O(lA] + L)

(O(PEQUEUE) + x O(EXTEND-PATH))

O(IN| > [Y])
= O(|N| x |Y| x TPl x O(DEQUEUE)+

O((IN| x |Y| + |L|) x T™!) x O(EXTEND-PATH)
(A.10)

\175/

\176/

APPENDIX A. ALGORITHM TIME COMPLEXITY

The only operations in the path extension subroutine (algorithm 7.2) which
have a running time larger than O(1), are the operations on lines 6, 9 that
checks for duplicate tuples (vertex, stack) using R, and the operation on line
22 which checks the number of labels per layer (Lb). Both operations depend
if R and the labels can be sorted. If no sorting is possible, the running time is
O({(R)) = O(|Q]) and O((ib)) respectively. If sorting is possible, the running
time is O(log(|Q])) and O(log((Ib))) respectively.

O(EXTEND-PATH) = O(log(|Q]) + log({ib))) (A.11)

The original breadth first search algorithm can only deal with edge lengths
of 1 (We(e) =1 for all e). The advantage is that the DEQUEUE operation only
takes O(1), since the queue is sorted in order of path length. If we allow differ-
ent We(e), this function needs to be replaced with an EXTRACT MIN operation.
The time complexity of this operation becomes O(log(|Q])), provided that the
queue @ is sorted using a Fibonacci heap [pY].

O(DEQUEUE operation) = O(1) (A.12)
O(EXTRACT-MIN operation) = O(log(|Q])) (A.13)

The queue length |Q| highly depends on how quickly the flooding principle is
suppressed by the incompatibility check and duplicate stack check. The worst-
case is given in equation A.8.

If we assume We(e) = 1, O(EXTEND-PATH) = O(log(|Q]) (no labels), the
worst-case running time for algorithm 7.1 becomes:

O(Algorithm 7.1) = O(|N| x |¥| x TP) x O(DEQUEUE)+
O((IN| x |Y] + |L|) x T™!) x O(EXTEND-PATH)

= O(IN| x |Y| x TP x O(1)+
O((IN| x [¥] + |L]) x Ty x O(log(|QI))
~ O((IN| x [Y] + |L]) x TP} x O(log(IN| x [Y] x T

(A.14)

We can now calculate the worst-case running time of algorithm 7.1 for

A.5. RUNNING TIME OF MULTI-LAYER-K-SHORTEST-PATH

variable edge weights W, (e):

O(Algorithm 7.1) = O(|N| x |¥| x TP!) x O(DEQUEUE)+
O((IN| x |¥| + |L]) x TP'1) x O(EXTEND-PATH)
O(IN] x |Y] x TPy x O(log(|Q))+
O((IN] x [Y] + L) x T1) x O(log(|Q]) + log((ib)))
O(
o(
(

ZZ

()

(IN]x Y]+ |LI) x TH) x O(log(|QI) + log((16)))
(INTx Y]+ L) x TPT)x

(

O((log(IN1) +log(|¥]) + Y] - 1og(T)) + log({1b)))
(A.15)

Even so, the estimated average running time of algorithm 7.1 is:

O(Algorithm 7.1) = O(]|Q|) x O(DEQUEUE)+
L
Y
= 0(|QI) x O(log(Q))+

50 X T) x O(1og(Q) + Iog((19)
= O(IN| x TP x O(log(|N| x T™h)+

(
O((IN] + =) x TPy x O(EXTEND-PATH)

(

(

O((IN| +

O((V] + |')L,'|> < T) x O(log(IN] x T + log({15)))
1)

O(INI+ 13

) x T % (log(|N| x TV + log(({Ib))))
(A.16)

A.5 Running Time of Multi-Layer-k-Shortest-Path

The running time of Multi-Layer-k-Shortest-Path (algorithm 7.4) is roughly
comparable to the running time of Multi-Layer-Breadth-First (algorithm 7.1)
as it is basically the same algorithm.

The only difference in the running time is caused by two factors. First,
Multi-Layer-k-Shortest-Path reduces the search space by using the estimate
path length. This reduces the average running time by aborting path that are
unfeasible due to their length. At the same time, this change increases the

\177/

\178/

APPENDIX A. ALGORITHM TIME COMPLEXITY

worst-case running time, because in the worst-case, no paths are aborted, and
the running of Dijkstra’s algorithm adds to the running time.

The second difference stems between the two algorithms from the fact
that Multi-Layer-k-Shortest-Path operates on a larger graph than Multi-Layer-
Breadth-First. While this may seem worse in terms of number of vertices, the
running time is nearly equivalent in terms of devices and technology layers.
In fact, any algorithm running on G is slightly faster than the equivalent
algorithm running on G;. The reason is that G4 contains more intrinsic in-
formation. For example, the loop check (lines 6-9 in algorithm 7.1, line 6 in
algorithm 7.5) is more expensive in G; than in Gy, since it has to search through
a list of possible adaptations in G; while the adaptation function is immedi-
ately obvious from the vertex in Gs. So, while the creation of the graph Gy is
more computational intensive than the creation of the graph G, this drawback
is a benefit when running the algorithm. Finally, G5 may be slightly more ef-
ficient, since G4 can collapse multiple links on the same edge, while this is not
done in G;. Again, this advantage during the algorithm running time is offset
by a disadvantage when generating the graph G.

The worst-case running time of Multi-Layer-k-Shortest-Path is:

O(Algorithm 7.4) = O(|Vs|) + O((Q)]) x (O(EXTRACT-MIN)+

. (A.17)
O(Jadj|) x (O(FEASIBLE) + O(ENQUEUE)))

If again, we assume that O(|{Q)|) = O(|Vs]) < |N|x|S], and further assume
O(EXTRACT-MIN) = O(log(Q)), O(ENQUEUE) = O(1), and O(FEASIBLE) =
O({p)]) = O(log(Vs)) then we can specify the worst-case running time for
MULTI-LAYER-K-SHORTEST-PATH.

O(Algorithm 7.4) = O(|Vs]) + O(|Vs]) x (O(log(Vs))+

513 (O(log(v)) + (1))

[Val) x Olog(Vs)) + O(I€:]) x O(log(V4)
(IVal + [€:]) x Tog(V2))

(INT > (P TR (IN] < Y]+ L)) x T
log(IN| x [¥] x T1))

~ O((IN| x |Y| + |L]) x T¥! x log(IN| x |Y| x TI¥1))
(A.18)

S

Q

S © S a

(
(
(
(

The estimated average running time for MULTI-LAYER-K-SHORTEST-PATH

A.5. RUNNING TIME OF MULTI-LAYER-K-SHORTEST-PATH

is
O(Algorithm 7.4) = O((|Vs| + |Es]) x log(Vs))

= O((IN] x TP+ (IN| + |3L}||) x TN s log(IN| x TPN)
|Z|

~ O((IN|+ 1) x TP x log(IN| x TP1))

V|
(A.19)

\179/

APPENDIX A. ALGORITHM TIME COMPLEXITY

Reference names are prefixed according to type. a means author (self-references),
o means other publication (not referred to in this thesis), p means (scientific)
publications, s means standards, ¢ mean technical reports and v means urls.

B.1 List of Author’'s Publications

B.1.1 Covered in this Thesis

[al] F. Dijkstra and C. de Laat. Optical Exchanges. In GRIDNETS confer-
ence proceedings Oct. 2004. URL http://www.broadnets.org/2004/
workshop-papers/Gridnets/DijkstraF.pdf.

[a2] C. de Laat, F. Dijkstra, and J. Mambretti. Grid Network Services In-
frastructure. In F. Travostino, J. Mambretti, and G. Karmous-Edwards
(editors), Grid Networks: Enabling Grids with Advanced Communica-
tion Technology, chapter 14, pages 277-292. Wiley, 2006. ISBN 978-0-
470-01748-7.

[a3] J. van der Ham, F. Dijkstra, F. Travostino, H. M. Andree, and
C. de Laat. Using RDF to describe networks. In Future Generation
Computer Systems 22(8), Oct. 2006. doi:10.1016/j.future.2006.03.022.

[a4] F. Dijkstra, B. van Oudenaarde, B. Andree, L. Gommans, P. Grosso,
J. van der Ham, K. Koymans, and C. de Laat. A Terminology for
Control Models at Optical and Internet Exchanges. In A. K. Bandara
and M. Burgess (editors), Inter-Domain Management — First Inter-
national Conference on Autonomous Infrastructure, Management and

Bibliography

http://www.broadnets.org/2004/workshop-papers/Gridnets/DijkstraF.pdf
http://www.broadnets.org/2004/workshop-papers/Gridnets/DijkstraF.pdf
http://dx.doi.org/10.1016/j.future.2006.03.022

\ 182/

BIBLIOGRAPHY

[a8]

[a9)]

[10]

[al1]

Security (AIMS 2007) (LNCS 4543). Oslo, Norway, Jun. 2007.
doi:10.1007/978-3-540-72986-0_5. URL http://www.springerlink.
com/content/nq2613223k530005/fulltext . pdf.

F. Dijkstra, B. Andree, J. van der Ham, K. Koymans, and
C. de Laat. Going in Loops to reach wyour Goal — Multi-
Layer Path Finding With NDL, at SuperComputing 2007. Reno,
USA, Sep. 2007. URL http://staff.science.uva.nl/~fdijkstr/
presentations/Going-in-Loops.pdf.

P. Grosso, J. van der Ham, F. Dijkstra, and C. de Laat. Semantic Mod-
els for Optical Hybrid Networks — Lightpaths Across Domain Boundar-
ies. In Proceedings of eChallenges 2007 The Hague, The Netherlands,
Oct. 2007. URL http://www.science.uva.nl/~vdham/research/
publications/0710-SemanticModels. pdf.

F. Dijkstra, B. Andree, K. Koymans, and J. van der Ham. Intro-
duction to ITU-T Recommendation G.805. Technical Report UVA-
SNE-2007-001, Unversiteit van Amsterdam, Dec. 2007. URL http:
//www.science.uva.nl/sne/reports/.

F. Dijkstra, J. van der Ham, P. Grosso, and C. de Laat. Path
Finding Using the Multi-Layer Network Description Language.
In TERENA Networking Conference Bruges, Belgium, May 2008.
URL http://tnc2008.terena.org/schedule/presentations/show.
php?pres_id=26.

J. van der Ham, F. Dijkstra, P. Grosso, R. van der Pol, A. Toonk,
and C. de Laat. A Distributed Topology Information Sys-
tem for Optical Networks Based on the Semantic Web. In
Journal of Optical Switching and Networking 5(2-3), Jun. 2008.
d0i:10.1016/j.0sn.2008.01.006. URL http://staff.science.uva.nl/
~vdham/research/publications/0703-ApplicationsQfNDL.pdf.

F. Dijkstra, B. Andree, K. Koymans, J. van der Ham, P. Grosso,
and C. de Laat. A Multi-Layer Network Model Based on
ITU-T G.805. In Computer Networks 52(10), Jul. 2008.
d0i:10.1016/j.comnet.2008.02.013. URL http://staff.science.uva.
nl/~fdijkstr/publications/G805_Multilayer_Model.pdf.

F. Dijkstra. Motivation for the Use of Lightpaths. Technical Re-
port UVA-SNE-2008-03, Universiteit van Amsterdam, Dec. 2008. URL

http://www.science.uva.nl/sne/reports/.

http://dx.doi.org/10.1007/978-3-540-72986-0_5
http://www.springerlink.com/content/nq2613223k530005/fulltext.pdf
http://www.springerlink.com/content/nq2613223k530005/fulltext.pdf
http://staff.science.uva.nl/~fdijkstr/presentations/Going-in-Loops.pdf
http://staff.science.uva.nl/~fdijkstr/presentations/Going-in-Loops.pdf
http://www.science.uva.nl/~vdham/research/publications/0710-SemanticModels.pdf
http://www.science.uva.nl/~vdham/research/publications/0710-SemanticModels.pdf
http://www.science.uva.nl/sne/reports/
http://www.science.uva.nl/sne/reports/
http://tnc2008.terena.org/schedule/presentations/show.php?pres_id=26
http://tnc2008.terena.org/schedule/presentations/show.php?pres_id=26
http://dx.doi.org/10.1016/j.osn.2008.01.006
http://staff.science.uva.nl/~vdham/research/publications/0703-ApplicationsOfNDL.pdf
http://staff.science.uva.nl/~vdham/research/publications/0703-ApplicationsOfNDL.pdf
http://dx.doi.org/10.1016/j.comnet.2008.02.013
http://staff.science.uva.nl/~fdijkstr/publications/G805_Multilayer_Model.pdf
http://staff.science.uva.nl/~fdijkstr/publications/G805_Multilayer_Model.pdf
http://www.science.uva.nl/sne/reports/

[al2]

[al13]

B.1. LiST OF AUTHOR’S PUBLICATIONS

F. Kuipers and F. Dijkstra. Path Selection in Multi-Layer
Networks. In Computer Communications 32(1), Jan. 2009.

d0i:10.1016/j.comcom.2008.09.026. URL http://staff.science.
uva.nl/~fdijkstr/publications/multilayer-pathselection.pdf.

F. Dijkstra, J. van der Ham, P. Grosso, and C. de Laat.
A Path Finding Implementation for Multi-Layer Networks. In
Future Generation Computer Systems 25(2), Feb. 2009.
do0i:10.1016/j.future.2008.07.002. URL http://staff.science.uva.
nl/~fdijkstr/publications/ndl-pathfinding.pdf.

B.1.2 Other Publications

[o01]

W. Weiss, J. Vollbrecht, D. Spence, D. Rago, C. de Laat, F. Dijk-
stra, and L. Gommans. Framework for Binding Access Con-
trol to COPS Provisioning. Internet-Draft (expired) draft-ietf-rap-
access-bind, IETF, Apr. 2002. URL http://tools.ietf.org/html/
draft-ietf-rap-access—bind.

F. Dijkstra and D. Groep. Building a Multi-Domain Grid. In ERCIM
news 59, Oct. 2004. URL http://wuw.ercim.org/publication/
Ercim_News/enwb59/dijkstra.html.

B. van Oudenaarde, Z. Hendrikse, F. Dijkstra, L. Gommans, C. de Laat,
and R. Meijer. Dynamic paths in multi-domain optical networks for
grids. In Future Generation Computer Systems 21(4), Apr. 2005.
doi:10.1016/j.future.2004.10.008.

C. Meirosu, P. Golonka, A. Hirstius, S. Stancu, B. Dobinson, E. Ra-
dius, A. Antony, F. Dijkstra, J. Blom, and C. de Laat. Native
10 Gigabit Ethernet Experiments between Amsterdam and Geneva.
In Future Generation Computer Systems 21(4), Apr. 2005.
doi:10.1016/j.future.2004.10.003.

R. L. Grossman, Y. Gu, X. Hong, A. Antony, J. Blom, F. Dijk-
stra, and C. de Laat. Teraflows over Gigabit WANs with UDT.
In Future Generation Computer Systems 21(4), Apr. 2005.
doi:10.1016/j.future.2004.10.007.

L. Gommans, F. Dijkstra, C. de Laat, A. Taal, A. Wan, B. van
Oudenaarde, T. Lavian, I. Monga, and F. Travostino. Applic-
ations drive secure lightpath creation across heterogeneous do-

\183/

http://dx.doi.org/10.1016/j.comcom.2008.09.026
http://staff.science.uva.nl/~fdijkstr/publications/multilayer-pathselection.pdf
http://staff.science.uva.nl/~fdijkstr/publications/multilayer-pathselection.pdf
http://dx.doi.org/10.1016/j.future.2008.07.002
http://staff.science.uva.nl/~fdijkstr/publications/ndl-pathfinding.pdf
http://staff.science.uva.nl/~fdijkstr/publications/ndl-pathfinding.pdf
http://tools.ietf.org/html/draft-ietf-rap-access-bind
http://tools.ietf.org/html/draft-ietf-rap-access-bind
http://www.ercim.org/publication/Ercim_News/enw59/dijkstra.html
http://www.ercim.org/publication/Ercim_News/enw59/dijkstra.html
http://dx.doi.org/10.1016/j.future.2004.10.008
http://dx.doi.org/10.1016/j.future.2004.10.003
http://dx.doi.org/10.1016/j.future.2004.10.007

\ 184/

BIBLIOGRAPHY

[p2]

[p3]

[p4]

mains. In IEEE Communications Magazine 44(3), Mar. 2006.
doi:10.1109/MCOM.2006.1607872.

F. Dijkstra, J. van der Ham, and C. de Laat. Using Zero Configuration
Technology for IP addressing in Optical Networks. In Future Generation
Computer Systems 22(8), Oct. 2006. doi:10.1016/j.future.2006.03.021.

L. Xu, F. Dijkstra, D. Marchal, A. Taal, and C. de Laat. A Declarat-
e Approach to Multi-Layer Path Finding Based on Semantic Network
Descriptions. In 13th Conference on Optical Network Design and Model-
ing Braunschweig, Germany, Feb. 2009. URL http://staff.science.
uva.nl/~fdijkstr/publications/declarative_path_finding.pdf.

F. Dijkstra, J. van der Ham, and R. van der Pol. Network Description
Tools and Standards. In ERCIM news 77, Apr. 2009. URL http:
//ercim-news.ercim.org/content/view/565/777/.

R. van der Pol and F. Dijkstra. Network and Capacity Planning in
SURFnet6. In TERENA Networking Conference Malaga, Spain, Jun.
2009. URL http://tnc2009.terena.org/schedule/presentations/
show.php?pres_1id=26.

References to Scientific Publications

A.-L. Barabasi and R. Albert. Emergence of scaling in
random networks. In Science 286(5439), Oct. 1999.
doi:10.1126 /science.286.5439.509. URL http://www.sciencemag.
org/cgi/reprint/286/5439/509.pdf.

C. Barrett, R. Jacob, and M. Marathe. Formal-Language-Constrained
Path Problems. In SIAM Journal on Computing 30(3), 2000. ISSN
0097-5397. doi:10.1137/S0097539798337716. URL http://portal.
acm.org/citation.cfm?id=586846.586970.

R. Bellman. On a Routing Problem. In Quarterly of Applied Mathem-
atics 16(1), 1958. URL https://rand.org/pubs/papers/P1000/.

K. Blyth and A. Cook. Designing a GPRS roaming exchange service. In
IEEE Second International Conference on 3G Mobile Communications
Technologies Mar. 2001.

http://dx.doi.org/10.1109/MCOM.2006.1607872
http://dx.doi.org/10.1016/j.future.2006.03.021
http://staff.science.uva.nl/~fdijkstr/publications/declarative_path_finding.pdf
http://staff.science.uva.nl/~fdijkstr/publications/declarative_path_finding.pdf
http://ercim-news.ercim.org/content/view/565/777/
http://ercim-news.ercim.org/content/view/565/777/
http://tnc2009.terena.org/schedule/presentations/show.php?pres_id=26
http://tnc2009.terena.org/schedule/presentations/show.php?pres_id=26
http://dx.doi.org/10.1126/science.286.5439.509
http://www.sciencemag.org/cgi/reprint/286/5439/509.pdf
http://www.sciencemag.org/cgi/reprint/286/5439/509.pdf
http://dx.doi.org/10.1137/S0097539798337716
http://portal.acm.org/citation.cfm?id=586846.586970
http://portal.acm.org/citation.cfm?id=586846.586970
https://rand.org/pubs/papers/P1000/

[p5]

[p6]

[p7]

[p8]

[pY]

B.2. REFERENCES TO SCIENTIFIC PUBLICATIONS

X. Cao, V. Anand, and C. Qiao. Waveband Switching in Op-
tical Networks. In IEEE Communications Magazine Apr. 2003.
doi:10.1109/MCOM.2003.1193983.

B. Chinoy and T. Salo. Internet Exchanges: Policy-Driven FEvolu-
tion. In Harvard Workshop On Co-Ordination Of The Internet John
F. Kennedy School Of Government, Cambridge, MA, USA, Sep. 1996.
URL http://www.caida.org/publications/papers/1996/nap/nap.
html.

I. Chlamtac, A. Ganz, and G. Karmi. Lightpath communications: an
approach to high bandwidth optical WANs. In IEEE Transactions on
Communications 40(7), Jul. 1992. doi:10.1109/26.153361. URL http:
//ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=153361.

I. Chlamtac, A. Faragd, and T. Zhang. Lightpath (Wavelength) Rout-
ing in Large WDM Networks. In IEEE Journal on Selected Areas in
Communications 14(5), Jun. 1996. doi:19.1109/49.510914.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduc-
tion to Algorithms. MIT Press, second edition edition, 2001. ISBN
978-0-262-03293-7. URL http://mitpress.mit.edu/catalog/item/
default.asp?ttype=2&tid=8570.

T. DeFanti, C. de Laat, J. Mambretti, K. Neggers, and B. St.Arnaud.
TransLight: a global-scale LambdaGrid for e-science. In Communica-
tions of the ACM 46(11), Nov. 2003. doi:10.1145/948383.948407.

E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
In Numerische Mathematik 1, 1959.

L. R. Ford and D. Fulkerson. Flows in Networks. Princeton University
Press, 1962. ISBN 978-0-691079622.

P. Grosso, P. de Boer, and L. Winkler. The network in-

frastructure at iGrid2005: Lambda mnetworking in action. In
Future Generation Computer Systems 22(8), Oct. 2006.
doi:10.1016/j.future.2006.03.013. URL http://linkinghub.

elsevier.com/retrieve/pii/S0167739X06000343.

J. van der Ham, P. Grosso, and C. de Laat. Semantics for
Hybrid Networks Using the Network Description Language,
at SuperComputing 2006. Tampa, USA, Mar. 2006. URL

\185/

http://dx.doi.org/10.1109/MCOM.2003.1193983
http://www.caida.org/publications/papers/1996/nap/nap.html
http://www.caida.org/publications/papers/1996/nap/nap.html
http://dx.doi.org/10.1109/26.153361
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=153361
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=153361
http://dx.doi.org/19.1109/49.510914
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8570
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8570
http://dx.doi.org/10.1145/948383.948407
http://dx.doi.org/10.1016/j.future.2006.03.013
http://linkinghub.elsevier.com/retrieve/pii/S0167739X06000343
http://linkinghub.elsevier.com/retrieve/pii/S0167739X06000343

\ 186/

BIBLIOGRAPHY

[p20]

[p23]

http://staff.science.uva.nl/~vdham/research/publications/
0603-NetworkDescriptionLanguage.pdf.

J. van der Ham, P. Grosso, R. van der Pol, A. Toonk, and C. de Laat.
Using the Network Description Language in Optical Networks. In Tenth
IFIP/IEEE Symposium on Integrated Network Management Munich,
Germany, May 2007. URL http://staff.science.uva.nl/~vdham/
research/publications/0606-UsingNDLInOpticalNetworks.pdf.

J. van der Ham. A Semantic Model for Complex Computer Networks:
The Network Description Language. Ph.D. thesis, Universiteit van Am-
sterdam, Kruislaan 403, 2009.

P. Holme and B. J. Kim. Growing scale-free metworks with tun-
able clustering. In Physical Review E 65(026107), Jan. 2002.
d0i:10.1103 /PhysRevE.65.026107. URL http://arxiv.org/abs/
cond-mat/0110452.

G. Huston. Interconnection, Peering, and Settlements. In Pro-
ceedings of Inet’99 Jun. 1999. URL http://www.isoc.org/inet99/
proceedings/le/le_1.htm.

F. A. Kuipers. Quality of Service Routing in the Internet: Theory, Com-
plexity and Algorithms. Ph.D. thesis, Delft University, Delft, The Neth-
erlands, Sep. 2004. URL http://www.nas.its.tudelft.nl/people/
Fernando/papers/PhDthesiskuipers.pdf.

F. A. Kuipers, T. Korkmaz, M. Krunz, and P. van Mieghem. Per-
formance evaluation of constraint-based path selection algorithms. In
IEEFE Network 18(5), 2004. doi:10.1109/MNET.2004.1337731. URL
http://ieeexplore.ieee.org/iel5/65/29508/01337731.pdf.

J. H. Laarhuis. Multichannel Interconnection in All-Optical Networks.
Ph.D. thesis, Centre for Telematics and Information Technology, Sep.
1995.

C. de Laat and J. Blom. User-Level Performance Monitoring Pro-
gramme. In TERENA Network Conference 2000 Lisbon, Portugal,
May 2000. URL http://www.terena.org/events/archive/tnc2000/
proceedings/8B/8b4 . ppt.

C. de Laat, E. Radius, and S. Wallace. The Rationale of the Current
Optical Networking Initiatives. In Future Generation Computer

http://staff.science.uva.nl/~vdham/research/publications/0603-NetworkDescriptionLanguage.pdf
http://staff.science.uva.nl/~vdham/research/publications/0603-NetworkDescriptionLanguage.pdf
http://staff.science.uva.nl/~vdham/research/publications/0606-UsingNDLInOpticalNetworks.pdf
http://staff.science.uva.nl/~vdham/research/publications/0606-UsingNDLInOpticalNetworks.pdf
http://dx.doi.org/10.1103/PhysRevE.65.026107
http://arxiv.org/abs/cond-mat/0110452
http://arxiv.org/abs/cond-mat/0110452
http://www.isoc.org/inet99/proceedings/1e/1e_1.htm
http://www.isoc.org/inet99/proceedings/1e/1e_1.htm
http://www.nas.its.tudelft.nl/people/Fernando/papers/PhDthesiskuipers.pdf
http://www.nas.its.tudelft.nl/people/Fernando/papers/PhDthesiskuipers.pdf
http://dx.doi.org/10.1109/MNET.2004.1337731
http://ieeexplore.ieee.org/iel5/65/29508/01337731.pdf
http://www.terena.org/events/archive/tnc2000/proceedings/8B/8b4.ppt
http://www.terena.org/events/archive/tnc2000/proceedings/8B/8b4.ppt

B.2. REFERENCES TO SCIENTIFIC PUBLICATIONS

Systems 19(6), Aug. 2003. doi:10.1016/S0167-739X(03)00077-
3. URL http://www.sciencedirect.com/science/article/
B6V06-48V83MF-5/2/d8aac1d72ec497da8c83c4al07fdfecOc.

T. Lehman, J. Sobieski, and B. Jabbari. DRAGON: A Framework for
Service Provisioning in Heterogeneous Grid Networks. In IEEE Com-
munications Magazine 44(3), Mar. 2006. URL http://ieeexplore.
ieee.org/iel5/35/33764/01607870.pdf.

O. H. Martin. The ongoing evolution from packet based networks
to hybrid networks in research € education networks. In XXth An-
niwersary International Symposium on Nuclear FElectronics € Com-
puting (NEC) Sep. 2005. URL http://www.jinr.ru/NEC/NEC-2005/
proceeding2005/Martin.doc.

P. van Mieghem and F. A. Kuipers. On the complezity of QoS rout-
ing. In Computer Communications 26(4), 2003. doi:10.1016/S0140-
3664(02)00156-1.

I. Nakagawa, H. Esaki, Y. Kikuchi, and K. Nagami. Design of Next
Generation IX Using MPLS Technology. In IPSJ Journal Nov. 2002.

W. Norton. Internet Service Providers and Peering. In Proceedings of
NANOG 19 May 2001.

R. van der Pol, A. Toonk, and C. de Laat. Hybrid Local Area Networks.
In TERENA Network Conference 2006 May 2006. URL http://www.
terena.nl/events/tnc2006/core/getfile.php?file_id=749.

R. van der Pol and A. Toonk. Lightpath Planning and Monitoring
in SURFnet6 and NetherLight. In TERENA Network Conference
2007 Lynby, Denmark, May 2007. URL https://noc.sara.nl/nrg/
publications/LightpathPlanningAndMonitoring.pdf.

R. van der Pol and A. Toonk. Lightpath Planning and Monit-
oring. In eChallenges Conference 2007 The Hague, The Nether-
landsH, Oct. 2007. URL https://noc.sara.nl/nrg/publications/
E-Challenges-v1.4.pdf.

C. Qiao and M. Yoo. Optical burst switching (OBS) — a new paradigm
for an Optical Internet. In Journal of High Speed Networks 8(1),
Mar. 1999. URL http://iospress.metapress.com/link.asp?id=
Or3ygmf09b6vev8k.

\ 187/

http://dx.doi.org/10.1016/S0167-739X(03)00077-3
http://dx.doi.org/10.1016/S0167-739X(03)00077-3
http://www.sciencedirect.com/science/article/B6V06-48V83MF-5/2/d8aac1d72ec497da8c83c4a07fdfec0c
http://www.sciencedirect.com/science/article/B6V06-48V83MF-5/2/d8aac1d72ec497da8c83c4a07fdfec0c
http://ieeexplore.ieee.org/iel5/35/33764/01607870.pdf
http://ieeexplore.ieee.org/iel5/35/33764/01607870.pdf
http://www.jinr.ru/NEC/NEC-2005/proceeding2005/Martin.doc
http://www.jinr.ru/NEC/NEC-2005/proceeding2005/Martin.doc
http://dx.doi.org/10.1016/S0140-3664(02)00156-1
http://dx.doi.org/10.1016/S0140-3664(02)00156-1
http://www.terena.nl/events/tnc2006/core/getfile.php?file_id=749
http://www.terena.nl/events/tnc2006/core/getfile.php?file_id=749
https://noc.sara.nl/nrg/publications/LightpathPlanningAndMonitoring.pdf
https://noc.sara.nl/nrg/publications/LightpathPlanningAndMonitoring.pdf
https://noc.sara.nl/nrg/publications/E-Challenges-v1.4.pdf
https://noc.sara.nl/nrg/publications/E-Challenges-v1.4.pdf
http://iospress.metapress.com/link.asp?id=0r3ygmf09b6vev8k
http://iospress.metapress.com/link.asp?id=0r3ygmf09b6vev8k

188/

BIBLIOGRAPHY

[p33]

[p34]

N. Roosen. Fuault Detection and Isolation on Transport Networks.
Master’s thesis, University of Amsterdam, Sep. 2008. URL http:
//www.science.uva.nl/research/sne/files/ntroosen-1mon.pdf.

A. Rushton, R. Spencer, M. Strong, R. Campbell, S. Casey, R. Fender,
M. Garrett, J. Miller-Jones, G. Pooley, C. Reynolds, A. Szomoru,
V. Tudose, and Z. Paragi. First e-VLBI observations of GRS 1915+105.
In Monthly Notices of the Royal Astronomical Society: Letters 374,
2007. doi:10.1111/j.1745-3933.2006.00262.x. URL http://arxiv.org/
abs/astro-ph/0611049.

A. A. M. Saleh and J. M. Simmons. FEvolution Toward the Next-
Generation Core Optical Network. In Journal of Lightwave Technology
24(9), Sep. 2006. doi:10.1109/JLT.2006.880608.

L. L. Smarr, A. A. Chien, T. A. DeFanti, J. Leigh, and P. M. Papado-
poulos. The OptIPuter. In Communications of the ACM 46(11),
Nov. 2006. doi:10.1145/948383.948410. URL http://doi.acm.org/
10.1145/948383.948410.

L. L. Smarr. Riding the Light Towards New Science. In Nature Photon-
ics 1(3), Mar. 2007. doi:10.1038/nphoton.2007.6. URL http://www.
nature.com/nphoton/journal/v1/n3/full/nphoton.2007.6.html.

A. Szomoru, A. Biggs, M. Garrett, H. J. van Langevelde, F. Ol-
non, Z. Paragi, S. Parsley, S. Pogrebenko, and C. Reynolds. From
truck to optical fibre: the coming-of-age of eVLBI. In R. Bachiller,
F. Colomer, J. Desmurs, and P. de Vicente (editors), Proceedings of
the 7th Furopean VLBI Network Symposium Joint Institute for VLBI
in Europe (JIVE), Toledo, Spain, Oct. 2004. URL http://www.oan.
es/evn2004/WebPage/ASzomoru. pdf.

S. Tomic and A. Jukan. GMPLS-Based Exchange Points: Architecture
and Functionalilty. In K. Sivalingam and S. Subramaniam (editors),
Emerging Optical Network Technologies Architectures, Protocols and
Performance, chapter 8. Springer, Oct. 2004. ISBN 978-0-387-22582-X.

P. Torab, B. Jabbari, Q. Xu, S. Gong, X. Yang, T. Lehman, C. Tracy,
and J. Sobieski. On Cooperative Inter-Domain Path Computation. In
Proceedings of the 11th IEEE Symposium on Computers and Com-
munications IEEE Computer Society, Sardinia, Italy, Jun. 2006.
doi:10.1109/ISCC.2006.109. URL http://cnl.gmu.edu/bjabbari/
payam.pdf.

http://www.science.uva.nl/research/sne/files/ntroosen-lmon.pdf
http://www.science.uva.nl/research/sne/files/ntroosen-lmon.pdf
http://dx.doi.org/10.1111/j.1745-3933.2006.00262.x
http://arxiv.org/abs/astro-ph/0611049
http://arxiv.org/abs/astro-ph/0611049
http://dx.doi.org/10.1109/JLT.2006.880608
http://dx.doi.org/10.1145/948383.948410
http://doi.acm.org/10.1145/948383.948410
http://doi.acm.org/10.1145/948383.948410
http://dx.doi.org/10.1038/nphoton.2007.6
http://www.nature.com/nphoton/journal/v1/n3/full/nphoton.2007.6.html
http://www.nature.com/nphoton/journal/v1/n3/full/nphoton.2007.6.html
http://www.oan.es/evn2004/WebPage/ASzomoru.pdf
http://www.oan.es/evn2004/WebPage/ASzomoru.pdf
http://dx.doi.org/10.1109/ISCC.2006.109
http://cnl.gmu.edu/bjabbari/payam.pdf
http://cnl.gmu.edu/bjabbari/payam.pdf

[p41]

[p42]

[s2]

[s3]

B.3. TECHNICAL REFERENCES

F. Travostino. Using the Semantic Web to Automate the Operation of
a Hybrid Internetwork. In 2nd International Conference on Broadband
Networks 2. IEEE, Oct. 2005. doi:10.1109/ICBN.2005.1589769.

V. Tudose, R. Fender, M. Garrett, J. Miller-Jones, Z. Paragi, R. Spen-
cer, G. Pooley, M. van der Klis, and A. Szomoru. First e-VLBI obser-
vations of Cygnus X-3. In Monthly Notices of the Royal Astronomical
Society: Letters 375, Feb. 2007. doi:10.1111/j.1745-3933.2006.00264.x.
URL http://arxiv.org/abs/astro-ph/0611054.

Technical References

Normative References (Standards)

Synchronous Optical Network (SONET) - Basic Description including
Multiplex Structure, Rates, and Formats. Standard T1.105, American
National Standards Institute (ANSI), 2001. URL http://webstore.
ansi.org/RecordDetail .aspx?sku=T1.105-2001.

CIM Network. Standard, Distributed Management Task Force (DMTF),
Aug. 2007. URL http://wuw.dmtf.org/standards/cim/cim_schema_
v216/CIM_Network.pdf.

Virtual Bridged Local Area Networks. IEEE Standard 802.1Q,
IEEE, Dec. 2005. URL http://standards.ieee.org/getieeed02/
download/802.1Q-2005.pdf.

Provider Bridges. TEEE Standard 802.1ad, IEEE, May 2006. URL
http://www.ieee802.0rg/1/pages/802.1ad.html.

Provider Backbone Bridge Traffic Engineering. IEEE Draft 802.1Qay,
IEEE, 2007. URL http://www.ieee802.0rg/1/pages/802.1lay.html.

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
access method and physical layer specifications. IEEE Standard 802.3,
IEEE, Dec. 2005. URL http://standards.ieee.org/getieeed02/
download/802.3-2005_sectiond.pdf.

D. Oran. OSI IS-1S Intra-domain Routing Protocol. RFC 1142 (Inform-
ational), Feb. 1990. URL http://www.ietf.org/rfc/rfcl142.txt.

W. Simpson. PPP in HDLC-like Framing. RFC 1662 (Standard), Jul.
1994. URL http://www.ietf.org/rfc/rfcl662.txt.

189 /

http://dx.doi.org/10.1109/ICBN.2005.1589769
http://dx.doi.org/10.1111/j.1745-3933.2006.00264.x
http://arxiv.org/abs/astro-ph/0611054
http://webstore.ansi.org/RecordDetail.aspx?sku=T1.105-2001
http://webstore.ansi.org/RecordDetail.aspx?sku=T1.105-2001
http://www.dmtf.org/standards/cim/cim_schema_v216/CIM_Network.pdf
http://www.dmtf.org/standards/cim/cim_schema_v216/CIM_Network.pdf
http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf
http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf
http://www.ieee802.org/1/pages/802.1ad.html
http://www.ieee802.org/1/pages/802.1ay.html
http://standards.ieee.org/getieee802/download/802.3-2005_section4.pdf
http://standards.ieee.org/getieee802/download/802.3-2005_section4.pdf
http://www.ietf.org/rfc/rfc1142.txt
http://www.ietf.org/rfc/rfc1662.txt

\190/

BIBLIOGRAPHY

[s9]

[s10]

[s11]

[s12]

[s13]

[s14]

[s15]

[s16]

[s17]

[s18]

[s19]

J. Chapman, D. Coli, A. Harvey, B. Jensen, and K. Rowett. PPP Net-
work Control Protocol for LAN Extension. RFC 1841 (Informational),
Sep. 1995. URL http://www.ietf.org/rfc/rfcl841.txt.

J. Moy. OSPF Version 2. RFC 2328 (Standard), Apr. 1998. URL
http://www.ietf.org/rfc/rfc2328.txt.

G. Malkin. RIP Version 2. RFC 2453 (Standard), Nov. 1998. URL
http://www.ietf.org/rfc/rfc2453. txt.

S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Spe-
cification. RFC 2460 (Draft Standard), Dec. 1998. URL http:
//www.ietf.org/rfc/rfc2460.txt.

A. Malis and W. Simpson. PPP over SONET/SDH. RFC 2615
(Proposed Standard), Jun. 1999. URL http://www.ietf.org/rfc/
rfc2615.txt.

C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence. Gen-
eric AAA Architecture. RFC 2903 (Experimental), Aug. 2000. URL
http://www.ietf.org/rfc/rfc2903. txt.

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching
Architecture. RFC 3031 (Proposed Standard), Jan. 2001. URL http:
//www.ietf.org/rfc/rfc3031.txt.

A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn,
S. Herzog, A. Huynh, M. Carlson, J. Perry, and S. Waldbusser. Termin-
ology for Policy-Based Management. RFC 3198 (Informational), Nov.
2001. URL http://www.ietf.org/rfc/rfc3198.txt.

A. Pras and J. Schoenwaelder. On the Difference between Information
Models and Data Models. RFC 3444 (Informational), Jan. 2003. URL
http://www.ietf.org/rfc/rfc3444 . txt.

L. Berger. Generalized Multi-Protocol Label Switching (GMPLS) Sig-
naling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)
Extensions. RFC 3473 (Proposed Standard), Jan. 2003. URL http:
//www.ietf.org/rfc/rfc3473.txt.

M. Higashiyama, F. Baker, and T. Liao. Point-to-Point Protocol (PPP)
Bridging Control Protocol (BCP). RFC 3518 (Proposed Standard), Apr.
2003. URL http://www.ietf.org/rfc/rfc3518.txt.

http://www.ietf.org/rfc/rfc1841.txt
http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc2453.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2615.txt
http://www.ietf.org/rfc/rfc2615.txt
http://www.ietf.org/rfc/rfc2903.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3198.txt
http://www.ietf.org/rfc/rfc3444.txt
http://www.ietf.org/rfc/rfc3473.txt
http://www.ietf.org/rfc/rfc3473.txt
http://www.ietf.org/rfc/rfc3518.txt

[s20]

[s21]

[s22]

[s23]

[s24]

[s25]

[s26]

[s27]

[s28]

[s29]

B.3. TECHNICAL REFERENCES

E. Mannie. Generalized Multi-Protocol Label Switching (GMPLS) Ar-
chitecture. RFC 3945 (Proposed Standard), Oct. 2004. URL http:
//www.ietf . org/rfc/rfc3945.txt.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Iden-
tifier (URI): Generic Syntar. RFC 3986 (Standard), Jan. 2005. URL
http://www.ietf.org/rfc/rfc3986. txt.

K. Kompella, Y. Rekhter, and Ed. Routing Fxtensions in Support
of Generalized Multi-Protocol Label Switching (GMPLS). RFC 4202
(Proposed Standard), Oct. 2005. URL http://www.ietf.org/rfc/
rfc4202.txt.

K. Kompella and Y. Rekhter. OSPF Eztensions in Support of Gener-
alized Multi-Protocol Label Switching (GMPLS). RFC 4203 (Proposed
Standard), Oct. 2005. URL http://www.ietf.org/rfc/rfc4203.txt.

Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-
4). RFC 4271 (Draft Standard), Jan. 2006. URL http://www.ietf.
org/rfc/rfc4271.txt.

D. Meyer and K. Patel. BGP-4 Protocol Analysis. RFC 4274 (Inform-
ational), Jan. 2006. URL http://www.ietf.org/rfc/rfcd274.txt.

E. Mannie and D. Papadimitriou. Generalized Multi-Protocol La-
bel Switching (GMPLS) Extensions for Synchronous Optical Network
(SONET) and Synchronous Digital Hierarchy (SDH) Control. RFC
4606 (Proposed Standard), Aug. 2006. URL http://wuw.ietf.org/
rfc/rfcd606.txt.

A. Farrel, J.-P. Vasseur, and J. Ash. A Path Computation Element
(PCE)-Based Architecture. RFC 4655 (Informational), Aug. 2006. URL
http://www.ietf.org/rfc/rfc4655. txt.

A. Farrel, J.-P. Vasseur, and A. Ayyangar. A Framework for Inter-
Domain Multiprotocol Label Switching Traffic Engineering. RFC
4726 (Informational), Nov. 2006. URL http://www.ietf.org/rfc/
rfcd726.txt.

Q. Vohra and E. Chen. BGP Support for Four-octet AS Number Space.
RFC 4893 (Proposed Standard), May 2007. URL http://www.ietf.
org/rfc/rfc4893.txt.

191/

http://www.ietf.org/rfc/rfc3945.txt
http://www.ietf.org/rfc/rfc3945.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc4202.txt
http://www.ietf.org/rfc/rfc4202.txt
http://www.ietf.org/rfc/rfc4203.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc4274.txt
http://www.ietf.org/rfc/rfc4606.txt
http://www.ietf.org/rfc/rfc4606.txt
http://www.ietf.org/rfc/rfc4655.txt
http://www.ietf.org/rfc/rfc4726.txt
http://www.ietf.org/rfc/rfc4726.txt
http://www.ietf.org/rfc/rfc4893.txt
http://www.ietf.org/rfc/rfc4893.txt

\ 192/

BIBLIOGRAPHY

[s30]

[s31]

[s32]

[s34]

[s36]

[s37]

J. Vasseur, A. Ayyangar, and R. Zhang. A Per-Domain Path Compu-
tation Method for Establishing Inter-Domain Traffic Engineering (TE)
Label Switched Paths (LSPs). RFC 5152 (Proposed Standard), Feb.
2008. URL http://wuw.ietf.org/rfc/rfc5152.txt.

K. Shiomoto, D. Papadimitriou, J. L. Roux, M. Vigoureux, and
D. Brungard. Requirements for GMPLS-Based Multi-Region and Multi-
Layer Networks (MRN/MLN). RFC 5212 (Informational), Jul. 2008.
URL http://wuw.ietf.org/rfc/rfc5212.txt.

J. L. Roux and D. Papadimitriou. Fvaluation of Fxisting GMPLS Pro-
tocols against Multi-Layer and Multi-Region Networks (MLN/MRN).
RFC 5339 (Informational), Sep. 2008. URL http://www.ietf.org/
rfc/rfcb339.txt.

D. Papadimitriou, M. Vigoureux, K. Shiomoto, D. Brungard,
and J.-L. L. Roux. Generalized Multi-Protocol Label Switch-
ing (GMPLS) Protocol FEutensions for Multi-Layer and Multi-
Region Networks (MRN/MLN). Internet-Draft (Work In Pro-
gress) draft-ietf-ccamp-gmpls-mln-reqs, Internet Engineering
Task Force, Apr. 2009. URL http://tools.ietf.org/html/
draft-ietf-ccamp-gmpls—-mln-extensions.

M. Blanchet, F. Parent, and B. St.Arnaud. Optical BGP (OBGP):
InterAS lightpath provisioning. Internet-Draft (expired) draft-parent-
obgp, IETF, Mar. 2001. URL http://tools.ietf.org/html/
draft-parent-obgp.

T. Otani, H. Guo, K. Miyazaki, and D. Caviglia. Generalized Labels
of Lambda-Switching Capable Label Switching Routers (LSR). Internet-
Draft (Work In Progress) draft-otani-ccamp-gmpls-lambda-labels, In-
ternet Engineering Task Force, Feb. 2008. URL http://tools.ietf.
org/html/draft-otani-ccamp-gmpls-lambda-labels.

Optical interfaces for multichannel systems with optical amplifiers. Re-
commendation ITU-T G.692, International Telecommunication Union
(ITU), Oct. 1998. URL http://www.itu.int/rec/T-REC-G.692/.

Spectral grids for WDM applications: DWDM frequency grid. Re-
commendation ITU-T G.694.1, International Telecommunication Union
(ITU), Jun. 2002. URL http://wuw.itu.int/rec/T-REC-G.694.1/.

http://www.ietf.org/rfc/rfc5152.txt
http://www.ietf.org/rfc/rfc5212.txt
http://www.ietf.org/rfc/rfc5339.txt
http://www.ietf.org/rfc/rfc5339.txt
http://tools.ietf.org/html/draft-ietf-ccamp-gmpls-mln-extensions
http://tools.ietf.org/html/draft-ietf-ccamp-gmpls-mln-extensions
http://tools.ietf.org/html/draft-parent-obgp
http://tools.ietf.org/html/draft-parent-obgp
http://tools.ietf.org/html/draft-otani-ccamp-gmpls-lambda-labels
http://tools.ietf.org/html/draft-otani-ccamp-gmpls-lambda-labels
http://www.itu.int/rec/T-REC-G.692/
http://www.itu.int/rec/T-REC-G.694.1/

[s38]

[s39]

[s40]

[s41]

[s42]

[s43]

[s44]

[s45]

[s46]

[s47]

B.3. TECHNICAL REFERENCES

Spectral grids for WDM applications: CWDM wavelength grid. Re-
commendation ITU-T G.694.2, International Telecommunication Union
(ITU)7 Dec. 2003. URL http://www.itu.int/rec/T-REC-G.694.2/.

Interfaces for the Optical Transport Network (OTN). Recommendation
ITU-T G.709 / ITU-T Y.1331, International Telecommunication Union
(ITU), Mar. 2003. URL http://www.itu.int/rec/T-REC-G.709/.

Characteristics of synchronous digital hierarchy (SDH) equipment func-
tional blocks. Recommendation ITU-T G.783, International Telecom-
munication Union (ITU), Feb. 2004. URL http://www.itu.int/rec/
T-REC-G.783/.

Unified functional architecture of transport networks. Recommenda-
tion ITU-T G.800, International Telecommunication Union (ITU), Sep.
2007. URL http://wuw.itu.int/rec/T-REC-G.800/.

Generic functional architecture of transport networks. Recommenda-
tion ITU-T G.805, International Telecommunication Union (ITU), Mar.
2000. URL http://www.itu.int/rec/T-REC-G.805/.

Functional architecture of connectionless layer networks. Recommenda-
tion ITU-T G.809, International Telecommunication Union (ITU), Mar.
2003. URL http://www.itu.int/rec/T-REC-G.809/.

Architecture of Optical Transport Networks. Recommendation ITU-T
G.872, International Telecommunication Union (ITU), Nov. 2001. URL
http://www.itu.int/rec/T-REC-G.872/.

Generic framing procedure (GFP). Recommendation ITU-T G.7041 /
Y.1303, International Telecommunication Union (ITU), Dec. 2003. URL
http://www.itu.int/rec/T-REC-G.7041/.

Link capacity adjustment scheme (LCAS) for virtual concatenated sig-
nals. Recommendation ITU-T G.7042/Y.1305, International Telecom-
munication Union (ITU), Mar. 2006. URL http://www.itu.int/rec/
T-REC-G.7042/.

Virtual concatenation of plesiochronous digital hierarchy (PDH) sig-
nals. Recommendation ITU-T G.7043 / Y.1343, International Tele-
communication Union (ITU), Jul. 2004. URL http://www.itu.int/
rec/T-REC-G.7043/.

\193/

http://www.itu.int/rec/T-REC-G.694.2/
http://www.itu.int/rec/T-REC-G.709/
http://www.itu.int/rec/T-REC-G.783/
http://www.itu.int/rec/T-REC-G.783/
http://www.itu.int/rec/T-REC-G.800/
http://www.itu.int/rec/T-REC-G.805/
http://www.itu.int/rec/T-REC-G.809/
http://www.itu.int/rec/T-REC-G.872/
http://www.itu.int/rec/T-REC-G.7041/
http://www.itu.int/rec/T-REC-G.7042/
http://www.itu.int/rec/T-REC-G.7042/
http://www.itu.int/rec/T-REC-G. 7043/
http://www.itu.int/rec/T-REC-G. 7043/

1194/

BIBLIOGRAPHY

[s48]

[s49]

[s50]

[s51]

[s52]

[s53]

[s54]

[s55]

[s56]

[s57]

[s58]

B-ISDN asynchronous transfer mode functional characteristics. Re-
commendation ITU-T I1.150, International Telecommunication Union
(ITU), Feb. 1999. URL http://wuww.itu.int/rec/T-REC-1.150/.

B-ISDN service aspects. Recommendation I'TU-T 1.211, International
Telecommunication Union (ITU), Mar. 1993. URL http://wuw.itu.
int/rec/T-REC-I1.211/.

Considerations for a telecommunications management network. Re-
commendation ITU-T M.3013, International Telecommunication Union
(ITU), Feb. 2000. URL http://www.itu.int/rec/T-REC-M.3013/.

Introduction to CCITT Signalling System No. 7. Recommendation ITU-
T Q.700, International Telecommunication Union (ITU), Mar. 1993.
URL http://www.itu.int/rec/T-REC-Q.700/.

Signalling network functions and messages. Recommendation ITU-T
Q.704, International Telecommunication Union (ITU), Jul. 1996. URL
http://www.itu.int/rec/T-REC-Q.704/.

Open System Interconnection Model (OSI model). Recommendation
ISO 7498 / ITU-T X.200, International Standardisation Organisation
(ISO), Jul. 1994. URL http://www.itu.int/rec/T-REC-X.200/.

T. Ferrari, J. Austin, P. Clarke, M. Fletcher, M. Gaynor, R. Hughes-
Jones, T. Jackson, G. Karmous-Edwards, P. Kunszt, M. J. Leese,
J. Leigh, P. D. Mealor, I. Monga, V. Sander, R. Spencer, M. Strong,
and P. Tomsu. Grid Network Services Use Cases from the e-Science
Community. OGF Grid Final Documents 122, Open Grid Forum, Dec.
2007. URL http://wuw.gridforum.org/documents/GFD.122.pdf.

D. Beckett. RDF/XML Syntaz Specification. Recommendation, W3C,
Feb. 2004. URL http://www.w3.org/TR/rdf-syntax-grammar/.

E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for
RDF. Proposed recommendation, W3C, Nov. 2007. URL http://www.
w3.org/TR/rdf-sparql-query/.

Cisco FEoS LEX. In Cisco ONS 15454 and Cisco ONS
15454 SDH Ethernet Card Software Feature and Configura-
tion Guide, Release 8.0, pages 20-4-20-9. Cisco, Oct. 2007.
URL http://www.cisco.com/en/US/docs/optical/15000r8_0/
ethernet/454/guide/r8pos.html#wpl077827.

Dublin Core Metadata Initiative. URL http://www.dublincore.org/.

http://www.itu.int/rec/T-REC-I.150/
http://www.itu.int/rec/T-REC-I.211/
http://www.itu.int/rec/T-REC-I.211/
http://www.itu.int/rec/T-REC-M.3013/
http://www.itu.int/rec/T-REC-Q.700/
http://www.itu.int/rec/T-REC-Q.704/
http://www.itu.int/rec/T-REC-X.200/
http://www.gridforum.org/documents/GFD.122.pdf
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.cisco.com/en/US/docs/optical/15000r8_0/ethernet/454/guide/r8pos.html#wp1077827
http://www.cisco.com/en/US/docs/optical/15000r8_0/ethernet/454/guide/r8pos.html#wp1077827
http://www.dublincore.org/

B.3.2

[t1]

[t2]

[t10]

B.3. TECHNICAL REFERENCES

Informative References (Technical Reports)

Services provided by the AMS-IX. URL http://wuw.ams-ix.net/

services/.

Architecture for starting an IXP. URL https://www.euro-ix.net/
ixp/startingixp/infra/architecture.php.

Network Aware Resource Broker (NARB) and Resource Compu-
tation FElement (RCE) Architecture. Technical report, University
of Southern California and Information Sciences Institute, Aug.
2007. URL http://dragon.east.isi.edu/twiki/pub/Main/NARB/
narb-rce-architecture-v2.0.pdf.

SURFnet6 lightpaths mark start of new Internet era. Press Re-
lease, Jan. 2006. URL http://www.surfnet.nl/info/en/artikel
content . jsp?objectnumber=107197.

T. Berners-Lee. Notation 3 — an RDF language for the Semantic
Web. Technical report, W3C, 1998. URL http://wuw.w3.org/
DesignIssues/Notation3.

E.-J. Bos. Issue Analysis Hybrid Networks. Technical report, GLIF
Technical Issues Working Group, Aug. 2006. URL http://www.glif.
is/working-groups/tech/hybrid-network-issues.pdf.

J. N. Chiappa. Endpoints and Endpoint Names: A Proposed Enhance-
ment to the Internet Architecture. Internet-draft (expired), 1999. URL
http://ana.lcs.mit.edu/~jnc/tech/endpoints.txt.

F. Dijkstra. Terminology discussion, Sep. 2005. URL http://wuw.
glif.is/list-archives/tech/msg00019.html. Terminology discus-
sion in the GLIF community.

A. Escolano, A. Mackarel, D. Regvart, V. Reijs, G. Roberts,
and H. Popovski. Report on Testing of Technology Stitch-
ing. Deliverable DJ3.5.3, GEANT, May 2007. URL http:
//www.geant2.net/upload/pdf/GN2-07-066v5-DJ3-5-3-Report_
on_Testing_of _Technology_Stitching.pdf.

A. Harrison. Definition of economic assets, Jan. 2006. URL
http://unstats.un.org/UNSD/nationalaccount/AEG/papers/
m4EconAssets.pdf. The terms ‘economic ownership’ and ‘legal

\195/

http://www.ams-ix.net/services/
http://www.ams-ix.net/services/
https://www.euro-ix.net/ixp/startingixp/infra/architecture.php
https://www.euro-ix.net/ixp/startingixp/infra/architecture.php
http://dragon.east.isi.edu/twiki/pub/Main/NARB/narb-rce-architecture-v2.0.pdf
http://dragon.east.isi.edu/twiki/pub/Main/NARB/narb-rce-architecture-v2.0.pdf
http://www.surfnet.nl/info/en/artikel_content.jsp?objectnumber=107197
http://www.surfnet.nl/info/en/artikel_content.jsp?objectnumber=107197
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/DesignIssues/Notation3
http://www.glif.is/working-groups/tech/hybrid-network-issues.pdf
http://www.glif.is/working-groups/tech/hybrid-network-issues.pdf
http://ana.lcs.mit.edu/~jnc/tech/endpoints.txt
http://www.glif.is/list-archives/tech/msg00019.html
http://www.glif.is/list-archives/tech/msg00019.html
http://www.geant2.net/upload/pdf/GN2-07-066v5-DJ3-5-3-Report_on_Testing_of_Technology_Stitching.pdf
http://www.geant2.net/upload/pdf/GN2-07-066v5-DJ3-5-3-Report_on_Testing_of_Technology_Stitching.pdf
http://www.geant2.net/upload/pdf/GN2-07-066v5-DJ3-5-3-Report_on_Testing_of_Technology_Stitching.pdf
http://unstats.un.org/UNSD/nationalaccount/AEG/papers/m4EconAssets.pdf
http://unstats.un.org/UNSD/nationalaccount/AEG/papers/m4EconAssets.pdf

\ 196/

BIBLIOGRAPHY

[t11]

[£12]

[t13]

[t14]

[t15]

[t16]

[t17]

ownership’ are not defined in the 1993 System of National Accounts by
the UN, EC, IMU, OESO and world bank. However, economic experts
often clarify these terms.

R. Hatem, A. Giesbert, and E.-J. Bos. The ordering and fault res-
olution process for multi-domain Lightpaths across hybrid networks.
Draft, GLIF Technical Issues Working Group, Jul. 2006. URL http:
//www.glif . is/working-groups/tech/fault-resolution-0.9.pdf.

T. Lehman. Dynamic Services Control Plane QOverview and
Status, at 7th Annual Global LambdaGrid Workshop. Feb. 2007.
URL http://www.glif.is/meetings/2007/winter/controlplane/
lehman-dynamic-services.pdf.

J. Mambretti. International High Performance Digital Media With Dy-
namic Optical Multicast. In 7th Annual Global LambdaGrid Workshop
GLIF, Prague, Czech Republic, Sep. 2007. URL http://www.glif.is/
meetings/2007/controlplane/mambretti-hpdm.pdf.

J. F. Shoch. A note on Inter-Network Naming, Addressing, and Routing.
Internet Experiment Note 19, Xerox Palo Alto Research Center, Jan.
1978. URL http://ana-3.1lcs.mit.edu/~jnc/tech/ien/ienl9.txt.

D. Simeonidou, R. Nejabati, B. St.Arnaud, M. Beck, P. Clarke, D. B.
Hoang, D. Hutchison, G. Karmous-Edwards, T. Lavian, J. Leigh,
J. Mambretti, V. Sander, J. Strand, and F. Travostino. Optical Network
Infrastructure for Grid. draft (unpublished) draft-ggf-ghpn-opticalnets,
Open Grid Forum, May 2004. URL http://forge.gridforum.org/
sf/go/doc10908.

B. St.Arnaud, J. Wu, and B. Kalali. Customer Controlled and
Managed Optical Networks. Technical report, CANARIE, Jan.
2003. URL http://www.canarie.ca/canet4/library/c4design/
customer_controlled.pdf.

M. Wolski, S. Osinski, P. Gruszczynski, M. Labedzki, A. Patil, and
I. Thomson. common Network Information Service Schema Spe-
cification. Deliverable DS3.13.1, GEANT, Apr. 2007. URL http:
//wuw.geant2.net/upload/pdf/GN2-07-045v4-DS3-13-1_common_
Network_Information_Service_Schema_Specification.pdf.

http://www.glif.is/working-groups/tech/fault-resolution-0.9.pdf
http://www.glif.is/working-groups/tech/fault-resolution-0.9.pdf
http://www.glif.is/meetings/2007/winter/controlplane/lehman-dynamic-services.pdf
http://www.glif.is/meetings/2007/winter/controlplane/lehman-dynamic-services.pdf
http://www.glif.is/meetings/2007/controlplane/mambretti-hpdm.pdf
http://www.glif.is/meetings/2007/controlplane/mambretti-hpdm.pdf
http://ana-3.lcs.mit.edu/~jnc/tech/ien/ien19.txt
http://forge.gridforum.org/sf/go/doc10908
http://forge.gridforum.org/sf/go/doc10908
http://www.canarie.ca/canet4/library/c4design/customer_controlled.pdf
http://www.canarie.ca/canet4/library/c4design/customer_controlled.pdf
http://www.geant2.net/upload/pdf/GN2-07-045v4-DS3-13-1_common_Network_Information_Service_Schema_Specification.pdf
http://www.geant2.net/upload/pdf/GN2-07-045v4-DS3-13-1_common_Network_Information_Service_Schema_Specification.pdf
http://www.geant2.net/upload/pdf/GN2-07-045v4-DS3-13-1_common_Network_Information_Service_Schema_Specification.pdf

B.4

[ul]

[u2]

[u5]

[u6]

[u7]

[u8]

[u9]

[ul0]
[ull]

[u12]

[u13]

B.4. MISCELLANEOUS REFERENCES

Miscellaneous References

F. Dijkstra and J. van der Ham. Python NDL Toolkit homepage. URL
http://ndl.uva.netherlight.nl/trac/ndl/.

P. Grosso and M. Swany. Network Markup Language Work-
ing Group, Mar. 2007. URL http://forge.gridforum.org/sf/
projects/nml-wg.

J. van der Ham and F. Dijkstra. Network Description Language
Homepage. URL http://www.science.uva.nl/research/sne/ndl/.

R. Patterson and M. D. Brown. GLIF world map, May 2008. URL
http://www.glif.is/publications/#info. Visualization by Robert
Patterson, the National Center for Supercomputing Applications, Uni-
versity of Illinois at Urbana-Champaign. Data compilation by Maxine
Brown, University of Illinois at Chicago. Earth texture provided by
NASA, http://visibleearth.nasa.gov.

R. van der Pol. Spotlight — NetherLight lightpath status. URL http:
//noc.netherlight.net:8080/spotlight/.

B. St.Arnaud. CAnet4 network. URL http://www.canarie.ca/
canet4/.

A. Toonk and R. van der Pol. TLI toolkit. URL https://noc.sara.
nl/nrg/TL1-Toolkit/.

Global Lambda Integrated Facility (GLIF). URL http://wuw.glif.
is/.

Graphviz — Graph Visualization Software. URL http://www.
graphviz.org/.

National LambdaRail network. URL http://www.nlr.net/.
NetherLight. URL http://www.netherlight.net/.

Resource Description Framework (RDF). URL http://www.w3.org/
RDF/.

SARA Computing and Networking Services. URL http://wuw.sara.
nl/.

1197/

http://ndl.uva.netherlight.nl/trac/ndl/
http://forge.gridforum.org/sf/projects/nml-wg
http://forge.gridforum.org/sf/projects/nml-wg
http://www.science.uva.nl/research/sne/ndl/
http://www.glif.is/publications/#info
http://noc.netherlight.net:8080/spotlight/
http://noc.netherlight.net:8080/spotlight/
http://www.canarie.ca/canet4/
http://www.canarie.ca/canet4/
https://noc.sara.nl/nrg/TL1-Toolkit/
https://noc.sara.nl/nrg/TL1-Toolkit/
http://www.glif.is/
http://www.glif.is/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.nlr.net/
http://www.netherlight.net/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.sara.nl/
http://www.sara.nl/

BIBLIOGRAPHY

[uld] The Semantic Web. URL http://www.w3.org/2001/sw/.

[ul5] StarLight. URL http://wuw.startap.net/starlight/.

http://www.w3.org/2001/sw/
http://www.startap.net/starlight/

In relatief korte tijd is het gebruik van computernetwerken enorm toegenomen
en inmiddels zijn ze niet meer weg te denken uit de samenleving. Computer-
netwerken worden gebruikt voor surfen, e-mail en het doen van betalingen. De
capaciteit van de netwerkverbindingen is zozeer toegenomen dat het netwerk
tegenwoordig ook gebruikt wordt voor het verzenden van gigantische hoeveel-
heden data die tot voor kort nog op tapes of disks per koerier verstuurd werden.
Datastromen in de kernfysica, radioastronomie en sinds kort ook het verstu-
ren van bioscoopfilms op uitzonderlijk hoge kwaliteit zijn hiervan sprekende
voorbeelden.

Voor het versturen van grote hoeveelheden gegevens tussen een klein aan-
tal locaties is het Internet niet altijd even geschikt. In sommige gevallen is het
beter om een aparte verbinding aan te leggen voor één specifieke toepassing.
Een aparte verbinding is beter omdat het goedkoper kan zijn of omdat de
verkeersstromen zo groot zijn dat ze het reguliere Internetverkeer zouden ver-
storen. Naast de eerder genoemde uitwisseling van meetgegevens en films is het
versturen van gegevens tussen twee vestigingen van één organisatie een moge-
lijke toepassing. In de meeste andere gevallen is het gebruik van het reguliere
Internet beter.

Sinds ongeveer 2005 zijn met name onderzoeksnetwerken zoals CAnet in
Canada en SURFnet in Nederland begonnen met het aanbieden van zogenaam-
de lichtpaden naast het aanbieden van regulier Internet. Lichtpaden zijn aparte
verbindingen tussen twee plaatsen, in tegenstelling tot het Internet waarover
gegevens naar alle plaatsen ter wereld gestuurd kunnen worden. Lichtpaden
worden zo genoemd omdat ze vaak gebruik maken van glasvezelnetwerken.
Netwerken waarbij over dezelfde infrastructuur zowel Internet als lichtpaden
aanbieden worden hybride netwerken genoemd.

Het aanbieden van aparte verbindingen wordt in feite al heel lang gedaan

Samenvatting

1200/

SAMENVATTING

door telecomaanbieders, al wordt de naam lichtpad pas sinds kort gebezigd.
Hoewel lichtpaden qua technologie en capaciteit veel weg hebben van huur-
lijnen hebben ze in dynamiek meer weg van telefoonverbindingen. Idealiter
kunnen ze automatisch opgezet worden, dus zonder tussenkomst van een net-
werkbeheerder.

Een verbinding kan lopen via meerdere beheerdomeinen. Een typische net-
werkverbinding tussen twee universiteiten loopt bijvoorbeeld eerst via een cam-
pus netwerk, dan een nationaal netwerk en vervolgens via een internationale
koppeling terug naar een ander nationaal netwerk, campus netwerk en uitein-
delijk naar een netwerk binnen een gebouw. Al deze verschillende netwerken
worden beheerd door andere personen en instellingen.

Elk netwerk zal op een ander tijdstip zijn aangelegd en elke netwerkbeheer-
der zal een andere keuze hebben gemaakt in de technologie die gebruikt is in
het netwerk, ook wel aangeduid als verschillende lagen in het netwerk. Zo kan
het ene netwerk schakelen op de Ethernetlaag, een ander op de SONET-laag
en kan een derde netwerk verschillende kleuren licht over glasvezels schakelen.

Het blijkt zeer relevant te zijn dat lichtpaden over verschillende netwer-
ken lopen die elk kunnen schakelen op een andere netwerklaag. Verschillen in
technologie tussen netwerken kunnen namelijk leiden tot mogelijke incompa-
tibiliteiten. Deze incompatibiliteiten maken het vinden van paden in hybride
netwerken aantoonbaar complexer dan het vinden van paden binnen netwerken
die alle van dezelfde technologie gebruik maken, zoals het reguliere Internet.
Het blijkt namelijk dat paden in hybride netwerken beperkingen hebben die
afhankelijk zijn van keuzes elders in het pad. Dit in tegenstelling tot netwerk-
verbindingen met slechts één technologie waarbij de beperkingen onafhankelijk
zijn van het eerder gekozen pad.

In dit proefschrift wordt aangetoond dat paden die door meerdere tech-
nologieén gaan, de zogenaamde meerlaagsnetwerkverbindingen, in een rondje
kunnen lopen. Kortom, het is mogelijk dat een kortste pad toch twee keer het-
zelfde stukje weg aflegt. Tevens blijkt dat een onderdeel van een kortste pad
op zichzelf geen kortste pad hoeft te zijn.

Het grootste deel van dit proefschrift wordt besteed aan het vinden van een
model dat meerlaagsnetwerken, zoals onder andere hybride netwerken, formeel
kan beschrijven. Dit model is met opzet technologieonafhankelijk gemaakt,
zodat het model en —belangrijker— de algoritmes om paden te vinden niet
aangepast hoeven te worden als er later nieuwe technologieén gebruikt worden.

Naast het model worden twee bijna gelijkwaardige algoritmes gepresenteerd
die paden kunnen vinden in meerlaagsnetwerken. Een van deze algoritmes
is tevens geimplementeerd en dit proefschrift sluit af met het eerste gebruik
hiervan.

In only a few decades the use of computer networks has dramatically increased.
Today, networks are ubiquitous in society: they are used for surfing, email and
financial transactions. The capacity of the network has increased so much,
that it is now possible to transfer massive data sets that recently were shipped
on tape or disk by a courier. Vast data streams in nuclear physics, radio
astronomy and recent transmission of movies in exceptional high quality are
only a few of the prime examples of these transfers.

The Internet is not always suitable to transmit large amounts of data
between a limited number of locations. In some cases it is better to create
a dedicated network connection for a specific application. A dedicated con-
nection is better if it is cheaper or if the data streams are so large that they
would disrupt the regular Internet traffic. Besides the already mentioned ex-
amples of transfer of scientific data and movies, the data exchange between
two sites of the same company can be one of those applications. In most other
cases the regular Internet is the better choice.

Since 2005 national research networks such as CAnet in Canada and SURFnet
in the Netherlands have started offering lightpaths to their customers, besides
their regular Internet connectivity service. These are dedicated connections
between only two locations, as opposed to the regular Internet, where every
host can connect to all places in the world. The name lightpath comes from
the optical fibre networks that often provide these connections. A network
that provides both lightpaths as well as regular Internet connectivity over the
same physical infrastructure it is called a hybrid network.

Telecom providers have offered dedicated network connections since a long
time, although the term lightpath is relatively new. While lightpaths mimic
leased lines in technology and capacity, their dynamics resembles a telephone
connection. Ideally, lightpaths can be provisioned automatically, without in-

Abstract

201

1202/

ABSTRACT

tervention from a human network operator.

Lightpaths can span multiple administrative domains. A typical network
connection between two universities firsts crosses a campus network, then a na-
tional research network, then goes through an international peering to another
research network, then another campus network and finally to an internal net-
work within a building. Different persons and organisations administrate all
these networks.

Each of these networks has been built and deployed at different times, and
each network designer will have made different choices from the list of available
technologies. Each network consists of different layers, and one network may
be able to switch at the Ethernet layer, another at the SONET layer and a
third may be able to switch different colours of light over a fibre.

It turns out to be very relevant that lightpaths cross multiple networks
that are capable of switching at a different network layer. Different choices
in technology for each network lead to potential incompatibilities. This thesis
shows that these incompatibilities make the problem of finding a shortest path
through the networks significantly more complex than the problem of finding
paths through networks where the switching occurs at the same layer, such as
on the Internet. It turns out that paths in hybrid networks have restrictions
that depend on choices made elsewhere in the path. The restrictions of a path
through a network with a single switching layer are independent of the choices
elsewhere in the path.

This thesis shows that paths that cross multiple technologies, the so-called
multi-layer network connections, can go in loops. It is possible that a shortest
path traverses the same fibre twice. In addition, it turns out that a segment
of a shortest path does not have to be a shortest path in itself.

The largest part of this thesis covers the exploration and description of a
formal model for multi-layer networks, including hybrid networks. The presen-
ted model is technology independent. This is an essential feature, since it
means that neither the model nor the path finding algorithms need to be ad-
justed as new technologies are invented in the future.

Besides the model, the results of this work are two comparable multi-layer
path finding algorithms. One of these algorithms has been implemented, and
this thesis closes with a description of its first use.

Dear reader, this book is —by definition— written for you, regardless of whether
you have read everything so far or immediately skipped to this acknowledge-
ment (yes, I'm talking to you). There is nothing as depressing as working on
a book for years if no-one is even going to open it.

“Years,” you ask? Yes, years. And I wasn’t even the only one doing the
work. Jeroen van der Ham, Bert Andree and Karst Koymans did a lot of the
thinking. Bert and I were working with group theory and XML to describe
networks when Jeroen listened to an idea from Franco Travostino and pulled
NDL, the Network Description Language, out of his sleeve. If it wasn’t for
this, we would still be struggling.

Karst Koymans was the first to suggest to look at the ITU-T G.805. Karst,
I dedicate the path finding ‘puzzle’ in section 3.3.1 to you.

“ITU-T G.8057”. Sorry about the technobabble. It’s a standard, and if you
think the name is unreadable, wait till you see the gobbledygook inside. It
took us over a year before we turned abracadabra like “A transport processing
function that consists of a co-located adaptation source and sink pair”' into
section 4.3 of this thesis.

Cees, you owe me a crate of beer now. You are the living proof that free-
form thinking in a scientist is a solid recipe for great new ideas. Of course you
also prove that it is pointless to try to steer a bright mind. “Cees, I need to
talk to you about chapter 3.7 “Oh, that’s great. Let me show you how to play
a 4k movie on my iPod first.” It’s amazing to see how far you are in front of
the troops. Your idea that led to my first paper (on the multi-layer nature
of optical exchanges) was published in late 2003, but only recently attracted
attention from others.

1S0, that’s what the page number graphics represent. Now you see?

Acknowledgment

203

204/

ACKNOWLEDGMENT

Paola, where Cees lacks in orderliness, you make up for it. Lighthouse or
not, you have been the guiding beacon at the UvA during the last few years.

And there are so many more people to mention and thank. The members of
my graduation committee, Pieter Adriaans, Rob Meijer, and in particular Tom
DeFanti and Pascale Vicat-Blanc for traveling from abroad. My promotor,
prof. Sloot, who I thank for taking the time to read my thesis. Colleagues
and students, in particular Hans, Jaap, Erik, Ralph, Matthijs, Damien, Bas,
Ronald, Niels, Arie, Andree, JP, Fred, Paul, and Li, I owe you all a drink. My
current colleagues at SARA deserve recognition for their patience while I was
making last-minute corrections to this thesis.

When I started this work, I did not want to look into path finding. Someone
with my last name could not live up to the expectations?. Nevertheless, the
topic appeared too tempting for me to ignore. Fernando Kuipers and his
colleagues at TU Delft have been extremely helpful in developing path finding
algorithms (I can only hope that the quality of this thesis approaches that of
Fernando’s).

SURFnet has not only financially supported this work. Without the Giga-
Port project, I may not have met all the partners, TU Delft, Universiteit
Twente, TNO, SARA, and others. Gigaport, above all, has been a club of
friendly peers. If only the EU projects would take the same approach to a
no-nonsense project overhead, there would be so much more great research.

Maxine Brown and Robert Patterson allowed me to include their GLIF
map (figure 1.3). SARA and UvA financially supported the printing costs
of this thesis, which allowed me to have an even fancier reception after my
defence.

There are so many people I met in the GLIF community, OGF organisation
and at conferences, that it is undoable to list everyone of them. So I will not
even try. Talking to you certainly shaped my ideas, and perhaps it sometimes
also shaped your ideas. I hope to talk to all of you in the foreseeable future.

Hennie, Wil, thank you for your during support. I wouldn’t even have
started, let alone ended this journey with your inspiration and kind steering
all these years. My sister Marrit and my friends, thank you for your continued
patience when I was busy once again. Floris and Jeroen deserve special recog-
nition. Even after putting up with me, they still support me as paranymphs
during my defence. My accomplice all the way was Caroline. Impatient some-
times (“It’s over four years now, are you done yet?”), but always loving, caring
and supportive. Supportive even when I was coding deep into the night with
little attention for her. Thanks to invention of the laptop and wireless Inter-

20f course I'm talking about Edsger W. Dijkstra.

ACKNOWLEDGMENT

net I could fulfil two tasks at once, keeping her feet warm in bed and keep on
working next to her side. Even the ridicule by St. Nicholas® that inevitably
followed did not stop me.

And with that we come to the end of this dissertation. There is always
more to discover, but I leave that up to you, dear reader. If computer science is
not your cup of tea, may I suggest a statistical distribution on my grammatical
flaws per chapter? I'm sure there are countless plural errors left. Or perhaps
you like to know what has occupied me for so long. Section 1.1 to 1.3 or even
section 3.3.1 are good starting points. I'm done writing, I hope you enjoy the
reading.

31t is Dutch custom to make small poems for relatives on the eve of St. Nicholas’ birthday.

1,205/

Ia

o
2]

_—
\

ACKNOWLEDGMENT

Biography

Freek Dijkstra (Hilversum, 3 July 1975) received his doctoraal' in applied
physics from the Utrecht University in 2002. Between 1995 and 2003 Freek has
been student teaching assistant, independent programmer, website developer
at Uselab, and ghost-writer for the virtual laboratory for e-Science (VL-e) pro-
ject proposal. In 2003 he said goodbye to physics and started his Philosophice
Doctor research in computer science at the University of Amsterdam. Freek’s
drive is to make computer networks easier to maintain by finding solutions
for practical problems faced by network engineers. Freek has published on
transport technologies, link-local IP addressing, and path finding. The thesis
in front of you is the culmination of this work.

Freek is currently employed by SARA Computing and Network as network
researcher, were he continues his work to make networks easier to maintain by
developing standards and software for use in computer networks. His current
interests are topology descriptions and monitoring of multi-layer and multi-
domain networks. Freek is co-chairing the Network Markup Language working
group in the Open Grid Forum (OGF).

In his spare time, Freek spends a considerable amount of his time in front
of his computer. Occasionally he can be found enjoying a train ride or the
weather outside. Freek is married to Caroline Mattheij and lives in Breukelen.

This thesis is Freek’s second book publication, after the humorous “Uw
geld of uw kaartje” (2007) (ISBN 978-90-4390-968—6). The bibliography (sec- o
tion B.1) gives a list of Freek’s scientific publications.

207

4Master of Science

Propositions, belonging to the dissertation
Framework for Path Finding in Multi-Layer Transport Networks
Freek Dijkstra, Amsterdam, 18 June 2009

« A network is not a graph. (§3.3.3)

o A verbose model may give a compact syntax, and vice versa.

(§4.4.3)

e There will always be incompatibilities in networks, as long as
technology evolves. (§2.3.1)

o A multi-layer path finding algorithms should be layer inde-
pendent. (§6.1.2)

 Even the shortest path can contain loops. (§3.3.1)

o Computer science is 95% development and innovation and only
5% science. This is how it should be.

o In computer science, it is acceptable to study a system that
other scientists created. This would be unthinkable in physics
or social sciences.

o The essence of most propositions is trivial if you read them,
but it is far from trivial to determine them.

o A publication that is neither searchable by Google nor down-
loadable does not count as a publication, since it does not exist
for most people.

 Contrary to the proposition by De Laat’s dissertation (1988),
phonebooks for computer mail addresses turned out to be un-
wanted.

e Given the pace at which IPv6 is deployed, Inertnet is a good
anagram for Internet.

o The use of disclaimers in e-mails and on websites can either be
explained by lack of common sense of the recipient, or by the
lack of accuracy by the sender. Both explanations are equally
worrying.

Stellingen, behorende bij het proefschrift
Framework for Path Finding in Multi-Layer Transport Networks
Freek Dijkstra, Amsterdam, 18 juni 2009

Een netwerk is geen graaf. (§3.3.3)

Een uitgebreid model kan op een compacte manier beschreven worden en
vice versa. (§4.4.3)

Er zullen altijd incompatibiliteiten in netwerken aanwezig zijn, zolang de
techniek voortschrijd. (§2.3.1)

Een kortste pad algoritme in een meerlaags netwerk dient onafthankelijk
van de lagen te zijn. (§6.1.2)

Zelfs het kortste pad kan in een rondje lopen. (§3.3.1)

Computerwetenschappen is 95% ontwikkeling en innovatie en slechts 5%
wetenschap. Zo moet het ook zijn.

Het is in de informatica geaccepteerd om een systeem te onderzoeken dat
door andere wetenschapper gemaakt is. Dit is ondenkbaar in de natuur-
kunde of sociale wetenschappen.

De essentie van de meeste beweringen is triviaal als je ze leest, maar om
er op te komen is verre van triviaal.

Een publicatie die niet gevonden wordt door Google en die niet te downlo-
aden is telt niet als publicatie, omdat de meeste mensen hem niet kunnen
vinden.

In tegenstelling tot wat De Laat beweert in zijn proefschrift (1988) zijn
telefoonboeken voor computer-mail adressen zeer ongewenst gebleken.

Gegeven de snelheid waarmee IPv6 ingevoerd wordt, is Inertnet een goed
anagram voor Internet.

Het toevoegen van een voorbehoud (disclaimer) in e-mail en op website
kan ofwel verklaard worden door het gebrek aan gezond verstand bij
de ontvanger, ofwel door het gebruik aan nauwkeurigheid bij de auteur.
Beide verklaringen zijn even zorgelijk.

The GLIF community operates hybrid networks that provide scientists with
dedicated network connections throughout the world. Framework for Path
Finding in Multi-Layer Transport Networks investigates the problem of finding
shortest path in these computer networks. This PhD thesis proves that
technical incompatibilities in these multi-layer networks can lead to very
complex shortest paths, which may include loops. Since graphs cannot
adequately describe these multi-layer networks, it proposes a model and
syntax for describing these networks, the multi-layer network description
language. Since this is a technology-independent model, a path finding
algorithm can be created that has no a-priori knowledge of the different
technologies, but is still capable of dealing with their constraints.

This PhD thesis is the accumulation of the work by Freek Dijkstra at the

University of Amsterdam between 2003 and 2008, under supervision of dr.
Paola Grosso, dr. i Cees de Laat and prof. dr. Peter Sloot.

ISBN 9178-90-8114160-1-6

	Contents
	Introduction
	Computer Networks
	e-Science Applications
	Hybrid Networking
	Research Overview
	Thesis Overview
	Papers and Topics Covered
	Research Question
	Methodology
	Chapter Outline

	Optical Exchanges
	Network Terminology
	Photonic Networks
	Optical Networks and Transport Networks
	Hybrid Networks

	Exchanges
	Peering, Exchanges and Members
	Classification
	Internet Exchanges
	Internet versus Optical Exchanges

	Incompatibilities
	Progressing Technology
	Impact on Optical Exchanges
	Services
	Control Plane Services

	Ownership
	Owner, Operator and Users
	Open Control
	Domains

	Transparency
	Conclusion

	Going in Loops
	Algorithms
	Breadth-first and Depth-first
	Bellman-Ford and Dijkstra Algorithms
	Constrained Shortest Path First
	Path-Constraint Algorithms
	k-Shortest Path

	Routing Protocols
	Distributed Path Finding
	The Internet
	Public Switched Telephone Service
	Generalized Multiprotocol Label Switching

	Path Finding in Multi-Layer Networks
	Practical Example
	Path-Constrained Problem
	Graphs
	Multi-Layer Representations

	Path Finding in Transport Networks
	Multi-Stage Path Finding
	Conclusion

	Multi-Layer Network Model
	Introduction
	Related work
	Generalized Multi-Protocol Label Switching
	Common Information Model

	ITU-T G.805 Concepts
	Functional Elements
	Connection Point and Layer
	Connections
	Adaptation and Termination
	Multiplexing
	Connection Partitioning

	Network Model
	Mapping to Functional Elements
	Notation
	Channel Labels
	Capability Model
	Validation of Network Connections
	Well Typed Adaptations

	Validation
	Extensions of the Model
	Layer Properties
	Inverse Multiplexing
	Broadcast and Multicast
	Physical Layer Properties
	Uniqueness of Layers
	Tunnels
	Uniqueness of Adaptations

	Conclusion

	Network Description Language
	Introduction
	Introduction to the Semantic Web
	Resource Description Framework
	RDF Schemata
	RDF versus XML

	Network Description Language
	Topology Schema
	Domain Schema
	Distributed Repositories
	Addressing
	Extensibility

	Applications
	Visualisation using RDF tools
	Path Finding and Google Mash-up
	Lightpath Planning in SURFnet6
	Lightpath Monitoring in NetherLight

	Conclusion

	Multi-Layer NDL
	Goal
	Scope
	Technology Independence

	NDL Schemata
	NDL Topology and Domain Schema
	NDL Layer Schema
	NDL Capability Schema

	Technology Schemata
	Encodings
	Layers and Labels
	Wavelength Division Multiplexing
	Signal Degeneration
	Shared Risk Link Groups
	Packet Layers
	Ethernet

	Conclusion

	Path Finding Algorithms
	Introduction
	Terminology
	Definition of a Network
	Granularity
	Technology Stacks
	Definition of a Graph

	Multi-layer Network Model
	Example Network
	Device-Based Network Description Gp
	Layer-Based Network Description Gl
	Stack-based network description Gs

	Path Selection in Layer Graph
	Path Selection in Stack Graph
	Extension to Multiple Labels
	Extension to Layer Graph
	Extension to Stack Graph

	Discussion and Comparison
	Commonalities
	Differences
	Time Complexity

	Conclusion

	Path Finding Implementation
	Modelling the Network
	Software Framework
	Path Finding Software
	Path Finding in Gl
	Software Logic
	Path Walk
	Switch Matrix Properties
	Multi-Domain scalability
	Result
	Ambiguity of Labels

	Optimization
	Conclusion

	Discussion and Conclusion
	Context and Goals
	Contributions to the Field
	Strengths and Weaknesses
	Architecture
	Modelling
	Path finding

	Claims and Statements
	Conclusion

	Algorithm Time Complexity
	Running Time of Multi-Layer Path Finding
	Multi-Layer Dijkstra's Algorithm
	Running Time of Multi-Layer-Dijkstra
	Running Time of Multi-Layer-Breadth-First
	Running Time of Multi-Layer-k-Shortest-Path

	Bibliography
	List of Author's Publications
	Covered in this Thesis
	Other Publications

	References to Scientific Publications
	Technical References
	Normative References (Standards)
	Informative References (Technical Reports)

	Miscellaneous References

	Samenvatting
	Abstract
	Acknowledgment
	Biography

