
University of Amsterdam System and Network Engineering

ClearStream: Prototyping 40 Gbps
Transparent End-to-End Connectivity

Cosmin Dumitru, Ralph Koning, Cees de Laat

March 10, 2011

Abstract
The ever increasing demands of data intensive eScience
applications have pushed the limits of computer networks.
With the launch of the new 40 Gigabit Ethernet stan-
dard, 802.3ba, applications can go beyond the common
10 Gigabit/s per data stream barrier for both local area
and, as it shall be presented in this report, wide area se-
tups. This report focuses on the setup and results of two
40 Gbps Ethernet technology demonstrations, the first at
GLIF 2010 in Geneva, Switzerland and the second at Su-
percomputing 2010 in New Orleans, USA.

SNE technical report SNE-UVA-2011-02
http://www.science.uva.nl/research/sne/reports/

http://www.science.uva.nl/research/sne/reports/

1 Motivation and Novelty

The dual 40/100 Gigabit Standard 802.3ba [1] is the next evolution of the
Ethernet standard. It increases the maximum speed at which Ethernet
frames can be transmitted and defines new physical (PHY) standards for
the transport of data over copper or optical media. It was was approved
in its final state in July 2010 with vendors announcing hardware that im-
plements it (and its drafts) in September 2009. In Q3 of 2010 40GE client
adapters became available in limited supply from Mellanox Inc., the Con-
nectX2 40GE Network Interface Card (NIC). At the same time several ven-
dors , like CIENA, Extreme Networks and Broadcom, started offering optical
switch modules or development platforms.

The technology demos presented at GLIF2010 and Supercomputing 2010
focused on the transport of 40 Gigabit Ethernet (40GE) application traffic
over wide area network (WAN) links. Their purpose was to investigate and
then validate the current technology stack from optical (physical) layer to
application layer and lead the way to adoption of 40GE in both carrier
and datacenter environments. National research and education networks
(NREN’s) like the Dutch SURFnet, can profit from this throughput in-
crease as they can provide a better service for network intensive scientific
applications. While 40 gigabit WAN transport has already been adopted by
carriers, until now it was limited to the edge of the datacenter where more
10GE links would be multiplexed into a single 40 gigabit WAN link using
SONET encapsulation, for example. Layer 2 (MAC) bonding of the 10GE
links is possible on the server side but the per stream throughput is limited
to the rate of a single 10GE interface. Additionally, this solution requires
more network cards, optical cables and more configuration then a regular
network link. In this light the 40GE interface provides a single channel
that requires no special configuration and permits transfer speeds of above
10 Gigabit/s. Alternative technologies like Infiniband Quad Data Rate (IB
QDR) already provide 40 Gigabit/s bandwidth but they are limited to the
premises of the datacenter and although methods of extending them over
WANs exist, they are still in an emerging state.

2 Setup

This section will describe the experimental setup used during the two tech-
nology demos mentioned beforehand. Three main components comprise the
setup: the servers, the LAN component and the WAN component.

2.1 Servers

The servers used the Mellanox ConnectX2 40GE NICs which, at the time the
demos were performed, were the only available 40GE cards. The cards use

2

Figure 1: Server Hardware Specifications
Server Model Supermicro H8DTT-HIBQF Dell R815

CPU Model Intel Xeon E5620 2.4GHz AMD Opteron6172 2.1GHz

Core Count 2 x 4 cores 4 x 12 cores

RAM 24GB 128 GB

the PCI-Express Gen 2.0 8x peripheral interface which supports a maximum
of 40Gigabit/s raw transfer rate. During the demos two models of servers
were used: OEM Supermicro H8DTT-HIBQF and Dell R815. The hardware
specifications of the servers are displayed in figure 1.

Both server models supported the PCI-E Gen 2.0 peripheral interface
used by the NICs. Besides the CPU frequency, core count and RAMmemory
one very important architectural aspect is the way the CPUs are connected
to each other and to the north bridges/PCI-E bridges. While the Supermicro
motherboard uses only one chip to connect the CPUs to the peripherals, the
DELL R815 uses two chips allowing more PCI-E devices to be connected
to the machine. This creates a non-symmetric setup which as it will be
presented in section 5, creates performance inconsistencies.

The Dell R815 uses the AMD Magny Cours platform employing 48 CPU
cores in a chassis of only 2U. The cores are grouped into 4 CPUs or packages,
each package having two six-core CPUs that share a common L3 cache.The
Hypertransport interconnect enables communication between the nodes or
PCI-E bridges. A more in-depth description of the platform can be found
in [3].

The Supermicro server offers a lower core density, only 16 cores, with
two blades fitted in a 2U chassis. It uses the Intel Nehalem architecture[2]
having two packages per blade, each having one node with 4 cores. Although
the Hyperthreading feature was available it was disabled during all the tests
and demos performed. Inter-node (CPU) communication and PCI-E con-
nectivity to the CPUs is provided by the the Quick Path Interconnect (QPI)
interface.

2.2 LAN Connectivity

For LAN connectivity two different Ethernet switches were used. In the
GLIF demo (figure 3) the servers were connected to an Extreme X650 Eth-
ernet Switch equipped with a four port QSFP+ 40GE module and in the
Supercomputing demo (figure 2) to an 18 port Broadcom Layer 2 switch.
QSPF+ optical modules provided the connectivity together with 12 pair
MPO fibers (SR4 standard). In the SR4 standard, four multimode fibers
are used for the RX side and 4 multimode fibers for the TX side. There are
multiple standards for short range and long range 40GE connectivity but
SR4 was the one available at the moment the demos were performed. While

3

Figure 2: Supercomputing 2010 Network Diagram

Figure 3: GLIF 2010 Network Diagram

on the logical level there is only one 40GE interface available to the server
the QSPF+ optical module has the function to convert the electrical signal
sent by the network card to four 10Gbit/s optical signals which are sent over
the four fiber strands. The PHY component of the 40GE standard specifies
the way in which the four signals are synchronized and multiplexed on the
receiving side. A detailed description of the PHY component of the 802.3ba
is presented in [1].

2.3 WAN Connectivity

In both demos the Ethernet switches were connected to a CIENA ActivFlex
6500 optical switch equipped with a prototype card supporting a CFP opti-
cal module that provided one 40GE port. The 40GE signal was encapsulated
in an OTU3 frame and sent to the receiving side over a DWDM system. On
the WAN side a single wavelength was used to carry the data signal. At the
receiving side a similar setup was used employing also an ActiveFlex 6500
with the same type of cards and optical modules. The distances varied from
less than 1km of fiber at Supercomputing to 1650km of dedicated dark fiber
lit by SURFnet at GLIF2010.

4

2.4 Applications

The application suite was chosen in order to examine two aspects of the new
40GE technology. First, we were interested to see maximum throughput
achievable using the 40GE cards and current hardware, and second, we
targeted a real life application that could benefit from the speed increase.

For achieving maximum throughput we selected iperf as a traffic gener-
ating application. While it is not the only application in its class, we chose
iperf because of its reliability and also because of the easy way to increase
the number of data streams, and hence throughput by using multiple flows.
In the initial experiments we used also the netperf application obtaining
the same results as with iperf.

For a real world application we settled on using DiVinE, a tool for LTL
model checking and reachability analysis of discrete distributed systems[10].
DiVinE leverages multiprocessing in order to distribute its verification task
to networked nodes. Each DiVinE process is able to produce under ideal
conditions - single machine, only internal communication, Intel Xeon E5550
2.4GHz - around 400Mbps of peak traffic. DiVinE was used before [8] to
evaluate the performance of experimental optical networks. It uses MPI
to orchestrate the multiprocess communication and achieve massive paral-
lelism. Having this in mind we created a setup where two machines with
48 CPU cores were connected over the 40GE link, running DiVinE. This
experiment was performed only during GLIF2010.

3 Tuning

In order to achieve maximum throughput the server configuration needed
extra tuning. Both servers ran CentOS 5.5, a free Linux distribution de-
rived from Redhat Enterprise Linux. The OS choice was based on the list
of supported OS’ by Mellanox, the 40G network card manufacturer. The
Dell R815 machine based on the AMD Magny Cours many-core platform
required a number of optimizations at the kernel level and because these
optimizations were already performed by the kernel maintainers of the Red-
hat distribution, during the demos the default distribution kernel was used,
namely 2.6.18. On the other hand one can expect that a newer version of
the Linux kernel will boost performance in a number of subsystems amongst
which networking. Therefore, the Supermicro machines used a more recent
kernel version. This kernel was compiled from the vanilla Linux sources ob-
tained from kernel.org and no extra patching work was done. In the testing
process before the demos, a similar kernel was installed on the Dell R815 but
no notable network performance differences were observed yet the NUMA
nodes were not correctly detected.

Multi queue support [11], also known as Receive Side Scaling (RSS),
was enabled on the Mellanox cards by default. The mlx4 en driver creates

5

Figure 4: Kernel parameters used during the demos (taken from
/etc/sysct.conf)

net.ipv4.tcp_timestamps = 0

net.ipv4.tcp_sack = 0

net.core.netdev_max_backlog = 25000

net.core.rmem_max = 102400000

net.core.wmem_max = 102400000

net.core.rmem_default = 67108864

net.core.wmem_default = 67108864

net.core.optmem_max = 67108864

net.ipv4.tcp_mem = 33554432 33554432 67108864

net.ipv4.tcp_rmem = 4096 33554432 67108864

net.ipv4.tcp_wmem = 4096 33554432 67108864

a number of receive (RX) queues or rings that is equal to the number of
online CPUs (or cores). When a network packet is received it is placed
in a RX queue and the network card triggers an interrupt signaling the
CPU to handle the incoming data. Each incoming IP packet is sent to
the appropriate RX queue according to an algorithm that hashes the IP
information in the header of the packet. An IP flow to be always handled
in-order and by the same core and also multiple flows will be distributed
in a fair manner to the available cores. A similar feature is used for the
transmission part, the driver creating a number of TX queues that each
handle one IP flow at the sender side.

The networking and in particular the TCP settings of the Linux kernel
were adapted for the distance and expected throughput as presented in figure
4. During the GLIF2010 demo the distance between the communicating
servers was approximately 1650km which translated in 17ms of round trip
time (RTT). This latency was consistent throughout the experiments with
0% link loss and 0.2ms jitter.

TCP window size scaling (net.ipv4.tcp window scaling) was turned
on during all the experiments and demos and the congestion algorithm used
was HTCP[7]. It was chosen for its fast increase of the window size to
the optimal value and not for its congestion behavior as the 40Gigabit line
was clear channel with no additional traffic interfering with the test data
streams.

6

Figure 5: Local iperf tests - single and multiflow

4 Results

Initial tests were performed with 3 meters of multimode ribbon fiber con-
necting the two Supermicro servers mentioned in section 2. This was done
to evaluate the performance of the setup under ideal conditions and to dis-
cover potential issues and optimal tuning parameters. In figure 5 we present
the throughput of this setup when using a single flow iperf running for
a timespan of 5 minutes. A similar experiment was performed with two
iperf flows. Due to the multiqueue features mentioned in the previous sec-
tion, this maximized the use of the network card. Increasing the number of
flows didn’t further increase the aggregated throughput.

The card uses a PCI-E 2.0 8x interface which allows of a maximum 8 x
5GT/s. This data rate translates into 32 Gbps of useful data as the PCI-E
protocol uses a 8/10bit encoding scheme. The maximum theoretical 32Gbps
data rate is further decreased by the inherent overhead of the PCI-E protocol
and of the network protocols (Ethernet, IP) that support the communica-
tion. Therefore, the application transfer rate observed using iperf comes
close to the theoretical maximum achievable and we conclude that in our
tests the PCI-E interface becomes saturated, this being the maximum rate
at which the card can send or receive data.

Once the setup was tested under ideal conditions we moved to perform-
ing the demonstration over the WAN infrastructure. The GLIF2010 demo
involved a series of experiments that targeted throughput and protocol be-
havior.

One of the experiments consisted in validating the behavior of the TCP
protocol over the long distance high performance link. Due to the 17ms RTT

7

Figure 6: Influence of the TCP Window size - GLIF2010 - Single iperf flow

the TCP window size needs to be adjusted in order to achieve the maximum
throughput. The ideal TCP window size is obtained by calculating the
Bandwidth Delay Product or BDP. Assuming that the speed of the link is
19Gbps the value of the window size would be WS = 19Gbps × 17ms =
40.38MB. Figure 6 presents the results of multiple throughput tests where
the window size varied from a low value to the calculated optimal value and
beyond. The maximum transmission rate is achieved as expected, around
the optimal value. Further increasing the window size does not affect the
throughput rate in any way. This confirms that the TCP protocol and its
current Linux implementation is still well suited for speeds beyond 10Gbps.

During GLIF2010 in parallel with the throughput tests we ran the Di-
VinE application obtaining peaks of 11Gbps of aggregated traffic. The ap-
plication creates a number of TCP connections in order to perform message
passing. When using large states, DiVinE is not very sensitive to latency as
each MPI process performs local computation for the length of a processing
cycle (iteration) and then exchanges state with other processes which are
either local (on the same machine) or remote. Given the relatively short
availability of the WAN link we were unable to perform a very thorough
evaluation of DiVinE. The availability of a higher number and faster CPUs
would have enabled higher aggregated throughput, as DiVinE is able to
scale beyond 94 cores. The throughput rate observed varied throughout the
experiments as it depended on the application state.

In figure 7 we present a snapshot of live traffic statistics running during
the GLIF2010 demo. The speeds were measured with a 1 second sample
time.

8

Figure 7: GLIF 2010 Live traffic

5 Performance Analysis

AMD Magny Cours It is interesting to note that at GLIF2010 the
throughput of the link was not maximized, only about 80% being used.
This was because the 48 core AMD server was unable to reach the same I/O
performance as the 8 core Intel server even when using plain iperf with mul-
tiple threads. To explain this we need to look at the machine architectures
used in both servers. While both are NUMA (Non-Uniform Memory Archi-
tecture), each CPU having its own local memory, the AMD server is more
complex as it has six times more cores and uses two PCI-Express bridges.
In [3] the authors present multiple possible CPU I/O topologies, each suited
for either I/O performance or low latency (small diameter of the CPU net-
work) the later being the recommended setup for server manufacturers. We
assume that the I/O topology of the AMD Magny Cours platform used in
the Dell R815 server is the low latency variant presented in figure 8 . Two
of the CPU packages are not connected directly to the PCI-E bridges but
through the other two CPU packages - in figure 8 P5-P7 and P4-P6.

In figure 10 we present the node matrix as listed by numactl --hardware.
To explore this asymmetry and see its impact on I/O performance, we

performed a simple experiment where a Supermicro Intel server and a Dell
AMD server were connected back to back using 40GE. The Intel server was
configured as an iperf server (receiver) and the AMD server as a single
threaded sender with the iperf process forced to run on a specific core
(figure 11). We used the Intel server as a receiver because in our experiments
it could receive data at rates higher than the AMD server could send. This
allowed us to change parameters on the AMD server without worrying that

9

Figure 8: Simplified view of the AMD Magny Cours IO Architecture - Dual
HexaCore Quad Socket

I/O
Bridge

Network
Card

I/O
Bridge

PCI-E 2.0 8x

P0

P2

P1

P4

P6

P5

P7P3Coherent
HT

CPU
Package

Non Coherent
HT

Figure 9: Simplified view of the Intel Nehalem IO Architecture - Quad
Core Dual Socket

I/O
Bridge

Network
Card

PCI-E 2.0 8x

QuickPath
Inerconnect

QuickPath
Inerconnect

QuickPath
Inerconnect

core0

core2core3

core1 core0

core2core3

core1

CPU0 CPU1

10

Figure 10: CPU node distance as listed by numactl --hardware for Dell
R815

node distances:

node 0 1 2 3 4 5 6 7

0: 10 16 16 22 16 22 16 22

1: 16 10 16 22 22 16 22 16

2: 16 16 10 16 16 16 16 22

3: 22 22 16 10 16 16 22 16

4: 16 22 16 16 10 16 16 16

5: 22 16 16 16 16 10 22 22

6: 16 22 16 22 16 22 10 16

7: 22 16 22 16 16 22 16 10

Figure 11: Simple experimental setup to determine I/O Performance -
Dell AMD

Dell R815
(sender)

Supermicro X8DTT-HIBQF
(receiver)

4

5

0

1

2

3
EST

ID

40GE

the receiver would not be able to cope with the incoming data.
Setting the CPU affinity for the iperf process was done using the

numactl utility. This was repeated for each of the 48 cores available for
a period of 5 minutes. By analyzing the results of the average per core
throughput(figure 12) we can observe that some cores perform better than
the others. When mapping the coreID over the given CPU topology, a cor-
relation between the core location I/O stands out. The mapping of the cores
to CPU packages on our setup followed the rule: if one core has id i then it is
located on package i modulo 4, so for example core 12 is located on package
0. The graph clearly shows that even for single threaded applications which
do heavy I/O traffic the placement of the process on specific cores heavily
impacts the overall performance. In a multithreaded setting this affinity is-
sue is overcome by the overall interconnect bandwidth to the PCI-E bridge.
Our tests showed a maximum of 20Gbit/s when running iperf with multi-
ple threads and a similar Supermicro Intel-equipped receiver. Because the
Supermicro Intel machine can receive more than 20Gbit/s, as shown in the
previous section, we believe that the bottle neck is caused by the limitations
of the I/O architecture used in the Dell AMD server. This means that for
single threaded iperf the bottle neck lies closer to the CPU cores. It is

11

Figure 12: Average throughput of iperf with core pinning

difficult to pinpoint this without extensive investigation at the OS level or
even deeper at the chip level, yet we suspect a number factors that together
cause this behavior. The asymmetry of the I/O topology adds latency to
any I/O transfer done by the cores not directly connected to CPU1. Coming
back to the network adapter, it uses multiple transmit queues to distribute
the data flows evenly to the cores. In our experiments the interrupts were
handled mostly by core 1, so for each packet a DMA request would have to
take place in order to take the data from memory and send it to the network
adapter. In terms of interconnect bandwidth, the Hypertransport links are
not equally shared between the cores[3] and even if the AMD Magny Cours
has a novel cache coherency mechanism, we can expect that still some of the
traffic is cache coherency related, leaving less available bandwidth for data
intensive applications. Unfortunately, proving this hypothesis is beyond the
scope of this paper yet in [6] the authors suggest that cache coherency can
have an important impact on network traffic.

Intel Nehalem Intrigued by the performance variations of the AMD
Magny Cours, we were curious to see if the less complex Intel Nehalem
would present similar issues. Because we could not create a stable receiver
that could receive at a higher rate than the sender, like in the case of the
AMD Magny Cours, we connected to Supermicro Intel servers back to back
to cover all the possible cases of application to core mapping(figure 13). Be-
cause the multi queue receive and transmit (also known as Linux scalable
I/O[9]) mechanism uses a hash based on the IP header (source&destination
IP and port) we patched the iperf source code so that for any single flow
run, the same source port would be used. This assured that a TCP flow

12

Figure 13: Simple experimental setup to determine I/O Performance -
Supermicro Intel

Dell R815
(sender)

Supermicro X8DTT-HIBQF
(receiver)

4

5

0

1

2

3
EST

ID

40GE

would always be handled by the same core as on a Linux system if the source
port is not specified by an application, the OS picks a random one from the
ephemeral range.

With the use of numactl the iperf server and client process were forced
to be executed on only one specific core. This resulted in 64 measurements
each lasting for 5 minutes. Figure 14 presents the averaged throughputs
mapped by core. The core to CPU mapping is more simpler and more
intuitive than in the AMD case: the first four cores belong to CPU0 while the
remaining four to CPU1. A clear pattern emerges: when the application runs
on the same CPU as the core that handles the interrupts the performance
increases by approximately 10%. Not surprisingly the same performance
increase is not achieved when iperf and the interrupts are handled by the
same core, the throughput increasing with only 1 Gbit/s. This most likely
is caused by the extra time needed by the CPU core to change context and
handle the interrupts. The location of the application on the sender node
does not influence the performance in a very significant way and therefore
we conclude that the limitation is at the receiver node.

Network Drivers A deeper understanding of the processes that take
place in the kernel on the receiver was needed and therefore, we decided
to inspect the mlx4 en driver source code [5]. As mentioned before the
driver has multiqueue support and by default it creates a number of receive
queues equal to the number of online CPUs, as seen by the kernel. While
the driver is more complex and has support for advanced features like TCP
offloading and Generic Segmentation Offload (GSO), we will not go into the
details of these. The receive procedure follows a standard NAPI network
driver approach[4]: a socket buffer structure , also named skb, is pre allo-
cated in order to handle the incoming data from the network. When the
data is received from the network, it is buffered on the network card and the
CPU is notified via an interrupt about its arrival. The CPU then polls the
network card and issues a DMA transfer from the network card to the mem-
ory address stored in the skb structure. From here on, the kernel decides
what to do with the received packet, as it gets passed to the upper layers of
the networking stack. In the case of a packet destined to a local application,
the payload is copied to the socket buffer belonging to the application. This

13

Figure 14: Average throughput of iperf with core pinning

means that the data is copied at least twice from the moment it is received
by the network adapter, once to from the network card to kernel space and
from there to user space . In the case of a NUMA machine the skb structure
is allocated on the local node , the one that handles the receive queue from
which the data originates. Obviously, if the application is running on a dif-
ferent node an inter-node transfer is needed and the topology, the memory
and interconnect bandwidth and latency affect the overall performance. Our
measurements clearly show degraded performance when inter-node transfer
is involved. Alternative technologies, like Infiniband, offer zero copy and im-
plicitly higher performance, but they break compatibility with the existing
protocols or they require extra software to be installed or included with the
user applications.

In our tests we assumed that the Mellanox ConnectX 2 40GE drivers have
an optimal behavior and their performance is not affected in any way by the
underlying architecture. It should be noted that because the ConnectX2
40GE is derived from the ConnectX2 10GE it uses the same driver and
supports the same kernel module parameters.

We believe that our measurements give a good insight on the capabili-
ties of the current server hardware when faced with I/O intensive applica-
tions. Given the current state of the networking stack on the Linux OS,
it is very probable that similar performance inconsistencies will occur with
future multicore architectures and next-gen network adapters and the ap-
proach presented in this paper could be used to investigate them.

14

6 Conclusion

In this report we have presented the results of two technological demonstra-
tions performed at GLIF2010 and Supercomputing 2010 and a short analysis
of the performance of 40GE when combined current state-of-the-art server
hardware . The GLIF2010 demo was, to our knowledge, the first time when
a 40GE signal was transported over more than 1600KM of fiber. We inves-
tigated the current performance of the 40GE technology and presented an
in-depth analysis of the results. We conclude that given the current PCI-
E 2.0 interface and CPU micro-achitectures the 40GE standard is not yet
used to its full potential. A modern server can not fully utilize the available
bandwidth and while it can saturate the I/O bus this leaves little room for
a real application running on the machine. When using a more capable
machine the I/O limitations stand out even more giving 40GE little ad-
vantage over other existing technologies. With the introduction of the new
PCI-E 3.0 computer interface in late 2010 together with faster CPUs, we
expect that the full potential of 40GE will be unleashed. With the current
available technology, the bottleneck has moved one level higher, from the
network to the computer’s internal interconnect. At the moment, the num-
ber of applications that can leverage this bandwidth increase is still limited.
New research and applications are needed to promote 40GE from an exotic
network protocol to a commodity interconnect.

Acknowledgments The GLIF 2010 and Supercomputing 2010 demos
would have not been possible without the support of : Erik-Jan Bos, Ger-
ben van Malenstein, Roeland Nuijts - SURFnet, David Yeung, Jan-Willem
Elion, Harry Peng, Kevin McKernan, Martin Bluethner, Rodney Wilson
- CIENA, Kees Verstoep, Henri - Bal Vrije Universiteit Amsterdam, Erez
Cohen, Bill Lee - Mellanox, CERN, CineGrid.

References

[1] Ieee standard for information technology-telecommunications and in-
formation exchange between systems-local and metropolitan area
networks-specific requirements part 3: Carrier sense multiple access
with collision detection (csma/cd) access method and physical layer
specifications amendment 4: Media access control parameters, physical
layers and management parameters for 40 gb/s and 100 gb/s operation.
IEEE Std 802.3ba-2010 (Amendment to IEEE Standard 802.3-2008),
pages 1 –457, 22 2010.

[2] J. Casazza. First the tick, now the tock: Intel microarchitecture (ne-
halem). Intel Corporation, 2009.

15

[3] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak,
and Bill Hughes. Cache Hierarchy and Memory Subsystem of the AMD
Opteron Processor. IEEE Micro, 30(2):16–29, March 2010.

[4] Linux Foundation. napi article on linuxfoundation.org. http://www.

linuxfoundation.org/collaborate/workgroups/networking/napi.
[Online; accessed 20-February-2011].

[5] Mellanox Inc. Mellanox mlx4 en driver source code hosted on
lxr.linux.no. http://lxr.linux.no/linux+v2.6.37.1/drivers/net/
mlx4/. [Online; accessed 20-February-2011].

[6] Amit Kumar and Ram Huggahalli. Impact of cache coherence protocols
on the processing of network traffic. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
40, pages 161–171, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[7] D. Leith and R. Shorten. H-TCP: TCP for high-speed and long-distance
networks. In Proceedings of the 2nd Workshop on Protocols for Fast
Long Distance Networks, Argonne, Canada, 2004.

[8] Jason Maassen, Kees Verstoep, H.E. Bal, Paola Grosso, and C. de Laat.
Assessing the impact of future reconfigurable optical networks on ap-
plication performance. IPDPS ’09 Proceedings of the 2009 IEEE Inter-
national Symposium on Parallel&Distributed Processing, 2009.

[9] Niels Provos, C. Lever, and S.N. Alliance. Scalable network I/O in
Linux. In Proceedings of the USENIX Annual Technical Conference,
FREENIX Track, volume 19, 2000.

[10] Kees Verstoep, H.E. Bal, J. Barnat, and L. Brim. Efficient large-
scale model checking. In IEEE International Symposium on Paral-
lel&Distributed Processing, number 201. IEEE, 2009.

[11] Z. Yi and PJ Waskiewicz. Enabling Linux network support of hardware
multiqueue devices. In Proc. of the 2007 Linux Symposium, pages 305–
310.

16

http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://lxr.linux.no/linux+v2.6.37.1/drivers/net/mlx4/
http://lxr.linux.no/linux+v2.6.37.1/drivers/net/mlx4/

	Motivation and Novelty
	Setup
	Servers
	LAN Connectivity
	WAN Connectivity
	Applications

	Tuning
	Results
	Performance Analysis
	Conclusion

