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System-level design space exploration (DSE), which is performed early 
in the design process, is of eminent importance to the design of 
complex multi-processor embedded system architectures. During 
system-level DSE, system parameters like, e.g., the number and type of 
processors, the type and size of memories, or the mapping of 
application tasks to architectural resources, are considered. 
Simulation-based DSE, in which different design instances are 
evaluated using system-level simulations, typically are computationally 
costly. Even using high-level simulations and efficient exploration 
algorithms, the simulation time to evaluate design points forms a real 
bottleneck in such DSE. Therefore, the vast design space that needs to 
be searched requires effective design space pruning techniques.  
This thesis presents different methods for iteratively reducing the 
number of simulations needed during system-level DSE. 
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Chapter1
Introduction

1.1 Introduction

The design of modern embedded systems has become increasingly com-

plex. There is a wide range of design parameters that have to be tuned

up to find the optimal tradeo↵ in terms of several design requirements.

Those systems should be low cost, small in terms of area, light weight and

be power e�cient, since they are often battery-based devices. This is in

contrast with the requirements of achieving real-time, performance and

providing reliable and secure operation. As result, the increasing market

for compact embedded computing devices is leading to new multi-processor

system-on-a-chip (MPSoC) architectures designed for embedded systems,

providing task-level parallelism for streaming applications integrated in

a single chip. Those MPSoC systems are composed of di↵erent types of

processing units, memories, and specialised hardware components. For

example, modern smartphones include di↵erent processors and hardware

blocks to support GPS-based navigation, internet browsing, video capture

and processing, and, naturally, speech processing. Such embedded systems

can be found also in modern TVs, car navigation systems, and common

household devices.

Designers must address new challenges that were not present before:

1



2 INTRODUCTION 1.2

such MPSoC architectures are heterogeneous in nature and are required

to be general enough to be used across several di↵erent applications in

order to be economically viable, leading to recent attention to parameter-

ized MPSoC platform architectures. On the other hand, they have very

di↵erent design constraints such as power e�ciency, timing requirements

or performance budgets. In the remainder of this chapter, we describe the

background of the embedded systems field, discuss the motivation of the

work presented in this thesis, and address the main research question.

1.2 Problem description

Platform based design of heterogeneous multi-processor system-on-chip

(MPSoC) systems is becoming today’s predominant design paradigm in

the embedded systems domain [81]. In contrast to more traditional design

paradigms, platform based design shortens design time by eliminating the

e↵ort of the low-level design and implementation of system components.

A platform based design environment typically consists of a fixed, para-

meterizable platform or a set of (parameterizable) components that can be

combined in specific ways to compose a platform.

The parameters make it possible to adjust platforms and individual

components to the required application domain and platform design re-

quirements. Examples of platform parameters are:

• type of general processing unit used, which can be a general pur-

pose processor like ARM and MIPS cores, or a dedicated hardware

component unit like Application Specific Integrated Circuits (AS-

ICs) specialized for Discrete Cosine Transform (DCT) operations or

Variable Length Encoding (VLE).

• type of communication infrastructure, which can be shared bus or

crossbar based architecture.

• memory subsystems, which can vary for latency and capacity levels.



1.2 PROBLEM DESCRIPTION 3

• HW/SW partitioning: determining which tasks will be implemen-

tetd in software and which tasks as fixed ASICs or reconfigurable

hardware blocks.

A platform instance is a set of parametrized components that are selected

from a library. These parametrized MPSoCs architectures must be tuned

(i.e., their configuration parameters must be appropriately chosen) to find

the best trade-o↵ in terms of a set of metrics (e.g., energy and delay) for

a given class of applications. This tuning process is called Design Space

Exploration (DSE) [78]. This process allows to explore a wide range of

early design choices which heavily influence the success or failure of the

final product.

In general, DSE involves the minimisation (or maximization) of mul-

tiple objectives. DSE is the first step for a multi-objective optimisation

procedure, as shown in Figure 1.1. The solution of multi-objective optim-

ization problems consists of finding the points of the Pareto curve [24], i.e.

all the points which are better than all the others for at least one objective.

Consequently, in Step 2 higher-level information is used to choose one of

the obtained trade-o↵ points.

State-of-the-art solutions for system-level DSE are essentially composed

of two elements:

• searching in the design space

• evaluating a single design point in the design space

The most straightforward but least e�cient approach to determine the

Pareto-optimal set of configurations of a parameterized SoC architecture

with respect to multi-objective design optimization criteria is to do an

exhaustive search of the configuration space. However, a Pareto curve for

a specific platform is available only when all the points in the design space

have been evaluated and characterized in terms of the metrics of merit.

This exhaustive search approach is often unfeasible due to large design

spaces, and long evaluation times. Therefore, meta-heuristic algorithms
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(like genetic algorithms, simulated annealing, and ant colony optimization)

are often used.

The evaluation of a single design point in the design space consists of

objective values like performance, system resilience and power consump-

tion, and a mechanism for traversing the design space to search for an

optimal (set of) design point(s). To evaluate a single design point, roughly

three approaches are available: 1) performing measurements on a proto-

type implementation, 2) simulation-based measurements and 3) estima-

tions based on some kind of analytical model. Each of these methods has

di↵erent properties with respect to evaluation time and accuracy. Evalua-

tion of prototype implementations provides the highest accuracy, but long

development and/or synthesis times prohibit evaluation of many design

options. Analytical estimations are considered the fastest, but accuracy

is limited since they are typically unable to su�ciently capture particu-

lar intricate system behaviour. Simulation-based evaluation fills up the

range between these two extremes: both highly accurate (but slower) and

fast (but less accurate) simulation techniques are available. This trade-o↵

between accuracy and speed is very important, especially for early system-

level DSE in which the design space that needs to be explored is vast and

some accuracy can often be traded for e�ciency to cope with these large

design spaces. Current DSE e↵orts typically use simulation or analytical

models to evaluate single design points together with a heuristic search

method [39] to search the design space. These DSE methods search the

design space using only a finite number of design-point evaluations, not

guaranteeing to find the absolute optimum in the design space, but they

reduce the design space to a set of design candidates that meet certain re-

quirements or are close to the optimum with respect to certain objectives.

Our focus is on system-level mapping DSE, where mapping involves two

aspects: 1) allocation and 2) binding. Allocation deals with selecting the

architectural components in the MPSoC platform architecture that will be

involved in the execution of the application workload (i.e., not all platform

components need to be used), modelling the configuration problem as well.

Subsequently, the binding specifies which application task or application
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communication is performed by which MPSoC component. State-of-the-

art DSE approaches typically use either simulation or an analytical model

to evaluate mappings, where simulative approaches prohibit the evaluation

of many design options due to the higher evaluation performance costs and

analytical approaches may su↵er from accuracy issues.

DSE is making design decisions in the early design stages is crucial

to reduce the number of implementation options and thereby reducing

the total design e↵ort. Design space pruning is a technique to make the

optimisation process of the DSE more e�cient, allowing to search larger

design spaces or to find optimal design quicker.

Pruning techniques can, therefore,be applied to

• Speed up the design point evaluation;

• Optimize the heuristic search in the design space.

In every design phase, a subset from the non-pruned design options is

selected and evaluated.

The feedback from the evaluation determines which of the candidates

will be used in the next (lower) level of abstraction in the design process.

In this thesis, Evolutionary multi-objective optimization (EMO) al-

gorithms are applied to support the design space exploration of multi-

processor system-on-chip architectures.

We focus on e�cient techniques to prune the design space while using

the evolutionary optimization search algorithms, as shown in Figure 1.1.

Therefore, the research question of this thesis is:

How can we use pruning techniques to speed up the eva-
luation of a design point and optimise the search in the
design space?

1.3 Objectives and organisation of the thesis

The work presented in this thesis has been performed in the context of

several system-level simulation frameworks. In particular, we used Sesame
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focus of this thesis

Multi-objective 
optimization problem

minimize f1
minimize f2

...
minimize fn

subject to constraints

Design point 
evaluation

Multiple trade-off 
solutions found

step 1

Higher-level 
information

step 2

Choose one solution

MPSoC Platform

MEMGPP DSP

Task 
1

Task 
2

Task 
n

Searching the 
design space

Pruning the 
design space

Figure 1.1: Schematic of a multi-objective optimization procedure.

[78] for e�ciently evaluating non-functional behaviour (like performance,

and cost) of an embedded system at a high level of abstraction. Initially

Sesame did however not yet support system level power/energy consump-

tion analysis. Therefore, the initial part of this thesis focuses on extending

the objective space of our DSE with the introduction of a complete power

modelling framework for multi-processors systems on chip (MPSoC) within

Sesame. This thesis also studies DSE for lifetime optimisation of systems.

In order to estimate system resilience, we employ the CQSA framework

[67], which allows slack-based design space exploration for networks on
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chip. The Critical Quantity Slack Allocation (CQSA) jointly optimises

system resilience and cost by determining (a) how much slack should be

allocated in the system, and (b) where in the system it should be alloc-

ated, such that the system mean-time-to-failure (MTTF) is increased in

the most area-e�cient ways possible.

The main contributions of this thesis are:

• Extending the objective space with the introduction and implement-

ation of a complete framework for high-level power estimation for

MPSoC. The technique is based on abstract execution profiles, called

event signatures, and it operates at a higher level of abstraction than,

e.g., commonly-used instruction-set simulator (ISS) based power es-

timation methods and should thus be capable of achieving good eva-

luation performance.

This is essential in the context of the first phase of DSE.

• An iterative design space pruning methodology based on static through-

put analysis of di↵erent application mappings.

By interleaving these analytical throughput estimations with sim-

ulations, our hybrid approach significantly reduces the number of

simulations that are needed during the process of DSE.

• A study on di↵erent strategies for interleaving fast but less accurate

analytical performance estimations with slower but more accurate

simulations during DSE

• Failure scenario memoization pruning techniques to reduce the com-

putational cost of system lifetime estimation by storing and reusing

estimated lifetime values for systems with one or more failed com-

ponents. The lifetime of all partially failed systems is derived and

saved (the memory storage cost of such values is negligible); when

a previously explored partially-failed system is encountered a second

time, its expected lifetime is read from a database rather than re-

estimated.
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• Correlation-based architecture distance metrics for e�ciently prun-

ing the slack-allocation based DSE for improving system resilience

of NoC based MPSoCs. In modern platform- and network-on-chip

based design, components are clustered around switches in the on-

chip network. When clusters and the tasks mapped to them are

considered to be symmetric, some configurations have the same ef-

fect on the overall system lifetime. This can be leveraged to reduce

the number of evaluations.

To summarise, this thesis studies pruning techniques to speed up the search

in the design space and the evaluation of a design point according to several

objectives. The thesis is, therefore, organised into the following parts:

• background (Chapters 1 and 2),

• extending the design space with the objective of power/energy con-

sumption (Chapter 3), and

• pruning techniques for system performance (Chapter 4) and lifetime

optimisation (Chapter 5 and Appendix).

Chapter 2 gives an overview of the preliminary information necessary

for understanding the rest of the thesis. We first describe the basic know-

ledge about multi-objective optimisation problems. Then, we explain the

multi-objective optimisation problem in the context of design space ex-

ploration of embedded systems. We describe evolutionary algorithms as

heuristic methods for searching in the design space, with a brief description

of the genetic algorithm NSGA-II we use throughout this thesis. After-

wards, we discuss several metrics for evaluating the quality of the solutions

obtained while performing design space exploration using heuristic search.

The second part of Chapter 2 illustrates Sesame, the main framework used

for the evaluation of a single design point. In particular, we provide a

quick overview of the application, mapping and architecture models used

in Sesame, since they will be the focus for the optimisation and modelling

techniques used in Chapter 3 and 4.
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Chapter 3 is dedicated to the first step for multi-objective DSE, which

is introducing extra objective functions and simulation models. In this

chapter, we present a full system-level MPSoC power estimation framework

based on the Sesame framework, in which the power consumption of all the

system components is modelled using signature-based models. The MPSoC

power model has been incorporated into Daedalus, which is a system-level

design flow for the design of MPSoC based embedded multimedia systems

[90, 73]. This let us validate the high-level power models against real

MPSoC implementations on FPGA.

Next two chapters focus essentially on the optimisation of the other

two design objectives, system performance and lifetime. Chapter 4 is the

first part of pruning techniques for multi-objective DSE focusing on per-

formance evaluation and optimisation. This chapter deals with a new,

hybrid form of DSE, combining simulations with analytical estimations to

prune the design space in terms of application mappings that need to be

evaluated using simulation. To reach our goal, the DSE technique uses an

analytical model that estimates the expected throughput of an application

(which is a natural performance metric for the multimedia and streaming

application domain we target) given a certain architectural configuration

and application-to-architecture mapping. In the majority of the search

iterations of the DSE process, the throughput estimation avoids the use

of simulations to evaluate the design points. However, since the analytical

estimations may in some cases be less accurate, the analytical estimations

still need to be interleaved with simulation-based evaluations in order to

ensure that the DSE process is steered into the right direction.

We studied di↵erent techniques for interleaving these analytical and

simulation-based evaluations in our hybrid DSE.

Finally, Chapter 5 focuses on pruning techniques for an important met-

ric in modern embedded systems, which is the expected lifetime. Redund-

ant hardware is typically employed to improve system lifetime. For in-

stance, slack allocation, which overdesigns the system by provisioning exe-

cution and storage resources beyond those required to operate failure-free,

has been proposed as a low-cost alternative to replicating resources [22, 67].
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When components fail, data and tasks are re-mapped and re-scheduled on

resources with slack; as long as performance constraints are satisfied, the

system is considered to be operational despite component failure. For any

given system, the design space of possible slack allocations is large and

complex, consisting of every possible way to replace each component in

the initial system with another component from a library.

In Chapter 5 we propose an exploration framework for Network-on-

Chip (NoC) based MPSoCs that substantially reduces the computational

cost of slack allocation. First, we develop failure scenario memoization

to reduce the computational cost of lifetime estimation by storing and

reusing estimated lifetime values for systems with one or more failed com-

ponents. Second, we introduce a correlation-based architecture distance

metric to identify symmetries for clusters of components called islands.

In modern platform- and network-on-chip based design, components are

clustered around switches in the on-chip network. When clusters and the

tasks mapped to them are considered to be symmetric, some configurations

have the same e↵ect on the overall system lifetime. This can be leveraged

to reduce the number of evaluations.



Chapter2
Multi-objective Design Space
Exploration 1

2.1 Introduction

The problem of identifying optimal design points can be generally de-

scribed as multi-objective optimization problem. In most design problems,

the objectives to be taken into account are many and often conflicting.

The role of multi-objective optimization in the design industry is be-

coming increasingly relevant. The growing computational power of mod-

ern computers, in fact, provides designers with the ability to build complex

parametric models which can be used to achieve automatic optimization

procedures. The classical approach, which is still widely used to tackle

multi-objective optimization problems, consists of transforming the multi-

objective problem into a single-objective problem by formalizing a degree of

preference among the objectives; the thus obtained single-objective prob-

lem, is then solved using one of the classical techniques of optimization,

either deterministic or stochastic. In this perspective, the multi-objective

problem is seen as a particular case of the mono-objective problem. This

approach presents three main disadvantages:

1The contents of this chapter have been published as [1]

11
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• The variety of solutions to a multi-objective problem is thus reduced

a single solution resulting in a significant loss of information.

• The choice of one solution among the infinite possible (or rather,

between the n numerically available) through additional information

is made a priori, that is, without a complete information on all the

possible solutions.

• There are some cases of (non-convex) problems in which the pure

multi-objective approach provides solutions that would be impossible

from a mathematical point of view to get through a classical ap-

proach, since a classical approach is not capable of making a distinc-

tion between local optimal solutions and globally optimal solutions,

and will treat the former as actual solutions to the original problem.

An other approach, derived from Pareto’s theory, does not require an a

priori choice of the degree of preference and reverses the point of view

considering the single-objective problem as a special case of the multi-

objective problem. The result of the optimization is not just one but a

variety, a sampling of the infinite sub-optimal solutions. Several evolution-

ary and non-evolutionary methods have been specifically developed for

multi-objective optimization. In this work, Evolutionary multi-objective

optimization (EMO) algorithms are applied to support the design space

exploration. In particular, we focus on e�cient techniques to prune the

design space while using the evolutionary optimization search algorithms,

as shown in Figure 1.1. Pruning techniques are applied to

• Speed up the design point evaluation;

• Optimize the heuristic search in the design space.

Further details of those two mechanisms will be discussed in Chapters 4

and Chapter 5. The first section of this chapter describes multi-objective

optimization using evolutionary algorithms, with particular attention to

the Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II). NSGA-

II is one of the popularl EMO algorithms used for finding (sub)-optimal
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solutions in a DSE problem. Section 2.3 introduces the di↵erent metrics

used to compare the quality of the final solutions. Finally, we present the

Sesame framework for modelling MPSoC design instances used for fitness

evaluation within the GA.

2.2 Multi-objective Optimization using Evolutionary Algorithms

Most of the optimization problems involve more than one objective to be

optimized. The objectives are often conflicting, i.e., maximize perform-

ance, minimize cost, maximize reliability, etc. In that case, one extreme

solution would not satisfy all objective functions and the optimal solution

of one objective will not necessary be the best solution for other object-

ive(s). Therefore, di↵erent solutions will produce trade-o↵s between dif-

ferent objectives and a set of solutions is required to represent the optimal

solutions for all objectives.

A multi-objective optimization problem can be defined as the minim-

ization or maximization of a real-valued function on a specific set. The

importance of this mathematical model is obviously derived from the fact

that many real problems are addressed when using such model. In the

following, when not di↵erently specified, we will consider a multi-objective

optimization problem as a vector function that maps a set of m parameters

(namely decision variables) to a set of n objectives. Formally:

min/max y = f(x) = (f
1

(x), f
2

(x), . . . , f
n

(x))

subject to x = (x
1

, x
2

, . . . , x
m

) 2 X

y = (y
1

, y
2

, . . . , y
n

) 2 Y

(2.1)

where x is called the decision vector, X is the parameter space, y is the

objective vector, and Y is the objective space [96].

The set of solutions of a multi-objective optimization problem consists

of all decision vectors for which the corresponding objective vectors cannot

be improved in any dimension without stripping of rank in an other; this

can be explained by the following definitions:
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Figure 2.1: The non-dominated front formed by the non-dominated solutions.

Definition 2.2.1. Given a maximization problem and consider two de-

cision vectors a, b 2 X.

Then, solution a is said to dominate solution b (also written as a � b)

i↵
8i 2 {1, 2, . . . , n} : f

i

(a) � f
i

(b) ^
9j 2 {1, 2, . . . , n} : f

j

(a) > f
j

(b)
(2.2)

Definition 2.2.2. All decision vectors which are not dominated by any

other decision vector of a given set are called non dominated regarding

this set.

Definition 2.2.3. The decision vectors that are non dominated within the

entire search space are denoted as Pareto optimal and constitute the so-

called Pareto-optimal set or Pareto-optimal front.

For a given set of solutions (or corresponding points in the objective

space, for example, those shown in Figure 2.1), a pair-wise comparison

can be made using the above definition to determine whether one point

dominates the other. All points that are not dominated by any other

member of the set are called the non-dominated points of class one, or

simply the non-dominated points. For the set of six solutions shown in the

figure, they are points 3, 5, and 6.

One property of any two such points is that a gain in an objective

from one point to the other happens only due to a sacrifice in at least
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one other objective. This trade-o↵ property between the non-dominated

points makes the practitioners interested in finding a wide variety of them

before making a final choice. These points make up a front when viewed

them together on the objective space.

Usually, we are only interested in Pareto-optimal solutions ;

For several optimization problems the design space is too large to be

explored; in this case the real Pareto optimal set is unknown.

According to the definition of Pareto optimality, moving from one

Pareto-optimal solution to an other necessitates trading o↵.

2.2.1 Principles of Evolutionary Multi-Objective Optimization Search

Multi-objective Optimization problems can be identified by two aspects:

search in the design space and decision making. The first of these two

aspects refers to an optimization process in which the set of feasible solu-

tions is represented by the Pareto Optimal solutions. As in single objective

optimization problems, the search area typically is too large to be exhaust-

ively explored, implying that the convergence to an optimal solution of the

problem in question is not guaranteed. The second aspect (decision mak-

ing) refers to the problem of choosing the ”best” solution within the entire

set of Pareto Optimal solutions. The Decision Maker (DM) is in charge

of choosing the ”best” solution. For what regards the search in the design

space, we resort to evolutionary algorithms. Evolutionary algorithms are

very e↵ective in solving multi-objective problems because they are able

to manage simultaneously a vast set of solutions (the so-called popula-

tion). This feature allows evolutionary algorithms to find a substantial

number of Pareto Optimal points within a short time. It’s important to

note that Evolutionary Algorithms do not necessarily converge to the exact

global optimum, but only for a set of solutions that meet the requirements.

Moreover, evolutionary algorithms are little a↵ected by the shape and con-

tinuity of the Pareto front to search and, therefore, can be used successfully

even in presence of discontinuous and / or concave fronts: most classical

methods are not capable of making a distinction between local optimal

solutions and global optimal solutions in a non-convex space, and they are
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designed to work with continuos variables only [28].

The term Evolutionary Algorithms (EA) indicates a class of optimiz-

ation methods that simulate processes of natural evolution [16]. After a

succession of several generations, the populations evolve according to the

laws of natural selection and survival of the fittest.

Biological systems are of great importance due to their robustness and

their ability in solving a wide range of issues essential to their survival

course. They are the result of an evolutionary process that bases its suc-

cess on mechanisms such as selective breeding of the best individuals, re-

combination of their chromosomes and some random mutations. Although

the exact function of the principles of natural evolution is still under in-

vestigation, the basic principles are clear:

• Natural evolution acts on chromosomes of individuals, rather than

individuals, or on the genetic coding (genotype) of the physical char-

acteristics of the living organism (phenotype), as shown in Figure

2.2.

• The processes of natural selection favour the reproduction of the

most e�cient individuals (and, therefore, of chromosomes) in terms

of adaptivity. Essentially, individuals of a population compete to

seek and obtain resources needed for survival. Similarly, individuals

compete for obtaining a mate. Mating is useful because it maximises

genetic recombination and it improves diversity. Individuals who

become more adapted to survival and reproduction will then have a

greater number of descendants. Therefore, selection is the process

in which the phenotype influences in some way the genotype.

• The mechanism of reproduction forms the core of the evolutionary

process: combining genetic codes of two individuals and the intro-

duction of random mutations from an adaptive point of view. The

combination (crossover) of the features of di↵erent ancestors may

produce a very adapted (super fit) o↵spring, whose surviving ability

is superior to the one of each parent. In this way populations evolve

and become increasingly adapted to their environment.
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Figure 2.2: Chromosome representation.

• Natural evolution works on populations of individuals through a pro-

cess of generations that has no historical memory, but relies solely

on the interaction between each individual and the ecological envir-

onment in which it lives.

Evolutionary Algorithms are based on principles very similar to those

of evolution in nature, and in addition they possess a dual purposes: first,

they are useful for deeply understanding the processes of development of

living systems, and secondly they aim to introduce the same characteristics

of robustness and adaptability of the organic processes in artificial intel-

ligence, in order to solve more complex problems (having constraints and

discontinuous Pareto-optimal region) with respect to traditional methods.

Evolutionary Algorithms make use of random search, although the whole

process is driven by a selective reproduction; moreover, they are based

on the encoding of the parameters to be optimized rather than the

parameters themselves. Binary encoding is the most common method for

encoding the parameters; each individual is a set of bits, 0 or 1, represent-

ing a parameter of the design point, as shown in Figure 2.2.

An alternative to binary encoding is a many-character encoding: in-

stead of having only 0 or 1, a larger alphabet is used. This alphabet may

contain strings, integers or real values. The large freedom in choosing an

alphabet makes this encoding applicable to several problems. A practical

example of this many-character encoding is illustrated in Section 2.2.3.

Evolutionary algorithms operate in parallel on a population of solutions

distributed on the search surface. In addition, they are equipped with a
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Figure 2.3: Genetic operators.

fitness function, which is used to guide to the entire evolution process.

Essentially, a fitness function classifies the design points according to the

objectives in the optimisation problem.

The basic principles of genetic algorithms have been introduced for the

first time by Holland in 1975 [68]. During the execution, the algorithm

repeatedly intervenes to modify a population which consists of a number

of solutions (individuals) : at each iteration, it operates on a random se-

lection of individuals of the current population, using them to generate

new elements of the population, which will replace an equal number of

individuals already present, and thereby forming a new population for the

next iteration (or generation) through crossover and mutation. This suc-

cession of generations evolves towards an optimal solution of the assigned

problem.
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More in detail, the crossover operator takes two individuals as parents

and creates two di↵erent o↵spring individuals by recombining the par-

ents. During crossover, substrings from two parents are swapped between

these parents with a fixed probability. There are many ways to implement

crossover. In the one-point crossover shown in Figure 2.3(a), two parent

individuals are cut at a random point and the segments after the cut point

are swapped to create the o↵spring. In the n-points crossover (Figure

2.3(b)), n crossover points are chosen. This type of crossover is essentially

a generalisation of the one-point crossover. The main drawback of those

two methods is that they cannot generate any schema.

An other type of crossover that is capable of generating any schema,

is uniform crossover. In this method each bit in the o↵spring is randomly

selected, either from the first parent or from the second one. A crossover

mask with the same length as the parents is randomly created and the par-

ity of the bits in the mask indicates which parent will supply the o↵spring

with which bits. An example is given in Figure 2.3(c).

Finally, the mutation operator randomly alters each bit of an individual

according to a certain probability. This operator presents two main fea-

tures: first, it prevents the algorithm to be trapped in a local optimum;

second, it helps to maintain genetic diversity in the population. A practical

example is also shown in Figure 2.3(d).

2.2.2 Elitist Non-dominated Sorting GA or NSGA-II

The Elitist Non-dominated Sorting GA (NSGA-II) is based on di↵erent

levels of classification of individuals. Let P
0

be the initial population of size

N . An o↵spring population Q
t

of size N is created from current population

P
t

. Before the selection is performed, the combined population R
t

= Q
t

[P
t

is classified according to the non-domination: all the design points are

ranked through a non-dominated sorting based on their dominance depth.

The process continues until all members of the population are classified

into fronts F
1

, F
2

, . . ..

The next population P
t+1

is composed by individuals from the fronts

F
1

, F
2

, . . ., until the population size exceeds N ; since the individuals in the
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Figure 2.4: Schematic of the NSGA-II procedure.

first front have the best fitness value, they will be reproduced more than

the rest of the population.

NSGA-II uses niching techniques (segmentation) providing each an in-

dividual parameter called crowding distance. This parameter measures the

average side-length of the hypercube enclosing a solution without includ-

ing any other solution in the population, as shown in Figure 2.5. Solutions

of the last accepted front are ranked according to the crowded comparison

distance. Crowding distance is used by the algorithm to ensure adequate

distribution of individuals, in order to lead the population to adequately

explore the entire space of objectives.

A detailed scheme of the procedure is illustrated in Figure 2.4. Initially,



2.2
MULTI-OBJECTIVE OPTIMIZATION USING EVOLUTIONARY ALGORITHMS

21

i

i-1

i+1

f1

f2

hypercube

Figure 2.5: the crowding distance.

a population P
0

of size N is created; this population is sorted based on

the non-domination through the fitness function (1 is the best level, 2 the

next level and so on).

At this point, the o↵spring population is generated through the three

operators for tournament selection, crossover and mutation.

Consequently, each of elements of the new population P
t+1

is ranked

and it is sorted in ascending order according to the Pareto dominance

concept. The new parent population is composed by adding the solu-

tions from the first front and the following fronts until exceeds the popula-

tion size. Crowding distance is calculated during the population reduction

phase and in the tournament selection for deciding the winner. The al-

gorithm continues till the number of iterations ngen is reached.

2.2.3 Applications of NSGA-II: the Application Mapping Problem

This section will describe how a GA, and more specifically NSGA-II, can

be deployed to perform mapping DSE for MPSoCs.

As explained before, NSGA-II uses an encoding as a string-like rep-

resentation for each possible solution (the chromosome). In this case the

problem is finding an optimal design candidate in a large space of possible

design candidates that can be evaluated within Sesame as fitness function.

If there is a choice between M di↵erent types of processors and a max-

imum of N processors, then the meta-platform consists of all the possible

platform components permutations and the mapping determines the final
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configuration. A mapping between an application and a possible configur-

ation of the parameterized SoC architecture corresponds to a chromosome

of the NSGA-II. In particular, we use a gene for each parameter of the

parameterized SoC architecture and allow that gene to assume only the

values admissible by the parameter it represents; we assume that there

are no functional restrictions on the processors: all processors can execute

all of the tasks. Moreover, we assume to use a crossbar-based architec-

ture, therefore each pair of processors can communicate so that there are

no topological restrictions. The crossbar in the proposed platform fully

connects all processors, so processes can communicate regardless on which

processor they are mapped. The result is that any task can be mapped

onto any processor so that we do not have to make special provisions for

infeasible mappings. Given an application with N tasks and M processing

elements, the mapping is a function that maps N tasks onto a M -processor

system:
Task

1

) Processor
1

Task
2

) Processor
3

Task
3

) Processor
1

· · · · · ·
Task

N

) Processor
M

The resulting chromosome C can be schematised as a vector of N processor

identifiers:

C = [p
1

, p
2

, · · · , p
N�1

]

where the i-th index denotes the mapping target of task i.

All possible combinations of integers will result in valid mappings, as

long as as those numbers are within the range of processor identifiers. This

actually implies that all the crossover and mutation operators will result

in a feasible mapping.

In case these conditions are not met, the so-called repair mechan-

isms can be used [33]: the repair mechanism presented in [33] repairs

by randomly mapping the tasks to a feasible processor. There are three

possible repair strategies (no-repair, moderate-repair, and extensive-repair
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strategies): the first (no-repair) strategy repairs the invalid individual at

the end of the optimization process, and all non- dominated solutions are

output. The second one (moderate repair), repairs the individuals at the

end of each variation step, thus allowing infeasible individuals to enter the

mutation step. The last technique (full repair) repairs all invalid individu-

als immediately after every variation step, helping to explore new feasible

areas over unfeasible solutions.

2.3 Design Metrics for analyzing Performance of DSE

There are two goals of an EMO procedure: (i) a good convergence to the

Pareto-optimal front and (ii) a good diversity in obtained solutions. Since

both are conflicting in nature, comparing two sets of trade-o↵ solutions

also require di↵erent performance measures. Three di↵erent sets of per-

formance measures were used:

1. Metrics evaluating convergence to the known Pareto-optimal front

(such as error ratio, distance from reference set, etc.),

2. Metrics evaluating the spread of solutions on the known Pareto-

optimal front (such as spread, spacing), since the non-dominated

solutions are required to cover a wide range for each objective func-

tion value, and

3. Metrics evaluating certain combinations of convergence and spread

of solutions (such as hypervolume, coverage, R-metrics, etc.).

In the following subsection, we provide an overview of the deployed metrics

in this work.

2.3.1 The Hypervolume

The hypervolume (HV) [96] indicates the closeness of the solution set to the

reference Pareto front. The hypervolume represents the size of the region

dominated by the solutions in the Pareto optimal set. The reference point
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can simply be found by constructing a vector of worst objective values. The

hypervolume metric is interesting because it is sensitive to the closeness

of solutions to the true Pareto optimal set as well as the distribution of

solutions across the objective space. The hypervolume value is calculated

by summing the volume of hyper-rectangles constructing the hypervolume.

A Pareto optimal set with a large value for the hypervolume is desirable

[89]. The hypervolume represents the size of the region dominated by

the solutions in the Pareto optimal set. In Figure 2.6, the gray region

represents this metric for two objectives (f1 and f2) where these objectives

are to be minimized. The reference point (W) can simply be found by

constructing a vector of worst objective values.

2.3.2 Average Distance from Reference Set (ADRS)

This criterion corresponds to how much the heuristic solutions approximate

the exact Pareto set after a fixed amount of simulations. In particular, we

use the Average Distance from Reference Set (ADRS) [26], which measures

the distance from the solution set p(A) set and the Pareto-optimal set
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R = p(⌦):

ADRS(p(A), R) =
1

|R|
X

xp2R

min d{ ~x
p

,~a}
~a 2 p(A)
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d{ ~x
p

,~a} = max
j=1,··· ,M

n

0, fj(~a)�fj( ~xp)

fj( ~xp)

o

and M is the number of objective functions.

A smaller ADRS value indicates that the distribution of the solutions

is closer to the reference Pareto front, and therefore better.

2.3.3 The normalized r metric

The normalized r metric [33] measures the spread of solutions. It refers to

the area of a hyper-rectangle formed by the two extreme solutions in the

objective space, thus a bigger value spans a larger portion and therefore is

better. The nabla-metric calculates the volume of a hyperbox formed by

the extreme objective values observed in the Pareto optimal set:

r =
M

Y

m=1

(fmax

m

� fmin

m

) (2.3)

Where M is the number of objectives, (fmax

m

and fmin

m

) the maximum and

respectively minimum values of the mth objective in the Pareto optimal

set. A bigger value spans a larger portion and therefore is better. This

metric does not reveal the exact distribution of intermediate solutions, so

we have to use another metric for evaluating the distribution.

2.3.4 �
mst

-metric for measuring distribution

For measuring the distribution of solutions in a Pareto optimal set, we use

the �
MST

metric [89]. The �
mst

is the standard deviation of the edges

weights in the Minimum Spanning Tree (MST) generated by Pareto op-
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timal solutions:

�
mst

=

v

u

u

t

1

|E|� 1

|E|
X

i=1

(w � w
i

)2 (2.4)

Where |E| is the number of edges in the MST, w
i

is the weight of the ith

edge and w is the average weight of the edges in the MST. The �
mst

metric

measures the standard deviation of the edges weights in the MST. The

edges weights denote the minimum distances between connecting solutions.

Therefore, a smaller value indicates that the distribution of the solutions

is closer to the uniform distribution and thus is better.

2.4 The Sesame environment

The traditional practice for embedded systems evaluation often combines

two types of simulators, one for simulating the programmable components

running the software and one for the dedicated hardware parts. However,

using such a hardware/software co-simulation environment during the early

design stages has major drawbacks: (i) it requires too much e↵ort to build,

(ii) it is often too slow for exhaustive explorations, and (iii) it is inflex-

ible in quickly evaluating di↵erent hardware/software partitionings. To

overcome these shortcomings, a number of high-level modelling and sim-

ulation environments have been proposed in recent years. An example is

our Sesame system-level modelling and simulation environment [78], which

aims at e�cient design space exploration of embedded multimedia system

architectures.

In this thesis, we deploy this framework as fitness function for the GA-

based DSE.

The Sesame framework [78], provides methods and tools for the ef-

ficient modelling and simulation of heterogeneous embedded multimedia

systems. Using Sesame, a designer can model embedded applications and

SoC architectures at the system-level, and map the former onto the lat-

ter to perform application-architecture co-simulations for rapid perform-

ance evaluations. Based on these evaluations, the designer can further
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refine (parts of) the design, experiment with di↵erent hardware/software

partitionings, perform co-simulations at multiple levels of abstraction, or

mixed level co-simulations where architecture model components operate

at di↵erent levels of abstraction. To achieve this flexibility, Sesame recog-

nizes separate application and architecture models within a single system

simulation. The application model defines the functional behavior of an

application, including both computation and communication behaviors.

The architecture model defines architecture resources and captures their

performance constraints. An explicit mapping step maps an application

model onto an architecture model for co-simulation.

2.4.1 Application layer

For application modeling, Sesame uses the Kahn Process Network (KPN)

model of computation [52]. In a KPN, in which parallel and autonomous

processes are implemented in a high-level language and they communic-

ate with each other via unbounded FIFO channels. The communication

and the synchronisation in a KPN is arranged by FIFO channels using

blocking FIFO read and non-blocking write primitives. Applications spe-

cified as process networks allow a more natural mapping of processes to

processing elements of the MPSoC architecture than a sequential program

specification. Moreover, this model is deterministic and it fits with the

targeted media-processing application domain. Determinism implies that

the same application input always results in the same application output,

irrespective of the scheduling of the KPN processes. This provides us with

a lot of scheduling freedom when mapping KPN processes onto architecture

models for quantitative performance analysis.

The code of each Kahn process is instrumented with annotations, which

describe the application’s computational actions, thus capturing the work-

load of an application. The reading from and writing to FIFO channels

represents the communication behaviour of a process within the applica-

tion model. In particular, when the Kahn model is executed, each pro-

cess records its computational and communication actions, and generates

a trace of application events. These application events are an abstract
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representation of the application behaviour and are necessary for driving

an architecture model. There are three types of application events: the

communication events read and write and the computational event ex-

ecute. Each event has a set of arguments to describe what is performed.

For instance, the Execute(DCT) event describes that a Discrete Cosine

Transform is performed. Read and Write events contain the information

relative to the Kahn channel used for the communication and the amount

of data transmitted, which, according to the application, may deploy dif-

ferent units as a pixel or a complete frame.

In Chapter 4 we employ also a subclass of the KPN model, which is

called Polyhedral Process Network (PPN). In PPNs blocking read and

write primitives are used.

Moreover, the functional behaviour of each process is expressed in terms

of polyhedral descriptions. This implies that everything concerning the

execution is known at compile-time, allowing the calculation of bu↵er sizes

and schedules for merging processes.

2.4.2 Architecture Layer

The architecture model describes the hardware components in the sys-

tem. The main function of this layer is simulating the performance (or

power, as it will be discussed later on) consequences of the computation

and communication events generated by the application model. Since the

functional behaviour is already captured by the application model, which

drives the architecture simulation, the architecture layer purely accounts

for architectural (performance) constraints.

An architecture model is constructed from generic building blocks provided

by a library, which contains template performance models for processing

cores, communication media (like buses), and various types of memory.

The architecture models, implemented in Pearl [71], are highly para-

meterized black box models, which can simulate the timing characteristics

of a programmable processor, a reconfigurable component, or a dedicated

hardware core by simply changing the latencies associated to the incom-

ing application events. The timing consequences of application events are
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Figure 2.7: A close-up of the layers in Sesame: application model layer,
architecture model layer, and the mapping layer which is an interface
between application and architecture models

simulated by parameterizing each architecture model component with an

event table containing operation latencies. The table entries can include,

for example, the latency of an execute event, or the latency of a memory

access (read/write event ) in the case of a memory component. With re-

spect to communication, issues such as synchronization and contention on

shared resources are also captured in the architecture model.

Figure 2.7 illustrates a detailed view of layers in Sesame. In this ex-

ample, the application model consists of four Kahn processes and five FIFO

channels. The architecture model contains two processors and one shared

memory. To decide on an optimum mapping, there exist multiple criteria

to consider: maximum processing time in the system, power consump-

tion and the total cost. This section aims at defining a mapping function,

shown in Figure 2.7, to supply the designer with a set of best alternative

mappings under the mentioned system criteria.
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2.4.3 Mapping Layer

To realize trace-driven co-simulation of application and architecture mod-

els, Sesame has an intermediate mapping layer with two main functions.

First, it controls the mapping of Kahn processes onto architecture model

components by dispatching application events to the correct architecture

model component. Second, it makes sure that no communication deadlocks

occur when multiple Kahn processes are mapped onto a single architecture

model component. In this case, the dispatch mechanism also provides vari-

ous strategies for application event scheduling.

The mapping layer comprises of virtual processors and FIFO bu↵ers

for communication between the virtual processors. As illustrated in Figure

2.7, there is a one-to- one relationship between the Kahn processes in the

application model and the virtual processors in the mapping layer. The

same is true for the Kahn channels and the FIFO bu↵ers in the mapping

layer. However, the unbounded Kahn FIFO channels are mapped onto

bounded FIFO bu↵ers in the mapping layer. The size of the FIFO bu↵ers

in the mapping layer is parameterized and dependent on the architecture.

Mapping an application model onto an architecture model is illustrated

in Figure 2.7. FIFO channels between the Kahn processes are also mapped

(shown by the dashed arrows) in order to specify which communication me-

dium is utilized for that data-exchange. If the source and sink processes

of a FIFO channel are mapped onto the same processing component, the

FIFO channel is also mapped onto the very component meaning that it

is an internal communication. The latter type of communication is inex-

pensive as it is solely handled by the processing component and does not

require access to other components in the architecture.

2.5 Conclusions

This chapter focused on evolutionary multi-objective algorithms and em-

bedded systems design. We analyzed how to EMO algorithms can be used

to solve DSE problems applied to embedded systems design. In order to
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evaluate the fitness of the design points, we presented the Sesame simula-

tion framework. Sesame is a high-level trace-based simulator which allows

to explore di↵erent mapping configurations of streaming application onto

MPSoC.





Chapter3
Extending the objective space1

3.1 Introduction

An important element of system-level design is the high-level modelling for

architectural power estimation. This allows to verify that power budgets

are approximately met by the di↵erent parts of the design and the entire

design, and evaluate the e↵ect of various high-level optimizations, which

have been shown to have much more significant impact on power than

low-level optimizations [53].

Previously, the Sesame framework was mainly focused on the system-

level performance analysis of multimedia MPSoC architectures. So, it did

not include system-level power modelling and estimation capabilities. In

[88], we introduced the concept of computational event signatures, allowing

for high-level power modelling of microprocessors (and their local memory

hierarchy). This signature-based power modelling operates at a higher

level of abstraction than commonly-used instruction-set simulator (ISS)

based power models and is capable of achieving good evaluation perform-

ance. This is important since ISS-based power estimation generally is not

suited for early DSE as it is too slow for evaluating a large design space:

the evaluation of a single design point via ISS-based simulation with a

1The contents of this chapter have been published in [2, 6, 4]

33
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realistic benchmark program may take in the order of seconds to hundreds

of seconds. Moreover, unlike many other high-level power estimation tech-

niques, the signature-based power modelling technique still incorporates

an explicit micro-architecture model of a processor, and thus is able to

perform micro-architectural DSE as well.

In this chapter, we present a full system-level MPSoC power estimation

framework based on the Sesame framework, in which the power consump-

tion of all the system components is modelled using signature-based mod-

els. The MPSoC power model has been incorporated into Daedalus, which

is a system-level design flow for the design of MPSoC based embedded

multimedia systems [90, 73]. Daedalus o↵ers a fully integrated tool-flow

in which system-level synthesis and FPGA-based system prototyping of

MPSoCs are highly automated. This allows us to quickly validate our

high-level power models against real MPSoC implementations on FPGA.

Extending the Sesame framework to also support power modelling of

MPSoCs could be done fairly easily by adding power consumption numbers

to the event tables. So, this means that a component in the architecture

model not only accounts for the timing consequences of an incoming ap-

plication event, but also accounts for the power that is consumed by the

execution of this application event (which is specified in the event tables

now). The power numbers that need to be stored in the event tables can,

of course, be retrieved from lower-level power simulators or from (pro-

totype) implementations of components. However, simply adding fixed

power numbers to the event tables would be a rigid solution in terms of

DSE: these numbers would only be valid for the specific implementation

used for measuring the power numbers. Therefore, we propose a high-level

power estimation method based on so-called event signatures that allows

for more flexible power estimation in the scope of system-level DSE. As

will be explained in the next sections, signature-based power estimation

provides an abstraction of processor activity and communication in com-

parison to traditional ISS-based power models, while still incorporating an

explicit micro-architecture model and thus being able to perform micro-

architectural DSE.
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Figure 3.1: Computational event signature generation for Microblaze

3.2 Event signatures

An event signature is an abstract execution profile of an application event

that describes the computational complexity of an application event (in

the case of computational events) or provides information about the data

that is communicated (in the case of communication events). Hence, it

can be considered as meta-data about an application event.
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3.2.1 Computational events signatures

A computational signature describes the complexity of computational events

in a (micro-)architecture independent fashion using an Abstract Instruc-

tion Set (AIS) [88]. Currently, our AIS is based on a load-store architec-

ture and consists of instruction classes, such as Simple Integer Arithmetic,

Simple Integer Arithmetic Immediate, Integer Multiply, Branch, Load, and

Store. The high level of abstraction of the AIS should allow for capturing

the computational behaviour of a wide range of RISC processors with dif-

ferent instruction-set architectures. To construct the signatures, the real

machine instructions of the application code represented by an application

event (derived from an instruction set simulator as will be explained be-

low) are first mapped onto the various AIS instruction classes, after which

a compact execution profile is made. This means that the resulting sig-

nature is a vector containing the instruction counts of the di↵erent AIS

instruction classes. Here, each index in this vector specifies the number of

executed instructions of a certain AIS class in the application event. We

note that the generation of signatures for each application event is a one-

time e↵ort, unless e.g. an algorithmic change is made to an application

event’s implementation.

To generate computational signatures, each Kahn application process

is simulated using a particular Instruction Set Simulator (ISS), depend-

ing on the class of target processor the application will be mapped on.

For example, we currently use ISSs from the SimpleScalar simulator suite

[14] for the more complex multiple-issue processors, while we deploy the

Microblaze cycle-accurate instruction-set simulator provided by Xilinx for

the more simple soft cores. Taking the signature generation for the Micro-

Blaze processor as an example in Figure 3.1, application files are loaded

into mb-gdb, which is the GNU C debugger for MicroBlaze. Mb-gdb is

used to send instructions of the loaded executable files to the MicroBlaze

instruction set simulator, which performs cycle-accurate simulation of the

execution of the software programs, as in [76].

Using these ISSs, the event signatures are constructed – by mapping
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the executed machine instructions onto the AIS as explained above – for

every computational application event that can be generated by the Kahn

process in question. The event signatures act as input to our parameter-

ized microprocessor power model, which will be described in more detail in

the next section. For each signature, the ISS may also provide the power

model with some additional micro-architectural information, such as cache

miss-rates, branch misprediction rates, etc. In our case, only instruction

and data cache miss-rates are used. As will be explained later on, the

microprocessor power model subsequently uses a micro-architecture de-

scription file in which the mapping of AIS instructions to usage counts of

micro-processor components is described.

The microprocessor power model also uses a micro-architecture de-

scription file in which the mapping of AIS instructions to usage counts

of microprocessor components is described. An example fragment of this
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mapping description is shown in Figure 3.1. It specifies that for every AIS

instruction (indicated by the ALL tag), the instruction cache (il1) is read,

the register update unit (RUU) is read and written, and branch predic-

tion is performed. Furthermore, it specifies that for the AIS instruction

LOAD, the ALU is used (to calculate the address), the level-1 data cache

(dl1) is accessed, and that the integer register file (irf) is read and writ-

ten. With respect to the latter, it takes register and immediate addressing

modes into account by assuming 1.5 read operations to the irf on average.

In addition, the micro-architecture description file also contains the para-

meters for our power model, such as e.g. the dimensions and organization

of memory structures (caches, register file, etc.) in the microprocessor,

clock frequency, and so on. Clearly, this micro-architecture description al-

lows for easily extending the AIS and facilitates the modeling of di↵erent

micro-architecture implementations.

3.2.2 Communication event signatures

In Sesame, the Kahn processes generate read and write communication

events as a side e↵ect of reading data from or writing data to ports. Hence,

communication events are automatically generated. For the sake of power

estimation, the communication events are also extended with a signature,

as shown in Figure 3.3.

A communication signature describes the complexity of transmitting

data through a communication channel (e.g., FIFO, Memory Bus, PLB

Bus) based on the dimension of the transmitted data and the statistical

distribution of the contents of the data itself.
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Microblaze using two di↵erent input sets.

More specifically, we calculate the average Hamming distance of the

data words within the data chunk communicated by a read or write event

(which could be, e.g., a pixel block, or even an entire image frame), after

which the result is again averaged with Hamming distance of the previous

data transaction on the same communication channel. This way, we can

get information about the usage of the channel and the switching factor,

which is related to the data distribution. In our transaction-level architec-

ture models, we use the assumption that the communications performed

by the KPN application model are not interleaved at the architecture level.

E.g., if a pixel block is transferred between two KPN processes, then the

architecture model simulates the (bus/network) transactions of the consec-

utive data words in the pixel block, without interleaving these transactions

with other ones. In Figure 3.4 we show the impact on power for a MJPEG

application using input sets with di↵erent data distribution. In the first

input data set picture, the correlation between pixel blocks is very high,

and consequently the average Hamming distance of the data will be zero.

This results in lower power values with respect of the second Input Data

Set picture, which presents a higher Hamming Distance distribution.
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3.2.3 Signature-based, system-level power estimation

In Figure 3.2, the entire signature-based power modeling framework is

illustrated. First the event traces are generated, together with the com-

munication signatures.

The Kahn application model is used to generate the event traces, which

represent the workload that is imposed on the underlying MPSoC archi-

tecture model. During this stage, the average Hamming distance, as ex-

plained in the previous subsection, is computed. This information is then

integrated in the trace events, forming the communication signature. The

communication signature generation is mapping dependent: communica-

tion patterns change with di↵erent mappings. For instance, mapping two

communicating tasks into the same processing unit reduces the data ex-

changed on the channels, thus decreasing the dynamic power due to com-

munication. Conversely, mapping two tasks that exchange a lot of data

into di↵erent processing units, increases the amount of exchanged data and

thus the signature.

In addition, the computational signatures are generated (Figure 3.2,

left side). In particular, the Kahn application processes for which a power

estimation needs to be performed, are simulated using the ISS, construct-

ing the event signatures (as explained in the previous section) for every

computational application event that can be generated by the Kahn pro-

cess in question. After the computational event signatures have been gen-

erated, the power consequences of trace events generated by the applica-

tion model, are computed. As explained in the following section, we do

this using a micro-architecture description file in the microprocessor power

model, which describes the mapping of AIS instructions to usage counts

of microprocessor components.

The Sesame architecture model simulates the performance and power

consequences of the computation and communication events generated by

the application model. To fullfill this task, each architecture model com-

ponent is parameterized with an event table containing the latencies of the

application events it can execute. Moreover, each architecture model com-
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Table 3.1: Di↵erent possibilities of reusing signatures in DSE

comp. signatures comm. signatures

µ-architectural exploration µ-architectural exploration
mapping exploration (limited) architectural exploration

ponent now also has an underlying signature-based power model. These

models are activity-based. The activity counts are derived from the di↵er-

ent application events in the event traces as well as the signature informa-

tion of the separate events. The total power consumption is then obtained

by simply adding the average power contributions of microprocessor(s),

memories and interconnect(s).

The structure of the entire system-level power model is composed by

separate and independent modules, which allow for the reuse of the dif-

ferent underlying component models as well as the generated signatures

(as shown in Table 3.1). For example, once computational signatures

are generated for application events, it is possible to explore di↵erent

micro-architectures executing the same application with the same map-

ping. Moreover, given the computational event signatures, it is also pos-

sible to do mapping exploration, limited to the case of homogeneous sys-

tems, since using an heterogeneous system would require the regeneration

of the computational events for each type of processing unit.

Communication signatures can be reused for both micro-architectural

and architectural exploration.

3.3 MPSoC Power Model

We construct a high-level power estimation method for MPSoC based on

the previously discussed event signatures that allows for flexible power es-

timation in the scope of system-level DSE. As will be explained in the sub-

sequent subsections, signature-based power estimation provides an abstrac-

tion of processor (and communication) activity in comparison to e.g. tradi-

tional ISS-based power models, while still incorporating an explicit micro-
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architecture model and thus being able to perform micro-architectural

DSE. The power models are based on FPGA technology, since we have in-

corporated these models in our system-level MPSoC synthesis framework

Daedalus [73], which targets FPGA-based (prototype) implementations.

The MPSoC power model is formed by three main building blocks, model-

ling the microprocessors, the memory hierarchy and the interconnections

respectively. The model is based on the activity counts that can be derived

from the application events and their signatures as described before, and

on the power characteristics of the components themselves, measured in

terms of FPGA Look-Up Tables (LUTs) used. More specifically, we es-

timate through synthesis on FPGA the maximum number of LUTs used

for each component. The resulting model is, therefore, a compositional

power model, consisting of the various components (for which the models

are described below) used in the MPSoC under study.

The currently modelled building blocks – network components as well

as processor and memory components – are all part of the IP library of

our Daedalus synthesis framework [73], which allows the construction of a

large variety of MPSoC systems. Consequently, all our modeled MPSoCs

can actually be rapidly synthesized to and prototyped on FPGA, allowing

us to easily validate our power models.

In the remainder of this chapter, we will focus on homogeneous sys-

tems, but the used techniques do allow the modeling and simulation of

heterogeneous systems as well.

3.3.1 Interconnection Power model

In this section, we derive architectural-level parameterized, activity based

power models for major network building blocks within our targeted MPSoCs.

These include FIFO bu↵ers, crossbar switches, buses and arbiters.

Our network power models are composed of models for the aforemen-

tioned network building blocks, for which each of them we have derived

parameterized power equations. These equations are all based on the com-
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mon power equation for CMOS circuits:

P
interconnect

= V 2

dd

fC↵ (3.1)

where f is the clock frequency, V
dd

the operating voltage, C the capacitance

of the component and ↵ is the average switching activity of the compon-

ent respectively. The capacitance values for our component models are

obtained through an estimation of the number of LUTs used for the com-

ponent in question as well as the capacitance of a LUT itself. Here, we

estimate the number of LUTs needed for every component through syn-

thesis, after which the capacitance is obtained using the X-Power tool from

Xilinx [94]. The activity rate ↵ is primarily based on the read and write

events from the application event traces that involve the component in

question. For example, for an arbiter component of a bus, the total time

of read and write transactions to the arbiter (i.e., the number of read and

write events that involve the arbiter) as a fraction of the total execution

time is taken as the access rate (i.e., activity rate). Consequently, the

power consumption of an arbiter is modelled as follows:

P
arbiter

= � ⇥ V 2

dd

⇥ f ⇥ C
LUT

⇥ n
LUTs

⇥ access rate (3.2)

where C
LUT

, n
LUTs

, f , V
dd

are respectively the estimated capacitance of

a LUT, the estimated number of LUTs needed to build the arbiter, the

clock frequency and the operating voltage. � is a scaling factor obtained

through an initial calibration of the model against real measurements, and

access rate =
T
reads

+ T
writes

T
total exec

Here, T
reads

and T
writes

are the total times spend on the execution of read

and write transactions, respectively, and T
total exec

is the total execution

time.

For communication channels like busses, not only the number of read

and write events play a role to determine the activity factor, but also

the data that is actually communicated. For this purpose, we consider
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the Hamming Distance distribution between the data transactions, as ex-

plained in the previous section on communication signatures. Thus, every

communication trace event is carrying the statistical activity-based inform-

ation of the channel from/to which the data is read/written. Consequently,

for any activity (read/write of data) in the channel, the dynamic power

of the interconnection is calculated according to technology parameters

and the statistical distribution of the data transmitted. Hence, for every

packet transmitted over the channel, the estimated power is computed in

the following way:

P
chan

= � ⇥ V 2

dd

⇥ f ⇥ C
chan

⇥ n
LUTs

⇥ Hamm dist(e) (3.3)

where �, C
chan

, f , V
dd

, n
LUTs

are again the scaling factor, estimated ca-

pacitance of the communication channel, clock frequency, the operating

voltage, and number of LUTs needed to build the interconnection channel.

The Hamm dist(e) parameter is the average Hamming distance of the data

transmitted in the read/write events. Leakage power in FPGAs is depend-

ent on design-specific parameters; in particular, it is proportional to the

amount of LUTs used in the architecture design. In our models, leakage

power is calculated according to the estimated look-up tables needed to

build a particular interconnection. Through XPower we initially compute

the amount of LUTs deployed for each architectural component in our lib-

rary and proportionally compute the estimated leakage power consumption

by considering the final amount of LUTs of the platform design.

3.3.2 Memory Power model

For on-chip memory (level 1 and 2 caches, register file, etc.) and main

memory, we use the analytical energy model developed in CACTI 6.5 [72]

to determine the power consumption of read and write accesses to these

structures. These power estimates include leakage power. The access rates

for the processor-related memories, such as caches and register file, are

derived from the computational signatures, as will be explained in the next

subsection. Moreover, we use the cache miss-rate information provided by
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the ISS used to generate the computational signatures to derive the access

counts for structures like the level-2 cache and the processor’s load/store

queue.

For the main memory and communication bu↵ers, we calculate the

access rate in the same fashion as for a network arbiter component as

explained above: the communication application events are used to track

the number of accesses to the memory. That is, the total time taken by

read and write accesses (represented by the communication application

events) to a memory as a fraction of the total execution time is taken

as the access rate. Subsequently, the signal rate represents the switching

probability of the signals. For every read/write event to the memory, the

average Hamming distance contained in the communication event signature

is extracted and the signal rate is calculated as follows:

signal rate = � ⇥ Hamm dist(e)

where the � is again a scaling factor obtained through pre-calibration of

the model.

3.3.3 Microprocessor Power model

The microprocessor model that underlies our power model is based on

[88]. It assumes a dynamic pipelined machine, consisting of one arithmetic

logical unit, one floating point unit, a multiplier and two levels of caches.

However, this model can easily be extended to other processor models, by

simply introducing new units. For the power model of the clock component,

three sub-components are recognized: the clock distribution wiring, the

clock bu↵ering and the clocked node capacitance. We assume a H-tree

based clock network using a distributed driver scheme (i.e. applying clock

bu↵ers) [88].

The capacitance of the bu↵ers is modeled to be a fraction of the capa-

citance of the wiring network. This fraction is dependent on the number

of bu↵ers, which is calculated by first taking the ratio of the capacitance

of the wiring network and the capacitance of a single bu↵er. Over this
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Figure 3.5: Di↵erent components in the microprocessor power model

the fourth root is taken, where the value four is actually a parameter, the

optimal stage ratio, but this value is fixed within the model.

bu↵ers = 4

s

C
wiring

C
single bu↵er

(3.4)

Cbu↵ers = C
wiring

⇥ 1

1� 1

bu↵ers
(3.5)

For the clocked node capacitance C
clocked

, only memory components are

considered. Here, in [88] the authors use the number of read and write

ports and the blocksize to calculate the capacitance:

C
clocked

= ports ⇥ blocksize ⇥ C
trans

(3.6)

The capacity for switching a port is acquired from CACTI, and is equal

to the capacitance of a transistor. The clocked node capacitance of each
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memory structure is summed to the total clocked node capacitance.

The power consumption of a computational application event is calcu-

lated by accumulating the power consumption of each of the components

that constitute the micro-processor power model, as shown in Figure 3.5.

More specifically, the first step to calculate an application event’s power

consumption is to map its signature to usage counts of the various pro-

cessor components. So, here it is determined how often e.g. the ALU (see

Other Units in Figure 3.5), the register file and the level-1 instruction and

data caches are accessed during the execution of an application event.

The microprocessor power model uses an XML-based micro-architecture

description file in which the mapping of AIS instructions to usage counts

of microprocessor components is described. This micro-architecture de-

scription file also contains the parameters for our microprocessor power

model, such as e.g. the dimensions and organization of memory structures

(caches, register file, etc.) in the microprocessor, clock frequency, and so

on. Clearly, this micro-architecture description allows for easily extending

the AIS and facilitates the modeling of di↵erent micro-architecture imple-

mentations.

The above ingredients (the event signatures, additional micro-architectural

information per signature such as cache statistics, and the micro-architecture

description of the processor) subsequently allow the power model to pro-

duce power consumption estimates for each computational application

event by accumulating the power consumption of the processor components

used by the application event.

3.4 The Daedalus Exploration Framework

Daedalus o↵ers a fully integrated tool-flow in which design space explora-

tion (DSE), system-level synthesis, application mapping, and system pro-

totyping of MPSoCs are highly automated, which allows a direct validation

and calibration of our power model. In Figure 1, the conceptual design

flow of the Daedalus framework is depicted.

A key assumption in Daedalus is that the MPSoCs are constructed from
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a library of pre-defined and pre-verified IP components. These compon-

ents include a variety of programmable and dedicated processors, memor-

ies and interconnects, thereby allowing the implementation of a wide range

of MPSoC platforms. So, this means that Daedalus aims at composable

MPSoC design, in which MPSoCs are strictly composed of IP library com-

ponents. Daedalus consists of three core tools.

Starting from a sequential multimedia application specification in C,

the KPNgen tool [52] allows for automatically converting the sequential

application into a parallel Kahn Process Network (KPN) specification.

Here, the sequential input specifications are restricted to so-called static

a�ne nested loop programs, which is an important class of programs in,

e.g., the scientific and multimedia application domains.

The generated or handcrafted KPNs (the latter in the case that, e.g.,
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the input specification did not entirely meet the requirements of the KPN-

gen tool) are subsequently used by the Sesame modeling and simulation

environment [78],[64] to perform system-level architectural design space

exploration. For this reason, Sesame uses (high-level) architecture model

components from the IP component library (see the left part of Figure 3.6).

As discussed before, Sesame allows for quickly evaluating the performance

of di↵erent application to architecture mappings, HW/SW partitionings,

and target platform architectures. Such exploration should result in a

number of promising candidate system designs, of which their specifica-

tions (system-level platform description, application-architecture mapping

description, and application description) act as input to the ESPAM tool

[90],[73]. This tool uses these system-level input specifications, together

with RTL versions of the components from the IP library, to automatic-

ally generate synthesizable VHDL that implements the candidate MPSoC

platform architecture. In addition, it also generates the C code for those

application processes that are mapped onto programmable cores. Using

commercial synthesis tools and compilers, this implementation can be read-

ily mapped onto an FPGA for prototyping. Such prototyping also allows

for calibrating and validating Sesameś system-level models.

Ultimately, Daedalus aims at traversing an entire design flow going

from a sequential application to a working MP-SoC prototype in FPGA

technology with the application mapped onto it in a matter of hours.

Evidently, this would o↵er great potentials for quickly experimenting with

di↵erent MP-SoC architectures and exploring design options during the

early stages of design.

3.5 Validation

As mentioned before, we have integrated our power model into the Daedalus

system-level design flow for the design of MPSoC based embedded multi-

media systems [90, 73]. This allows for direct validation and calibration of

our power model.

Daedalus o↵ers a fully integrated tool-flow in which design space ex-
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ploration (DSE), system-level synthesis, application mapping, and system

prototyping of MPSoCs are highly automated, which allows a direct val-

idation and calibration of our power model.

3.5.1 Experimental results

By deploying Daedalus, we have designed several di↵erent candidate MPSoC

configurations and compared our power estimates for these architectures

with the real measurements. The studied MPSoCs contain di↵erent num-

bers of Microblaze processors that are interconnected using a crossbar net-

work or a point-to point network. The microcontroller softcores on the

FPGA device used in the framework do not use caches at this moment.

This is considered to be future work. The validation environment is formed

by the architecture itself and an extra Microblaze. This extra Microblaze

polls the power values in the internal measurement registers in our target

Virtex-6 FPGA, and interfaces an I2C controller in the FPGA design with

the I2C interface of the PMBus controller chip [10]. In order to do this,

it runs a software driver which implements the PMBus protocol [10]. The

extra Microblaze prints out the values read through the UART to the pc

(a 2.66Hz Intel dual core purely used to collect the output data), as shown

in Figure 3.6. In this way, we have a fully automated system to register

the power values of an architecture running a particular application with

a given mapping. As we introduced an extra Microblaze in the design,

the resulting power consumption of the system is scaled by a fixed factor,

which is dependent on the measurement infrastructure. This is, however,

not a problem since our primary aim is to provide high-fidelity rankings in

terms of power behavior (which is key to early design space exploration)

rather than obtaining near-perfect absolute power estimations [46]. Evid-

ently, the additional power consumed by the extra Microblaze does not

a↵ect the fidelity of the rankings (i.e., the extra Microblaze exists in every

MPSoC configuration), while the power measurements obtained are much

more accurate compared to e.g. using a simulator [18].

The results of the validation experiments are shown in Figures 3.7,3.8,3.9

and 3.10. In the experiments we compare the total power consumption,



3.5 VALIDATION 51

which is both leakage and dynamic power. In these experiments, we

mapped three di↵erent parallel multimedia applications onto the target

MPSoCs: a Motion-JPEG encoder (Mjpeg), a Periodogram, which is an

estimate of the spectral density of a signal, and a Sobel filter for edge

detection in images. In addition, for each of the applications, we also in-

vestigated two di↵erent task mappings onto the target architectures. Here,

we selected one ”good” mapping, in terms of task communication, as well

as a ”poor” one for each application. That is, in the ”good” mapping

we minimize task communications, while in the ”poor” one we maximize

task communications. The experiments in Figures 3.7,3.8,3.9,3.10 apply

the following notation: app
name

n
proc

mapping
type

, where app
name

is the

application considered, n
proc

indicates the number of processors used in

the architecture (e.g., ”3mb” indicates an MPSoC with 3 MicroBlaze pro-

cessors), and mapping
type

refers to the type of mapping used. With respect

to the latter, the tag mp1 indicates the good mapping, while mp2 refers to

the poor mapping. For the Motion-JPEG application, we also considered

two di↵erent data input sets: the first input set (ds1 ) is characterized by a

high data-correlation, while the second input set (ds2 ) has a very low data

correlation, in terms of measured average Hamming distance distribution

of the input data.

That is, we tested the power model on two di↵erent communication ar-

chitecture configurations: the first one is crossbar-based, while the second

one is a point-to-point network based on FIFOs. The power values in Fig-

ures 3.7,3.8,3.9,3.10 are scaled by a factor of 2W for the sake of improved

visibility. Most charts show a very little di↵erence between the good and

bad configurations (mp1 vs mp2) for a number of processors greater than

2; this is explained by the fact that a design with a larger number of

processors implies a higher use of the communication channels. Given an

application with m tasks and n processors, if m >> n, then this implies

that a good mapping can be beneficial for reducing tasks communication.

However, in the case of m = n, the tasks mapping cannot avoid substantial

communication.

The results in Figures 3.7,3.8,3.9,3.10 show that our power model per-
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Figure 3.7: Mjpeg application with input set ds1 (up) and input set ds2 (down)
on a crossbar-based architecture

forms quite decently in terms of absolute accuracy. We observed an average

error of our power estimations of around 7%, with a standard deviation of

5% for the crossbar networks, and an average error of our power estima-

tions of around 10%, with a standard deviation of 6% for the point-to-point

networks. More important in the context of early design space exploration,

however, is the fact that our power model appears to be very capable of

estimating the right power consumption trends for the various MPSoC con-

figurations, applications and mappings. We explicitly checked the fidelity

of our estimations in terms of quality ranking of candidate architectures
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Figure 3.8: Sobel filter (left) and Periodogram application (right) on a crossbar-
based architecture

by ranking all design instances according to their consumed power for a

specific application. Our estimates result in a ranking of the power values

that is correct for every application we considered, therefore, showing a

high fidelity. This high-fidelity quality-ranking of candidate architectures

thus allows for a correct candidate architecture generation and selection

during the process of design space exploration.

Since every design point evaluation takes only 0.16 seconds on average,

the presented power model o↵ers remarkable potentials for quickly exper-

imenting with di↵erent MPSoC architectures and exploring system-level

design options during the very early stages of design.
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Figure 3.9: Mjpeg (up) and Sobel (down) applications in a point-to-point FIFO
architecture

3.6 Related Work

There exists a fairly large body of related work on system-level power

modeling of MPSoCs. For example, in [35] developed a SoC power es-

timation method based on a SystemC TLM modeling strategy. It adopts

multi-accuracy models, supporting the switch between di↵erent models at

run-time according to the desired accuracy level. The authors validate

their model using the STBus NoC, and an analytical power model of this

NoC. An MPEG4 application was tested, achieving up to 82% speed-up
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Figure 3.10: Periodogram application in a point-to-point FIFO architecture

compared to TLM BCA (Bus-Cycle Accurate) simulation.

Atitallah et. al. [15] uses a stack of abstract models. The higher

abstraction model, named Timed Programmer View (PVT) omits details

related to the computation and communication resources. Such an ab-

stract model enables designers to select a set of solutions to be explored

at lower abstraction levels. The second model, CABA (Cycle-Accurate

Bit-Accurate), is used for power estimation and platform configuration.

In [70] a system-level cycle-based framework to model and design het-

erogeneous MPSoC (called GRAPES), is presented. C++/SystemC based

IP system modules can be wrapped to act as plug-ins, which are managed

by the simulation kernel in a TLM fashion. Those modules are managed

by the GRAPES kernel, which is the core of the simulation framework. To

estimate power during a simulation, they add a dedicated port to each com-

ponent, which communicates with the corresponding power model. This

feature permits to characterise each component with a set of Activity Mon-

itors (inside the Component Module) necessary for the power estimation.

[92] presents a simulation-based methodology for extending system per-

formance modelling frameworks to also include power modelling. They

demonstrate the use of this methodology with a case study of a real,

complex embedded system, comprising the Intel XScale embedded micro-
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processor, its WMMX SIMD co processor, L1 caches, SDRAM, and the

on-board address and data buses.

In [61], a power estimation framework for SoCs is presented, using

power profiles to produce cycle accurate results. The SoC is divided in

its building blocks (e.g. processors, memories, communication and peri-

pherals) and the power estimation is based on the RTL analysis of each

component. The authors validate the framework using an ARM926EJ-S

CPU and the AMBA AXI 3.0 as NoC. Speed-up compared to a gate level

simulation is on average 100 times faster. Previous work does not address

high level power modelling of MPSoCs on FPGA.

In [80], an e�cient Hybrid System Level (HSL) power estimation meth-

odology for FPGA-based MPSoC is proposed. Within this methodology,

the Functional Level Power Analysis (FLPA) is extended to set up gen-

eric power models for the di↵erent parts of the system.Then, a simulation

framework is developed at the transactional level to evaluate accurately

the activities used in the related power models. With respect to this work,

our processor model can easily model di↵erent kinds of RISC processors

by simply introducing new units.

Moreover, there also exist a considerable number of research e↵orts that

only focus on the power modelling of the on-chip network of MPSoCs. Ex-

amples are [75, 45, 57, 63]. Many of the above approaches calibrate the

high-level models with parameters extracted from RTL implementations,

using low-level simulators for the architectural components. In [75], a

rate-based power estimation method is presented. In the first phase it con-

siders data-volume, estimating the average power in function of the total

transmitted data: in the second phase, it calibrates the model through

definition of the consumed power for each transition rate. In particular,

the calibration uses a RTL model of the NoC, while the latter uses an

actor-oriented model. After the calibration, a power dissipation table is

generated for each injection rate and router element. Using linear approx-

imation, they determine the power dissipation for each injection rate. In

[45] an energy estimation model based on the tra�c flow in the NoC’s

building blocks (routers and interconnection wires) is presented. The au-
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thors represents the amount of energy consumed in the transmission of a

data bit throughout the NoC (in its routers and interconnection wires). In

[57] a NoC power and performance analysis with di↵erent tra�c models,

using analytical models, is presented. The authors target a NoC with a

mesh topology. The employed tra�c models are: uniform, local, hot-spot

and matrix transpose. Results were compared to Synopsys Power Com-

piler and Modelsim, showing an error of 2% for power estimation and 3%

for throughput. In [63] a methodology for accurate analysis of power con-

sumption of message-passing primitives in a MPSoC is proposed, and, in

particular, an energy model which allows to model the tra�c-dependent

nature of energy consumption through the use of a single, abstract para-

meter, namely, the size of the message exchanged. An ISS performs cycle

accurate simulation of the cores, while the rest of the system is described

in SystemC at signal level. In [31], the authors employ a framework that

takes as input message flows, and derives a power profile of the network

fabric. The authors map the CPU data-path as a graph, and the applic-

ation as a set of messages that flow in this graph. Those mapped CPUs

are connected into the network fabric, mapping the entire MPSoC as a

network. The authors make use of a network power estimation tool, called

LUNA, to evaluate the power dissipation of the entire MPSoC.

To the best of our knowledge, none of the previous existing e↵orts

have incorporated the power models in a (highly automated) system-level

MPSoC synthesis framework, allowing for accurate and flexible validation

of the models. Instead, most existing works either use simulation-based

validation (e.g. [35, 45, 57, 31, 75]), or validation by means of measure-

ments on fixed target platforms (e.g. [92, 61]). Consequently, in general,

related system-level MPSoC modeling e↵orts do also not target FPGA

technology in their system-level power models. A recent contribution sim-

ilar to our approach is presented by [84]. In [84], the authors propose a very

accurate energy model for streaming applications modelled as Polyhedral

Process Networks (PPN) and mapped onto tile-based MPSoC platforms

with distributed memory. The energy model is based on the well- defined

properties of the PPN application model. To guarantee the accuracy of the
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energy model, values of important model parameters are obtained by real

measurements. The main di↵erence with our approach is that this model

requires the analysis of communication contention for each mapping using

System-C simulations. This results in more accurate results but slower

power estimation time.

3.7 Conclusion

We presented a framework for high-level power estimation of multipro-

cessor systems-on-chip (MPSoC) architectures on FPGA. The technique is

based on abstract execution profiles called ”event signatures”, and it oper-

ates at a higher level of abstraction than, e.g., commonly-used instruction-

set simulator (ISS) based power estimation methods and should thus be

capable of achieving good evaluation performance. The model is based

on the activity counts from the signatures, and from the power charac-

teristics of the components themselves, measured in terms of LUTs used.

The signature-based power modeling technique has been integrated in our

Daedalus system-level MPSoC synthesis framework, which allows a direct

validation and calibration of the power model. We compared the results

from our signature-based power modeling to those from real measurements

on a Virtex 6 FPGA board. These validation results indicate that our

high-level power model achieves good power estimates in terms of DSE.

Since every design point evaluation takes only 0.16 seconds on average,

the presented power model o↵ers remarkable potentials for quickly exper-

imenting with di↵erent MPSoC architectures and exploring system-level

design options during the very early stages of design.



Chapter4
Pruning techniques for performance
estimation1

4.1 Introduction

Methods for evaluating a single design point in the design space roughly fall

into one of three categories: 1) measurements on a (prototype) implement-

ation, 2) simulation based measurements and 3) estimations based on some

kind of analytical model. Each of these methods has di↵erent properties

with regard to evaluation time and accuracy. Evaluation of prototype im-

plementations provides the highest accuracy, but long development times

prohibit evaluation of many design options. Analytical estimations are con-

sidered the fastest, but accuracy is limited since they are typically unable

to su�ciently capture particular intricate system behavior. Simulation-

based evaluation fills up the range in between these two extremes: both

highly accurate (but slower) and fast (but less accurate) simulation tech-

niques are available. This trade-o↵ between accuracy and speed is very

important, since successful design space exploration (DSE) depends both

on the ability to evaluate a single design point as well as being able to ef-

ficiently search the entire design space. Current DSE e↵orts typically use

1The contents of this chapter have been published as [79, 5]

59
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simulation or analytical models to evaluate single design points together

with a heuristic search method [39] or statistical techniques [51, 82, 95]

to search the design space. These DSE methods search the design space

using only a finite number of design-point evaluations, not guaranteeing to

find the absolute optimum in the design space, but they reduce the design

space to a set of design candidates that meet certain requirements or are

close to the optimum with respect to certain objectives.

Our focus is on system-level mapping DSE, where mapping involves

two aspects: 1) allocation and 2) binding. Allocation deals with selecting

the architectural components in the MPSoC platform architecture that

will be involved in the execution of the application workload (i.e., not all

platform components need to be used). Subsequently, the binding spe-

cifies which application task or application communication is performed

by which MPSoC component. As mentioned above, state-of-the-art DSE

approaches typically use either simulation or an analytical model to eval-

uate mappings, where simulative approaches prohibit the evaluation of

many design options due to the higher evaluation performance costs and

analytical approaches su↵er from accuracy issues. This chapter deals with

a new, hybrid form of DSE, combining simulations with analytical estima-

tions to prune the design space in terms of application mappings that need

to be evaluated using simulation. To this end, the DSE technique uses an

analytical model that estimates the expected throughput of an application

(which is a natural performance metric for the multimedia and streaming

application domain we target) given a certain architectural configuration

and application-to-architecture mapping. In the majority of the search

iterations of the DSE process, the throughput estimation avoids the use

of simulations to evaluate the design points. However, since the analytical

estimations may in some cases be less accurate, the analytical estimations

still need to be interleaved with simulative evaluations in order to ensure

that the DSE process is steered into the right direction.

We studied di↵erent techniques for interleaving these analytical and

simulative evaluations in our hybrid DSE. We will demonstrate that by

properly interleaving the analytical and simulative estimations, signific-
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Figure 4.1: Driving experiments with the expected throughput.

ant e�ciency improvements can be obtained while still producing similar

solutions in terms of quality as compared to pure simulation-based DSE.

4.2 Combining throughput analysis and simulation

To evaluate design points during system-level DSE by means of simula-

tion, we deploy the Sesame simulation framework [78]. As Sesame allows

for rapid performance evaluation of di↵erent MPSoC architecture designs,

application to architecture mappings, and hardware/software partitionings

with a typical accuracy of 5% compared to the real implementation [78, 73].

In Figure 4.1, the entire DSE framework is shown. We adopt a hy-

brid approach where Sesame simulations are interleaved with analytical

throughput analysis. The throughput analysis is based on the applica-

tion graph, the individual task workloads and the mapping. It is used to
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quickly predict the performance consequences of di↵erent design points as

represented by the application mapping on the underlying architecture. As

these fast analytical evaluations are interleaved with the slower simulative

evaluations in a way such that most evaluations are performed analytic-

ally, this approach significantly improves the e�ciency of the DSE process.

Consequently, this would allow for searching a much larger design space.

The application is represented as a Kahn Process Network (KPN) [52].

As will described in the next section, before performing the throughput

analysis, we need to perform some transformations to the application

graph of the KPN in order to take into account mapping decisions. The

subsequent throughput analysis – performed on the transformed KPN –

should be fast and capable of correctly capturing the throughput trend

for di↵erent mappings. The analysis requires the process workloads W
Pi

as a parameter for the throughput modelling. The workload W
Pi of an

application process P
i

denotes the number of time units that are required

to execute a single invocation of the process on a particular processor, i.e.,

the pure computational workload, excluding the communication. It should

be provided by the designer who can obtain it, for example, by executing

the process once on the target platform, or by using an instruction set

simulator.

As will be shown later on, the analytical throughput model may en-

counter accuracy problems when the application graph is cyclic. To correct

such errors during DSE, we interleave the throughput estimation with real

simulations, according to the value of a binary function �, which can be

set according to a predefined policy: � = 1 implies that a real simulation

is used and � = 0 means that an analytical estimation is used.

In our DSE framework, we use the widely-used NSGAII genetic al-

gorithm [29] to actually search through the mapping design space. This

results in a hybrid DSE method with the following steps, as shown in

Figure 4.1:

1. Perform an initial model calibration and generate the application

workloads W
Pi , as explained in [73]. This is a one-time e↵ort, and

the same for both the simulation model and analytical throughput
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model.

2. Generate an initial population of unique mappings.

3. Transform the application KPN according to the mappings in the

population and build the corresponding merged KPNs (as will be

explained in the next section).

4. Perform the static throughput analysis for the merged KPN graphs

and identify the best mappings based on the highest estimated through-

put.

5. In case of � = 1, we interleave the throughput analysis with real

simulation, in order to correct the ranking obtained in the previous

steps of the NSGAII evolutionary algorithm.

6. Verify the stopping criterion. If the mapping population within the

NSGAII algorithm remains unchanged or a maximum number of it-

erations has been performed, the algorithm stops. Otherwise, change

the mapping population using NSGAII’s genetic operators, and re-

start from the third step.

4.3 Modeling application mappings as merged Kahn Process
Networks

Applications in our DSE framework are modeled using KPNs [52], in which

parallel processes communicate with each other via unbounded FIFO chan-

nels.

Starting from a KPN, to perform throughput analysis one needs to

take into account the mapping since the performance is mapping depend-

ent. As we want to perform the throughput analysis only at the KPN level,

we have to represent the mapping inside the KPN itself. For this purpose,

we use merging transformations on the KPN to reflect the mapping of the

di↵erent processes. Consequently, if two processes are mapped onto the

same architectural component, they are merged into a single process in the
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Figure 4.2: Process merging in an example Kahn Process network.

KPN, as is illustrated in Figure 4.2. Figure 4.2(a) shows the initial example

KPN consisting of eight processes. Performing throughput analysis on this

KPN assumes that each process is mapped onto a di↵erent processor and

each KPN channel is mapped onto a unique communication memory in

the MPSoC (i.e., all the connections are point-to-point connections). The

KPNs in Figures 4.2(b) and 4.2(c) subsequently reflect the decisions that,

respectively, KPN processes 0,1 and 2,3 are mapped onto a single processor.

Mapping multiple KPN tasks onto one processor allows for MPSoC imple-

mentations with less processing and communication components, i.e. with

reduced implementation cost, but at the cost of potentially additional ex-

ecution overhead. For example, in case of a homogeneous MPSoC and a

KPN model in which processes exchange data tokens of uniform size, the

performance of such mapping in terms of throughput can only be the same

or lower (so never higher) than the performance of a mapping in which
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each task is mapped onto a di↵erent processor [66].

Subsequently, to assess the performance of a mapping decision, we

perform throughput analysis on the transformed KPN.

4.3.1 Process Throughput and Throughput Propagation

Our throughput analysis is based on and extends the work presented in

[66], in which the solution approach for the overall KPN throughput mod-

eling relies on calculating the throughput ⌧
Pi of a process (i.e., node) P

i

for

all KPN processes and propagation of the lowest process throughput to the

sink process. Here, we use a depth first search to determine the order of

the processes for propagating throughputs. For a process P
i

, the propaga-

tion consists of selecting either the aggregated incoming FIFO throughput

⌧
Faggr,Pi

or the isolated process throughput ⌧ iso

Pi
.

The isolated throughput ⌧ iso

Pi
is the throughput of a process P

i

when it

is considered to be completely isolated from its environment. This means

that the isolated process throughput is determined only by the workload

W
Pi of a process and the number of FIFO reads/writes per process execu-

tion provided that no blocking occurs:

⌧ iso

Pi
=

1

W
Pi + x · CRd + y · CWr

(4.1)

where x and y denote how many FIFOs are read and written per process

execution and CRd and CWr the performance costs for reading/writing a

token from/to a FIFO channel. The throughput of a FIFO-channel f is

determined by the throughput of the processes accessing it:

⌧
f

= min(⌧Wr

f

, ⌧Rd

f

) (4.2)

Subsequently, the throughput ⌧
Pi of a process P

i

is determined by either the

throughput of the FIFOs from which process P
i

receives its data or by the

computational workload of the process itself, i.e., ⌧ iso

Pi
. For merged KPN

processes, the incoming FIFO throughput is the aggregated throughput of
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Figure 4.3: Transformation into a cyclic KPN.

the merged channels and the isolated throughput is calculated using the

aggregated computational workloads. Consequently, the throughput asso-

ciated to each process in an acyclic KPN graph is computed as:

⌧
Pi = min(⌧

Faggr,Pi
, ⌧ iso

Pi
) (4.3)

For example, for the merged processes 2,3 in Figure 4.2(c),
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⌧
Faggr,P2,3

= ⌧
fa + ⌧

fb

and

⌧ iso

P2,3
=

1

W
P2 + W

P3 + 2 · CRd + 2 · CWr

.

4.3.2 Handling cycles

It is possible that the aforementioned merging transformation to account

for mapping decisions might introduce new cycles in the transformed KPN.

As shown in Figure 4.3(a), if processes 4,6 are mapped onto the same pro-

cessor, this results in a cycle containing process 5 and the merged process

4, 6. In Figure 4.3(b), processes 0, 2 and 5 are mapped to the same pro-

cessor, resulting in a KPN with two cycles.

Cycles in a KPN are responsible for sequential execution of some of the

processes involved in the cycle. The sequential execution can vary from a

single initial delay to a delay at each execution of some of the processes.

For throughput modeling, these cycles must be taken into account, but to

do so in an accurate fashion is not trivial.

In Figure 4.4, processes 1,3 are mapped onto the same processor, this

results in a cycle containing process 2 and the merged process 1, 3. For

nodes 6, 7 the resulting merged node does not generate any cycle. Previous



68 PRUNING TECHNIQUES FOR PERFORMANCE ESTIMATION 4.3

research on throughput analysis of KPNs has not addressed the handling

of cycles. In [66], the authors only consider acyclic KPN graphs. A pre-

liminary process throughput analysis in case of dataflow loops is suggested

in [42] in terms of mapping rules, but the proposed rules have never been

elaborated nor verified. Based on this approach, we conservatively approx-

imate the isolated throughput of a process P
i

that is member of a cycle

by:

⌧ iso

cycPi
=

1
P

Pj2Cycle

1

⌧

iso
Pj

(4.4)

From equation 4.4, it is clear that the isolated throughput of a cycle is

lower than the regular isolated throughput (⌧ iso

Pi
) of any of the processes

involved in the cycle. It also implies that the isolated throughput of a

cycle can be lower than the isolated throughput of the bottleneck process.

This is an important observation because, in such a case, the throughput

of the cycle will determine the overall KPN performance. To conclude, the

throughput associated to each process P
i

will be computed as:

⌧
Pi = min(⌧ iso

cycPi
, ⌧

Faggr,Pi
, ⌧ iso

Pi
) (4.5)

For example, in Figure 4.3(b) two cycles are generated due to the KPN

transformation. In this case, we assume that the resulting ⌧ iso

cycPi
for a pro-

cess P
i

would be

⌧ iso

cycPi
= min(⌧ iso

cycPi
(1), . . . , ⌧ iso

cycPi
(n)) (4.6)

where ⌧ iso

cycPi
(1), . . . , ⌧ iso

cycPi
(n) are all the throughputs of the cycles involving

process P
i

.
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Figure 4.5: Ranking a GA population using analytical estimation and Sesame
simulation.

4.3.3 A hybrid DSE approach

We use a fast but conservative approximation to estimate the performance

in case of cycles. As a consequence, the analytical throughput analysis may

present inaccuracies in case cycles are introduced in the transformed KPN,

especially when there are many and/or complex cycles [79]. There are more

detailed analytical approaches (like SDF 3 [36]) that allow for accurately

computing cyclic performance behaviour but these types of analysis are

generally very computationally intensive and thus slower then our Sesame

simulations.

To demonstrate these inaccuracies, please consider Figure 4.5. For

a DSE experiment with a H264 decoder application, this graph shows a

snapshot of a single GA search iteration. More specifically, it shows the

performance ranking of the design points (i.e. mappings) in the population

of the search iteration when evaluating them either using Sesame or ana-

lytical estimation. The y-axis shows the normalized performance and the

x-axis shows the di↵erent design points in the GA population, where the

integer strings refer to the processor identifiers the application processes
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Figure 4.6: DSE times using di↵erent methods.

are mapped on. E.g., a string ”1111112677” means that tasks 1 to 6 are

mapped on processor 1, task 7 is mapped on processor 2, etc. The design

points on the x-axis have been ordered according to the performance estim-

ation as obtained by Sesame. This implies that the Sesame-based ranking

of the population shows a monotonically increasing curve. However, as

this is not true for the curve of the analytical estimations, this ranking

clearly shows prediction errors.

4.4 Interleaving methods

Using analytical throughput estimation as fitness function during DSE can

yield significant e�ciency improvements. To demonstrate this, Figure 4.6

shows the wall-clock times for a DSE experiment, using a NSGAII GA, for

a heterogeneous 8-processor MPSoC and three multimedia applications:

an Mp3 decoder, a H264 decoder, and a Sobel filter for edge detection in
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images. The curves labeled with an ”S ” prefix show the DSE times when

only using Sesame simulations, as a function of the number of generations

used in NSGAII. The curves with a ”t ” prefix show the results of exclus-

ively using static throughput estimation during DSE. Clearly, the DSE

based on analytical throughput analysis can be three orders of magnitude

faster than simulation-based DSE. Avoiding simulation-based evaluations

by replacing them with analytical evaluations, therefore, appears to be a

promising technique for optimizing the DSE process.

The question that remains open is how to exactly perform the inter-

leaving between analytical and simulative evaluations. Here, the ratio

between the number of analytical and simulative evaluations plays an im-

portant role as this provides a valuable accuracy-performance trade-o↵.

In addition, the decision of when (in time) to perform a simulative eva-

luation instead of an analytical estimation is an important factor in the

interleaving strategy. In the remainder of this section, we will propose

di↵erent strategies for interleaving analytical and simulative evaluations,

which subsequently will be assessed in the next section.

4.4.1 Fixed-frequency interleaving

This is the simplest form of interleaving in which a fixed frequency K is

chosen such that every K-th search iteration is performed using simulation-

based evaluation instead of analytical estimation. For example, in case of

100 search iterations and K = 10, every 10th search iteration is performed

using Sesame simulation, thereby reducing the number of simulations by

90% (9 out of 10 search iterations are performed using analytical estima-

tion).

4.4.2 Switching method based on the bisection of the generation space

In this method, we divide the iteration space of the DSE according to the

number of generations of the genetic algorithm used (NSGAII in our case).

We switch from one method to the other (from simulation to analytical

estimation, or vice versa) according to the number of generations executed
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by the genetic algorithm, as illustrated in Figure 4.7. More specifically,

� = 1 if c
gen

� K (or  K), where c
gen

is the current search iteration and

n
gen

is the total number of DSE generations.

0

simulation analytical estimation

K
n_gen

Figure 4.7: NSGAII generation space using the bisec-
tion method.

4.4.3 Temperature-based interleaving

This method is inspired by the simulated annealing technique. That is, the

probability of performing a Sesame simulation increases with the number

of generations examined in the genetic algorithm. More specifically,

� = 1 if U([0, 1]) � T

where T = cgen

ngen

where U([0, 1]) is a uniform random distribution, and the temperature

T is given by the ratio between the current generation c
gen

and the total

number of generations n
gen

used for the design space exploration.

4.4.4 Population-property based interleaving

The last method we propose is based on the properties of the population

in each generation of the GA. It bases the decision of whether to use sim-

ulation or analytical estimation on the percentage of design points in the

GA’s population that contains a cycle in the generated mapping. More

specifically, the decision is based on the following algorithm:
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for d
i

2 population do

verify if d
i

generates a cycle

if d
i

contains a cycle then

n
cycles

++;

end if

end for

if

ncycles

npop
⇥ 100 � K then

� = 1;

end if

where n
pop

is the number of mappings in the population and the threshold

value K is a chosen proportion of the population.
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Figure 4.8: Average hypervolume and r values for the di↵erent DSE methods
applied to the Mp3 decoder, H264 decoder, and Sobel filter applications.
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Figure 4.9: Execution times for the di↵erent DSE methods.
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4.5 Experimental results

To evaluate the di↵erent interleaving methods, we have experimented with

a DSE case study for a heterogeneous MPSoC platform consisting of up

to 8 processors (interconnected by a crossbar) of possibly di↵erent types:

MIPS, ARM or StrongARM. The DSE experiment is performed for three

multimedia applications: an Mp3 decoder, a H264 decoder, and a Sobel

filter for edge detection in images. The exploration considers two optim-

ization objectives, namely performance (execution time) and system cost,

and has been implemented using a NSGAII genetic algorithm performing

200 search iterations. Since genetic algorithms are stochastic processes, all

results are averages from 10 execution runs.

To quantify the quality of the obtained Pareto fronts for the di↵erent

interleaving methods, we consider two aspects: how close the found solu-

tions are to a reference Pareto front and the spread of the solutions along

the Pareto front. For this reason, we use the hypervolume (HV) and r
metrics. The HV metric [96] measures the hypervolume of the objective

space covered by members of a Pareto optimal set and a reference point. It

represents the size of the region dominated by the solutions in the Pareto

optimal set. The reference point can simply be found by constructing a

vector of worst objective values. The hypervolume metric is interesting

because it is sensitive to the closeness of solutions to the true Pareto op-

timal set as well as the distribution of solutions across the objective space.

The hypervolume value is calculated by summing the volume of hyper-

rectangles constructing the hypervolume. A Pareto optimal set with a

large value for the hypervolume is desirable [89].

The normalized r metric [33] measures the spread of solutions. It

refers to the area of a rectangle formed by the two extreme solutions in the

objective space, thus a bigger value spans a larger portion and, therefore,

is better. The r metric calculates the volume of a hyperbox formed by

the extreme objective values observed in the Pareto optimal set:
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r =
M

Y

m=1

(fmax

m

� fmin

m

) (4.7)

Where M is the number of objectives, (fmax

m

and fmin

m

) the maximum and

respectively minimum values of the mth objective in the Pareto optimal

set. A bigger value spans a larger portion and, therefore, is better.

For the HV and r metrics, we use relative values. That is, we relate

the HV and r values for our hybrid DSE experiments against those from

a reference Pareto front. The reference Pareto fronts – one for each ap-

plication – were obtained by combining the Pareto optimal solutions from

10 runs of Sesame-based DSE. This implies that, e.g., a HV (r) value of

1.0 means that the experiment in question yields the same HV (r) value

as the reference Pareto front.

In Figure 4.8, the average hypervolume (HV) and relative spread (r)

values (averaged over 10 runs) are shown for the di↵erent DSE methods ap-

plied to the Mp3 decoder, H264 decoder, and Sobel filter applications. The

Sesame-only results (left-most bars) form the baseline for our hybrid DSE

experiments. These results are averages for a single run (averaged over 10

separate runs) of Sesame-based DSE. So, no hybrid DSE and interleaving

are performed in this case, and it solely compares a single simulation-only

DSE run to the reference Pareto front. The remaining bars show the results

for the various hybrid DSE approaches. The label Bisection12-K refers to

the bisection-based interleaving method in which the DSE starts with sim-

ulation and switches to analytical estimation after K generations. Here,

we have experimented with K values that equal to 25, 50, · · · , 175 and

n
gen

= 200. Similarly, the label Bisection21-K refers to the same bisection-

based interleaving but then starting with analytical estimations followed

by simulations. The label Pop-based-K subsequently refers to the popula-

tion based interleaving method with a certain K value. In our case, we

have varied K from 10% up to 90% with steps of 20%. The fixed-frequency

based interleaving method has been applied with K values of 1%, 2%, 3%,

5%, and 10%, as indicated by the labels in Figure 4.8.
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A number of observations can be made from Figure 4.8. Looking at the

hypervolume, hybrid DSE clearly shows promising results. Many of the

hybrid DSE methods are capable of obtaining Pareto fronts with similar,

or sometimes even better, HV values as Sesame-only DSE,. But, as will

be shown later on, some of these hybrid methods do so at a fraction of the

execution time. The spread of solutions (r) in the obtained Pareto fronts

is, however, highly dependent on the interleaving method as well as on the

application under study. For example, the fixed-frequency approach with

very low simulation frequencies clearly exhibit poorer r values for all three

applications. For two out of the three applications, this is also true for the

population-based method and the bisection-based method where the DSE

starts with simulations and ends with analytical estimations.

There is no clear winner among the hybrid DSE methods. Looking only

at the HV values, the population-based approach yields the best results.

But looking at the HV/r combination, the fixed-frequency interleaving

with K = 10% seems to perform slightly better than the other methods.

Overall, the fixed-frequency interleaving with K � 3% and the bisection-

based approach where the DSE starts with analytical estimations and ends

with simulations (i.e., Bisection21) appear to outperform the other hybrid

DSE methods (based on the HV/r combination).

In Figure 4.9, the execution times (wallclock times) for the di↵erent

DSE experiments are shown. As can be seen, a Sesame-only DSE ex-

periment of 200 search iterations can take up to several thousands of

seconds (like for Mp3). However, by interleaving simulations with ana-

lytical estimations several hybrid DSE techniques can significantly reduce

the execution time of the DSE experiments. Only population-based and

temperature-based interleaving fail to substantially improve the DSE exe-

cution times as these methods still use a high number of simulations. The

fixed-frequency interleaving with K = 10% reduces the execution time of

the DSE by a factor 4, while a Bisection21 interleaving with K = 100 yields

a 6 to 8 times performance improvement. Both of these methods produce

search results of similar quality as simulation-based DSE. We note that the

time savings of hybrid DSE could have also been used for performing more
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search iterations, thereby possibly improving the search results. We have

not done so in this chapter (we considered the number of search iterations

to be fixed), but this is considered as future work.

The timing results of the population-based interleaving method demon-

strate that the proportion of cyclic mappings in the GA’s population is

high since many search iterations use simulation-based evaluation, even

with K = 70. But since the population-based results are not significantly

better in terms of quality (HV and r values), we can further conclude

that it is not necessary to avoid the use of analytical estimations every

time there are (many) cyclic mappings in the population.

4.6 Related Work

Current state-of-the-art in system-level DSE often deploys population-

based Monte Carlo-like optimization algorithms like hill climbing, simu-

lated annealing, ant colony optimization, or genetic algorithms. By ad-

justing the parameters, or by modifying the algorithm to include domain-

specific knowledge, these algorithms can be customized for di↵erent DSE

problems to increase the e↵ectivity of the search [74, 23]. Another prom-

ising approach is based on meta-model assisted optimizations, which com-

bines simple and approximate models with more expensive simulation tech-

niques [65, 77, 32, 13, 55]. In [32], the authors use meta-models as a pre-

selection criterion to exclude the less promising configurations from the

exploration. In [55], meta-models are used to identify the best set of ex-

periments to be performed to improve the accuracy of the model itself. In

[65], an iterative DSE methodology is proposed exploiting the statistical

properties of the design space to infer, by means of a correlation-based

analytic model, the design points to be analyzed with low-level simula-

tions. The knowledge of a few design points is used to predict the expec-

ted improvement of unknown configurations. However, these meta-models

usually have design space parameters relative to the micro-architecture of

design instances, while they do not address the problem of e.g. topological

mapping of an application on the underlying MPSoC architecture. While
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micro-architecture parameters like cache size typically a↵ect the system

performance in a predictable, often linear, fashion, the resource binding of

the application graph to the architectural platform presents a much less

predictable performance.

A second class of design space pruning is based on hierarchical DSE

(e.g., [49, 69, 54, 33]). In this approach, DSE is first performed using

analytical or symbolic models to quickly find the interesting parts in the

design space, after which simulation-based DSE is performed to more ac-

curately search for the optimal design points. The main drawback of this

method is that if the first step is not accurate enough, it may not produce

the best set of design points to simulate. In our approach, the pruning and

simulation phases are integrated to avoid this problem.

4.7 Towards more accurate pruning: a Future Outlook

In the previous sections, we showed that by properly interleaving analyt-

ical and simulative estimations, it is possible to reduce the computational

time while still achieving solutions qualitatively comparable to the ones

obtained with pure simulation-based DSE. In detail, we introduced an

analytical model that estimates the throughput of the target multi-media

application given a certain architectural configuration and application-to-

architecture mapping. Our results showed that interleaving simulations

with the throughput analysis is still necessary. In fact, the analytical es-

timations may in some cases be not accurate enough, because of estimation

inaccuracies due to topological cycles in the dataflow graphs that are gen-

erated and used for throughput estimation during the analytical mapping

exploration. As a consequence, to ensure that the DSE process is steered

into the right direction, the analytical estimations still need to be inter-

leaved with simulative evaluations.

In this section we introduce the basic idea of a possible future research

direction towards the improvement of the throughput estimation. More in

details, in this section, we introduce an approach for e�ciently perform-

ing an analytical performance estimation based on Maximum Cycle Mean
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(MCM) analysis. MCM analysis aims to correct the estimation errors due

to the topological cycles generated during analytical mapping design space

exploration. In early design space exploration, a key factor is keeping the

throughput calculation fast and su�ciently accurate at the same time. To

achieve this, we propose an approximated MCM analysis which improves

the estimation proposed in the previous sections, achieving performance

faster than regular MCM analysis [36].

4.7.1 Background

In this subsection, we provide a brief introduction to dataflow graphs

(DFGs), Cyclo-Static Dataflow (CSDF) models, and PPNmodels. Moreover,

we shortly introduce MCM analysis in the context of DFGs. This overview

is essential for understanding the ideas presented in next Sections.

Dataflow graphs

Dataflow graphs (DFGs) are an extension of directed graphs. DFGs are

widely used (especially) in the realm of multimedia, imaging, and signal

processing to describe the flow of data between actors/nodes that trans-

form the data from input streams to output streams. For example, in Ho-

mogeneous Synchronous Dataflow (HSDF) graphs, every node consumes/-

produces a single unit of data (data token) from/to an edge. Therefore,

HSDFs are also referred to single-rate graphs. In Synchronous Dataflow

(SDF) [19], on the other hand, each node can consume/produce multiple

tokens per edge. Formally, a dataflow graph is represented by a directed

weighted graph G(V, E, d, t) where V is the set of computation nodes, E

is a set which defines directed edges (or precedence relation) from nodes

in V to nodes in V , and d(e) is the delay count (number of initial tokens)

for edge e 2 E. Each node v 2 V is associated with a positive integer t(v)

which represents the computation time for node v. In a HSDF, a single

execution of all computation nodes v 2 V is called an iteration. The edge

delays in a DFG are given in terms of iterations, i.e., an edge e from u to

v with delay count d(e) means that the computation of node v at itera-
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tion i depends on the computation of node u at iteration i � d(e). In this

way, the delay count d(e) on edge u ! v represents the sequenced relation

between computation nodes u and v. For a meaningful dataflow graph

(e.g., deadlock-free HSDF), the total delay count of any cycle is non zero.

The order of visiting/executing the nodes in a DFG is called a sched-

ule. A schedule length is the time to complete one iteration. A self-timed

schedule represents an order in which a computation node is executed as

soon as it has all input data available, i.e., as soon as possible. The (aver-

age) time needed to execute an iteration is called an iteration period. The

main goal in executing DFGs is finding schedules with minimum iteration

periods. It is known that the minimum iteration period can be obtained

by a self-timed schedule [87]. A lower bound on the iteration period, called

iteration bound [59, 44, 62], can be found by using the computation delay

ratio (r) in the following way. The computation delay ratio of a cycle

C 2 G is the ratio of the sum of the computation times of all the nodes in

C to the total number of edge delays in C:

r(C) =

P

t(v)
P

d(e)
(4.8)

where C is a cycle in G and v, e 2 C. A critical cycle is the cycle which

has the maximum r(C) in a DFG. It represents the execution of the nodes

that takes the largest amount of time. The computation delay ratio of

the critical cycle determines the iteration bound of a DFG. That is, the

iteration bound B(G) of DFG G is defined as:

B(G) = max{r(C)}, C 2 G. (4.9)

The term r(C) is also called cycle mean of cycle C. Similarly, Equation

4.9 is called Maximum Cycle Mean (MCM). A very important property of

a DFG is that the iteration period of any schedule cannot be smaller than

the iteration bound (i.e., MCM) of the DFG.
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Cyclo-Static Dataflow graphs

The Cyclo-Static Dataflow (CSDF) model of computation [20] is an ex-

tension of the SDF model that allows a compact representation of ap-

plications with cyclically changing, but predefined behavior. In a CSDF,

every node j has a function repertoire, which is a sequence of functions

f
j

(0), f
j

(1), · · · , f
j

(S
j�1

) of length S
j

. The nodes execute a function from

their repertoire in the following way: the nth time a node v
j

executes,

it selects function f
j

(n (mod S)
j

). Therefore, a node v
j

has S
j

execution

phases. Consequently, every node v 2 V is associated with a sequence T (j)

of positive integers [t
j

(0), t
j

(1), · · · , t
j

(S
j�1

)] which represents the compu-

tation time of every function from the function repertoire of node v
j

, i.e.,

the computation time of the node in every execution phase. Like SDF

graphs [60], the structure of a CSDF graph can be compactly represented

by a topology matrix �. The entries of � for a node j of a CSDF graph

represent production and consumption rates for a complete execution se-

quence of length S
j

. The columns of � represent the nodes and the rows of

� represent the edges. A positive entry �(i, j) means that node j produces

�(i, j) tokens on edge i accumulated by all phases. A negative entry �(i, j)

means that node j consumes ��(i, j) tokens from edge i. Given a connec-

ted CSDF graph G, a valid static schedule for G is a schedule that can be

repeated infinitely on the incoming sample stream and where the amount

of data in the bu↵ers remains bounded. A vector ~q = [q
1

, q
2

, · · · , q
N

]T ,

where q
j

> 0, is a repetition vector of G if each q
j

represents the number

of invocations of an actor v
j

in a valid static schedule for G. The repetition

vector of a CSDF graph, is given by

~q = S · ~r, where S(i, j) =

8

<

:

S
j

if i = j

0 otherwise.
(4.10)

where ~r = [r
1

, r
2

, · · · , r
N

]T is a positive integer solution of the balance

equation � · ~r = ~0. In Figure 4.11, an example CSDF (Figure 4.11a) and

matrices � and S (Figure 4.11b) are shown.
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Polyhedral Process Networks

A Polyhedral Process Network (PPN) [93] is a directed graph G = (P, E)

where P is a set of vertices representing processes and E is a set of edges

representing communication channels. In terms of behaviour, a PPN is a

special case of the KPN model [52]. That is, a process in a PPN first reads

data from FIFO channels, then executes a function, and writes results to

FIFO channels. Here, processes are synchronised based on the KPN se-

mantics, which implies that any process is blocked when attempting to read

an empty FIFO. However, in contrast to KPNs, the PPN model assumes

finite FIFO bu↵ers. Therefore, processes also block when attempting to

write to a full FIFO. The execution of a process is specified by its (iter-

ation) domain which is described by for-loops. This set of iterations is

represented using the polytope model [34] and is called process domain,

denoted by DM
P

. Accessing input/output ports of the PPN process is

represented as a subset of the process domain, called input/output port

domain. Compared to PPN processes, accessing input/output ports of

CSDF actors is described using repetitive production/consumption rates

sequences. Another key di↵erence is that synchronisation in PPN is im-

plemented using blocking reads/writes, while in CSDF it is implemented

explicitly using a schedule. It has been shown [30, 17] that a PPN can

be translated into a CSDF graph in which the production/consumption

rates sequences consist only of 0s and 1s. A 0 in the sequence indicates

that a token is not produced/consumed, while a 1 indicates that a token

PPN CSDF
apply 

MCM analysis
during DSE

(a) Classical approach

(b) Our approach

PMG

Mapping 
decisions

PPN'

HSDF }
Figure 4.10: MCM analysis on a PPN.
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a b c d

(1) (555555) (10) (222222)

[1]
[000111]

[111111]

[1] [1]

[111000]

[111111]

Γ=

S=

[ ]1 -3 0 0
0 6 -1 0
0 0 1 -6
0 -3 0 3

1 0 0 0
0 6 0 0
0 0 1 0
0 0 0 6
[ ]

(a) A CSDF graph (b) topology and phase matrixes

Figure 4.11: The CSDF graph and its matrices � and S.

is produced/consumed.

4.7.2 Analytical performance evaluation of a CSDF

The data flow applications considered in the Daedalus framework can be

naturally modelled as PPN, therefore, we can restrict the performance

analysis to PPNs rather then KPNs. To reach the goal of performing

MCM analysis on PPNs, one could first translate the PPN into a dataflow

network (specifically into a CSDF [30, 17]). Subsequently, the MCM ana-

lysis of a CSDF graph could then be obtained in the traditional fashion by

means of conversion to an HSDF graph. In particular, in CSDF graphs, the

MCM analysis is applied on the corresponding equivalent HSDF graphs.

This approach is illustrated in Figure 4.10(a). The approach has a major

drawback: working on HSDF graphs exponentially increases the complex-

ity of computing the MCM value. This significantly limits the practical

applicability of the MCM analysis. Recently researchers focused on devis-

ing alternative techniques to reduce the complexity of computing MCM

and converting SDF to HSDF graphs [38, 37, 27]. The required compu-

tational power and the limited scalability of these approaches, however,

make them unsuitable for our purpose.

A better approach would require to perform MCM analysis without

passing trough an HSDF graph while embedding the information relative
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a1

b1 c1 d1

a2

a3

b2

b3

b4

b5

b6

c2

c3

c4

c5

c6

d2

d3

d4

d5

d6

q=[3  6   6  6]

Figure 4.12: The equivalent HSDF graph.

to the transformed HSDF graph in a simpler graph. In order to embed the

required information, we need a deep understanding of the steps required

to transform a CSDF into HSDF graph. In next section, we propose a mo-

tivation example that illustrates the increased complexity of the generated

HSDF graph, and we construct a Performance Modelling Graph starting

from the steps of the HSDF generation algorithm.

4.7.3 Building the equivalent PMG graph

The equivalent HSDF graph of a CSDF graph can be constructed starting

from the phase repetition vector q. The algorithm for the conversion [21],

has the following procedure:
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a b c d

m_c1

t_ex(a)

t_ex(b) t_ex(c) t_ex(d)

Figure 4.13: The proposed performance modelling graph.

• Instantiate an HSDF graph actor for each phase represented in the

repetition vector q.

• Instantiate sequence-edges to model the in-order execution.

• Add edges to model communication.

For further details of the conversion algorithm, we refer the reader to

work of Bilsen [21]. The equivalent HSDF graph for the example in Figure

4.11 is illustrated in Figure 4.12.

To perform MCM analysis on a simpler graph, we use the idea of rep-

resenting the execution times of the nodes t(v) and edge delays d(e) of the

CSDF graph in a way that they mimic a throughput-approximate HSDF

graph. By doing so, we can apply the MCM analysis on this so-called

Performance Modeling Graph (PMG), as illustrated in Figure 4.10(b).

By definition, the throughput of a strongly-connected HSDF graph is

the inverse of its MCM value. Recall that the MCM of a strongly-connected

HSDF graph is equal to the iteration period of the graph, which is also

equal to the time to complete one iteration.

One iteration is defined to be the execution of every node once. The

di↵erence with the CSDF graphs is that an iteration of an CSDF graph is

defined by the execution of its nodes according to the repetition vector q.
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That is, in one iteration node v executes q
v

times spending time t
ex

as

defined below:

t
ex

(v) = r
v

· T (v)

where r
v

is the corresponding element of vector r (� · ~r = ~0). In one

iteration, node v executes r
v

phases of size S
j

, consequently, the execution

time of a node per phase is given by:

T (v) =

Sj�1

X

k=0

t(k)

If we substitute the terms T (v) used in the CSDF graph with the

t
ex

(v) just described, we will obtain a graph that executes its nodes ’once’,

resembling an HSDF execution.

Importantly, the new execution times are the same as if the graph ex-

ecutes the nodes according to its repetition vector. As result, the iteration

periods of the two graphs are the same.

To illustrate the above approach, consider the example CSDF graph

shown in Figure 4.11. The resulting PMG graph is shown in Figure 4.13.

Since the used HSDF generation algorithm [21] always introduces back

edges connecting the instantiated HSDF actors of each node of the CSDF,

to model this communication, we add back edges to every node in the PMG.

Similarly, since there a back edge forming a cycle in the original CSDF,

several back edges are generated in the equivalent HSDF connecting the

instantiated actors in the HSDF according to the algorithm rules [21].

For each cycle present in the CSDF graph, we add a delay m in the

equivalent PMG given by:

m =
max{t

ni}CyclesHSDF
P

v2CycleCSDF
t
ex

(v)

where t
ni are the execution times of the instantiated actors that form a

cycle c
i

in the HSDF originated by the back-edge that forms a cycle in the

original CSDF graph.
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For example, considering the example in Figure 4.11 and its corres-

ponding HSDF graph in figure 4.12, we can observe that the cycle formed

by the nodes b, c and d generates di↵erent cycles in the corresponding data

flow graph.

Adding a delay m
c1 that includes the information relative to those

cycles inside the PMG graph, would allow to analyse only the cycle rep-

resenting the worst case of all HSDF cycles generated from that back edge.

Since the edges that form the above cycles are generated with the algorithm

for the conversion to CSDF to HSDF [21], as a future work, we propose

to extend the algorithm to directly generate a proper delay m
c1 inside the

PMG graph.

4.8 Conclusions

In this chapter we presented a technique to reduce the simulation over-

head in system-level design space exploration (DSE). To this end, we have

presented an iterative design space pruning methodology based on static

throughput analysis of di↵erent application mappings. By interleaving

these analytical throughput estimations with simulations, our hybrid ap-

proach can significantly reduce the number of simulations that are needed

during the process of DSE. Moreover, we have proposed and examined dif-

ferent strategies for interleaving fast but less accurate analytical perform-

ance estimations with slower but more accurate simulations. Experimental

results have demonstrated that such hybrid DSE is a promising technique

that can yield solutions of similar quality as compared to simulation-based

DSE but only at a fraction of the execution time. Finally, we introduced

the basic idea of a possible future research direction towards the improve-

ment of the throughput estimation. More in details, we introduced an

approach for e�ciently performing an analytical performance estimation

based on Maximum Cycle Mean (MCM) analysis, in order to to correct the

estimation errors due to the topological cycles generated during analytical

mapping design space exploration.





Chapter5
Design Space Pruning for Efficient
Slack Allocation and Lifetime
Estimation (for NoC-based
MPSoCs)1

5.1 Introduction

An important metric in modern embedded systems is the expected lifetime:

smaller feature sizes, higher operating frequencies, and thermal issues are

increasing the failure rate of integrated circuits to the point where device

lifetimes are becoming shorter than market expectations. Redundant hard-

ware is typically employed to improve system lifetime. For instance, slack

allocation, which overdesigns the system by provisioning execution and

storage resources beyond those required to operate failure-free, has been

proposed as a low-cost alternative to replicating resources [22, 67]. When

components fail, data and tasks are re-mapped and re-scheduled on re-

sources with slack; as long as performance constraints are satisfied, the

1The contents of this chapter have been based on [7]
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system is considered to be operational despite component failure. For any

given system, the design space of possible slack allocations is large and

complex, consisting of every possible way to replace each component in

the initial system with another component from a library.

In this chapter we propose an exploration framework for Network-on-

Chip (NoC) based MPSoCs that substantially reduces the computational

cost of slack allocation. We make two principal contributions. First, we

develop failure scenario memoization to reduce the computational cost of

lifetime estimation by storing and reusing estimated lifetime values for

systems with one or more failed components. The lifetime of all partially

failed systems is derived and saved (the memory storage cost of such val-

ues is negligible); when a previously explored partially-failed system is

encountered a second time, its expected lifetime is read from a database

rather than re-estimated. It is worth noting that the larger the design

space, the greater the resulting opportunity for reusing lifetime estimation

and speeding up the exploration.

Second, we introduce a correlation-based architecture distance metric

to identify symmetries for clusters of components called islands. In mod-

ern platform- and network-on-chip based design, components are clustered

around switches in the on-chip network. When clusters and the tasks

mapped to them are considered to be symmetric, some configurations have

the same e↵ect on the overall system lifetime. This can be leveraged to

reduce the number of evaluations.

The rest of the chapter is structured as follows: Section 5.2 presents a

summary of recent advances in the DSE and lifetime estimation domains.

Section 5.3 presents the key concepts of slack allocation for lifetime im-

provement. Section 5.4 introduces our proposed methodology to accel-

erate DSE for lifetime estimation. The application of our methodology

is described in Section 5.5. Finally, Section 5.6 draws some concluding

remarks.
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5.2 Related Work

5.2.1 System Lifetime Estimation

System lifetime is typically modelled by estimating the system mean time

to failure (MTTF), given assumptions about the failure rates of individual

components and their relationship to (or dependence on) one another.

Historically, the exponential failure distributions have been used because

of the ease with which component failure distributions can be combined

analytically to determine system failure distributions.

For example, without redundancy, the MTTF of a system consisting

of i components is MTTF
sys

= (
P

i

�
i

)�1, where �
i

is the failure rate of
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the ith component. The exponential distribution, however, because of its

assumption of constant failure rate, has been shown to be inaccurate: semi-

conductor systems tend to have low early lifetime failure rates that grow

as the system ages [85]. A number of researchers have alternatively pro-

posed the use of lognormal failure distributions [22, 85]. However, because

lognormal distributions cannot be combined analytically to determine sys-

tem failure distributions, computationally costly Monte Carlo Simulation

(MCS) campaigns are often used to estimate MTTF
sys

[67, 85]; evaluating

a single design with MCS may require hundreds if not thousands of tri-

als, which quickly becomes intractable as the design space grows. In this

chapter, we will develop a technique for reusing MCS trials across di↵erent

simulated samples for either the same configuration and di↵erent configur-

ations, significantly reducing the computational cost of lifetime estimation.

5.2.2 Design Space Exploration

Current state-of-the-art in system-level DSE often employs population-

based, metaheuristic optimization algorithms like hill climbing, simulated

annealing, ant colony optimization, or genetic algorithms. By adjusting

their parameters, or by including domain-specific knowledge, these al-

gorithms can be customized for di↵erent DSE problems, thereby increasing

their e↵ectiveness [74, 23, 91].

In [91], the authors exploit knowledge of the platform characteristics

to optimise the DSE search process using two extended genetic operators

that exploit the system symmetry. This approach only works on fully

homogeneous systems (i.e. it is not suitable for heterogeneous systems).

Another promising approach is based on meta-model assisted optimisa-

tion, which combines simple and approximate models with more detailed

and costly simulations [65, 77, 32, 55]. These methods assume that the

meta-models are su�ciently detailed to capture the shape of the design

space. Due to the lognormal distributions involved in the estimation of

the device lifetimes [85] (i.e., lifetime depends on accumulated wear), this

kind of model cannot easily capture the design space.

In [32], the authors prune the design space, eliminating less likely
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configurations using meta-models, while in [55], meta-models are used to

identify the best set of experiments to be performed to improve the accur-

acy of the model. As opposed to this work, these methods do not consider

and characterise symmetry in the architecture.

5.3 Lifetime optimisation background

When a component fails in an NoC-based MPSoC, the system can remain

operational, if su�cient excess resources have been allocated to perform the

tasks of the disabled components. These extra resources are called slack,

i.e., components not needed to satisfy the performance constraints in the

original, fully functioning system [22, 67]. The goal of slack allocation in

the context of lifetime optimisation is to find distributions of slack that

extend system lifetime by making a subset of possible component failure

sequences survivable.

In this work, we define two forms of slack [67]: a processor’s execution

slack as the total number of unused processor cycles that are available

to execute additional tasks in the event that another processor fails or

becomes inaccessible; the storage slack for memory as the total unused

address space that is available to store additional data in the event that a

memory component fails or becomes inaccessible.

The design space for slack allocation is exponential in the number of

system components and consists of every possible way to replace each

component in the initial system with an alternative component from a

library. Furthermore, evaluating the lifetime of any individual system is

computationally expensive: the use of lognormal failure time distributions

requires the use of Monte Carlo Simulation. Therefore, exhaustive search

is intractable, and heuristic algorithms are necessary.

5.3.1 Exploring Slack Allocations

Slack allocation is explored starting from a valid system configuration (i.e.,

component selection and task mapping that fall within the application’s

performance constraints) and replacing components with over-provisioned
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versions, thereby providing additional computation or storage resources.

Each new configuration is analysed to evaluate its estimated lifetime and

its area, as shown in Figure 5.1. In general, lifetime is expected to increase

with slack, as additional slack implies additional opportunities to survive

failure. However, total power and power density often increase as well,

putting downward pressure in MTTF. For some configurations, allocated

slack is not useful, resulting in MTTF degradation. Configurations that are

better than all others for either area or lifetime are kept as best solutions.

While heuristic exploration methods are often proposed in the literat-

ure, the scope of their applicability is often limited to narrowly defined

domains. Metaheuristic search methods like genetic algorithms (GAs), on

the other hand, are designed to operate e�ciently with relatively little

design domain knowledge, but at the price of a greater number of design

points to be explored. This can make even metaheuristic exploration in-

tractable for design spaces where the evaluation of a single design point

is costly. However, modern designs are often designed around platforms

with a limited number of di↵erent components that are interconnected in

a consistent fashion. Consequently, while two di↵erent configurations may

allocate slack to di↵erent components, the slack allocations may be similar

enough to consider them to be equivalent, reducing the need for costly

evaluations.

5.3.2 The CQSA framework

The design challenge of slack allocation is e�ciently finding the most cost-

e↵ective allocations of execution and storage slack. As mentioned before,

the slack necessary for a system to survive component failure is quantized.

For example, for a system to survive processor failure, enough slack must

be allocated so all of its tasks can be re-mapped. Allocating less slack than

is required to re-map each of the processors tasks serves no purpose.

Furthermore, system lifetime and yield are likely degraded: lifetime

by the increase in system temperature that follows the increase in power

consumption of the upgraded processor, and yield by the increase in com-

ponent area and the resulting increase in vulnerability to defect. We,



5.3 LIFETIME OPTIMISATION BACKGROUND 97

therefore, define the critical quantity [es, ss] of a component as the total

slack, es MIPS of execution slack and ss KB of storage slack, required to

re-schedule and re-map the tasks and data that would be orphaned if that

component were to fail.

The Critical Quantity Slack Allocation (CQSA) [67] jointly optimizes

system lifetime and cost by determining (a) how much slack should be

allocated in the system, and (b) where in the system it should be alloc-

ated, such that the system mean-time-to-failure (MTTF) is increased in

the most area-e�cient way as possible. This framework provides us two

functionalities: on one side, it provides an estimation tool to determine

system lifetime of a design point; on the other, it allows for DSE of critical

quantity slack allocation through a greedy procedure.

System MTTF is a function of:

• the target application and given communication architecture;

• component utilization, which is a function of the tasks mapped to a

given component;

• component power, which is derived from component utilization and

other parameters; and,

• component temperature, which is derived from system-level temper-

ature modeling.

System cost (area) is determined using system-level floorplanning. The

result of CQSA is a set of MTTF-area Pareto-optimal designs with vari-

able trade-o↵s from which the designer may select the design point(s) most

appropriate for the given target application. To achieve this goal, CQSA

performs a series of design space explorations, allocating slack and evaluat-

ing the resulting cost and lifetime of the system. CQSA allocates slack by

replacing low capacity processors and memories with higher capacity slack

or memories, creating opportunity for failures to be survivable by enabling

tasks to be re-mapped and tra�c re-routed in ways that potentially still

satisfy performance constraints. Design space exploration focuses on those
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quantities of slack expected to result in cost-e↵ective lifetime improvement,

those defined by critical quantities of slack, in particular critical quantities

for network switches. A detailed analysis of the lifetime improvement that

is possible when focusing exploration on switch critical quantities can be

found in [67].

Using the m unique critical quantities defined by the n system switches

as starting points, CQSA performs a series of exhaustive and greedy exe-

cution and storage slack allocations.

By focusing exploration in this way, CQSA e�ciently exposes those

slack allocations that cost-e↵ectively maximize the number of survivable

combinations of processor and switch failures, while pruning away the over-

whelming majority of the design space. The CQSA algorithm is composed

of three stages that consider di↵erent sets of critical quantities.

Stage 0 starts with the baseline architecture and incrementally allocates

execution slack to find the best execution slack allocations not covered by a

switch critical quantity. If a system has no switch critical quantities (e.g.,

if no switch failure is survivable under any circumstances), only Stage

0 is performed. Search based on a switch critical quantity proceeds in

two steps: first, an exhaustive search is conducted for the allocation of

the critical quantity of slack that maximizes system MTTF; second, a

greedy search proceeds which incrementally allocates slack. In Stage 1,

this greedy search allocates only execution slack. In Stage 2, this greedy

search allocates both execution and storage slack.

A practical example is shown in Appendix 7.
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5.3.3 System Lifetime Evaluation

System lifetime evaluation represents the inner loop of any lifetime opti-

misation approach. The process of using Monte Carlo Simulation (MCS)

for lifetime estimation is illustrated in Figure 5.1. Given a description

of a system (its processors, memories, switches, and interconnection) and

a task graph representing the application it executes (its computational

tasks, storage tasks, and communication), the initial component utilisa-

tion, power consumption, and temperature (based on the derivation of a

system-level floorplan) are calculated.

Our approach estimates the MTTF using Monte Carlo Simulation (MCS)

[67] to repeatedly generate sample systems which experience randomised

sequences of lognormally-distributed component failures and determine at

what time, on average, enough components have failed such that the sys-

tem is no longer able to satisfy its performance constraints.

This process can be essentially divided into two parts: using component

utilisation, power and temperature to determine component failure distri-

butions and identify which component fails next, and determining if that

failure results in system failure. Component wearout failure distributions

are primarily dependent on component temperature. We use a combin-

ation of scheduling, component-level power modelling, floorplanning and

system-level temperature modelling to derive the component temperatures

that are subsequently used to determine component failure distributions.

Using these distributions, we determine which component in a sample

system is the next to fail. If, after a failure, the sample system can be

re-scheduled, component wear is calculated and component failure distri-

butions are re-calculated to determine the location of the next failure.

Otherwise, the sample system has failed, system failure statistics are up-

dated, and our MCS approach proceeds to the next sample system. This

process continues until the estimated MTTF converges.

In order to determine the MTTF and Time to First Failure (TTFF) of

a system, we must model the changes a system goes through during their

lifetime. System lifetime is modelled by simulating sequences of component
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failures and determining how long performance constraints are satisfiable.

We must make several assumptions about how components in the sys-

tem fail and when these failures cause the overall system to cease func-

tioning in order to better define our problem. Individual processors and

switches within a system may fail over the course of its lifetime. We as-

sume that memories are not susceptible to permanent failure, as they can

be covered by simple row and column redundancy, but they can become

inaccessible when the switches to which they are attached fail. That said,

our approach could be easily adapted to account for situations in which

memories are susceptible to permanent failure by treating them in the

same manner as processors during task mapping.

We also assume that systems can automatically detect component fail-

ure, at which point the operating system signals our task mapping al-

gorithm to execute. In addition to this method of computing task map-

pings reactively (i.e., only when necessary), our task mapping algorithm

can also be triggered at pre-defined time intervals in an e↵ort to proact-

ively address system lifetime. The task mapping algorithm is responsible

for remapping tasks and data from failed resources to those with slack,

re-routing the a↵ected tra�c, and improving the lifetime of the system

through decisions made during this process. As long as a valid task map-

ping exists, the system can satisfy its performance constraints and continue

to function [43]. The task mapping process used is described in [43] and it
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is beyond the scope of this chapter.

To accurately estimate the distribution of permanent component fail-

ures due to wear-out, we adopted a lognormal failure distribution model

for each of three temperature-dependent failure mechanisms [86]: elec-

tromigration, time-dependent dielectric breakdown, and thermal cycling.

The probability density function for the lognormal distribution is given

by

f(x) =
1

x
p
2�⇡

e�
(ln x�µ)2

2�2

where µ and � are shape and scale parameters respectively. Generally we

use � = 0.5 to model the distribution of wear-out failure mechanisms. We

can define component MTTF due to a particular failure mechanism (FM)

as:

MTTF
FM

= eµ+
�2

2 (5.1)

When the MTTF of a component due to a particular failure mechanism

is known, Equation 5.1 can be solved for µ, thereby fully specifying the

component failure distribution for that particular failure mechanism. In

particular, given the three failure mechanisms considered in [67], we have:

Component MTTF due to electromigation

MTTF
EM

= K
EM

J�ne
E
kT (5.2)

where K
EM

is a scaling factor, J is the current density of the component,

E is the activation energy for electromigration, k is Boltzmann’s constant,

T is the temperature of the component in Kelvin, and n is a constant based

on the properties of the metal used in the process.

Component MTTF due to time-dependent dielectric breakdown

MTTF
TDB

= K
TDB

1

V a�bT

DD

e
X+Y/T+ZT

kT (5.3)

where K
TDB

is a scaling factor, V
DD

is the drain voltage, T is the compon-

ent’s temperature in Kelvin, k is Boltzmanns constant, and a, b, X, Y, Z are
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fitting parameters [67].

Component MTTF due to thermal cycling

MTTF
TC

= K
TC

(
1

T � T
a

)c (5.4)

where K
TC

is a scaling factor, T is the component’s temperature in Kelvin,

T
a

is the temperature of the surrounding environment, and c is the Co�n-

Manson exponent [67].

Each failure mechanism is normalized with scaling factor K so that its

MTTF is 30 years for a characterization temperature of 345 K [40]. This

normalization equalizes the e↵ect of the three failure mechanisms on a

given component.

Figure 5.2 (a more detailed view of the “MTTF estimation” box from

Figure 5.1) gives an overview of our lifetime evaluation process for a single

Monte Carlo sample. We use an initial task mapping that minimizes power

dissipation regardless of the task mapping heuristic that will be used later.

We cannot use temperature or wear information to determine the initial

task mapping since components have neither a temperature nor an amount

of wear associated with them yet. The utilization of each component is first

calculated based on that task mapping and given information about the

system and the application (Component Activity Calculator block in Fig-

ure 5.2). Given component activity, component power dissipation can be

derived using data sheet values for processors [9], CACTI [8] for memories,

and ORION [53] for switches (Component Power Calculator block in Figure

5.2). Using the floorplan determined using Parquet [12] and per-component

power dissipation data, steady-state temperatures for each component are

calculated using Hotspot [83] (Component Temperature Calculator block

in Figure 5.2). Our temperature modelling assumptions (range, average

value, etc.) are designed to match previously published temperature mod-

elling assumptions for the same types of systems [25]. These component

temperatures are then used to shape the failure distribution for each failure

mechanism.
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For each Monte Carlo sample, failure times are randomly selected from

the initial failure distributions of each failure mechanism of each component

(processors and switches). The failure distribution for each failure mech-

anism of a component is based on that component’s temperature which is

derived from the current task mapping.

Once the failure distributions are computed, we determine which com-

ponent in the system has the earliest failure time based on the amount of

wear that has been accumulated so far (FM Update/Component Failure

block in Figure 5.2). In addition to their place in the simulation, we use the

time to failure and accumulated wear values that are calculated in this step

as outputs from the wear sensors we assume to exist on chip, and these

values are used as input to our wear-based task mapping heuristic. We

mark this component as failed and proceed to the task mapping process.

If we are able to find a valid task mapping, the system operational path

is taken, and the simulation loop begins another iteration. If a valid task

mapping does not exist, the system failed path is taken, and we record the

current simulation time as the failure time for the sample system.

It is worth noting that the computational cost of MCS can be signific-

ant: floorplanning is required to support thermal modelling, and a thermal

simulation is required each time a failure is survived. In our experiments we

use 10, 000 Monte Carlo samples per design point, which requires up to 2

minutes of simulation for a 26-component system. Consequently, MCS en-

counters many similar partially failed system configurations that, at most,

di↵er only in the precise sequence in which components have failed and

exact times those failures occurred.

5.4 Proposed Design Space Pruning

To reduce the computational cost of design space exploration in the con-

text of lifetime optimisation, we propose two pruning approaches: the

first reduces the number of samples evaluated during MTTF estimation

by storing and reusing partial results; the second reduces the number of

configurations to be explored during DSE by exploiting symmetries in the
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design under analysis.

5.4.1 Memoization of Lifetime Estimation

We propose to improve the e�ciency of slack allocation by using thememo-

ization of system lifetime estimates of intermediate states during failure

simulation, thereby accelerating the evaluation of multiple designs in the

design space. Memoization saves partial results so that if the same calcu-

lation occurs later, the result is available.

The computational cost of MCS-based lifetime estimation is in its repe-

tition: hundreds if not thousands of trials are required for accurate estim-

ation. However, much of this work is redundant: the hottest components

tend to fail first, followed by the next hottest, etc., resulting in MCS trials

that are qualitatively the same except for small di↵erences in the ordering

and timing of component failures. We hypothesise that lifetime estimation

will be significantly accelerated if this redundant simulation is replaced by

table lookups.

To make memoization most e↵ective, we propose to perform an initial

lifetime estimation using exponential, as opposed to lognormal, failure dis-

tributions. This approximation is a key contribution of our meth-

odology. Since the failure rate of under an exponential distribution is

constant, the estimated system lifetime is not dependent on accumulated

wear.

Definition 5.4.1. We define a scenario s as a set of working components

in an NoC-based MPSoC with a specific task and storage mapping.

Consider a scenario s reached by the sample systems i and j after

two component failures. MCS sample generation implies that the absolute

failure times of components in each sample are unlikely to be the same.

Despite this, it is entirely possible that each system has experienced the

same two failures, if at di↵erent times and in di↵erent orders, thereby

reaching the same scenario. Under a lognormal model, the time-to-failure

for system i when reaching scenario s tells us little about the time-to-failure

for system j: lognormal time-to-failure is dependent on wear. Under an
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exponential model, the probability density distribution function of a failure

is:

f(x) =

(

�e��x x � 0

0 x < 0
(5.5)

where � is the rate parameter of the distribution. The component MTTF

due to a particular failure mechanism is equal to the mean of the exponen-

tial distributed variable

MTTF
FM

= E[f(x)] =
1

�
(5.6)

Under an exponential model, the time-to-failure for scenario s for any sys-

tem is the same, regardless of the timing and ordering of previous failures,

since an exponential distributed variable X obeys to the memoryless prop-

erty:

P (X > s + t|X > s) = P (X > t), 8s, t � 0 (5.7)

This relationship implies that if the waiting time X is conditioned on a

failure to observe the event over some initial period of time s, the distribu-

tion of the remaining waiting time is the same as the original unconditional

distribution. For example, if a failure has not occurred after s seconds, the

conditional probability that occurrence will take at least t more seconds is

equal to the unconditioned probability of observing the event more than t

seconds relative to the initial time.

Using this exponential failure model, having observed the time-to-

failure for scenario s once, recalculating it would be redundant.

As we just observed, the exponential model has a fixed failure rate

and it is much more simple. However, using the exponential distribution

leads to inaccurate MTTF estimation. As is shown in Figure 5.3, the

MTTF of designs with low lifetime is underestimated, while the MTTF of

designs with high lifetime is overestimated. Nevertheless, this inaccuracy

is not an issue in the context of DSE for electronic systems: the MTTF

ranking of any two design points is generally respected, with an acceptable

error of a few months over a multi-year lifetime (when projected over the

corresponding lognormal distribution).
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Figure 5.3: System-lifetime evaluation with lognormal distribution (blue) and
exponential distribution (green) for the MWD benchmark on a Mesh-NoC

In fact, we observe that the maximum error in ranking for the expo-

nential distribution is ±3 years, which, when projected on a lognormal

estimator, is reduced to ±0.5 years. This implies that using the expo-

nential distribution instead of the lognormal distribution will not a↵ect

the search for the Pareto-optimal solutions for the slack allocation prob-

lem while performing DSE. Once the Pareto front is estimated, the actual

MTTF of each design point on the front can be recalculated using the

lognormal distribution, e↵ectively resolving any discrepancy in accuracy.
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Figure 5.4: Memoization of failure scenarios during DSE with system-lifetime
estimation.

5.4.2 Lifetime Estimation Approach

Within our lifetime estimation framework, the failure times of partial sys-

tems are memoized during Monte Carlo Simulation so that they can be

reused during subsequent MCS trials. For each sample system i, when

time is advanced to the jth component failure, we record the relative com-

ponent failure time t
j

between the j�1th and jth failure. The failure time

F
i

for system i occurs when the Kth failure occurs and the system is unable

to meet performance constraints: F
i

=
P

K

j=1

t
j

. Once the failure time of

sample system i is determined, we can work backward to determine the

failure time of all preceding functional systems, and store these values for

future use. To explore the slack allocation design space, we adopted the

popular genetic algorithm NSGA-II [29] (Non-dominated Sorting Genetic

Algorithm-II). It is worth noting that the proposed pruning techniques do

not depend on a particular search algorithm, and that they can be applied

to any metaheuristic.

Figure 5.4 shows a simple example of slack allocation DSE where we
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have six architectures to explore, A, B, C, D, E, F . Let us assume that

design A is explored first: determining its MTTF requires that four scen-

arios be evaluated, as shown in Figure 5.4.

Let us assume now that architecture B converges to the same working

scenario at the second component failure. We, therefore, have that B can

reuse the same scenario prediction as A from the second component failure.

Anytime a system configuration has been previously evaluated (i.e. it is

known), we can immediately determine its associated failure time, and use

it to calculate the overall system lifetime of a sample system, independently

of the sequence of failures that lead the system to the known state.

Figure 5.5 shows the number of intermediate scenarios that are ex-

plored with and without the proposed memoization technique over the first

200 design points of a DSE run. As the order of the exploration a↵ects

memoization performance, we used both random (as done by NSGA-II)

and sequential design point selection (as done by exhaustive search). Se-

quential selection favors memoization because it explores similar configur-

ations first, promoting the generation of a large failure scenario database.

Figure 5.5 includes the worst (random) and best (sequential) cases for

memoization. Overall, we have a reduction between 15% and 30% in the

computational e↵ort, with the perspective that the larger the design space,

the greater the benefit.

5.4.3 Exploiting Architectural Symmetry

We propose to further improve the e�ciency of slack allocation by taking

advantage of the architectural symmetry present in modern platform-based

MPSoC designs. In a wide variety of NoC topologies, groups of compon-

ents have the same “view” of the rest of the system. Consider a ring of

homogeneous processors: access to resources in the system is isomorphic

for each processor. Even with heterogeneous resources, mesh, torus, tree,

and other regular topologies may have components for which access to

other components is identical or similar to that of other components in the

system. As slack allocated to any one resource with such an isomorphic

view may be equivalent to slack allocated to another, when task mappings
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Figure 5.5: Number of scenarios evaluated during the exploration of the MPEG4
CPL1 benchmark with (-mem) and without the proposed memoization technique
using random (rnd) or sequential (seq) selection

are changed accordingly, such symmetry presents an opportunity for design

space pruning: only one such design needs to be evaluated. We speculate

that even design points that are almost, but not perfectly, symmetrical

will have very similar areas and expected lifetimes. We trade o↵ some ac-

curacy for exploration speed by avoiding the evaluation of configurations

with a high degree of symmetry with regard to previously evaluated design

points.

To determine the degree of symmetry between design points we intro-

duce a correlation-based architecture distance metric. When the distance

between two designs is su�ciently small, the area and MTTF evaluation

for one may be used for the other, accelerating design space exploration.

A NoC topology defines the structure of a concrete instance of a net-

work. Typically a topology is defined in terms of computing cores that
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are connected to the network by the means of switches. The switches in

turn are interconnected using links. We assume that each core and each

memory has bi-directional links to a switch. Each switch can be connected

to multiple cores and memories.

Definition 5.4.2. An island is a set of components (memory/processor)

plus one directly connected network switch.

Definition 5.4.3. We define the distance d(I
A

, I
B

) between two islands

I
A

, I
B

in a network N as the minimum number of hops needed for their

communication through N :

8I
A

, I
B

2 N, d(I
A

, I
B

) = min
k

{L
k

}

with L
k

= (l
1

, l
2

, . . . l
k

), where k is the cardinality of the path L
k

formed

by the hops l
1

, l
2

, · · · l
k

.

Definition 5.4.4. Given a communication network, an island I
A

is equi-

valent to another island I
B

, denoted by ⌘, if it contains the same number

and type of components as I
B

. Here, M is the number of components

CA

k

, CB

k

in the islands I
A

, I
B

.

I
A

⌘ I
B

! {CA

k

} ⌘ {CB

k

}

with CA

k

2 I
A

, CB

k

2 I
B

, and k = 1, . . . , M .

Definition 5.4.5. Given a communication network, I
A

⇠ I
B

means that

an island I
A

is symmetric to an island I
B

if: i) I
A

⌘ I
B

(the islands I
A

,

I
B

are equivalent), or ii)

d(I
A

, I
n

) = d(I
B

, I
m

) 8{I
n

, I
m

} 2 N, I
n

⌘ I
m

That is, the two islands I
A

, I
B

have the same distance from all the

equivalent islands {I
n

, I
m

} in the network N .
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Fig. 5: MPEG-4 CPL1. If either switch 2 or 3 fail in (b), the system fails; however, any
switch failure is survivable when the system is made a ring in (c).
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storage slack marginally extends lifetime improvement to 12% for a 65% increase in
area (design A to D).
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Figure 5.6: Task graph for the MPEG4-CPL1 application

Definition 5.4.6. Given two symmetric islands I
A

and I
B

, we define the

intra-island distance as the sum of the minimum distances between the

permutations
aAP

M

,
aBP

M

of all the possible slack allocations a
A

, a
B

in

the M processor and memory components of the islands I
A

and I
B

:

d
intra�I

(I
A

, I
B

) =
X

d(
aAP

M

,
aBP

M

), I
A

⇠ I
B

Definition 5.4.7. Given two architecture instances N
i

, N
j

of the network

N , we define the architecture distance as the sum of the intra-island dis-

tances of all sets of symmetric islands in the network N :

d
arch

(N
i

, N
j

) =
X

i2Ni,j2Nj

d
intra�I

(I
i

, I
j

), I
i

⇠ I
j

Let us consider the example in Figure 5.7(b). This communication

architecture presents a couple of symmetric islands, namely I
A

and I
D

.

Given any permutation of the same execution and storage slack alloca-

tion within those islands, according to our definition the intra-island dis-

tance d
intra�I

(I
A

, I
D

) will be 0. We can assume that design points with

d
intra�I

(I
A

, I
D

) = 0 and the same slack allocations for all the other com-

ponents would give similar values of system lifetime and area. We confirm

this hypothesis by checking the correlation of lifetime results for pairs of

design points. Given the architecture in Figure 5.7(b) and the applica-

tion in Figure 5.6, we create a random set of 450 design points. Then,

we compute the architecture distance between the design point with the

lowest MTTF and all the others, and sort the design points according to
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Fig. 1: The location of slack and the communication architecture both determine the
set of survivable failures.

to the literature for a more detailed discussion of lifetime-aware task mapping and
re-mapping [Huang et al. 2009; Hartman et al. 2010; Hartman and Thomas 2012].

For re-mapping and re-routing to work, however, slack must be distributed, or al-
located, in such a way that it is accessible: if component C fails and its tasks are to
be re-mapped to component S, there must be a path and sufficient bandwidth in the
network to route C ’s inputs to S and to C ’s outputs from S. Slack allocation is the
process of identifying where and how much execution and storage slack should be dis-
tributed in a system. Optimal slack allocations distribute just enough slack at just
the right locations so as to maximize one objective, lifetime or yield, while minimizing
another, manufacturing area (cost). For example, consider the core graph and architec-
tures illustrated in Figure 1(a) and (b). Each task (cloud) En in Figure 1(a) is mapped
to processor (square) Pn in Figure 1(b) and is assumed to have the same computational
complexity. Each storage task (cylinder) Sn is mapped to memory (rounded rectangle)
Mn and is assumed to have the same address space requirement. Arrows are unidi-
rectional links, and solid lines are bi-directional links. We assume that traffic can’t be
routed through processors or memories; only switches can forward traffic.

Let us now assume that processor P2 has enough slack to accommodate an addi-
tional computational task. Because of the use of unidirectional links in this architec-
ture, only the failure of P3 is survivable. If P3 fails, its input and output traffic can be
completely re-routed to and from P2. Consider P6, instead. P6 receives its inputs from
P5 and sends its output to P7. If P6 fails, under the assumption that it receives its
input from P5, there are no paths by which P2 can receive the input traffic originally
intended for P6, or send the output traffic originally intended for P7. As a result, the
failure of P6 results in system failure. In this scenario, any of P5-P9 is a better loca-
tion for the slack allocated to P2. If, for instance, slack is allocated to P5, four different
processor failures would be survivable.

It is also worth noting here that communication architecture can significantly in-
fluence the accessibility of slack, and therefore the opportunity for averting system
failure in the presence of component failure. In the case of the four-switch implemen-
tation in Figure 1(c), slack allocated to any processor in the system can potentially be
utilized when any other processor in the system fails. Provided that link bandwidth
limits aren’t exceeded, in this architecture traffic can be more flexibly re-routed than
in the three-switch implementation in Figure 1(b). For instance, in the three-switch
implementation, if P1 or P4 fail, the architecture is effectively cut in two, with neither
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Fig. 1: The location of slack and the communication architecture both determine the
set of survivable failures.

to the literature for a more detailed discussion of lifetime-aware task mapping and
re-mapping [Huang et al. 2009; Hartman et al. 2010; Hartman and Thomas 2012].

For re-mapping and re-routing to work, however, slack must be distributed, or al-
located, in such a way that it is accessible: if component C fails and its tasks are to
be re-mapped to component S, there must be a path and sufficient bandwidth in the
network to route C ’s inputs to S and to C ’s outputs from S. Slack allocation is the
process of identifying where and how much execution and storage slack should be dis-
tributed in a system. Optimal slack allocations distribute just enough slack at just
the right locations so as to maximize one objective, lifetime or yield, while minimizing
another, manufacturing area (cost). For example, consider the core graph and architec-
tures illustrated in Figure 1(a) and (b). Each task (cloud) En in Figure 1(a) is mapped
to processor (square) Pn in Figure 1(b) and is assumed to have the same computational
complexity. Each storage task (cylinder) Sn is mapped to memory (rounded rectangle)
Mn and is assumed to have the same address space requirement. Arrows are unidi-
rectional links, and solid lines are bi-directional links. We assume that traffic can’t be
routed through processors or memories; only switches can forward traffic.

Let us now assume that processor P2 has enough slack to accommodate an addi-
tional computational task. Because of the use of unidirectional links in this architec-
ture, only the failure of P3 is survivable. If P3 fails, its input and output traffic can be
completely re-routed to and from P2. Consider P6, instead. P6 receives its inputs from
P5 and sends its output to P7. If P6 fails, under the assumption that it receives its
input from P5, there are no paths by which P2 can receive the input traffic originally
intended for P6, or send the output traffic originally intended for P7. As a result, the
failure of P6 results in system failure. In this scenario, any of P5-P9 is a better loca-
tion for the slack allocated to P2. If, for instance, slack is allocated to P5, four different
processor failures would be survivable.

It is also worth noting here that communication architecture can significantly in-
fluence the accessibility of slack, and therefore the opportunity for averting system
failure in the presence of component failure. In the case of the four-switch implemen-
tation in Figure 1(c), slack allocated to any processor in the system can potentially be
utilized when any other processor in the system fails. Provided that link bandwidth
limits aren’t exceeded, in this architecture traffic can be more flexibly re-routed than
in the three-switch implementation in Figure 1(b). For instance, in the three-switch
implementation, if P1 or P4 fail, the architecture is effectively cut in two, with neither
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Figure 5.7: Task graph for the MWD application and its communication archi-
tecture

ascending architecture distance.

Our results are shown in Figure 5.8: the blue line is the ordered MTTF

di↵erence between the shortest-lived design point and all other points, and

the green line is the corresponding architecture distance. It is easy to verify

that the two curves are highly correlated (⇢ = 0.96), indicating that higher

architecture distance leads to higher di↵erence in MTTF between design

points. We also observe that design points with the same architectural

distance have roughly the same MTTF di↵erence from a reference. For

example, Figure 5.8 shows that an architecture distance of 2 corresponds

to a maximum MTTF di↵erence 0.45 years.

These results suggest that we can set an architectural distance threshold

T
D

and reuse previously estimated MTTF values when the architectural

distance of a new design point from some other previously evaluated design

is below the threshold. We, therefore, only simulate when the distance from

the new design to every other previously evaluated design is greater than

T
D

. It is worth noting that the selection of the threshold depends on the

design space and its optimal value can only be found via sampling. How-

ever, we found that a conservative threshold T
D

= 2 did not negatively
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Figure 5.8: MTTF di↵erence (blue) and Architectural distance (green) between
design points for the MPEG4 CPL1 benchmark

a↵ect the accuracy of our DSE while providing a substantial reduction in

the number of explored design points.

5.5 Experimental Results

In our experiments we use two benchmark applications: Multi-Window

Display (MWD) [48], and an MPEG-4 Core Profile Level 1 (MPEG4-

CPL1) decoder [47, 58]. We show our task graph for MWD and MPEG4-

CPL1 in Figure 5.7 and Figure 5.6, respectively. These applications are

mapped on 8- and 9-core MPSoCs using di↵erent NoC topologies: ring,

star, mesh, and tree. We constructed our systems using components from a

library consisting of three di↵erent ARM processors (M3, ARM9, ARM11),

nine SRAMs sized from 64 KB to 2 MB, and network switches with 3x3,

4x4, and 5x5 crossbars.

The ring, star and tree-based NoC designs use five switches to inter-

connect nine processors and four memories, while the mesh-based design

uses eight processors and four memories. Execution slack is allocated by

replacing the ARM M3s (125 MIPS, millions of instructions per second)

with ARM9s (250 MIPS) or ARM11s (500 MIPS), or by replacing ARM9s

with ARM11s. Storage slack is allocated by replacing smaller memories
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Figure 5.9: Average ADRS and Evaluation Count for the MPEG4 CPL1 and
MWD applications

with larger ones. We enforce a two-communication-port-per-core limit.

In our experiments, we model failures due to electromigration, time-

dependent dielectric breakdown, and thermal cycling [41]. The MTTF of

each failure mechanism for each component type is normalized to 30 years

for the characterization temperature of 345 K [50]. For the NSGA � II

algorithm we use a population of 70 design points and 200 generations.

Our results are summarised in Figure 5.9 and Figure 5.10. We com-

pare the performance of (a) NSGA-II with our proposed pruning approach

(NSGA-II-pruning), (b) standard NSGA-II without pruning (NSGA-II),

and (c) the Critical Quantity Slack Allocation (CQSA) heuristic approach [67],

using two assessment criteria:

• Quality of the solution set (ADRS). How well each technique approx-

imates the reference Pareto front (which was obtained using exhaust-

ive exploration) after running to convergence (see Figure 5.9). In par-



5.5 EXPERIMENTAL RESULTS 115

CQSA [5] NSGA−II NSGA−II−Pruning
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
um

er
 o

f S
ce

na
rio

s 
(N

or
m

al
iz

ed
 M

illi
on

s)

Average Number of Scenarios Evaluated for MPEG4−CLP1 and MWD

 

 
mesh
star
ring
tree

Figure 5.10: Sample Count for the MPEG4 CLP1 and MWD applications

ticular, we use the Average Distance from Reference Set (ADRS) [26],

which measures the distance between the solutions set p(A) and the

Pareto-optimal set R, obtained through exhaustive search:

ADRS(p(A), R) =
1

|R|
X

xp2R

min d{ ~x
p

,~a}
~a 2 p(A)

where

d{ ~x
p

,~a} = max
j=1,··· ,M

n

0, fj(~a)�fj( ~xp)

fj( ~xp)

o

and M is the number of objective functions. A smaller ADRS value

indicates that the distribution of the solutions is closer to the refer-

ence Pareto front and, therefore, better.

• Number of evaluations and samples. The total number of design

points (shown in Figure 5.9 on top of the bars), and Monte Carlo

simulation samples (shown in Figure 5.10, needed by the optimisation
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techniques to run to convergence.

5.5.1 Quality of the solution set

We observe that our methodology always produces more accurate results

than CQSA, with a global improvement from 0 to 61%. This is due to the

fact that CQSA uses a greedy approach which easily leads to sub-optimal

results, while our method employs a more e↵ective genetic multi-objective

optimization algorithm.

To verify that no additional error is introduced with our pruning meth-

odology, we compare its ADRS with the ADRS obtained using a standard

NSGA-II without pruning. The error bars in Figure 5.9 show that the

ADRS of our method is not significantly di↵erent w.r.t. NSGA-II without

pruning, proving that our architecture distance’s error is negligible.

This is confirmed by a paired t-test with the null hypothesis being that

matched samples from NSGA-II and NSGA-II-pruning come from distri-

butions with equal means. The di↵erence between the two distributions is
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assumed to come from a normal distribution with unknown variance. The

results of the t-test for all the four types of NoC-architectures does not

reject the null hypothesis with high p-values2, e.g. p = 0.6986 for the star

topology.

5.5.2 Number of evaluations and samples

Having assured that our methodology does not negatively a↵ect the accur-

acy of the exploration, we determine its e↵ect in terms of performance im-

provement. Using memoization, our methodology reduces the total number

of samples explored by 63 ± 14% on average across the two applications

(MPEG4 CPL1 and MWD). The normalized improvement is shown in Fig-

ure 5.10 The simulation time is further reduced by the application of our

symmetry-based pruning: the number of explored points is reduced by

38± 19%, as shown inf Figure 5.9 above the bars.

To understand the actual impact of these results on simulation time,

we present the average wall-clock times for a DSE experiment, using both

CQSA [67] and the proposed NGSA-II-pruning method in Figure 5.11 (the

average wall-clock timing of the NSGA-II without pruning approach is

equivalent to CQSA [67] and, therefore, not shown).

These results indicate that our pruning-based approach is a promising

technique, yielding to solutions similar in terms of quality but at a fraction

of the execution time when compared to the state-of-the-art.

The total improvement for the limited-size examples used in this chapter

(to allow for exhaustive search) is above 3 times when compared to CQSA

[67] and NSGA-II without pruning.

An interesting characteristic of our method is that it scales with the

complexity of the application and architectures used, giving higher rewards

for larger design spaces. For instance, using a more complex architecture

with 20 processors, 5 memories and 10 switches, corresponds to a reduction

in exploration time from ⇠30 hours to around 6.5 hours, meaning a factor

2The p� value is the probability of observing the given result, or one more extreme,
by chance if the null hypothesis is true. Small values of P cast doubt on the validity of
the null hypothesis.
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of 4.7 on our 8-core Intel i7 @ 2.93Ghz for the MPEG4 CPL1 benchmark

with a ring topology. This shows promise of better results for larger design

spaces.

5.6 Conclusions

In this chapter we presented two techniques for accelerating design space

exploration (DSE) of slack allocation: failure scenario memoization, which

speeds up MTTF estimation by reusing partial results, and symmetry

thresholding, a set of metrics to identify similarities among system config-

urations to reduce the number of MTTF evaluations needed during system-

level DSE for reliability. We verified the proposed techniques on four NoC

topologies using two di↵erent applications.

Our approach globally reduces the number of design points evaluations

needed during system-level DSE by a factor from 3 to 5, maintaining the

same level of accuracy of state-of-the-art exploration algorithms.



Chapter6
Conclusion

The design of modern embedded systems has become increasingly complex.

There is a wide range of design parameters that have to be tuned up to find

the optimal tradeo↵ in terms of several design requirements. Those systems

should be low cost, small in terms of area, light weight and be power

e�cient, since they are often battery-based devices. This is in contrast

with the requirements of achieving real-time, performance and providing

reliable and secure operation. As result, the increasing market for compact

embedded computing devices is leading to new multi-processor system-on-

a-chip (MPSoC) architectures designed for embedded systems, providing

task-level parallelism for streaming applications integrated in a single chip.

Platform based design of heterogeneous multi-processor system-on-chip

(MPSoC) systems is becoming today’s predominant design paradigm in

the embedded systems domain [81]. In contrast to more traditional design

paradigms, platform based design shortens design time by eliminating the

e↵ort of the low-level design and implementation of system components.

A platform based design environment typically consists of a fixed, para-

meterizable platform or a set of (parameterizable) components that can be

combined in specific ways to compose a platform.

In this thesis, we have investigated the problem of optimising DSE for

• searching in the design space
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• evaluating a single design point in the design space

6.1 Discussion

Our problem definition (Section 1.2) concluded with the following research

question: ”How can we use pruning techniques to speed up the evaluation of

a design point and optimise the search in design space?”. This question was

answered in Chapters 4 and 5, where pruning techniques were introduced

for optimising system performance and lifetime. We gave an overview of

the preliminary information necessary for understanding the rest of the

thesis in Chapter 2. We first described the basic knowledge about multi-

objective optimisation problems. Then, we explained the multi-objective

optimisation problem in the context of design space exploration of embed-

ded systems. We describe evolutionary algorithms as heuristic methods

for searching in the design space, with a brief description of the genetic

algorithm NSGA-II we used throughout this thesis. Afterwards, we dis-

cussed several metrics for evaluating the quality of the solutions obtained

while performing design space exploration using heuristic search.

Based on the research presented in this thesis, we draw the following

major contributions:

1. We extended the objective space with the introduction and imple-

mentation of a complete framework for high-level power estimation

for MPSoC. The technique is based on abstract execution profiles,

called event signatures, and it operates at a higher level of abstrac-

tion than, e.g., commonly-used instruction-set simulator (ISS) based

power estimation methods and it is proven to be capable of achiev-

ing good evaluation performance. Since every design point evaluation

takes only 0.16 seconds on average, the presented power model of-

fers remarkable potentials for quickly experimenting with di↵erent

MPSoC architectures and exploring system-level design options dur-

ing the very early stages of design.

2. We introduced a new, hybrid form of DSE, combining simulations
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with analytical estimations to prune the design space in terms of ap-

plication mappings that need to be evaluated using simulation. For

this purpose, the DSE technique uses an analytical model that estim-

ates the expected throughput of an application (which is a natural

performance metric for the multimedia and streaming application

domain we target) given a certain architectural configuration and

application-to-architecture mapping. In the majority of the search

iterations of the DSE process, the throughput estimation avoids the

use of simulations to evaluate the design points. However, since the

analytical estimations may in some cases be less accurate, the ana-

lytical estimations still need to be interleaved with simulative eval-

uations in order to ensure that the DSE process is steered into the

right direction.

We studied di↵erent techniques for interleaving these analytical and

simulative evaluations in our hybrid DSE. Experimental results have

demonstrated that such hybrid DSE is a promising technique that

can yield solutions of similar quality as compared to simulation-based

DSE but only at 15% of the execution time.

3. We proposed an exploration framework for Network-on-Chip (NoC)

based MPSoCs that substantially reduces the computational cost of

slack allocation. First, we develop failure scenario memoization to

reduce the computational cost of lifetime estimation by storing and

reusing estimated lifetime values for systems with one or more failed

components.

4. We introduced a correlation-based architecture distance metric to

identify symmetries for clusters of components called islands. In

modern platform- and network-on-chip based design, components are

clustered around switches in the on-chip network. When clusters

and the tasks mapped to them are considered to be symmetric, some

configurations have the same e↵ect on the overall system lifetime.

This can be leveraged to reduce the number of evaluations. We

verified the proposed techniques on four NoC topologies using two
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di↵erent applications.

This approach globally reduces the number of design points eval-

uations needed during system-level DSE by a factor from 3 to 5,

maintaining the same level of accuracy of state-of-the-art explora-

tion algorithms.

6.2 Open Issues and Future Directions

There are several interesting further research directions based on the con-

tributions in this thesis.

For istance, in this thesis, we consider the problem of reducing the

simulation overhead in system-level DSE. To this end, we have presented

an iterative design space pruning methodology based on static throughput

analysis of di↵erent application mappings. However, the analytical estim-

ations may in some cases be not accurate enough, because of estimation

inaccuracies due to topological cycles in the dataflow graphs that are gen-

erated and used for throughput estimation during the analytical mapping

exploration. There is an opportunity to improve the model by using Max-

imum Cycle Mean (MCM) analysis. MCM analysis can be used to correct

the estimation errors due to the topological cycles generated during analyt-

ical mapping design space exploration. Since the throughput calculation

needs to be fast and su�ciently accurate at the same time, we propose

an approximated MCM analysis which improves the estimation proposed

in the previous sections, achieving performance faster than regular MCM

analysis [36].

In Chapter 2, we extended the design space by presenting a frame-

work for high-level power estimation of multiprocessor systems-on-chip

(MPSoC) architectures on FPGA. We have incorporated the power models

in a (highly automated) system-level MPSoC synthesis framework, allow-

ing for accurate and flexible validation of the models. Within this context,

an other interesting direction would be integrating security as possible

metric in the early stage of DSE. Security has been intensively studied in

the areas of cryptography, computing, and networking. However, security
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is not yet well perceived by designers as the hardware or software imple-

mentation of specific cryptographic algorithms and security protocols [56].

The first steps for this future work are already taken in [11].





Chapter7
Appendix

7.1 Using CQSA: example

CQSA assumes as inputs:

• a description of a performance-constrained application, including

computation, storage and communication requirements for each soft-

ware task;

• a fixed communication architecture for a single-chip multiprocessor,

including an initial selection of processors, memories, switches and

their interconnection; and,

• an initial task-resource mapping, including an assignment of compu-

tational tasks to processors, storage tasks to memories, and commu-

nication to links and switches.

To facilitate reuse and accommodate internally used tools, these inputs are

divided into three files:

• the task graph file, which enumerates the tasks in the system, lists

the computational or storage requirements of each, as well as the

communication that occurs between pairs of tasks;
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• the architecture file, which enumerates the components in the system,

each selected from an internal component library, and assigns tasks

from the task graph to each; and,

• the netlist file, which specifies how components in the architecture

file are initially interconnected.

An example with an MPEG-1 application mapped onto a mesh NoC is

given below:

Architecture description and mapping

de f i n e components

proc1 M3 3 bsp volp vld

proc2 M3 1 dblk

proc3 M3 2 drng1 pad

proc5 M3 1 drng2

proc6 M3 1 rcns

proc7 M3 2 shpe motn

proc8 M3 1 tx t r1

proc9 M3 1 tx t r2

mem1 MEM64KB 2 vbv vcv1

mem2 MEM64KB 1 vcv2

mem3 MEM128KB 1 vcv3

mem4 MEM256KB 1 vmv

s 1 SW5X5 0

s 2 SW5X5 0

s 3 SW5X5 0

s 4 SW5X5 0

end

de f i n e p r e c l u s i o n s

s 1 proc1 proc7 mem1

s 4 proc8 proc9 mem2

s 3 proc6 mem3 proc5

s 2 proc2 proc3 mem4
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end

The architecture file specifies all of the components (processors, memories

and switches) in the system, how tasks (defined in the task graph file) are

initially assigned to them, and any failure dependencies that may exist.

Components are selected from the internal component library.

Task graph

de f i n e computation

bsp 30

volp 30

vld 29

shpe 50

motn 50

tx t r1 125

tx t r2 125

rcns 60

pad 16

dblk 106

drng1 105

drng2 105

vbv 32

vcv1 25

vcv2 37

vcv3 55

vmv 22

end

de f i n e communication

bsp vbv 48

vbv volp 48

volp vbv 48

vbv vld 48

vld vcv1 2228

vcv1 shpe 1272

vcv1 motn 1352

vcv1 tx t r1 704

vcv1 tx t r2 704
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shpe vcv2 1041

motn vcv2 1106

tx t r1 vcv2 575

tx t r2 vcv2 575

vcv2 rcns 3299

vcv2 pad 1041

rcns vcv3 5734

vcv3 pad 9518

pad vmv 7788

vmv rcns 5734

vmv dblk 8389

vmv drng1 15670

vmv drng2 15670

dblk vmv 5025

drng1 vmv 12080

drng2 vmv 12080

end

The task graph file specifies all tasks in the application, their sizes,

and how they communicate. The initial assignment of tasks to resources is

specified in the architecture file. There are two sections to the task graph

file, the computation section, which specifies the name and size of tasks in

the application, and the communication section, which specifies the com-

munication between tasks in the application.

Netlist

UCLA nets 1 . 0

NumNets : 18

NumPins : 36

NetDegree : 2 s 1�proc1

s 1 B

proc1 B

NetDegree : 2 s 1�mem1

s 1 B

mem1 B

NetDegree : 2 s 1�proc7

s 1 B

proc7 B

NetDegree : 2 s 1�s 4
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s 1 B

s 4 B

NetDegree : 2 s 1�s 2

s 1 B

s 2 B

NetDegree : 2 s 4�proc8

s 4 B

proc8 B

NetDegree : 2 s 4�proc9

s 4 B

proc9 B

NetDegree : 2 s 4�mem2

s 4 B

mem2 B

NetDegree : 2 s 4�s 3

s 4 B

s 3 B

NetDegree : 2 s 3�proc6

s 3 B

proc6 B

NetDegree : 2 s 3�proc5

s 3 B

proc5 B

NetDegree : 2 s 3�mem3

s 3 B

mem3 B

NetDegree : 2 s 3�s 2

s 3 B

s 2 B

NetDegree : 2 s 2�mem4

s 2 B

mem4 B

NetDegree : 2 s 2�proc3

s 2 B

proc3 B

NetDegree : 2 s 2�proc2

s 2 B

proc2 B

The netlist file specifies all of the links between resources in the system.

In general, any resource may be connected to any other resource, though

tra�c may only be routed through switches.





Chapter8
Samenvatting

Pruning Techniques for System-Level Design Space Exploration

Het ontwerp van moderne embedded systemen is steeds complexer gewor-

den. Een hoge verscheidenheid aan parameters moeten afgewogen worden

om uiteindelijk te kunnen voldoen aan de ontwerpeisen. Het uiteinde-

lijke systeem moet dan klein in oppervlakte zijn, licht van gewicht zijn,

en weinig energie verbruiken zodat ze gebruikt kunnen worden in mobiele

apparaten. Dit is een tegenstelling ten opzichte van de real-time en hoge

mate van snelheid, beschikbaarheid en veiligheid die deze systemen moeten

hebben. Om hier toch aan te kunnen voldoen wordt een uitweg gezocht

in multi-processor system-on-chip (MPSoC) architecturen. Deze systemen

kunnen, op taak granulariteit, parallellisme aanbieden op een enkele chip.

Ontwerp parameter verkenning, Design Space Exploration, (DSE) is

het maken van beslissingen gedurende het begin van het project zodat er

minder implementaties mogelijk zijn. Hierdoor hoopt men de totale ont-

werp last te verlagen. Onwerpruimte verkleining, Design Space Pruning,

is het optimaliseren van het DSE proces om meer ontwerpen te kunnen

proberen om zo sneller tot een optimaal ontwerp te komen.

Verkleiningstechnieken kunnen worden toegepast om:

• sneller het ontwerp te evalueren.
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• de heuristiek te optimaliseren.

In elke ontwerpfase, is een subset van de niet-verkleinde ontwerp opties

geselecteerd en geëvalueerd.

De belangrijkste bijdragen van dit proefschrift zijn:

• De uitbreiding van de ontwerpruimte met de introductie en imple-

mentatie van een compleet framework voor energie schatting van

het MPSoC. De techniek is gebaseerd op abstracte programma uit-

voeringsprofielen, genaamd event-handtekeningen. Dit werkt op een

hoger abstractieniveau dan, bijvoorbeeld, de veelgebruikte instructie-

set simulator (ISS). Op basis van de energie schattingsmethoden zou

men in staat moeten zijn tot een goede evaluatie van de prestaties.

Dit is essentieel in het kader van de eerste fase van DSE.

• Een iteratieve ontwerpruimte verkleinings methodologie gebaseerd

op statische doorvoer analyse van verschillende implementaties van

toepassingen. Door een combinatie van deze analytische doorvoe-

ringsschattingen met simulaties, vermindert onze hybride aanpak het

aantal simulaties die nodig zijn tijdens het proces van DSE.

• Een studie naar de verschillende combinaties, snel, maar minder

nauwkeurige analytische prestaties, langzaam, maar meer accurate

simulaties tijdens DSE

• Failure scenario memoization vekleiningstechnieken om de computa-

tionele kosten van de levensduurs schatting van systemen te vermin-

deren. Door het opslaan en hergebruiken van geschatte levensduur

waarden van systemen met een of meer defecte onderdelen. De le-

vensduur van alle gedeeltelijk mislukte systemen wordt afgeleid en

opgeslagen (het geheugen opslag kosten van dergelijke waarden is

te verwaarlozen); Wanneer een eerder verkend gedeeltelijk mislukte

systeem wederom wordt verkend dan wordt de verwachte levensduur

uit een database gelezen in plaats van opnieuw geschat.
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• Correlatie-gebaseerde architectuur afstands eenheiden voor het ef-

fic̈ınt snoeien van de op tijdswinst gebaseerde DSE voor het verbe-

teren van de levensduur in systemen op basis van NOC MPSoCs. In

de moderne platform- en netwerk-op-chip gebaseerde ontwerpen, zijn

onderdelen geclusterd rond switches. Wanneer clusters en de taken

die aan hen toegewezen zijn, gedefinieerd zijn als symmetrisch dan

hebben sommige configuraties hetzelfde e↵ect op de totale levensduur

van het systeem. Dit kan worden benut om het aantal evaluaties te

verminderen.

Om samen te vatten, dit proefschrift bestudeert verkleinings technieken om

snel te kunnen zoeken in de ontwerpruimte en de evaluatie van een ont-

werppunt volgens verschillende doelstellingen. Het proefschrift is daarom

opgesplitst in de volgende onderdelen:

• achtergrond (hoofdstukken 1 en 2),

• uitbreiding van de ontwerpruimte met als doel de snelheid/energie

(hoofdstuk 3), en

• verkleiningstechnieken voor de systeemprestaties (hoofdstuk 4) en

levensduuroptimalisatie (Hoofdstuk 5 en Bijlage).

Roberta Piscitelli
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