
DATA-CENTRIC COMPUTING

ON DISTRIBUTED RESOURCES

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom

ten overstaan van een door het college voor promoties ingestelde

commissie, in het openbaar te verdedigen in de Agnietenkapel

op woensdag 4 november 2015 te 10:00 uur

door

Reginald Steven Cushing
geboren te Pieta, Malta

Promotor: Prof. dr. M.T. Bubak Universiteit van Amsterdam

Promotor: Prof. dr. ir. C.T.A.M. de Laat Universiteit van Amsterdam

Co-promotor: Dr. A.S.Z. Belloum Universiteit van Amsterdam

Overige Leden: Prof. dr. P.W. Adriaans Universiteit van Amsterdam

Prof. dr. H. Afsarmanesh Universiteit van Amsterdam

Prof. dr. ir. H. Bal Vrije Universiteit Amsterdam

Prof. dr. I.T. Foster University of Chicago

Dr. P. Grosso Universiteit van Amsterdam

Prof. dr. M. de Rijke Universiteit van Amsterdam

Prof. dr. P.M.A. Sloot Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

This research was carried out at the University of Amsterdam within the System and Net-

work Engineering (SNE) group. This work was funded by COMMIT and VPH-Share

projects.

CONTENTS

1 Motivation and
Research Objectives 1

1.1 Vision of Data Science 2
1.2 Research Objectives 4
1.3 Structure of Thesis 9

2 Emerging Infrastructures For Distributed Computing 11

2.1 Introduction 12
2.2 Web Browser as a Resource 13

2.2.1 JavaScript Performance 14
2.2.2 Browser computing with WeevilScout 15
2.2.3 Browsers for Scientific Computing 22

2.3 Intercloud as a Computing Infrastructure 23
2.3.1 New Generation of Applications 23
2.3.2 Data Defined Networking 24
2.3.3 Application Managers as Middlewares 25

2.4 Summary 27

3 Scaling Data Centric Computing 29

3.1 Introduction 30
3.2 Service-based Approach to Farming Workflows 32

3.2.1 Data-centric Workflows 32
3.2.2 Task Farming with Data Partitioning 33

3.3 Predication-based Scaling Dataflows 36
3.3.1 Dataflow Architecture 38
3.3.2 Dataflow Data Queueing 39
3.3.3 Dataflow Task Harnessing 41

3.4 Fuzzy-based Scaling Web Services 43
3.4.1 Web Service Container Architecture 48
3.4.2 Web Service Back-to-back Communication 50
3.4.3 Web Service Autonomous Orchestration 50
3.4.4 Web Service Fuzzy Controlled Elastic Scaling 51

3.5 Summary 55

4 Automata-based Distributed Data Processing 59

iii

iv CONTENTS

4.1 Introduction 60
4.2 Paradigms of Distributed Data Processing 60
4.3 Provenance in Distributed Data Processing 62
4.4 Automata as a Data Model 62
4.5 Data Packet as a Unit of Computing 66
4.6 Computing Flow Control 68
4.7 Data Transition Functions: d-op 71

4.7.1 Pumpkin Data State Network Implementation 72
4.8 Summary 75

5 Linking Data Processing Through Semantics 77

5.1 Introduction 78
5.2 Building Networks of Interoperable Processing 80
5.3 A Framework for Interoperable Processing 84

5.3.1 Semantic Description of Processes 84
5.3.2 Network Reasoning 86
5.3.3 Process Object Identifier 88
5.3.4 Process Containers 88
5.3.5 Usage Scenario 90

5.4 Summary 92

6 Evaluation of Data Processing Models 93

6.1 Prediction-based Auto Scaling 94
6.2 Fuzzy-based Auto Scaling 96
6.3 WFaaS-based Task Farming 99
6.4 Automata-based Tweeter Filtering 102
6.5 Automata-based Tracking Brain Regions 106
6.6 Summary 108

7 Conclusions and Future Work 109

7.1 Conclusions 109
7.2 Vision and Future Work 111
7.3 Future Research 113

Publication Authorship 125

Publications 129

Summary 131

Samenvatting 133

Acknowledgments 137

CHAPTER 1

MOTIVATION AND

RESEARCH OBJECTIVES

1

2 MOTIVATION ANDRESEARCH OBJECTIVES

1.1 Vision of Data Science

The deluge of data [1], information explosion and big data are terms used to denote the

contemporary phenomena whereby the volumes, velocity and variety of data are outpacing

the development in infrastructure [2]. The total volume of data in 2013 was estimated at 4

zettabytes (1021 bytes) and it is expected to double every 2 years (at least up till 2020 [3]).

In 2014, every minute of Internet saw 1.5 petabytes (1015) of IP data being transferred.

These challenges in data are the main driving forces behind our thesis in which we study

the future of scientific distributed data processing in the context of the fourth paradigm

[1] and recently formulated idea of the 3rd computing platform defined by IT technologies

including: cloud and virtualization, big data, mobile devices, and social technologies [4].

Before delving into the intricacies of data processing, it is worthwhile to take a step back

and look at the essence of data as a fabric of humanity. The inception of data may be traced

back to the earliest humans who recognized that information can be passed down genera-

tions through writings and paintings. This human-specific trait is, most probably, one of

the cornerstones in our achievement as humans. It might be safe to say that throughout

history the volume of data, knowledge and information were always on the increase. We

can argue that the constant increase in data meant that data was always somewhat big and

drove innovation in finding new ways of recording and disseminating information from pa-

pyrus to scrolls to books to printing presses and to computers. Some inventions such as the

printing press had so much of an influence in information dissemination that it is widely

regarded as one of the turning points in human progress. Similarly the 20th century will go

down in history as yet another milestone in information technology with the invention of

the computer as a data capture, recorder and above all a data processor. We are nowadays

capturing so much data that we are constantly overwhelmed with the deluge of incoming

data from the zillions of sources. The storing, processing and making sense of it are major

challenges. In this context, we are still in the prehistoric era of digital data with centuries

ahead of us for innovation in this field.

VISION OF DATA SCIENCE 3

A
v
a
ila
b
ili
ty

Knowledge

conscious

sub
conscious

bygone

obscure

Figure 1.1: High-level taxonomy of data on a knowledge and availability axis. Data such as

trending data is, typically, highly available and contains a certain level of information. Data

for which we have knowledge about but, is not accessible, falls under the subconscious

category e.g. Google’s past search indexes. Obscure data can be data which is freely

accessible but we have no interpretation of it e.g. encrypted information. Bygone data is

data that has been lost and irretrievable.

In the greater scheme of data we can categorize data into 4 super categories which

we call the taxonomy of data and illustrated in Figure 1.1; conscious data, subconscious

data, obscure data, and bygone data. The conscious data is what is currently around us

and being used, processed and researched. Such examples would be the accessible Web.

The subconscious data is archived data, data that is not readily accessible and not being

processed. The main difference between the conscious data and the subconscious is that

the latter has a limited impact on future data discoveries due to its limited accessibility and

availability. Narrowing the gap between these two categories increases the knowledge base

and value of data (e.g. the ability to correlate data sets).

Obscure data is data that has lost its meaning. Ancient Egyptian hieroglyphic alphabet

was obscure until the discovery of the Rosetta stone. Similarly, the undeciphered linear

A writing system1 is still obscure. The bygone data is data that we know existed but has

been lost completely. The taxonomy of data is a starting point in reasoning about big

data. The axis illustrate the gaps in data and the challenges we face today; knowledge and

availability. Knowledge is, in part, the result of data processing while better availability is

the result of data management, storage and infrastructure.

1http://www.britannica.com/EBchecked/topic/342055/Linear-A-and-Linear-B

http://www.britannica.com/EBchecked/topic/342055/Linear-A-and-Linear-B

4 MOTIVATION ANDRESEARCH OBJECTIVES

The data availability challenge is compounded by the volumes of data we are experi-

encing. Networking technologies are constantly being challenged to move more data in

shorter time spans. The ease and seamless movement of data is paramount for the future

of data science since research collaborations necessitates the gathering, processing and

redistribution of ever increasing data.

The data infrastructure of the future need to be smart by also using the knowledge in

data to their advantage to be able to handle the predicted volumes of data. Data semantics

and knowledge representation are still a major challenge in computer science. For example,

how can we efficiently represent and search knowledge and information from multi-domain

data? We know that the human brain can achieve this goal but as to what data model is used

in our brain is still an active area of research [5]. One of the efforts in adding knowledge

in the form of semantics to data is the Linked Open Data (LOD) [6] effort where data

is structured using semantic tools and published online. The semantic layer allows the

data to be linked to other published data and reasoning engines can be used to infer new

knowledge from data.

Volumes and velocity of data are not the only data challenges; data variety is also a

challenge and is expected to increase especially with the Internet of Things (IoT) [7]. The

volumes and variety of data that overlap between research fields is a catalyst for inter-

disciplinary research. For example, epidemics research involves social behavior sciences

and virology. The latter can be combined in computer science to study complex networks

and information dissemination through networks [8].

Through infrastructure development, new data processing models and semantic models

data increasingly becomes more accessible and networked. Such development is what will

shape the future of data science. The high presence of data on the Internet makes the Web

as the medium of data where knowledge is accessed, processed and preserved through

generations. Our main objective in this thesis is to study the future of data processing and

this is tackled from various angles including the infrastructure and the abstract level. These

attack angles aim at narrowing the gap in the data taxonomy (Figure 1.1) whereby we focus

on increasing knowledge and accessibility of data in the context of data processing.

1.2 Research Objectives

The complexity in scheduling and underlying management routines makes optimal dis-

tributed computing a challenging task. The advent of big data increases the dimensionality

of the problem whereby data partitionability, processing complexity and locality play a

crucial role in the effectiveness of distributed systems. The flexibility and control brought

forward by virtualization means that for the first time we control the whole stack from the

RESEARCH OBJECTIVES 5

Figure 1.2: Layered system for data processing incorporating contributions from our work.

Bottom layer: the connected Internet of resources including clouds, grids and browsers (In-

ternet image as visualized by Barabasi [9]). Layer 2: The software stack directly managing

the resources such as SDN controllers, low level application routines such as scaling and

resource acquisition. Layer 3: data processing represented as a plane whereby data rout-

ing is based on data state transformations which makes this layer as a state machine for

crunching data. Layer 4: Relations between data, processes and states allows for reason-

ing such as inferencing at a higher level. Layer 5: the application layer where distributed

networked applications such as distributed data-centric workflows are designed and pro-

grammed based on the lower layers.

6 MOTIVATION ANDRESEARCH OBJECTIVES

application down to the network layer but, to a certain extent, the best way to exploit this

level of programmability still eludes us.

Our research hypothesis is that given the increasing intricacy and volumes in data
processing and the dynamism of infrastructures, data-centric distributed computing should
be tackled jointly from both the abstract data processing, semantic models and the in-
frastructure fronts so as to increase the knowledge and availability of data. As a conse-
quence of the data deluge we hypothesize that the medium of data will outgrow the static
devices and encompass also the networks thus making the infrastructure a data medium.
Effective modeling of data allows better understanding of what data processing means.
In our hypothesis a model should capture the essence of data transformations as abstract
transferable knowledge amongst humans and machines.

In the context of the overall data science vision we believe such data models and dis-

tributed systems are indispensable for global data science where collaboration of knowl-

edge in the form of data and services play an important role. To tackle our hypothesis from

both fronts (Figure 1.2) we demarcate our research into four detailed research objectives:

1 Investigating new and emerging computing resources and ways how these resources
could be exploited for data processing.

Any distributed system starts from the resources and infrastructure which provide the

platform for data making it more accessible (Figure 1.1). Setups of such distributed

systems have evolved greatly over the decades starting from Networks of Workstations

(NoWs) as the early form of off-the-shelve clusters. Dedicated clusters followed which

could churn much more computing power. The computing grid [10] was forged from the

many dedicated clusters owned by research institutes which where not necessarily being

used at full capacity all the time. This led to resource pooling where clusters are com-

bined together into one huge resource pool and users can get access to a larger pool of

resources. The grid, being distributed and made up of many autonomous administrative

clusters, needed a complex piece of software (middleware) to manage resources and users.

Although the grid is ideal for research institutes for sharing resources, intricate access

rights and usage [11] meant that not everyone could make use of this resource. The cloud

[12] partly solved this problem by offering infrastructure as a service. The cloud can be

considered as a stack where each layer can be offered as a service; from bottom to top:

the Infrastructure as a Service (IaaS), Platform as a Service, (PaaS) and Software as a

Service (SaaS) [12]. This new paradigm poses new layers of complexity and thus new

challenges. As part of this research objective we study new compositions in virtual infras-

RESEARCH OBJECTIVES 7

tructures and how can we better exploit their full dynamic potential. Volunteer computing

such as BOINC [13] also left its mark in distributed computing. The approach to volunteer

computing as opposed to grid is a less structured one where desktop computers are used

as the main compute power. With the 3rd platform desktop computer are giving away to

more mobile devices. As part of this objective we investigate new resource that fits the

3rd platform. We investigate the use of web browsers as a potential resource. This study

is motivated from the ubiquity of web browsers across platforms and the ever increasing

browser performance. This objective form part of layer 1 in Figure 1.2.

2 Investigating various approaches to scaling data processing. We investigate service
oriented approach to task farming, prediction-based data processing scaling whereby we
look at data processing characteristics.

Organizing resources is one side of the story; the other side is the organization of com-

puting through which data is processed. The processing of data adds knowledge to data

which increases the data-knowledge vector in our taxonomy (Figure 1.1). A pronounced

difference exits in the usage scenarios of such resources i.e. shared vs private resources.

In shared resources the element of fairness plays a crucial role in the distributed system

this means that any management of computing must take fairness into account. The sim-

plest form of fairness in such systems is batch processing [14]. In a batch system access

to resources is organized through FIFO queues whereby several priority queues may also

exist. Simple batch systems assume that tasks are independent of each other and thus

do not preserve task ordering. This can be problematic with intra-dependent tasks and

thus many systems implement a form of Directed Acyclic Graph (DAG) scheduling where

tasks are queued for execution dependent on some ordering described by a DAG. Similar

to DAG, workflows are a higher level model of computation. Within Scientific Workflow

Management Systems (SWMS), models of computations vary too; a dataflow model of

computation will run tasks only when all data is available for that task while a Petri net

model will run tasks depending on token transmission as a means of control flow. The shift

towards data-centric computing means that data processing needs to be managed along-

side the management of compute tasks. As part of our objective we investigate a dataflow

model for the organization of data-centric distributed computing. The model allows us to

study new approaches to data scaling whereby the management of compute tasks is done

in relation to the data processing characteristics. This objective forms part of layer 2 in

Figure 1.2

3 Elaboration of an abstract data processing model based on automata which aims
at describing what data processing means rather then just how data processing is to be

8 MOTIVATION ANDRESEARCH OBJECTIVES

carried out. This is motivated by the need to describe data in task-oriented distributed
systems.

Distributed computing programming paradigms, in a way, can be broadly categorized in

how declarative they are [15]. Common concurrent programming paradigms such as mes-

sage passing (e.g. MPI) and concurrent object oriented (Actors) are imperative by nature

whereby the distributed execution is planned out step by step as a set of commands which

defines the how of the processing. More declarative approaches such as dataflow, work-

flows and MapReduce tend to focus more on the relationship between tasks e.g. dataflow

models a data relationship between tasks while workflows model a work dependency be-

tween tasks. MapReduce can be considered as a simplified workflow with an implicit

relationship between a map and reduce task. The controllers over the latter approaches

can still be imperative. For example a SWMS can be imperative if control structures are

part of the workflow planning. Related to the event-based paradigms, is an automata-based

programming paradigm. In such a paradigm progress in a system progresses upon events

but the event also changes the overall state of the system. The logic of an automata-based

controller program is not imperative but reactive i.e. there is no start and stop of an execu-

tion but the system reacts on state changes. In this objective we study an automata-based

model to, abstractly, describe data processing while also using the same model to build

a data processing network. A data processing network acts, simultaneously, on both the

knowledge and availability axis in our taxonomy (Figure 1.1). The network itself makes

data available while the inbuilt processing adds knowledge to data. As part of the objec-

tive we study the data-centric processing network queuing characteristics such as backlog

congestion. This objective form part of layer 3 in Figure 1.2

4 Reasoning at the semantic level can also find new functionality and resources and
therefore it is worth studying the role of semantics in building networks of processes, the
implications on data of having such networks and possible scenarios of data enrichment
through open process networks.

The crux of data science is to acquire new knowledge and insights from data which

increases the data-knowledge vector (Figure 1.1). Data processing allows us to process old

data and transform it into something new which hopefully takes us a step closer to what we

want to our results goal. Data processing is often thought of as a program which reads data

and outputs data; most data processing models fall in this category. Post processed data

could be valuable to others who can derive different results from such data for example

by correlating it to a their own observations. This leads us to higher level of data science

where data itself produces new knowledge from making inferences and other reasoning

STRUCTURE OF THESIS 9

on data. Semantics is fundamentally important [16] especially for data science and has

been gaining momentum for the past decade or so. Semantics strives to give meaning

to otherwise unmeaningful digital entities such as data or programs. Efforts such as the

Linked Open Data (LOD) [6] use semantics to link datasets together in meaningful way.

The latter is the foundation for a new way of data science where knowledge will not only be

extracted through traditional processing but also through reasoning over many datasets. In

this objective we investigate how semantics can be used to enrich data processing and how

new data transformations can be discovered through semantically linking data processors.

The first and second objectives are related to new data processing infrastructures while

the third and fourth will contribute to a new approach to development of data-centric appli-

cations. The integration of results from these investigation should lead to a new methods

of distributed processing. An in-depth study of data processing needs to encompass all

the spectrum of the area. The four objectives allows us to perform a detailed research

over the spectrum of data processing from the abstract, semantic level to the execution and

infrastructure level.

The methodology used throughout this research involves the study and analyses of the

problem areas outlined in the above objectives, formulating models of solutions, design-

ing artifacts that reflecting models, implementation of artifacts and testing and validating

models through implemented artifacts.

1.3 Structure of Thesis

This thesis consists of 7 chapters and can be subdivided into 4 research strata corresponding

to the 4 objectives which make up the layered diagram in Figure 1.2. Chapter 2 addresses

the first objective where we study new methods of acquiring resources for distributed data

processing. This chapter forms part of layer 1 in our diagram. In chapter 3 we address

the second objective where we present methods and models for scaling data processing at

a relatively low level. This chapter forms part of layer 2 in the Figure 1.2. In chapter 4

we address the third objective where we present a new data processing model in which

data is a first class citizen. We show how the model lends itself well to creating a data

processing plane. This objective forms part of layer 3 in our diagram. In chapter 5 we

address the fourth objective whereby we study the role of semantics in distributed data

processing. This chapter is part of the top two layers in Figure 1.2. In chapter 6 we present

the evaluation and results of the methods introduced in the thesis. Finally, in chapter 7 we

provide a summary about the research objectives and future work.

CHAPTER 2

EMERGING INFRASTRUCTURES FOR

DISTRIBUTED COMPUTING

Distributed data processing is not possible without the backing of resources and infrastruc-

ture; by resources and infrastructure we mean the physical and virtual computers, networks

and storage and the many-wares that make the resources immediately accessible. Away

from the ever increasing need of raw power, a secondary and equally important attribute

in resources are the flexibility, dynamism and malleability which enhance the overall us-

ability of resources. In this chapter we focus on the latter attributes by investigating two

frontier approaches to expanding the resources for distributed computing: first we study

the viability of using web browsers as computing resource which offer a highly flexible

way of acquiring resources such as access to GPUs and secondly, we study the dynamism

and malleability of virtualization, and SDNs for distributed computing and data processing.

The results presented in this chapter formed the bases of the following publications:-

Reginald Cushing, Ganeshwara Herawan Hananda Putra, Spiros Koulouzis, Adam

Belloum, Marian Bubak, and Cees de Laat. Distributed computing on an ensemble of

browsers. Internet Computing, IEEE, 17(5):54–61, 2013.

Rudolf Strijkers, Reginald Cushing, Marc X Makkes, Pieter Meulenhoff, Adam Bel-

loum, Cees de Laat, and Robert Meijer. Towards an operating system for intercloud. In

Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th International

Conference on, volume 2, pages 63–68. IEEE, 2013.

Marc X Makkes, Reginald Cushing, Mikolaj Branowski, Adam Belloum, Cees de

Laat, and Rob Meijer. Data Intrinsic Networked Computing. Manuscript to be sub-

mitted for publication in IEEE Internet Computing, 2015.

11

12 EMERGING INFRASTRUCTURES FOR DISTRIBUTED COMPUTING

2.1 Introduction

The vast amount of available data throughout many science domains poses a challenge

to handle and process it. For example, next generation sequencing will increase genome

data by 10-fold every 18 months while the computational power is only expected to double

every 18 months [20]. Handling and making sense of such data volumes and the rate at

which they are being churned out is one of the current major areas of research related to big

data. The lack of computing power means that data is increasingly being partitioned into

archival data and current or last mile [21] data with much of the processing power focused

on the latter two. New approaches to managing infrastructures can tap into new ways of

harnessing computing power.

A quick look at the evolution of distributed infrastructures will take us back a few

decades starting with the first supercomputers such as those from the Cray supercom-

puter. Networks of workstations (NOWs) followed which where made up with off-the-

shelf computers. NOWs evolved into dedicated clusters which paved the way for grids.

The complexity of hardware setups most often correlated to the complexity of software

to manage them which led to new kind of software named middleware which manages

applications, users and data on shared distributed infrastructure. Widely used examples

are Globus/gLite [22] and Unicore [23]. With grids, infrastructure spans multiple admin-

istrative domain which makes management even more complex and not solely solvable

by software. Management of administrative domains lead to consortia such as EGEE (now

EGI [24]), foundations and partnerships such as PRACE [25]. With many grids, computing

is institutionalized and the average user has a difficulty in gaining access to such resources

(by design as a security concern). This changed with the emergence of cloud infrastructure

which basically publicized computing.

Volunteer computing has, for a decade, managed to gather an unprecedented computing

power. As of July 2012, the aggregated computing power provided by the participants in

all projects using BOINC (Berkeley Open Infrastructure for Network Computing) comes

to over 6 PetaFlops, with 2.4 million registered users, where 280,000 are active ones1. The

volunteer computing model is somewhat different than other shared distributed computing

platforms such as the grid. One of the major differences is the level of sharing; volunteer

computing is a one-way model where users only accept jobs. The grid on the other hand

is a two-way model where users are also able to submit jobs. The latter requires a higher

level of organization and security.

Most native clients tend to focus on raw computing power by building systems aimed

at reducing overhead and optimize throughput; such clients are highly efficient and boast

1http://boincstats.com/en/stats/-1/project/detail

http://boincstats.com/en/stats/-1/project/detail

WEB BROWSER AS A RESOURCE 13

features such as cycle stealing during idle CPU time as is done in BOINC and dedicated

protocols for large data transports such as GridFTP. The major drawbacks to native clients

involve: user participation and software portability. In [26], the authors investigate how

resources could be freely acquired, unorthodoxly, through Google’s App Engine. Similarly,

our approach to harness computing through web browsers is somewhat unorthodox but at

the same time it taps into a reservoir of ever increasing power.

2.2 Web Browser as a Resource

The ongoing explosion in mobile device and connected things which are giving rise to

the Internet of Things (IoT) can be made easily accessible through technologies found in

browsers particularly the JavaScript engine can pave the way to harness computing and

functionality from such devices. Mobile devices, nowadays, are a bundle of sensors glob-

ally distributed with enough computing power to run simple non-trivial computing. Most

mobile devices brandish a modern web browser which has access to most of the sensors.

The combination of web browser, sensor pack and dispersion makes these devices an in-

teresting form of computing resource.

The Internet browser is ubiquitous on the Web. At the heart of every Internet browser

is a JavaScript engine which executes code on the client side. The shift towards Web 2.0

and the Ajax web development techniques drove performance boosts in JavaScript engine.

In Google’s V8 engine, a set of optimizations referred to as Crankshaft [27], dramatically

improve compute-intensive JavaScript. Such optimizations include loop-invariant code

movement and register allocation. JavaScript engines also found use outside the scope of

browsing with projects such as Node.js [28] which is the JavaScript engine from Chrome

and has proven its worth as a stand alone platform in scalable network applications which

shows that the JavaScript language is taking a foothold outside the browser context.

Due to W3C standardization, code written in JavaScript is highly portable between

browser implementations and therefore portable between different platforms. Standardiza-

tion also makes JavaScript forward compatible. The advancements surrounding HTML5

also equip the browser with needed functionality for computing. Technologies such as web

workers, web sockets, local data, webRTC and webCL are among the few new enhance-

ments to the browser which aid in many expects of the browser experiencing.

Web workers are threads of JavaScript communicating over message passing as opposed

to shared memory and are intended for data intensive computation in the background. The

latter is what makes a browser most ideal for computing since threads allow and heavy

weight computing to be shifted to the background without influencing the web page re-

sponsiveness. Web workers threads also offer an additional level of security since the

threads are sandboxed and do not have access to the DOM whereby any thread would be

14 EMERGING INFRASTRUCTURES FOR DISTRIBUTED COMPUTING

able to deface the web page. Another addition to the browser tool set is the web socket.

This allows bi-directional, raw, full-duplex communication channels between server and

client intended for real time communication. The communication is done without HTTP

protocol overhead. Communication can be initiated from the server-side which makes it

ideal for servers to pull information from the browser instead of waiting for clients to push

data.

Another new communication mechanism is webRTC where RTC stands for real time

communication. This addition allows real time communication between browsers which

is intended for browser based video calls but can be used for communicating any arbi-

trary data. WebRTC offers functionality which was previously impossible to achieve using

browsers and opens new doors for browser based applications. One such application is

peerCDN [29] which creates a CDN between a hosting server and all clients surfing the

website. Website content can be acquired through peers or server. WebCL is an API for

OpenCL to perform computing on the GPU directly from the browser. All these latest

features indicate that the web browser and the inbuilt JavaScript engines are on an upward

trend towards better performance.

Using a browser as a computing node is not by any means without limitations. For

example, whereas a native client can easily detect CPU usage and only use spare CPU

cycles, a similar approach is almost impossible with current browser implementations. A

solution where the user can control JavaScript through timers is possible by parsing jobs

and automatically inserting controllable timeouts into tight loops. Another limitation is

the same origin policy whereby browsers block a website from communicating to anything

outside the originating domain so as to limit cross-site scripting attacks. This restriction has

been somewhat eased with the introduction of the Cross-Origin Resource Sharing (CORS).

CORS entail web servers to include an additional HTTP header (Access-Control-Allow-

Origin) which is not always set by default. Without CORS any external data has to be

proxied through the originating web server. CORS is an important feature as it allows the

ability for remote storage access directly from a web browser which helps in distributing

large input/output data. Other limitations include the lack of high performance JavaScript

libraries such as GMP (for arbitrary-precision arithmetic) for C/C++. These limitations are

overshadowed by the prospect of tapping into millions of browsers where each can perform

a very small task (a trickle of computing) and together solve a much larger problem.

2.2.1 JavaScript Performance

Distributed computing using JavaScript engines immediately conjures arguments about its

performance when compared to other traditional languages and compilers. This section

presents some performance analyses of JavaScript when compared to GNU C. Figure 2.1

WEB BROWSER AS A RESOURCE 15

illustrates the performance ratios of typical algorithms run under Google’s V8 JavaScript

engine and GNU C. The five algorithms were sourced from [30] and executed under 32

bit architecture on an Intel E5500 processor. GNU GCC version 4.5.2 with optimization

flags was used for compiling the C algorithms. The algorithms used for this analysis were:

Regex-DNA is a string based algorithm which performs multiple regular expression pat-

tern match and replace on DNA sequences; this algorithm uses the inbuilt string replace,

match and length functions. SpectralNorm calculates the spectral norm of a matrix; the

JavaScript algorithm uses Float64Arrays and inbuilt square root function. K-Nucleotide is

a sort, search and counting algorithm for DNA nucleotides. N-Body is a simulation algo-

rithm which models the orbits of the Jovian planets. B-Tree is a benchmark tailored around

binary tree manipulations which include allocating, deallocating, and walking bottom-up

binary trees.

For most examples in Figure 2.1 Google’s JavaScript engines are slower than GNU C.

Although this is not surprising, the results show that the performance ratio differs drasti-

cally between different algorithms. The Regex-DNA algorithm performed slightly better

than C which is due to Chrome’s highly optimized regular expression implementation (Ir-

regexp). All other examples performed worse than GNU C. Most notable in these results

is the performance discrepancy between different versions of V8. In most cases, the later

versions of V8 perform better than the earliest version 1.3. Some drastic performance

gains, as in the SpectralNorm example, are attributed to the introduction of ArrayBuffer

and Float64Array data structures and V8’s Crankshaft optimizations in the later versions.

These results show the trend in JavaScript engine performance gains. With this upward

trend in performance we argue that web browsers can indeed become a middleware for

distributed computing in the near future.

In addition to the benchmarks shown in Figure 2.1, we performed benchmark tests with

OpenCL and WebCL. With WebCL, browser computation can be accelerated using GPU

hardware. Our results for a vector addition algorithm show that both perform equally well.

This was to be expected, as the JavaScript acts as a wrapper to the WebCL code which is

executed directly on the hardware.

2.2.2 Browser computing with WeevilScout

To demonstrate the principles of distributed browser computing we setup a prototype

framework, WeevilScout, where users can donate as well as submit jobs to the browser

network. Figure 2.2 depicts an overview of WeevilScout. The job queue database holds a

list of jobs on the run-queue. The jobs are written in JavaScript and intended to execute

on the collaborating browsers. Jobs submitted to the queue are JavaScript functions which

are parsed and transformed by the web service before being put on the job queue. Listing

16 EMERGING INFRASTRUCTURES FOR DISTRIBUTED COMPUTING

1

3

6

9

12

15

Regex-DNA

SpectralNorm

K-Nucleotide

N-Body

B-Trees

E
xe

cu
ti

o
n
 T

im
e
 R

a
ti

o
 J
a
v
a
S
cr

ip
t

v
s

G
N

U
 C

V8-3.9
V8-3.1
V8-2.2
V8-1.3

Figure 2.1: Ratios of execution times of a set of representative algorithms compiled and

run with 4 versions of Chrome’s V8 JavaScript engine to respective execution times with

GNU C.

2.1 shows a simple job written in JavaScript which merely performs a matrix multiplica-

tion. For this function to be run on remote browsers it must be transformed into a web

worker by the server side. The transformed function is shown in Listing 2.2. Web work-

ers run in the background and are isolated from the main thread rendering the webpage

thus communication between the web worker and the main thread is only possible through

messaging.

When submitting a job, users can specify multiple values for each parameter (matrices

for A and B), in which case the server back-end performs a cross product on the input

parameters and generates a job for each product set. This allows data partitioning amongst

a set of jobs where each job works on one parameter value set. After transforming the

JavaScript function into a job, the server saves the job to a web accessible folder along

with a XML description of the job which includes the parameters and the script.

The client part of WeevilScout is the website itself which also acts as the GUI (for job

creation and submission) and execution platform. The client periodically polls the server

for any new jobs needing processing; this is done with the XMLHTTPRequest API. When

jobs are available on the queue, the server responds with an XML description of the job

which contains the URL of the JavaScript job and the parameter set. The client parses

the XML and sets up a new worker with the new job URL. The parameters are passed

WEB BROWSER AS A RESOURCE 17

Job 1
Job 2

Job 3
Job 4

REST Service

Enqueue

Dequeue
Hosted
Website

Web
Browser

Web
Browser

Web
Browser

Web
Browser

Result 1
Result 2

Result 3
Result 4

Job
Output

Master

Slaves

Parceled
Jobs/Results

Figure 2.2: Explanation how a cluster of browsers is used to perform computation. The

server side components form the master node where the REpresentational State Transfer

(REST) service dequeues and enqueues jobs while a website handles user interactivity.

Web browsers that load the website pull packaged jobs and send back job outputs to the

REST service which in turn stores the results.

as a message to the worker and the start command is issued to start processing. Upon

completion, the client returns results to the server and immediately requests a new job. If

no jobs are available, the client idles before polling the server again for new jobs. Since

most browsers cache downloaded scripts, running multiple identical jobs with different

inputs will result in the code only being downloaded once which reduces network traffic

especially in parametric study scenarios.

Security in such a distributed system can have many facets: from secure protocols to

security in data handling. WeevilScout does not implement security as its sole purpose is to

demonstrate how distributed computing can be achieved through web browsers. Nonethe-

less, all JavaScript jobs are executed in a sandbox within a JavaScript VM in the browser

so client side security is as good as the browser implements it. Moreover, web workers

provide further security since the JavaScript in a worker has no access to the Document

Object Model (DOM) and therefore has no means altering the website.

18 EMERGING INFRASTRUCTURES FOR DISTRIBUTED COMPUTING

The techniques used by WeevilScout can be easily used by any other website. This could

lead to parasitic computing [31] when users are unaware that their browser is contributing

to computing. This reveals a new dimension in future web security where websites can

potentially steal computing from visiting users.

1 function weevil_main(A,B){

2 var mA = JSON.parse(A);

3 var mB = JSON.parse(B);

4 var result = [];

5 for (i in mA){

6 result[i] = [];

7 for(var j in mB[0]){

8 var sum = 0;

9 for(var k in mA[0]){

10 sum += mA[i][k] * mB[k][j];

11 }

12 result[i][j] = sum;

13 }

14 }

15 return(JSON.stringify(result));

16 }

Listing 2.1: A simple JavaScript matrix multiplication function.

Some of the features that have not been addressed in WeevilScout are data management

and user-controlled CPU usage. Techniques such as remotestorage (http://remotestorage.io)

can give browsers direct access to large remote datasets. This coupled with HTML5 local

storage capabilities can make computing persistent so that not all progress is lost when the

browser is closed or the Internet connection is lost. Since browsers do not provide any

means to throttle CPU usage by JavaScript, a solution is possible by parsing jobs and au-

tomatically inserting controllable timeouts into tight loops. The volunteer can then control

such timeouts and therefore indirectly control CPU usage by slowing down such loops.

As an example that proves Internet browsers are quite capable of distributed computing,

we present a typical scientific study from bio-informatics. This study performs protein

sequence alignments using the Needleman-Wunsch algorithm implemented in JavaScript2.

Sequence alignment is a common method employed in bio-informatics as a way to order

sequences of proteins and DNA to identify areas of similarity that could be attributed to

2http://opal.przyjaznycms.pl

http://opal.przyjaznycms.pl

WEB BROWSER AS A RESOURCE 19

17 self.addEventListener(’message’, function(e) {

18 var data = e.data;

19 switch (data.cmd) {

20 case ’start’:

21 weevil_main();

22 break;

23 case ’stop’:

24 self.close();

25 break;

26 }

27 function weevil_main() {

28 var A = e.data.A;

29 var B = e.data.B;

30 var mA = JSON.parse(A);

31 var mB = JSON.parse(B);

32 var result = [];

33 for (i in mA) {

34 result[i] = [];

35 for (var j in mB[0]) {

36 var sum = 0;

37 for (var k in mA[0]) {

38 sum += mA[i][k] * mB[k][j];

39 }

40 result[i][j] = sum;

41 }

42 }

43 self.postMessage((JSON.stringify(result)));

44 }

45 },

46 false);

Listing 2.2: A transformed version of the function in Listing 2.1 into a job that can be

distributed to web browsers. The transformed function is wrapped into a web worker with

control commands start and stop added to the function in lines 19 and 22. Parameters A

and B are remapped from the worker parameters in lines 29 and 30. The return call is

remapped to a postMessage() in line 42.

20 EMERGING INFRASTRUCTURES FOR DISTRIBUTED COMPUTING

Figure 2.3: The distribution of over 30,000 bio-informatics tasks on the global cluster of

browsers.

some relationship between the sequences. The data for the alignments was obtained from

the UniProtKB3. We set out to perform more than 30,000 alignments. Each alignment

formed a single task and each connected browser performed many of these tasks over a 5

hour time window. The cluster of browsers was assembled simply by providing the URL4

to colleagues and friends through social media. The simplicity of joining the network

meant that we could build a sizable cluster (45 simultaneous browsers) in a short time.

This cluster was enough to perform the required computation in the 5 hour time window.

The total processing time for completed tasks within this time window amounted to, ap-

proximately, 135 hours thus the Web provided 135 CPU hours for computing. Figure 2.3

illustrates how the tasks were globally distributed. This indeed shows that the framework

allows a truly distributed computing platform in a very simple way. The heterogeneous

composition of the cluster in this experiment (Linux 44.4%, Windows 40.7%, Mac 14.8%,

Chrome 58%, Firefox 37%, and Safari 5%) shows the intrinsic portability of JavaScript

between different operating systems and browser implementations. Figure 2.4 depicts the

power of the cluster in combination to the number of completed tasks. Each browser that

connects is benchmarked using a large matrix multiplications. The aggregated power of

the cluster is the result of the summation of the estimated performance for each browser in

3http://www.uniprot.org/
4http://elab.lab.uvalight.net/weevilscout/

http://www.uniprot.org/
http://elab.lab.uvalight.net/weevilscout/

WEB BROWSER AS A RESOURCE 21

 0.4

 0.6

 0.8

 1

 1.2

 1.4

00:00 01:00 02:00 03:00 04:00 05:00

0.0e+00

5.0e+03

1.0e+04

1.5e+04

2.0e+04

2.5e+04

3.0e+04

3.5e+04

4.0e+04

E
st

im
at

ed
 G

F
LO

P
S

C
om

pl
et

ed
 T

as
ks

Time HH:MM

Tasks
Aggregated Power (GFLOPS)

Figure 2.4: In our example a FLOP is calculated as 1 multiplication and 1 addition. The

FLOPS metric is an estimate taken when the browser is connected. The estimate is subject

to many variability since the browser and the web page are not necessarily the only running

entities on the node. The purpose of this is to demonstrate a relative power metric for

browsers and is not meant as a comparative to other benchmarks. Aggregated power (the

result of summation of all connected browser computing power) on the left y-axis shows

the cluster power during the experiment time window. Tasks on the right y-axis shows the

number of completed tasks. As the cluster grows in power, the rate of completed tasks

increases. As the cluster power diminishes (around 3hrs) the rate of completed jobs grinds

to a halt.

22 EMERGING INFRASTRUCTURES FOR DISTRIBUTED COMPUTING

FLOPS. This gives us an idea of the processing power of the cluster. One can immediately

identify a correlation between the cluster power and the number of tasks completed. This

is attributed to the malleable nature of the bio-informatics application which is adjusting

to the increasing resource pool.

The above example is based on 100% JavaScript. WebGL and WebCL allow the browser

to access the underlying GPU hardware. Although this is not yet an out-of-the-box work-

ing standard, our experiments in a controlled environment with AMD OpenCL driver and

Nokia WebCL plug-in for Firefox 17 using a simple FLOP metric constantly resulted in a

3× performance gain using WebCL as opposed of using pure JavaScript.

2.2.3 Browsers for Scientific Computing

What browsers have to offer better than traditional compute infrastructures is the flexibility,

ease and mobility of its user/compute nodes. With WebCL and access to the plethora of

sensors on mobile devices, browsers might as well find a place on the fringes of distributed

data-processing.

A cluster of Internet browsers is inherently dynamic in nature. The size varies drasti-

cally, the network connectivity also varies between browsers and server. These character-

istics define the class of applications which are applicable to such a framework; malleable

applications are these that can adopt to the changing computing environment, particularity

the changing cluster size. An important aspect of malleable applications is that, given a

dataset input, the malleable task can operate on any subset of the dataset thus data can be

unequally partitioned between many instances of the same application running inside the

browsers. Malleable applications include: Monte Carlo simulations, parametric studies,

algorithms based on directed acyclic graphs, data-parallel analysis algorithms and others.

In eScience, tasks are commonly expressed in worklfows. As part of our study [32] we

showed how workflows can be expressed in browsers. A dataflow model was implemented

for browsers where data dependent tasks are organized in a directed acyclic graph (DAG)

and tasks are executed on browsers when inputs are available. This workflow construct

allows for more complex execution on browsers since simple tasks can be organized in one

bigger distributed program.

Recently, scientific computing is becoming more and more data intensive while browsers

do not have means to deal with large data sets, so large files require appropriate partitioning

[33]. This allows a browser to only handle a small part of the data at a time and also allow

the computing to scale well with a very large cluster of browsers.

With the current explosion of small devices connected to the Internet (Internet of Things

(IoT)) [7], web browser technology can offer a highly portable platform for such devices.

We hypothesize that the Internet browser is a future computing platform with the potential

INTERCLOUD AS A COMPUTING INFRASTRUCTURE 23

OS
MEMORY

APPLICATIONS

CPU

DATA

NETWORK

DYNAMIC INFRASTRUCTURES

STORAGE

Figure 2.5: VMs expose the traditional OS metrics such as CPU load, memory and storage.

Virtual infrastructures can better optimize networks by using additional telemetric from

applications such as data processing complexity and communication application peers.

of transforming the Internet with its unused, free computing power, into a true distributed

computer.

2.3 Intercloud as a Computing Infrastructure

Infrastructure as a Service cloud (IaaS) computing enables users to dynamically create vir-

tual application-specific computing environments. Such virtual environments can be glob-

ally distributed as would be the case when acquiring resources from different providers.

The dynamic and fluctuating characteristics of cloud resources entails that we need a dif-

ferent approach to manage data processing on clouds than other traditional resources such

as clusters.

Cloud providers manage their resources with a so-called cloud operating system. These

operating systems, e.g., OpenStack [34], provide a management layer to allocate virtual

machines on computer clusters on behalf of users. Public cloud providers expose their

APIs to users with the same goal, but use a cost model to constrain resource usage. By

utilizing the APIs of public clouds users can gain access to more computing resources than

available in a single cloud. Furthermore, with access to multiple public clouds, users can

choose which provider(s) is best suited for the application.

2.3.1 New Generation of Applications

The advent of dynamic infrastructures presents us with new challenges and new opportu-

nities of computing. Programmability allows the infrastructure to adopt to the application.

Adaptation means that the infrastructure can scale, migrate and provision networking de-

24 EMERGING INFRASTRUCTURES FOR DISTRIBUTED COMPUTING

pending on the input from VMs such CPU and memory load. The common approach to

monitoring cloud applications is to treat them as either transaction applications such as

web applications or batch applications where jobs are queued [35]. Adaptation by the in-

frastructure is thus based on such gathered metrics where scaling techniques would load

balance network sessions or database threads in transactional applications or load balance

job queues for batch applications [36]. To fully exploit the dynamism offered by virtual

infrastructures such as Software Defined Networks (SDNs), more metrics are needed about

the applications running on a virtual network. Applications are becoming increasingly net-

worked i.e. no application is an island and the correct provisioning of an infrastructure

would need to grasp the extent of the networked applications. Such metrics would give an

insight into how data is communicated between cloud applications thus paving the way for

data/compute temporal and spacial optimization. A further insight into networked applica-

tions is their performance predictability on incoming data. Big data processing scenarios

often entails data queuing (queuing data for processing); performance of such data pro-

cessing can vary considerably among seemingly identical VMs (different hosts, different

virtual networks, etc). Profiling an application in combination with its VM and the input

data the underlying infrastructure can deduce the application/data/VM combo complexity

(liner, exponential, etc) which gives the infrastructure a head start on provisioning.

2.3.2 Data Defined Networking

The dynamism in both infrastructure and application management quickly made us re-

alize that having one entity such as an application manager to control everything from

distributed application scheduling to infrastructure optimization was not a sustainable and

scalable solution. Our believe is that a separation of concern is needed between application

managers or middlewares and infrastructure controllers. As described in Section , through

adequate exposure of metrics from the application layer, the infrastructure can snoop for

this information an optimize itself. What, in effect, we are creating is an interface between

application an infrastructure where a symbiotic relationship is created. The infrastructure

is in continuously mold to the application. The end result is a distributed system networked

in a way the mirrors the data needs to the application. The formation on this network is

what we dub the Data Defined Network (DDN) as it is one level up from an Software De-

fined Network (SDN). In SDN software control loops have the ability to create networks,

the application can provide the data map thus allowing the SDN controller build a DDN as

in Figure 2.6.

The two layers of a DDN capable system are, as described in [19], the application

middleware and the infrastructure controller. The infrastructure controller is based on In-

ternet factories [37] where controllers can create any kind of network topology on top of

INTERCLOUD AS A COMPUTING INFRASTRUCTURE 25

Hard Networks:-
Physical networks

Soft Networks:-
SDNs

Data Networks:-
DDNs

Figure 2.6: Exploiting SDNs coupled with exposing application internals such as applica-

tion peers a DDN can be created which is a network defined specifically for a particular

data processing scenario.

public/private cloud providers. In addition, other control loops are able to interface into

the application middleware layer. The middleware layer provides data processing perfor-

mance metrics, applications currently running and data routing information (i.e. where is

data coming from and where is it going). The middleware exposes some control interfaces

which allows external controllers to have finer control on the application. These includes

deploying, starting and stopping applications. Through these primitives a controller can

make noninvasive optimization of the distributed application by controlling, solely, the

network or can be invasive and dictate which application is hosted where.

2.3.3 Application Managers as Middlewares

Early approaches to exploit the then emerging networked applications on cloud resources

was the integration of a workflow manager to a cloud resource manager. The workflow

manager is a client/server run-time system developed to support dynamic use of comput-

ing resources. It hides the details of execution and management of applications from users.

In the client, a user composes a workflow of applications with a data flow Model of Compu-

tation (MoC). The server uses the workflow description to manage application execution.

The workflow manager is made up of a task scheduler and a task mapper.

The task scheduler determines the execution order of tasks with regard to data depen-

dencies and supports farming (run the same computation on partitioned data) and param-

eter sweeps (run computations with different parameters on the same data), which require

separate data dependency processing.

The task mapper takes the results of the task scheduler and matches the tasks to avail-

able resources represented via resource handler objects, which are adapters for computing

services. Resource handlers are tightly coupled to the interface of the computing service.

Resource handlers include: a Grid resource handler and Transient Grid (TGrid) resource

handler, which is a Grid abstraction for a cluster of virtual machines. Different from the

26 EMERGING INFRASTRUCTURES FOR DISTRIBUTED COMPUTING

Grid resource handler, TGrids are temporary. So, the TGrid resource handler implements

additional mechanisms to register and deregister TGrid resources in the task mapper.

The task mapper executes the workflows as fast as the budget allows. It can also imple-

ment other scheduling algorithms including a round-robin, least-used resource, and budget-

aware scheduling for graceful and efficient (de-)allocation of resources. Depending on the

prioritization of handlers, the task mapper will send a request to the TCM to create more

resources for submitting tasks. The task mapper also maintains two budgets: a main budget

and a reserve budget. The main budget decreases by a pre-defined rate for every resource

handler. Once the main budget is over, no more tasks are mapped to the resources. The

second budget is a reserve budget which is used to allow tasks to terminate after the main

budget has be fully consumed avoiding restarting of unfinished tasks when cloud resources

become unavailable due to budgeting.

Figure 2.7: Monitoring the execution of the image processing workflow on the virtual

infrastructure. Virtual clusters are being created on-demand initiated in two phases: a re-

quest from the workflow manager and the actual creation from the infrastructure controller.

Further details about the workflow manager part are described in chapter 3.

This concept was presented at Scale 2012 challenge [38]. As a driving application we

created an image processing workflow (described in detail in chapter 3). The workflow is

meant to exploit the scaling techniques employed by the workflow engine for dealing with

farming and parameter sweeps (see chapter 3). The initiated on-demand cloud clusters can

SUMMARY 27

be seen in Figure 2.7, As the workflow engine starts scaling the workflow modules, more

resources are needed and thus the infrastructure initiates on demand clusters and networks.

The test bed included three clouds: a 128 core OpenNebula cloud at SARA high perfor-

mance computing center, Amsterdam, The Netherlands, a 64 core Intel XenServer cloud at

TNO, Groningen, The Netherlands, and a 24 core XenServer cloud in New Orleans, US.

The OpenNebula cloud used KVM virtualization technology, while the XenServer clouds

used Xen virtualization technology). We also used the 41 node (164 core total) Amsterdam

site of the DAS-3 distributed compute cluster as a grid resource. The system software ran

on two machines: a workflow application server and a server running the infrastructure

controller.

2.4 Summary

In this chapter we have demonstrated how distributed resources can be flexible. We showed

the ease of setting up browsers as a thin middleware that can easily access resources and

how access to GPUs from WebCL in browsers offers the potential of unlocking perfor-

mance. Computing is simply amassed through URL sharing. We believe a resource such

as a browser is not something that will replace traditional resources but is a resource that

can extended the user base and locality of computing. An area worth investigating is mo-

bile distributed computing. At face value, WeevilScout works on latest mobile operating

systems but mobile devices pose several challenges for computing; lack of power supply

being one of the major limitations. On the other hand, mobile devices are packed with

sensors thus, the applicability of WeevilScout to mobile devices merits further investiga-

tion whether such a framework can be used to build sensor networks where JavaScript jobs

collect and transform sensory data with minimum impact on the device.

Malleability and dynamism have also been discussed in the context of interclouds. We

illustrated the need of a new generation of applications that can work in symbiosis with

the underlying infrastructure. The programmability in the infrastructure such as SDNs

paves the way for shaping the infrastructure to the application as opposed to the tradi-

tional approach of fitting the application to the resources. We described a middleware for

interclouds based on a workflow manager. Workflow models are suitable for capturing

application communication thus can model the application on an intercloud. The network

programmability in the infrastructure can model the mirror the data-centric distributed ap-

plication communication. We defined these types of networks as a DDNs which are a layer

on top of SDNs. A DDN is an SDN setup specifically to model a data-centric distributed

communicating application.

Although browser as resources paradigms and cloud computing paradigms are some-

what different they still be part of a wider data driven network. While virtual infrastruc-

28 EMERGING INFRASTRUCTURES FOR DISTRIBUTED COMPUTING

tures can offer the raw computing power, browsers and JavaScript engines can form the

sensor network around the core cloud computing. Mobile devices are becoming excep-

tionally good as mobile computers for example NASA’s PhoneSats5 project launched such

devices into space and successfully beamed data back to Earth. It is not just in space that

things are connected but everywhere around us, a phenomena known as IoT. We believe

that technologies such as browsers are a step towards connecting such devices with the

possibility to perform client side computing and increase the availability dimension of data

in our taxonomy. In chapter 4 we introduce a data processing model and protocol which

can integrate different heterogeneous resources into one compute platform.

5http://www.space.com/20772-nasa-phonesats-smartphone-satellites.html

http://www.space.com/20772-nasa-phonesats-smartphone-satellites.html

CHAPTER 3

SCALING DATA CENTRIC COMPUTING

A core challenge in data-centric, communicating distributed computing is the scaling of

data processing. CPU and memory load are not always indicative of the need for scal-

ing in data-centric, communicating I/O intensive computing. Queued data can give us

a better insight into scaling decisions. Simply put, the problem is how can we achieve

speedup in distributed data processing workflows while keeping resource usage efficiency

in check? This problem is the focus of this chapter. We tackle three distinct scenarios of

distributed workflow execution. A service oriented approach to task farming which aims

at better resource usage efficiency in task farming scenarios. A prediction-based scaling

technique used in data-centric workflows aims at using data processing prediction metrics

as an indicator to scale up resources. A fuzzy logic based approach which uses resource

load metrics in combination to data processing prediction to create resource usage fairness

between competing but collaborating tasks. The results in this chapter formed the bases of

the following publications:-

Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Applying

workflow as a service paradigm to application farming. Concurrency and Computa-

tion: Practice and Experience, 26(6):1297–1312, 2014.

Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Dynamic

handling for cooperating scientific web services. In E-Science (e-Science), 2011 IEEE

7th International Conference on, pages 232–239. IEEE, 2011.

Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Prediction-

based auto-scaling of scientific workflows. In Proceedings of the 9th International

Workshop on Middleware for Grids, Clouds and e-Science, page 1. ACM, 2011.

Reginald Cushing, Adam Belloum, Vladimir Korkhov, Dmitry Vasyunin, Marian Bubak,

and Carole Leguy. Workflow as a service: an approach to workflow farming. In Pro-

ceedings of the 3rd international workshop on Emerging computational methods for

the life sciences, pages 23–31. ACM, 2012.

29

30 SCALING DATA CENTRIC COMPUTING

3.1 Introduction

The shift towards data in eScience has given rise to the fourth paradigm in scientific dis-

coveries [43] where it is envisioned that data analyses will play a central role in future

discoveries. In data-centric distributed applications, managing data in its various forms

plays a leading role in the system. A simple data processing cycle entails the data acquisi-

tion, processing, tracking and storage. Data can come from various sources which can be

distributed beyond global (e.g. satellite data) and reside on access restricted infrastructures.

Any start of data processing needs to start with data acquisition which means the efficient

means of dealing with such dynamic sources. During processing data is in a transient state

meaning that data from intermediate data processing is also available and needs to be man-

aged for adequate processing (e.g. moving data closer to computing, partitioning data). A

simplistic distributed data processing would entail manually partitioning data among a pre-

known number of distributed nodes. In workflows this approach is not always possible due

the complexity of the workflow where data is processed in several stages thus the output of

one stage needs to reshuffled to other nodes. Workflow execution creates a scenario where

multiple datasets (the inputs for different stages of the pipelines) and different tasks (tasks

at different stages of the pipeline) need to be managed on common resources.

Tools such as Scientific Workflow Management Systems (SWMSs) can play a vital role

in accelerating discoveries by providing means for coordination of data-centric workflows

where computation can automatically scale to meet the data demands. Workflows are com-

monly described as Directed Acyclic Graphs (DAG) where vertices represent computation

tasks while edges represent dependencies between tasks. In SWMSs such as WS-VLAM

[44], tasks also include a list of input and output data ports which, apart from the data de-

pendency, also describe data channels between tasks. Tasks within a data-centric scientific

workflow are often data dependent on each other (when edges represent data dependen-

cies the graph is usually referred to as a dataflow) where each task can, potentially, be a

data intensive task. Managing multiple data-intensive tasks in SWMS poses a coordina-

tion challenge since the progress of the whole workflow is easily hampered by the slowest

task. Data-centric tasks follow a pattern of consuming data chunks, processing the data and

output results. This cycle is repetitive and the amount of data chunks needing processing

directly influences the execution time of the task.

A number of tools, such as Nimrod/G [45], NetSolve [46], Ninf [47], AppLeS [48], have

been developed and offer scalable computing while hiding the low system level details. The

way these tools expose such facilities vary from one tool to another.

Nimord/G [45] is a system which aims at scheduling parameter sweep studies on grid ar-

chitectures (Globus). Nimrod provides a declarative language for describing parametrized

experiments. The core part of the architecture is a parameter engine which is responsi-

INTRODUCTION 31

ble for parameterizing the experiment, creating jobs and mapping tasks to the resources

through a schedule advisor. The scheduling approach in Nimrod/G is based on grid econ-

omy with deadlines. This tries to achieve trade-offs between performance and cost [49].

The GridSolve system works in a similar fashion, exploiting an agent to maintain de-

tails about available servers and then selecting resource on behalf of the user. NetSolve

has several specialized execution mechanisms which support common computing mod-

els. Another similar application is AppLeS [48] which focuses on the scheduling problem

and provides various solutions such as self-scheduled work-queue and adaptive scheduling

with heuristics.

BOINC [13] is a task farming, CPU scavenging framework which has been popularized

by SETI@home. BOINC architecture is centralized and clients log into servers asking for

work. The BOINC system harnesses a wider distributed system through volunteer comput-

ing whereby any user on the Internet can take part in the system by donating computation

and storage to be used by BOINC. Applications running on the BOINC system are largely

independent and hence can scale quite well on such architectures.

Tasks need not just be traditional jobs such as scripts or executables. A data task can

also be a web service which means we need techniques for data computing using services.

Most of the common workflow system within the scientific community such as Taverna

[50], Triana [51], Kepler [52], Pegasus [53], WS-VLAM [44] and GWES [54] focus on

orchestrating service-based workflows by contacting the statically located services and

marshaling the output of one as the input of the successor. This technique usually involves

data being passed through the central coordinator which can easily result in a bottleneck

for large web service workflows.

Circulate [55] is a web service choreographic and orchestration system which decen-

tralizes web service choreography through a system of proxies which aid the web services

to directly talk to each other without going through a central coordinator. Orchestration is

still centralized and is only used to control the overall execution.

DynaSched [56] provides a framework for dynamic WSRF service deployment on Grid

resources. A central orchestration engine overlooks the whole workflow execution. A

scheduler is responsible for deploying services into WS-containers. The WSRF services

communicate with files over GridFTP or RFT servers. With dynamic deployment Dy-

naSched achieves service mobility.

ServiceGlobe [57] only aims at dynamic web service deployment with replication and

load balancing. ServiceGlobe differentiates between dynamic and static services. The

latter being those services which can not be moved around due to some dependency. The

architecture relies on a dispatcher which is described as a software-based layer 7 switch.

The dispatcher balances the load on a set of replicated web services and can initiate replicas

32 SCALING DATA CENTRIC COMPUTING

on-demand when the load increases. This system can reallocate web services and also scale

services using classic metrics such as CPU load.

3.2 Service-based Approach to Farming Workflows

The concept of workflow as a service (WFaaS) has been elaborated to increase the perfor-

mance and minimize the overheads of workflow farming. In the initial scenario a workflow

is submitted to computational resources to process a particular set of data and input parame-

ters; after the processing is finished and the results are collected, the workflow is gracefully

terminated. When the next set of data and parameters is to be processed, the workflow is

started again which means that all the workflow components have to be re-scheduled, most

likely, on a different set of grid resources.

In grid and other shared environments these activities form a significant overhead due to

queue waiting times for resource acquisition and staging-in overheads. One way to avoid

such overheads is to keep the workflow running on the resources even after a particular

data set has been processed. The next data set can be assigned to the workflow that is

already instantiated; the parameters for the next execution can also be changed at runtime.

This approach helps to save the time of executing the whole workflow each time. Such

a concept of user-level preliminary allocation of resources has been employed for user-

level scheduling and execution of multitude of short-running jobs on grid resources [58].

Because workflows are kept running, waiting to process new data or parameter sets, they

behave as services hence the Workflow-as-a-Service or WFaaS paradigm. In this way, for

workflow farming, only a limited set of workflows or workflow tasks have to be executed

and kept running on the resources, see Figure 3.1.

Another approach is to reuse computing resources. In many workflows some tasks are

short lived and other are long lived. This creates a situation where short lived tasks spend

more time stuck in queues than actually spend time executing. A better solution would be

to reuse the resource acquired by short lived jobs to run other workflow tasks thus reducing

waiting times. Because harnesses (task container) are kept running, waiting to start new

tasks, they also behave as services and adds to the WFaaS paradigm.

3.2.1 Data-centric Workflows

Our dataflow model is represented as Directed Acyclic Graphs (DAGs). Vertices in the

graphs represent computation as tasks while edges represent data communication and de-

pendency. Each task has a number of typed input and output ports. These ports represent

data channels between tasks in the workflow. The links between data channels represent

SERVICE-BASED APPROACH TO FARMING WORKFLOWS 33

data dependencies. This allows the enactment engine to model the workflow as a dataflow

graph.

We model a workflow W as a set of interdependent tasks {t1, t2, ..., tn} which are

matched to the set of resources R. Tasks are represented as tuples

< id, st, IP,OP, PT,DT, IC,OC >, (3.1)

where id is the task id, st is the allocated computing slot time for a given task, IP is the

set of input ports, OP is the set of output ports, PT is the set of tasks that precede task tid
where PT ⊂ W , DT is the set of dependent tasks that follow task tid where DT ⊂ W ,

IC is the set of input data channels between output ports of tasks in set PT to input

ports for task tid. Similarly, OC is the set of output data channels between output ports

for task tid to input ports of tasks in DT . Ports consume and produce a set of messages

{m1,m2, ...,mn}, messages are delivered and produced sequentially. The dataflow model

dictates that a task tk will only be matched to a resource in R when, for each input port

IPtk , the first message m1 is delivered.

WFaaS paradigm is described at two levels: data-level; and task-level. To better de-

scribe the distinction between these levels we extend the definitions introduced in section

3.2.1 by adding a new set, H , which is the set of harnesses (task containers) hosting the

set of tasks {t1, t2, ..., tn} pertaining to workflow W on the set of resources R. The tradi-

tional approach of mapping the set of tasks, W to the resources, R is done directly through

a scheduler, shed : W → R. In task-level WFaaS we use an intermediate mapping such

that a scheduler maps the set of harnesses to the resources, shed harness : H → R, and

shed tasks : ti...j 7→ hn maps an arbitrary number of tasks to a single harness instance,

hn. This allows a harness to process multiple tasks thus achieving task-level WFaaS. Fur-

thermore, data-level WFaaS is achieved by invoking tasks with multiple data. In our mod-

ule the unit of data is a message, thus during the lifetime of a task, the set of processed data

equates to the set of messages, M , consumed by the task. Similarly to task-level WFaaS,

shed data : mi...j 7→ tn, an arbitrary number of messages can be mapped to a single task

thus we do not need to create a separate task for every data message.

3.2.2 Task Farming with Data Partitioning

A common pattern in scientific applications for achieving higher throughput is using a

master/slave model and partition the data amongst the identical slave tasks [59]. In such a

model, a master coordinator is responsible for disseminating data chunks to all slaves. This

approach does not usually consider auto-scaling the amount of slaves and most often relies

on over provisioning resources by greedily initiating as many salves as possible. Such an

approach is not well suited for scientific workflows since each task can possibly hog all the

34 SCALING DATA CENTRIC COMPUTING

Enactment
Engine

Task
Submitter

Void
Harness

Task Method

Activate Task 1 Load Task 1
Invoke Task 1

Process Data

Return Result

Process Data

Return Result

Process Data

Return Result

Process Data

Return Result

Activate Task 2 Load Task 2
Invoke Task 2

Figure 3.1: Sequence of events following the WFaaS paradigm. The enactment engine

activates a task which in turn is passed onto the submitter. Having already a harness run-

ning on some resource, the submitter invokes the harness to load the task. Once loaded,

the methods within the task can start processing data. The task methods can be invoked

over multiple data chunks thus the WFaaS paradigm; furthermore, the void harness can be

re-invoked with a new task thus acting as a service at the task-level also.

SERVICE-BASED APPROACH TO FARMING WORKFLOWS 35

available resources by initiating too many slaves and hence starve the rest of the workflow

which will impede its progression.

Many simulation-based scientific workflows involve setting appropriate initial parame-

ters which are often determined from a large number of smaller scale test runs and auto-

matically staged to appropriate resources [60]. The task-farming paradigm is a technique

well suited to distributed architectures such as grid or clouds where multiple heterogeneous

resources can be used for the concurrent task execution.

Task farming is applicable to embarrassingly parallel applications where non commu-

nicating tasks can be executed efficiently across geographically distributed computing re-

sources. The basic operations are: spawning tasks, finding appropriate computing and stor-

age resources and assigning work to each task. One approach to task farming is the master-

worker paradigm where a master process spawns multiple worker tasks or processes; once

these initial tasks are executed, the master process creates the next tasks until the task-

bundle is finished. A number of potential applications follow this paradigm, among them

Parameter Sweep Applications (PSAs) [60] in which a potentially huge parameter space is

divided into regions and worker tasks search the specific region for optimal values. A sub-

class of such applications is data independent parameter sweeps where the input dataset is

shared amongst workers.

Farming tasks deals with splitting data or parameter space n-wise amongst n identical

tasks. This technique speeds up data processing especially when dealing with independent

tasks. Farming can make better use of the resource by elastically replicating tasks to reduce

empty resource slots while reducing the workflow makespan. If we consider dataD to take

time T1 to process on one node and Tn on n nodes when dividing D amongst the n nodes,

the ideal speedup is n and is defined as T1

Tn
. A close to ideal speedup can be achieved when

assuming independent tasks with negligible overhead.

Farming allows the execution of large number of experiments each of which may have

a different input data set or a different parameter set. A number of the preparation steps

involved in these experiments can be automated: staging in and out the appropriate input

and result datasets, finding available and appropriate computing and storage resources etc.

Another important aspect is the reproducibility of results. When a scientist has performed

thousands of simulations and a few of them fail, he is interested to know which ones

failed and the context in which they have been executed (computing and storage resources,

libraries, input data sets, parameter values etc). This requires appropriate monitoring and

provenance systems.

Parameter sweeps are a special kind of task farming with the difference that the data

being split amongst the task pool is the set of parameters. PSAs are characterized by an

embarrassingly parallel application which is an application that can be decomposed into

many independent tasks with little or no synchronization or data dependencies. Parameter

36 SCALING DATA CENTRIC COMPUTING

sweep model is a simple yet powerful concept used by many scientific application such

as those in: computational fluid dynamics, bio-informatics, particle physics, discrete event

simulation and computer graphics [49]. In a PSA, data is replicated to all collaborating

tasks while each task is given a set of different parameters where each task in a PSA works

on identical data. Since PSAs are intrinsically independent they can tolerate network la-

tency and therefore scale to large distributed architecture. Additionally, they are amenable

to simple fault tolerance mechanisms such as retries [49].

Having a single workflow instance processing all the parameter space might not always

be optimal as shown in Figure 3.4 especially when resources are under utilized thus the

workflow management system has to leverage the number of workflows for better resource

utilization by taking into consideration the size of parameter space and the available re-

sources. This is done through two main scaling strategies: fixed-scaling, and auto-scaling.

In fixed-scaling the WS-VLAM initiates a fixed number of workflow instances whilst with

auto-scaling, WS-VLAM automatically replicates the workflow by looking at the parame-

ter space and the time taken for each parameter to be processed. Auto-scaling is based on

estimating the predicted task execution time as is described in Section 3.3.

In chapter 6 we demonstrate the WFaaS approach by comparing the resource usage

footprint using two identical workflows: one using the WFaaS approach and the other

without WFaaS.

3.3 Predication-based Scaling Dataflows

The dataflow model described in Section 3.2.1 allows us to implement auto scaling routines

by reasoning about data messages being passed around tasks.

A prediction engine for each task can infer the data load on a task by monitoring the

queued data chunks for a given task and computing the estimated execution time using

heuristics from previous data processing times. Having a high load on a task, a coordinator

can decide to replicate the task and partition the data chunks amongst them thus reducing

the apparent load since data is consumed at a higher rate. Within scientific workflows,

where each task is subject to this prediction engine, each task can independently scale

to accelerate its consumption rate and match its predecessor’s data production rate thus

maintaining a steady flow of data through the workflow.

Auto-scaling is achieved by monitoring messages between tasks, the auto-scaling com-

ponent can deduce which tasks are overloaded by predicting the completion time. Given a

task tk, replication can be applied by monitoring a designated port iptk ∈ IPtk . The first

step in auto-scaling is to keep track of the data processing rate of tk on a node rj ∈ R.

Mip.tk is the set of messages for the designated port iptk . Cip.tk ⊂ Mip.tk is the set of

messages already consumed by iptk where the current message being processed is also

PREDICATION-BASED SCALING DATAFLOWS 37

part of this set. Similarly Qip.tk ⊂ Mip.tk is the set of messages yet to be consumed by

iptk . The function timeip.tk(mj) records the time a message has been delivered to input

port iptk . The processing time of a message is defined as the interval time recorded be-

tween successive messages thus mitip.tk(ml−1,ml) = timeip.tk(ml)− timeip.tk(ml−1).

size(mk) represents the data size of mk thus the actual data size of the set M , size(M) =∑n
j=1 size(mj). Since messages can have different data sizes, auto-scaling component

needs to calculate the data processing rate. This is done on every message being consumed

by a port and is defined as:

proc(iptk) =
size(Cip.tk)∑n

j=2mitip.tk(mj−1,mj)
, n = |Cip.tk |. (3.2)

Equation 3.2 calculates the data processing rate in bytes per second and this includes

also the overhead of delivering a message, the overhead to start processing the next mes-

sage, and depending on the implementation of the task it would typically include the time

for producing messages on output ports as a response to processing input messages. Equa-

tion 3.31 calculates the expected time for completion

pred(iptk) =
size(Qip.tk)

proc(iptk)
. (3.3)

The prediction is calculated on every consumed message and is averaged out with the

last calculated prediction to smooth out large spikes in the prediction graph. Task tk is said

to be overloaded if for the designated port iptk , pred(iptk) > tstk alternatively, tstk could

be substituted by a user-defined threshold. A simple calculation of the needed clones to

reduce the completion time below tst is

repl(tk) =
pred(iptk)

tstk
. (3.4)

Equation 3.4 assumes that all messages have approximately the same size which may

not always be the case thus another solution is to use a replication coefficient that influences

the replication count. One way to calculate the coefficient2 is to use the standard deviation

of the normalized message sizes (between 0 and 1) such that

corr(Qip.tk) = 1− stdd(||Qip.tk ||). (3.5)

The new number of clone to be initiated can then be calculated as repl(tk)×corr(Qip.tk).

The greater the message size standard deviation the less clones are initiated. Large stan-

dard deviation results in messages having drastic variation in their data sizes and can lead

to over-provisioning resources through inaccurate clone number calculation.

1equation is a corrected version presented in publication [41]
2modified from the original paper [41]

38 SCALING DATA CENTRIC COMPUTING

Another source of variation in the calculation is the fact that the prediction is based

on some resource with its own characteristics CPU power and memory capacity. Since

resources in distributed systems are intrinsically heterogeneous, the time to process mes-

sages on one resources might not be the same as on other resources. This may lead to

over-provisioning if the first estimation is done on a relatively slow resource while the

clones are scheduled on faster resources and vice-versa leads to under-provisioning.

To cater for over-provisioning, clones are scheduled in bursts. When a burst of clones is

scheduled, auto-scaling continues predicting the estimated completion time which would

now include the data processing of all instances of the replicated task. If the task is still

overloaded more bursts are scheduled until the load is reduced within the acceptable limit.

3.3.1 Dataflow Architecture

Figure 3.2 depicts a high-level overview of the Dataflow architecture. The system is com-

posed of a set of loosely coupled components bound by a central messaging back end. The

Dataflow architecture implements a two-step scheduling system. The enactment engine

represents the top-level scheduler which models the workflow task data dependencies. The

enactment engine deals with tasks at an abstract level and merely marks tasks as runnable

when their dependencies are met. The bottom-level scheduler deals with scheduling tasks

on a set of resources thus its main role is matchmaking. The central component in the

whole architecture is the messaging back end which binds all the components together.

Enactment
Engine

Task
Scaling/Farming

Pluggabe
Task

Task Harness

Resource
Submission
Scheduler

Pluggabe
Task

Task Harness

Pluggabe
TaskPython
Module

Python Harness

Fault
Tollerance

monitor

Submitter

monitor

Submitter

monitor

Submitter

Data Store

Message Queues

Provenance
Extractor

Computing Resources

Submit

WfMS Server Side

Figure 3.2: Loosely coupled Dataflow architecture components revolving around a core

messaging component.

The Dataflow enactment engine is the entry point into the system. It accepts a WS-

VLAM [61] DAG workflow. At this stage the workflow is interpreted and a dataflow object

PREDICATION-BASED SCALING DATAFLOWS 39

representation is generated. When a task is made runnable (i.e. all input ports have data) it

is passed to the bottom-level scheduler for matching to a resource. The architecture allows

for different schedulers to be implemented. Default schedulers are round-robin scheduler

which circularly matches tasks to resources and therefore achieves load balancing between

resources, bucket scheduler which orders resources by the amount of slots available and

fills up the resources consecutively starting from the largest resource thus achieving lo-

cality between tasks, cloud scheduler which takes into consideration a budget for running

a workflow and elastically expands the resource pool R by calling an interface to cloud

resources [62] for on-demand cluster creation to accommodate more tasks.

3.3.2 Dataflow Data Queueing

The message queues play a pivotal role in the whole architecture. Most importantly mes-

sage queues allows inter-task communication over inter-cluster domains which, most often,

have restricted internet access. Intermediate messages allow tasks to exploit fine concur-

rency between dependent tasks. As with streams the granularity of concurrency depends

on the task logic and how often messages are produced and consumed. A one-to-one map-

ping exists between the set of task input/output ports (IP , OP) and message queues. The

message queues provide a persistent means of communication between tasks which in turn

decouples task execution in time and hence eliminates the need to co-allocate resources.

Co-allocations is known to degrade the system due to increased task wait times [63, 64]. As

depicted in figure 3.2, the message queuing also allows for components such as the mes-

sage router and the Dataflow engine to spoof on the messages being transmitted. Based on

the message routing, the Dataflow engine knows which tasks have data on their ports and

thus can make tasks runnable.

Figure 3.3: Queue setup strategy for achieving auto-scaling. Parent non partition-able data

queues have associated shadow queues which enable clones to retrieve the whole input

message set any time. Input ports also have a reserve port which is used by the fault

tolerance subsystem to replay the last message in case the task is re-submitted.

40 SCALING DATA CENTRIC COMPUTING

Figure 3.3 depicts the queuing strategies that supports cloning tasks. Cloning is the

procedure of replicating a task by the scaling subsystem. The parent task is responsible

for managing its own clone farm which means that the Dataflow engine has no knowledge

of replication taking place. This preserves the original workflow semantics. Port 1 of

the parent task is the designated port for which auto-scaling will perform prediction and

replication. All instances of the same task will share the designated port and thus the data

is partitioned amongst all clones. Ports 2 and 3 are not partitioned amongst clones. This

is due to the complexity and ambiguity of how to partition multiple ports amongst a set of

clones. The system guarantees that for any non-designated input ports, all clones have the

same input message set therefore in figure 3.3 the input message sets Mip2
and Mip3

are

identical to the parent and clones. This is achieved through shadow queues on the central

message exchange. A shadow queue acts as a buffer for the set of messages consumed by

the parent. Clone input ports are attached to the shadow queues instead of the standard

queues. All clones share the same output ports with the parent. By default no ordering is

done on the message output queues hence messages are delivered out of order. Ordering is

an expensive routine and can be achieved through the message sequence numbers.

Each task in the workflow polls a message server for new inputs, be it parameters or

data. This polling mechanism circumvents common network restriction on computing

nodes which tend to block listening ports. With many polling tasks, a server can easily

be inundated with polling requests which is a common problem known as a thundering

herd problem. This occurs when many tasks decide to poll the server at the same time.

To limit this problem with implemented an exponential back-off where tasks exponentially

increase their own polling interval when no new messages are retrieved. Each port on

a task is associated to a message queue on the message server. Task communication is

achieved by routing output messages from one task to the input message queues of the next.

Tasks act as services by continuously consuming new parameters and terminate once all

input queues are exhausted of data or the allotted time on the computing node has expired.

Replicas of the same task are attached to the same queues hence data is automatically

partitioned amongst instances of the same task. This system of message queues depicted in

Figure 3.5 allows tasks to scale so that each task processes a subset of the parameter space

instead of just processing one parameter and immediately terminate. Data scheduling is

also done through the message queues attached to the ports on the messaging system. Data

is partitioned through shared queues where multiple tasks access the same queue and in

turn retrieve data messages. Data that is not meant for partitioning is fanned out to all

replicated task input ports thus each task has a copy or reference to the same data.

PREDICATION-BASED SCALING DATAFLOWS 41

P

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

W P

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

w1

W P

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

w1

w2

w3

w4

w5

W

Figure 3.4: Parameter to task mapping. Left: traditional mapping where each parameter

is mapped to a single task. Center: the whole parameter space is mapped to a single task

instance. Here the task is working as a service but this solution may not be optimal for

large parameter spaces. Right: Subsets of the parameter space are assigned to replicas of

the different task. Each task is working as a service processing part of the parameter space.

Paramter Set
on Message Queues

T1

T2
T3

T4

T5

get next
parameter

Figure 3.5: Tasks participating in a parametric sweep study. Each replica task reads pa-

rameters as data from their input ports which are bound to message queues. Since the

input message queue is shared between all replicas, parameters and data are automatically

partitioned amongst a farm of tasks.

3.3.3 Dataflow Task Harnessing

The unit of submission is a task harness. The main goals of the task harness are two fold;

it allows task late binding by dynamically plugging tasks, and abstracts the underlying

data management and communication from the core scientific logic. The task harness

is responsible for retrieving messages from the queues, interpret the protocol used in the

reference, load the necessary communication libraries, retrieve the actual data from reliable

storages, and push the data up to the task. On data output, the harness locates the closest

data store from a list of stores, puts the data on the server and queues a message indicating

the reference to the stored data.

The task harness, Figure 3.6, architecture is based on a plug-in model whereby the

task and communication are dynamic loadable modules into a harness. The core of the

harness is the data management fabric which binds loadable communication libraries to

42 SCALING DATA CENTRIC COMPUTING

Python
Module

Python
Module
Python
Module

Python Harness

Python
Module

N

1

2

3 4

5
Message Exchange

Figure 3.6: A task harness is submitted to a computing node. The actual task is dynamically

loaded into the harness. The harness handles the runtime execution of the task by keeping

the task alive an realizing the WFaaS paradigm. In (1) the harness gets data from the

message queue which is bound to the input port of the task. (2) the data is moved to

the task. At this stage the task performs the necessary processing on the data and writes

the output to one of its output ports (3). The harness then gets the data and sends it to

message exchange (4) to be consumed by other tasks in the workflow. Steps (1) to (4)

repeat themselves until all data on the message queue is consumed. After terminating the

task, the harness does not quit the resource but loads the next task in the job queue (5) and

repeats steps (1) to (4) again.

the task input/output ports through a system of queues. These internal queues decouple the

scientific logic from the underlying communication mechanisms. On starting the harness,

the configuration is loaded which allows task late binding since it is only at this point that a

task is assigned to a harness. On loading a task tk, the harness sets up internal data queues

for each task port in IPtk ∪ OPtk . Messages containing referenced data are handled by

the harness by dynamically loading the appropriate protocol library, such as GridFtp, for

retrieving the actual data. The communication library responds by pushing the data onto

its internal queue. The harness will then route the data from the communication queue to

the relevant task input queue. Data output by the task happens in reverse order. When

data is available on the tasks’ internal output queue, the harness picks up the data, it then

locates the closest data server from a list of servers, loads the required communication

libraries and pushes the data to communication queue. The communication module picks

up the data and sends it to the data server. The harness will then construct a message with

the endpoint reference of the newly created data and sends it to the central message queue

which is then routed to other tasks in the workflow.

Since communication in distributed environments can be quite restrictive due to security

policies, the architecture relies on a pull model whereby tasks initiate all communication. A

pull model is the best guarantee that tasks can establish communication. The task harnesses

poll the server for new messages. Polling implements an exponential back-off when no new

FUZZY-BASED SCALING WEB SERVICES 43

messages are retrieved. When no messages are retrieved the polling interval is increased

up until a fixed threshold or until a new message is retrieved. This reduces the load on the

messaging back end by not overwhelming the server with too many unnecessary requests.

A simple task module is listed in Listing 3.1. The harness is responsible for executing

the scientific task and abstract the task communication. Each input and output port on a

task is bound to a message queue on the exchange server. The harness is responsible of

subscribing to such queues and retrieve data. This data is then moved to the relevant ports

on the task. Large data is not passed through the message exchange as this would overload

the server. Therefore data is referenced while the actual data is resident on some dedicated

storage such as Webdav, GridFTP, etc. The harness is also responsible for downloading the

actual data from the reference in the message. Large output data is automatically copied

to a dedicated storage and the reference to it sent to message server. The output data

server can be dynamically chosen from a set of configured servers by choosing the closest

one. Listing 3.1 shows a typical workflow module; Line 1 names the task/module. This

is the name given to the task in the workflow. Line 2,6,15 define three function which

are implemented by the scientific programmer. Upon loading the module, the harness

calls on load() where initialization can take place. After on load(), the harness calls run()

on a separate thread. run() is the main routine where most scientific logic takes place.

The harness offers easy ways how to read data, line 10 reads a data chunk from the tasks

input port. After processing the data, output results can be simply written to the output

port in line 13. The harness also allows for in-application provenance gathering whereby

the programmer can write events, line 12, which are collected by the system. When no

more data is available on the input ports, on unload() is called which is intended to run

cleanup routines. The harness will then proceed to unload the module and load a new one.

The lower example in Listing 3.1 shows the same module implemented using callback

functions to process data. Line 22 registers the callback function for the input port. For

every data chunk (parameter body in Line 28) the callback data processor() at Line 28 is

called to process the data.

In chapter 6 we demonstrate an streaming image processing workflow and how the

prediction-based scaling autonomously scale parts of the workflow independently from the

other tasks in an effort to limit workflow bottlenecks.

3.4 Fuzzy-based Scaling Web Services

The same dataflow model described in Section 3.2.1 can be applied to various types of

tasks. In this section we describe how the approach was applied to traditional web services

while at the same time extending the auto scaling to include the state of the resources

and thus dynamically scale the data processing dynamically depending on the state of the

44 SCALING DATA CENTRIC COMPUTING

input_port output_port

0 import plugin

1 class TestModule(plugin.PluginBase):

2 def on_load(self):

3 #this is called when the module is

4 #loaded and before run()

5 pass

6 def run(self):

7 #this is the mian function for performing

8 #scientific logic.

9 while true:

10 data = self._read_from_port(self._get_port("input_port"))

11 #process data

12 self._write_event("provenance data")

13 self._write_to_port(self._get_port("output_port"), data)

14 pass

15 def on_unload(self):

16 #this is called when no more data is available

17 #for processing

18 pass

19 import plugin

20 class TestModule(plugin.PluginBase):

21 def on_load(self):

22 self._register_callback(self.data_processor, self._get_port("

input_port"))

23 pass

24 def run(self):

25 pass

26 def on_unload(self):

27 pass

28 def data_processor(self, body):

29 data = body

30 #process data

31 self._write_event("provenance data")

32 self._write_to_port(self._get_port("output_port"), data)

33 pass

Listing 3.1: A task module where scientific logic is implemented. This module gets loaded

dynamically into a harness which in turn is running on a resource. The harness abstracts

communication and simplifies scientific logic implementation. (Upper) an implementation

of the module using explicit reads from port. (Lower) the same module implemented using

callback functions instead of port reads.

FUZZY-BASED SCALING WEB SERVICES 45

resources. In doing so, we also present new methods making web services more tailored

for data processing.

eScience applications are becoming increasingly data-centric and service oriented. Web

services support interoperable machine-to-machine interaction [65] and give rise to the

Service Oriented Architecture (SOA) paradigm. The nature of many web service based

eScience application such as those from bio-informatics rely on statically located web ser-

vices. The static characteristic of such services makes it difficult to choreograph a set of

cooperating web services in such a way that they can be optimized to meet the demands

of the increasing scientific data. On the other hand distributed resource middlewares such

as the Grid are not well equipped to host such services in a dynamic way. Common mid-

dlewares expose low level interfaces for accessing the resources. This usually results in

scientists writing custom software frameworks for accessing the distributed resources. The

consequence of middlewares lacking mechanisms for provisioning scientific web services

means that a huge body of scientific logic is trapped within static web services and have no

means to exploit distributed resources. The combination of multiple services or tasks that

should act on data leads to workflows of execution whereby the structure of the workflow

defines some interdependency such as data or control.

Web services are passive program objects which are hosted in service containers such

as Apache Axis2 [66]. Containers are responsible for managing the service life-cycle in-

cluding starting, stopping and invoking methods. WSDL is a descriptive language that

abstractly describes the operations a web service exposes without any knowledge of the im-

plementation. Web services are referenced through an End Point Reference (EPR) which

is a location-based addressing scheme using URLs. Common web service method invok-

ing is through SOAP over HTTP. SOAP is an XML-based protocol that describes which

method to invoke and the list of parameters for the particular method. Common service

containers listen for incoming SOAP messages over HTTP and after the method has been

called it returns a SOAP response to the client.

The above exposes the first two challenges for realizing our architecture. (1) The EPR

system of addressing a web service binds a service to a location. This hinders the web

service mobility as clients have no easy way locate a service that is roaming about at

different locations thus mobile service have to be addressed in a location-agnostic manner.

(2) The passive mode of communication means that web services residing behind firewalls,

as is the case with the majority of distributed shared resources, have no way of being access

from outside the network as inbound connections are usually blocked.

Both these challenges are solved using the same basic idea of message queueing. For

the communication problem, message queues allow containers to poll and pull SOAP mes-

sages off a queue which itself is accessible outside the network. By systematically setting

up different queues for each deployable web service, the queue id becomes the service

46 SCALING DATA CENTRIC COMPUTING

EPR. This de-localizes web services and allows them the migrate to different resources

without clients being aware of it. In light of web service mobility we distinguish between

two types of services; fixed services which can not be re-allocated due to some dependency

such as accessing a local file systems, and pure web services that are self-encapsulated.

The architecture targets the latter.

The pull communication model and the location-agnostic service addressing are the

basic foundation for our architecture. With these two characteristics, services can be dy-

namically deployed anywhere on the Internet having at least outbound communication

capabilities. Based on the same notion of message queueing, the system is further capable

of achieving web service back-to-back communication and elastic scaling.

The architecture depicted in Figure 3.7 revolves around a message brokering system

(similar to the architecture in Figure 3.2) which loosely couples all other sub components.

The message queue system exposes two types of queues, those intended for web service

communication and other queues for orchestration coordination. Coordination queues in-

clude; a global run-queue where services awaiting execution are queued, an events queue

for gathering events from running services, connection queues for describing the workflow

topology, and a command queue for every service where commands such as kill can be

sent.

Figure 3.7 illustrates the steps in which a web service based workflow is orchestrated.

In 1, a workflow is bootstrapped. In bootstrapping, the first web service is put on the run

queue and the web service connections are also made available on the messaging system.

These connections allows web services to autonomously know to whom they are connected

which in turn allows back-to-back communication. In 2 the service submission picks up

the bootstrapped service and submits it to one of the configured resource submitters 3.

Submitters abstract the actual resources and are responsible for monitoring the available

free slots on the resources.

In 4 a submitted service container lands on a worker node. The service container is

initially void of a web service to host. The latter is referred to as late binding which binds a

service to a resource only if the container successfully loads. The first step for the container

is to check the message queue for any available web service to host. If so it will load it

from the service library 5. Upon deploying a web service, the container register itself as a

consumer for the service input and command queues. The container then starts consuming

SOAP messages from the designated queues on the message system and pushes them up

to the web service. At this point two threads of logic are being executed on the worker

node; that of the web service itself ant the other of the container which apart of pulling and

pushing SOAP messages is also responsible for orchestrating its neighboring workflow

services and handle its own scaling routines.

FUZZY-BASED SCALING WEB SERVICES 47

Task Harness

Service
Submission

Pluggabe
Task

Task Harness

Pluggabe
Task

Axis2 Container

monitor

Submitter

monitor

Submitter

monitor

Submitter

Resources:
Grid, Cloud

Message Queues

Bootstrap
Results
Output

1

2

3 4

Service
Library

5

6

Web
Service

Figure 3.7: Loosely coupled core components revolving around the message broker.

The hosting container learns about its hosted web service neighborhood workflow topol-

ogy through the web service connections queue. This queue is created and populated dur-

ing the bootstrapping stage. With the knowledge of its successors, the container transforms

outgoing messages directly to input for the next web services and pushes the messages di-

rectly onto the input queue of the next services. This allows web service back-to-back

communication since communication is done directly through queues without any other

central entity marshaling outputs to inputs.

Web service orchestration is modeled on a dataflow approach. This model dictates that

only those web services having input data to consume may become active. The advantages

of such a model is that resources are not waisted by idling services. Furthermore, combin-

ing dataflow models with messaging back-ends, services are said to be decoupled in time.

With time decoupling, cooperating web services need not be active simultaneously. This

reduces the need for co-allocating resource which have been shown to degrade a system

due to increased run-queue waiting times [63, 64].

Due to the dataflow model, services will not be active at the time their predecessor

outputs the first data messages. The predecessor service container is responsible for or-

chestrating the next services in line. This is done at the same time messages are being

transformed from outputs to inputs. The predecessor service container queries the input

message queues for it successors to deduce whether any instances are active. If not the

predecessor will orchestrate the services by pushing an instance of the successor on the

global run-queue. The queued instance is then picked up by service submission in 3.

48 SCALING DATA CENTRIC COMPUTING

If the running web service is a terminal service the output is written to the standard

service output queue. A client in 6 will then read the workflow results from the last web

service/s output queues.

The central messaging system is an Apache ActiveMQ [67]. ActiveMQ is an enterprise

messaging system with many features that can be used to tune the performance of the ar-

chitecture. Noticeable features include; fail-over setup where web services can connect to

different brokers in the event that one fails, and networks of brokers where messages travel

from one broker to the next until it reaches a consumer. This would facilitate hierarchi-

cal web service orchestration where different groups of services are attached to different

brokers and communication between services is done through the network of brokers.

The web service container used in this architecture is the Apache Axis2 [66]. Axis2 is

a light weight extensible container perfect for submitting container-level jobs. The archi-

tecture relies heavily on the modifications done to the default Axis2 container. Most of the

architecture is implemented within the container. Axis2 container offers an easy way how

to extend its functionality through hooks in the system.

The web service library is a simple HTTP server where web service bundles are kept.

For the rest of the architecture including bootstrapping, submission, and results client, Java

was used as the programming language of choice although ActiveMQ has numerous APIs

for different languages.

3.4.1 Web Service Container Architecture

Transport
Listener

Web
Service

Scaling
Fuzzy

Controller

Command
Handler

Transport
Sender

Message
Transformer

SOAP
in

Scaling
out

Commands
in

SOAP
out

Workflow
Enactor

Next Services
out

Figure 3.8: Modified Axis2 container including transport handlers for pulling messages,

autonomous workflow enactor, fuzzy controlled scaling, message transformer, and a com-

mand handler.

Most of the management routines reside in the Axis2 container which executes along-

side the web service on worker nodes. The modified Axis2 container transforms a tra-

FUZZY-BASED SCALING WEB SERVICES 49

Transport
Listener

Fuzzy
Controller

Command
Handler

Transport
Sender

Message
Transformer

Workflow
Enactor

Axis2
Stack

Web
Service

SOAP in
Service
Invocation

SOAP response

SOAP trans

Enact service

Update Msg
Processing Time

Fuzzy
Scaling

Handle
Cmd

Figure 3.9: Sequence for message reception and delivery to the web service by the modified

Axis2 container. Although the system uses SOAP in this scenario, the same method can be

used for RESTful services.

ditional web service into a mobile object with smart orchestration and scaling routines.

Figure 3.8 highlights the main components added to a standard Axis2 container. The cus-

tomized transport handlers are the main entry and exit points for the web service. The

workflow enactor component implements the autonomous orchestration (Section 3.4.3).

The message transformer implements back-to-back communication (Section 3.4.2) and the

fuzzy controller implements autonomous scaling (Section 3.4.4). The command handler

consumes command messages from the service command queue and acts upon them.

Figure 3.9 illustrates the round trip path of events for a SOAP message through the con-

tainer. On reception of a SOAP message the transport listener processes the message such

as adding time stamp information and moves it up the to the Axis2 stack. The container

unmarshals the SOAP message and invokes the web service method with the parameters

extracted from the message. The container stack returns the SOAP response to the trans-

port sender. The latter updates the message round trip time. Message round trip times

are used by the service replication routine to deduce the load on the service. The message

transformer transforms response messages to input SOAP messages for successor services.

The workflow enactor checks if any successor services need to be initiated. Finally, the

transport sender sends out the transformed messages or the default response message if

no transformation took place to the designated queues. The fuzzy controller and the com-

mand handler execute loops on separate threads. The former elastically scales the service

instances while the latter listens for commands.

50 SCALING DATA CENTRIC COMPUTING

3.4.2 Web Service Back-to-back Communication

In cooperating web services such as those in pipelines or workflows it is often advanta-

geous to allow web services to directly talk to each other without the need for a client to

coordinate the communication. This is especially the case for complex workflows where it

is not feasible to manage all the inter-service communication. For this reason the modified

Axis2 container allows web services to directly talk to each other through the message

broker.

At the bootstrapping stage, the topology of the workflow is known. The topology is

synthesized into messages on dedicated connection queues thus, in the pipeline topology

depicted in figure 3.10, there exists a connection between A.method1() and B.method1().

The connection would translate into a message on A.method1.connections queue. This

designated queue is used by service A to deduce to whom it is connected hence giving

A the knowledge of its neighbors. The messages on the connections queue describe the

SOAP template expected by the successor (in this case B.method1()).

When A.method1() returns a SOAP message it is picked up by the message transformer

inside the Axis2 container (see Figure 3.8). The SOAP template present on the connec-

tions queue is used to transform the response message from A.method1() to the input of

B.method1(). This transformed message is then written directly to B.method1.input queue

by the transport sender for A.method1().

Since B.method1() has no successor connections, any output by this method is written

to the method’s default output queue B.method1.output which can then be consumed by a

client waiting for output from the pipeline.

In the scenario of a fan-in topology, multiple services connected to B, write their mes-

sages to the same input queue for B. Similarly in a fan-out approach where A is connected

to multiple services, the message transformer transforms the SOAP response for each suc-

cessor. In both cases message ordering is not guaranteed but can be accomplished through

message sequence ids on the container though this is very expensive operation and can lead

to memory exhaustion due to buffering messages in order to re-sequence them.

3.4.3 Web Service Autonomous Orchestration

The connections queues described for back-to-back communication are also used to enable

autonomous orchestration. Connections between services represent a data dependency thus

from figure 3.10 service B is data dependant on service A. The dataflow model approach

dictates that service B should only become active when it has data to process. This model

is enforced autonomously by the individual containers.

From figure 3.10 A.method1() produces data for B.method1(). This satisfies the dataflow

model that B.method1() should become active since data is now available. The workflow

FUZZY-BASED SCALING WEB SERVICES 51

Service B

method1()

A.method1() B.method1()

Service A

method1()

B.method1.input

B.method1.output

A.method1.input

A.method1.connections

Pipeline

Back-to-Back Communication

Figure 3.10: Back-to-back communication for a two service pipeline. Service A knows

about the connection between A.method1() and B.method1() through the connections

queue. Any output from A.method1() is sent directly to B.method1().

enactor component in the container for service A can deduce if any instance of B is running.

This is done by checking the number of consumers on B.method1.input. If no consumer

is active on the queue, the workflow enactor submits and instance of B to the global run-

queue. The instance is picked up by the service submission (figure 3.7) and submitter to a

resource. In the case that service A has multiple successors the procedure is repeated for

every successor.

This approach differs from the common scenario of having a central SWMS which has

to orchestrate the whole workflow. Typical SWMS are far-sighted i.e. they have knowledge

of the whole workflow and hence have to maintain the whole workflow which could be

a limitation for large complex workflows. With autonomous orchestration, services are

myopic as they only have knowledge of their immediate successors thus no central entity

is coordinating the whole workflow execution.

3.4.4 Web Service Fuzzy Controlled Elastic Scaling

A characteristic of many e-Science applications is that they are embarrassingly parallel and

therefore can be easily scaled up with simple data partitioning techniques. The main goal

of partitioning an embarrassingly parallel application is to achieve better throughput and

hence reduce the makespan. This is usually done in a greedy manner where the application

consumes as many resources as possible to reduce overall execution time. This premise

is not always an ideal solution when dealing with cooperating tasks since one’s greed

to consume as many resources as possible will result in starvation for other tasks in the

workflow. Starving tasks can degrade the whole system since progress is hampered and

52 SCALING DATA CENTRIC COMPUTING

data gets piled up waiting to be processed. For this reason we propose a fuzzy controlled

elastic scaling mechanism for individual services taking part in a workflow. The fuzzy

controllers can autonomously scale up and down the service depending on the predicted

service load and the resource load.

Through the messaging system web services can be replicated as many times as needed.

Every instance of the same web service is attached to the same queues. From figure

3.10, if multiple instances of service A are initiated then all instances read data from

A.method1.input thus the input data is said to be partitioned amongst all instances of the

same service. This implements data parallelism. The assumption here is that there is

no casual dependency between data messages on the input queue as this would impede

data partitioning. Similarly all instances of the same service write data to the same out-

put queues. Services where data parallelism is not possible such as services that need the

whole data set to accomplish their task can not exploit such replication and would have

their fuzzy controller disabled.

Within a single workflow, cooperating services are competing for resources. This is

especially evident when the resource pool is pseudo finite as would be the case in many

distributed shared resources. Thus to achieve adequate workflow progress, services must

not replicate themselves greedily when not enough resources are available. Conversely,

service scaling must take an abstemious approach to resource consumption so as to guar-

antee whole workflow progress. Such an approach is implemented by means of a fuzzy

controller whereby each Axis2 container runs a fuzzy controller for each hosted service to

scale up or down the replicated instances of the same service. The bases of the controller

is that a web service should be able to aggressively replicate itself when its load is high

and resources are free but scale down when its load diminishes and the resource are quite

occupied. The latter is intended to make space for other services to take hold of the re-

sources. The decision of when a task is overloaded or enough resource are available is

difficult to simplify using a simple thresholds since service load and resource load are very

dynamic especially when cooperating service are influencing each others view of the load.

For this reason, calculating the scaling factor of a service such that it does not overuse the

resources but at the same time does not under utilize them is a problem well suited for

fuzzy logic. In fuzzy logic, terms like high load do not represent a single threshold but a

range of thresholds with varying membership probabilities.

Figure 3.11 illustrates the inputs (taskLoad, resourceLoad) and output (replication) for

the fuzzy controller. The taskLoad input defines a set of fuzzy membership function for the

terms very low, low, ideal, high, and very high. Similarly the same terms are defined for

the resourceLoad. The output from the fuzzy controller is the scaling count which ranges

from−15 to 15 so if the output is−10 then the number of instances for a particular service

should be scaled down by 10. These adjustment are done at timed intervals hence the

FUZZY-BASED SCALING WEB SERVICES 53

Rule Base
Inference Engine

Figure 3.11: Fuzzy controller triangular and trapezoidal membership functions for inputs

(resourceLoad and taskLoad) and output (replication). The rule engine implements the

rules listed in Listing 3.2.

controlling is progressive. The fuzzy output defines membership functions for controlling

how aggressive scaling should be done hence terms like positive aggressive, positive slow,

negative aggressive, and negative slow are defined.

The taskLoad defines the web service load and is a prediction-based load calculation.

Given that at any point in time we know input queue size and the average message process-

ing time, we try to predict the total processing time for the whole input data queue. For

every message that leaves the container, the average message processing time is update. A

message processing time Ti is defined as the round trip time from when the message enters

the container up till it leaves the container hence Ti = (touti − tini). The mean message

processing T avg
i is defined as the weighted mean of the current and last message process-

ing time hence T avg
i = (T current

i wk +T avg
i−1wp) where i > 0, T avg

1 = 0.and wk +wp = 1.

The weights wk and wp are always set to favor the highest load thus if T current
i > T avg

i−1

then T current
i has a higher weighting and vice-versa. This smooths out flip-flop scenar-

ios when the message processing time continuously fluctuates between a high and a low.

Favoring the highest message processing time in the weighted mean ensures that an in-

crease in load is rapidly evident while a decrease in load is gradual. Having calculated

T avg
i , the predicted processing time Pi for the whole message queue is then calculated as

Pi = (T avg
i × Si) where Si is the input queue size at the moment of calculation.

54 SCALING DATA CENTRIC COMPUTING

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-15

-10

-5

 0

 5

 10

 15

R
e

p
lic

a
ti
o

n

Service Load

Resource Load

R
e

p
lic

a
ti
o

n

-15

-10

-5

 0

 5

 10

 15

Figure 3.12: Scaling fuzzy controller surface plot. A visualization of the fuzzy rules listed

in Listing 3.2.

Given a time quantum Q for a web service which could either be derived from a budget

to use a resource or an alloted time quantum by a resource manager, the web service load

can be calculated as Li = Pi/(Q−Ei) where Ei is the elapsed time since the web service

initiated. When Li ≈ 1 the service is in an ideal load since it should manage to process

all the data within the alloted time quantum. A load much lower than 1 indicates the

web service is under-loaded while a load much greater than 1 indicates the web service is

overloaded. Li is the input value for the taskLoad in the fuzzy controller.

The resourceLoad Ri is defined as a ratio Ri = (Ui +Wi)/Ai where Ui is the amount

of used resources, Wi is amount of queued tasks waiting for a free resource and Ai is total

available slots. A resource pool is fully used when Ri = 1. When Ri > 1, the resources

are overbooked since a number of tasks are queued waiting for a free slot. Ri is the second

input to the fuzzy controller.

We refer to the set of all replicated instances of the same service as the service farm.

Service replication routine is restricted to one per service farm. The designated service

instance which is currently responsible for running the fuzzy controller is referred to as

the master of the service farm. Since the size of the service farm starts out as one, the

service is automatically elected to a master. The service knows its the only instance run-

ning by querying its own input queue and deduce the number of consumers on the queue.

Subsequent instances created by the master do not, themselves, become masters since they

deduce that they are not the only consumers on their queue. Before a master terminates

it relinquishes its own mastership by putting a master token on its own command queue.

SUMMARY 55

Since all instances are consumers on the same command queue and the message broker

guarantees that only one instance will consume the message, the instances that gets hold

of the master token elects itself as the new master. If a master abruptly dies without re-

linquishing its mastership then the only way a new master is elected is when the service

farm is reduced back to one. A better solution, although not implemented, is for the master

to elect a secondary master who will periodically challenge the mastership by sending a

command to all instances asking who is the master. If no master replies then it takes over

the mastership and relinquishes the secondary master.

Figure 3.12 shows illustrates the surface plot for taskLoad L and resourceLoad R. The

output, replication indicates how to scale the number of services. The plot is derived from

a set of 15 fuzzy rules (see Listing 3.2).

In chapter 6 we demonstrate the detailed evaluation of this method using a bio-informatics

workflow implemented as web services. We show how the modifications to Axis2 allows

the web service to be submitted as a job and how the independent fuzzy controllers of

various workflow tasks collaborate to achieve a fair resource usage and communication.

3.5 Summary

Scalability and resource usage efficiency are corner stone attributes in distributed comput-

ing. We have presented several approaches to tackle these challenges. We have presented

prediction-based models for scaling data processing where estimations for processing are

calculated on queued data. These estimations allow informed decisions on scaling data pro-

cessing. The ability of scaling tasks independently enables replication of tasks to match

the data production rate.

Auto-scaling is an attractive approach especially within the context of scientific work-

flows where single tasks can independently scale themselves. Applications that can imme-

diately benefit from this model belong to the class of data-centric applications where data

can be decomposed into atomic records and partitioned. A model for autonomous scaling

was presented using fuzzy controllers that balance the scaling with the fairness of resource

usage. WFaaS was also presented as a way to achieve better resource usage by reusing

tasks and resources.

Through task harnessing we showed how scientific logic can be separated from un-

derlying communication and data transport intricacies. This introduces dynamism in task

scheduling. The same concept was extended to the dynamic web service architecture where

the Axis2 container acted as the harness. Autonomous orchestration was also presented for

web services where Axis2 containers have a myopic view on the workflow and can sched-

ule their immediate neighbors. Through dynamic handling of web services, services have

been made mobile by using queue ids as their EPR instead of the URL based EPR. A pull

56 SCALING DATA CENTRIC COMPUTING

1 IF taskLoad IS very_high AND resourceLoad IS very_low THEN replication

IS positive_aggressive

2 IF taskLoad IS very_high AND resourceLoad IS low THEN replication IS

positive_aggressive

3 IF taskLoad IS high AND resourceLoad IS very_low THEN replication IS

positive_aggressive

4 IF taskLoad IS high AND resourceLoad IS low THEN replication IS

positive_slow

5 IF taskLoad IS very_high AND resourceLoad IS normal THEN replication IS

positive_slow

6 IF taskLoad IS ideal AND resourceLoad IS normal THEN replication IS

zero

7 IF taskLoad IS very_low AND resourceLoad IS high THEN replication IS

negative_aggressive

8 IF taskLoad IS very_low AND resourceLoad IS very_high THEN replication

IS negative_aggressive

9 IF taskLoad IS low AND resourceLoad IS high THEN replication IS

negative_slow

10 IF taskLoad IS low AND resourceLoad IS normal THEN replication IS zero

11 IF taskLoad IS very_low AND resourceLoad IS high THEN replication IS

negative_aggressive

12 IF taskLoad IS ideal AND resourceLoad IS very_high THEN replication IS

negative_slow

13 IF taskLoad IS low AND resourceLoad IS very_high THEN replication IS

negative_slow

14 IF resourceLoad IS very_low AND taskLoad IS NOT very_low THEN

replication IS positive_aggressive

15 IF taskLoad IS low AND (resourceLoad IS very_low OR resourceLoad IS low

) THEN replication IS positive_slow

Listing 3.2: Fuzzy rules for balancing data processing scaling, resource usage and fairness

between tasks.

SUMMARY 57

model allows web service to be deployed deep within a network. Back-to-back communi-

cation has been achieved through a system of message brokering.

The evaluations of these models and paradigms are described in detail in chapter 6.

CHAPTER 4

AUTOMATA-BASED DISTRIBUTED DATA

PROCESSING

Distributed data process modeling is often task-oriented i.e. data processing is accom-

plished by modeling task ordering. The task ordering model does not always captures

the essence of data processing especially when the model is designed to fit a specific dis-

tributed system. Complex data processing necessitates effective modeling which allows the

understanding and reasoning of the fluidity of data processing. In this chapter we propose

a new distributed data processing paradigm that describes units of data transformations as

automata. Though the model can be considered as an abstract schema for data processing

it also lends itself well to runtime where it acts as a data routing information allowing the

creation of data processing overlay network and data processing protocol. The results of

this chapter formed the bases of the following publications:-

Reginald Cushing, Adam Belloum, Marian Bubak, and Cees de Laat. Automata-based

dynamic data processing for clouds. In Euro-Par 2014: Parallel Processing Work-

shops, volume 8805 of Lecture Notes in Computer Science, pages 93–104. Springer

International Publishing, 2014.

Reginald Cushing, Adam Belloum, Marian Bubak, and Cees de Laat. Towards Com-

puting Without Borders: Data Processing Plane. Manuscript submitted for publication

in Future Generation of Computer Systems, 2015.

59

60 AUTOMATA-BASED DISTRIBUTED DATA PROCESSING

4.1 Introduction

Data processing complexity, partitionability, locality and provenance play a crucial role in

the effectiveness of distributed data processing. Dynamics in data processing necessitates

effective modeling which allows the understanding and reasoning of the fluidity of data

processing. Through virtualization, resources have become scattered, heterogeneous, and

dynamic in performance and networking. In this paper, we propose a new distributed data

processing model based on automata where data processing is modeled as state transforma-

tions. This approach falls within a category of declarative concurrent paradigms which are

fundamentally different than imperative approaches in that communication and function

order are not explicitly modeled. This allows an abstraction of concurrency and thus suited

for distributed systems. Automata gives us a way to formally describe data processing

independent from underlying processes while also providing routing information to route

data based on its current state in a P2P fashion around networks of distributed processing

nodes.

The proliferation of cloud-based processing means that data processing is increasingly

becoming service oriented, specifically each single task is an Application-as-a-Service

(AaaS). The potential scale of inter-cloud systems coupled with the dynamism of the infras-

tructure makes it increasingly difficult to coordinate a cohort of applications in a traditional

central scientific workflow systems. Furthermore, visualization opens new possibilities for

compute collaboration adding to the already existing web services.

The increased variety of data means we need dynamic and adaptable systems that can

easily fit new data where new data types are potentially generated on the fly and new

processing paths are created dynamically from the new data. This level of reasoning about

data implies that we need models to describe data as processable objects.

4.2 Paradigms of Distributed Data Processing

Distributed computing paradigms vary considerably and target specific application scenar-

ios; process oriented such as Actor model [70] and KPNs (Kahn Process Networks) [71],

large scale data oriented such as MapReduce and dataflows. MapReduce [72] is based

on a map(), reduce() functions. These functions are common procedures in many data

analyses problems. Many frameworks have evolved around this central concept which

aim at ameliorating certain aspects such as programmability and communication. An-

other breed of post-Hadoop distributed frameworks address different application scenarios

where the batch oriented Hadoop [73] is not ideal. Frameworks such as Storm [74] and

Spark [75] aim at streaming data while others such as Pregel [76] are for large-scale graph

processing. The aim of such systems is to achieve high-processing throughput on dedi-

PARADIGMS OF DISTRIBUTED DATA PROCESSING 61

cated clusters whereby the software stack is tuned for the specific resources. A lower level

of distributed computing paradigm deals with fine grained control and communication of

concurrent functions. Such a paradigm is the actor model whereby functions known as

actors communicate asynchronously using messages [70]. Actors perform a certain task in

response to a message, actors are autonomous and are able to create new actors creating a

hierarchy of actors.

Scientific Workflow Management Systems (SWMS) come in many shapes and sizes

and vary in the computational model, types of processes used, and types of resources used.

Many base their model on process flow [77] and also include a form of control flow [78],

others implement data flow models [79] or communication models as used in coordination

languages [80] and [81]. and some propose eccentric models such as based on chemical

reactions [82]. A common denominator in most workflow systems is that the unit of reason

is the process i.e. the abstract workflow describes a topology of tasks configured in a certain

way. Coordination languages are another form of coordinating multiple tasks.

Distributed computing programming paradigms, in a way, can be broadly categorized

in how declarative they are [15]. Common concurrent programming paradigms such as

message passing (e.g. MPI) and concurrent object oriented (Actors) are imperative by

nature whereby the distributed execution is planned out step by step as a set of commands

which defines the how of the processing. More declarative approaches such as dataflow,

workflows, MapReduce and event-based tend to focus more on the relationship between

tasks e.g. dataflow models a data relationship between tasks while workflows model a

work dependency between tasks. MapReduce can be consider as a simplified workflow

with an implicit relationship between a map and reduce task. In event-based paradigms the

distributed entities are loosely coupled and only activated upon an event of some sort.

Related to the event-based paradigms is an automata-based programming paradigm. In

such a paradigm, relationship between tasks is a state change. Progress in an automata-

based system depends upon state change events. The logic of an automata-based controller

program is reactive i.e. there is no start and stop of an execution but the system reacts

on state changes. Our described model in the following sections follows this principle for

distributed data processing.

A missing concept in many distributed computing frameworks is the separation of con-

cern between data process model and the compute model. Most of the systems focus on the

compute model thus fitting the data to the architecture. In our opinion, a data processing

model should be a schema of how data can be processed. This notion would be analogous

to relational databases; the data schema shows relations between data while the underlying

system maps such relations to files, memory, clusters, etc. Our approach introduces this

concept to data processing whereby automata is used for data processing schema while a

distributed back-end can interpret the automata schema to process the data.

62 AUTOMATA-BASED DISTRIBUTED DATA PROCESSING

4.3 Provenance in Distributed Data Processing

Complexity in data processing does not only revolve around the actual computing on data

but also the provenance of data. Provenance helps to track back the execution of the work-

flow and provides information which can help either in reproducing successful workflow

execution or discovering problems that led to faulty execution. Provenance may also pro-

vide means to create links between publications and data sets, allowing to repeat published

experiments; it helps in managing data-lineage, and solving the questions of trust and repu-

tation. In case of workflow applications, provenance data has to be collected at each phase

of the workflow lifecycle starting from workflow design, going through the prototyping

and calibration phases and ending by the execution and result analysis.

In many applications data provenance is a way to reconstruct the data processing model

from execution logs but this is a post-mortem approach to reason about data whereby we

build data processing graphs such as Open Provenance Model (OPM) [83] after execution.

Processes are often ordered to exploit the underlying infrastructure thus the same data

processing workflow might look different for using grids, clouds or services. It is just

to say that data-centric applications have an implicit data transition map which can be

used to aid data processing, querying and data provenance. For example, coupling data

with a state map in a workflow will provide a wider context for the data processing as, at

any point in time, the previous, current and possible future states of the data are known.

State diagrams also aid in illustrating the logical reasoning in data processing which helps

finding logical faults. Markov chains have as their foundation state diagrams with added

probability applied to state transitions. This could give us further insight about the state of

data at some future time.

System level provenance keeps track of a context in which a simulation experiment has

been performed: when the workflow was executed, on which machines, which libraries

and data have been used, been produced etc. This information is used for debugging by

workflow developers. Users of the workflows can require this information for validation

and reproducibility. Application level provenance concerns information which had a direct

impact on a successful workflow execution or a faulty one. This kind of provenance allows

the scientific programmer to record important events regarding the data processing such as

at which iteration a simulation is converging.

4.4 Automata as a Data Model

Automata data processing paradigm is related to the notions of automata-based program-

ming [84] in which programs are organized in blocks of code that are triggered by state

change. A clear distinction between automata-based programming and traditional imper-

AUTOMATA AS A DATA MODEL 63

ative is that program execution is separated into steps which are not ordered sequentially

but ordering comes from the automata model of the program where progress adheres to the

automata state transitions. This separation of steps make automata-based style as an ideal

candidate to describe data processing as a set of steps where such steps can potentially be

concurrent and therefore distributed.

Our unit of computing is a data object. We describe a data object as being an arbitrary

type and size of data such as a file, row in file word in a text, binary data, etc. A data

object can be a collection of data objects and vice versa a data object can be divisible into

data objects. The smallest unit of a data object is called the atomic data object and this

is application dependent. For example the atomic data object in a table can be a row, a

column or an entry.

Figure 4.1: A NFA for describing 6 states of a data object, d. The set of state Q =

{q0, q1, q2, q3, q4, q5}. The alphabet set, Σ = {f(), g(), h(), i(), j(),m(), n()}. The start

sate is q0 while the set of final state is F = {q4, q5}. ∆(q0, g(d), j(d), n(d)) is a program

on a data object d which processes it from state q0 and ending with the data object in state

q5.

In our approach we employ the formal definitions of non-deterministic finite state au-

tomata (NFA) for describing data processing as an automaton. A NFA is defined as a 5

tuple (Q,Σ, q0, F,∆) where Q is a finite set of state, Σ is the input alphabet, q0 ∈ Q is a

start state, F ⊆ Q is the set of final states, ∆ is the transition relation which is a relation on

(Q× Σ)×Q. The characteristic of NFAs implies that the new state after reading symbol

σ ⊂ Σ is non-deterministic. This means the possible output state after a transition from

state q, ∆(q, σ), is a collection of states. We extend the standard model in a way that our

input alphabet is the set of operations on data d-op, σ(d, q), where q is the input state,

d ∈ D is the input data object to be processed. The automaton transition function is the

function which takes in a d-op and a data object and will transition the automaton into new

states. The transition and selection function can be considered as nested functions.

64 AUTOMATA-BASED DISTRIBUTED DATA PROCESSING

d'

d''

d''d

d

d'
d'

Figure 4.2: Data objects d are transitioned from one state to the next using an automaton

to guide the transitions which are done using d-op. Data is processed along the way thus

d→ d′ → d′′ → dk where dk is the kth derivate of the data object.

d-op are the functions that perform the actual state transition through processing. d-op

accept input data set, D and set of input s-tags, T , and output transformed data set, D′ and

its set of s-tags, T ′, thus a d-op provides a mapping (D,T)→ (D′, T ′).

In our extended model we refer to states describing data as s-tags (short for state-tags).

s-tags label data with processing context thus giving different forms of data different iden-

tifiers. These identifiers are pivotal in our data processing model as they allow abstract

description of data transformation and its concrete processing.

Given a data object and a set of d-op, the data automaton describes the sequence of

acceptable operations on data. In our model every data object has an associated automaton

(Figure 4.2) which describes the possible final s-tag that the data object can transit to. The

transition function, ∆(q, σ(d, q)) defines the set of states that are reachable from state q

with selection function σ.

Given a data object at s-tag q, only a subset of d-op in Σ can act on the data and produce

state transitions. We define this set of d-op as Hq ⊆ Σ. The transition function can then be

extended to multiple d-op such that ∆(q,Hq) defines all the states that are reachable from

state q and d-op Hq . The latter shows that having a data object in a particular state, we can

determine all its possible next states.

Since in our model the alphabet is composed of d-op which are operations on data thus

one can consider that languages accepted by an automaton M are in fact programs such

that L(M) = {p ∈ Σ∗ | p is accepted by M} where Σ∗ is the power set of the alphabet

(d-op). These programs on data objects can be considered as data adapters tailor made for

every data object. This gives us a powerful way of describing data processing at the fine

granularity of a data object (e.g. row in a file, word in a text).

AUTOMATA AS A DATA MODEL 65

Figure 4.3: Common master-slave ap-

proach to data processing represented as

an automaton. The set of states, Q

is {RAW,PROCESSED} while Σ is

{master(), slave()}.

Figure 4.4: An iterative data pro-

cessing scheme represented as an

automaton. The set of states, Q is

{READY,POSITIV E,NEGATIV E}
while Σ is

{start(), stop(), condition(), loop()}.

Figure 4.2 illustrates the how the model is applied to data processing; atomic data ob-

jects such as a record or a file are encapsulated together with an automaton. The automaton

defines the data processing as state transitions. A system capable of interpreting the au-

tomaton can process and transfer the data to other nodes for further transitions.

Figures 4.3 and 4.4 illustrate two simple automata to describe classic distributed data

processing which suffice to introduce our model. Figure 4.3 illustrates a typical master-

slave approach. The automaton is a trivial 2-state graph which describes data in its unpro-

cessed state as RAW and processed state PROCESSED. The execution of the automa-

ton includes two functions master() and slave() which are d-op according to our model.

The master() does an implicit state transition from the empty s-tag to RAW while slave()

d-op does the transition from RAW to PROCESSED. As a means to speed up execu-

tion a scheduler may run many slave() functions. The latter is not represented in the data

automaton which is solely intended to describe the data transformations independent of

the way the execution takes place. This abstraction provides us with a means of describing

data processing at an abstract level.

Figure 4.4 illustrates a second typical example which includes processing data in loops

until a condition is met. A common approach in parallelizing such a loop is to unroll the

66 AUTOMATA-BASED DISTRIBUTED DATA PROCESSING

loop and distribute it. The simple automaton captures the three states in which data can

be; the READY , POSITIV E and NEGATIV E states. The functions start(), stop(),

condition() and loop() provide the d-op for the automaton. start() and stop provide transi-

tion to/from the empty state, the condition() d-op provides both transitions from READY

while the loop() d-op provides the cyclic transition back fromNEGATIV E toREADY .

As with the previous example the execution of many loop() instances does not change the

description of the data processing.

Apart form a state description of data processing the automata also describes the allow-

able programs (function permutation) for processing data in a certain way e.g. in Figure 4.3

we know that data can only be considered acceptable if master() and slave() are executed in

certain order and only once while from Figure 4.4 condition() needs to be executed at least

once and loop() any number of times so {start(), condition(), stop()}, {start(), condition(),

loop(), condition(), loop(), condition(), stop()} are both acceptable programs on the data.

A data automaton can recognize multiple programs so given a data processing automaton

we can produce the set of all programs P ⊆ Σ∗ that are acceptable.

As we described in our model, d-op are the functions performing operations on data and

transit the data to new states. d-op can transform multiple input s-tags into multiple output

s-tags thus internally in a d-op an n × n mapping exists. The multiple input s-tags are

combined together in boolean logic and similarly is done for the output s-tags. In Figure

4.4 the d-op condition() transits to 2 s-tags POSITIV E or NEGATIV E similarly it

can produce both simultaneously or any boolean combination of any number of s-tags.

This allows d-op to multiple data objects in different states from one data object.

4.5 Data Packet as a Unit of Computing

Communication between d-op hosted on nodes is done with data packets. Data packets are

first-class citizens in our proposed model. A data packet is a self-routable encapsulation of

a data object and optional code with meta-data to facilitate state transitions described in our

automata model. Packets are stateful (i.e. the packet carries much of the data processing

state in it) which allows nodes to be stateless to a certain extent. Figure 4.5 presents the

basic packet construct; the packet id is a concatenation of 3 separate header fields: a ship id,

a container id, and a box id which together form a hierarchical naming scheme analogous

to cargo shipping. The id scheme allows for related packets to be given the same ship id

which acts as an execution context id. The data packet is modeled as a container into which

arbitrary data can be placed, extracted, modified, and replaced.

The d-op code section is an optional section which carries a list of codes to be deployed

at the receiving nodes. This feature allows the unrolling of the automaton d-op on the

network. Codes can also be deployed in quantities which allows multiple instances of the

DATA PACKET AS A UNIT OF COMPUTING 67

ship container box frag e ttr

flow-label state

timing s-tag

aux

d-op code

data automaton


Container

Header

stag func exstate endpoint

data
...


Data

Provenance

stag func exstate endpoint
} Data

Route

Figure 4.5: High level structure of a packet encapsulating a data object, d-op, automaton,

provenance and routing information. Together ship, container and box represent the packet

id. The naming is hierarchical i.e. a ship has many continaers and a countainer has many

boxes. These ids are not associated with source and destination as would be with traditional

network protocols but the id is given to data objects. Fields such as ttr (time-to-resend),

aux and flow-label aid data routing. Some other fields aid specific scenarios such as timing

is used when benchmarking. A record of where the data object was and the results from

the last state transition are kept (optionally) in the data provenance section while the next

hop (state transition) is appended at the end of the packet.

same code to be deployed on different nodes. The auxiliary (aux) section is a bit field

enabling certain packet features such as acknowledgments. multi-packet and timing. The

data automaton section includes the automaton for the data processing. This describes the

allowable states the data packet can be transitioned too. The field can be null in which case

the data packet discovers its possible state transitions from the data routing table on each

node. This transcends data routing to exploring possible data processing paths.

A data packet has the option to carry data from every d-op output. This feature allows

the direct provenance capture within the data packet itself. Although being a powerful

feature it also has a snowball effect on the packet size and thus might not be a feasible

feature for all applications. The data route entry is the last entry in the packet. This

describes the next node hop where the packet should be sent.

68 AUTOMATA-BASED DISTRIBUTED DATA PROCESSING

4.6 Computing Flow Control

Since the unit of processing is a packet and packets are communicated between nodes in a

P2P fashion, packet flow control becomes an essential part of the framework for maintain-

ing coherent and stable network. A mechanism for reliability can be enabled, albeit with a

performance penalty. With reliability enabled nodes share responsibility of a data packet.

The mechanism works as follows: Upon sending a data packet a node A retains the packet

in a buffer until the peer node B sends back a Processed ACKnowledgment (PACK) back

to A. A PACK is only sent after node B finished processing the packet and has dispatched it

forward at which stage B becomes responsible for the packet. Upon reception of a PACK

at A, the latter is relieved of its responsibility. If a PACK is not received in a timely fashion,

node A will activate the TTR field in the data packet and resend the packet upon time expi-

ration. Each node is equipped to detect duplicates, thus if B where to receive the duplicate

packet it will reject it immediately. The TTR field can be tuned for different packets so

that process hungry packets can have higher TTRs. As can be imagined this mechanism

will put extra pressure on the system especially on packet buffers which are awaiting ac-

knowledgments and thus the whole mechanism can be disabled in scenarios where it is not

needed e.g. a streaming application.

An other flow control mechanism is packet coalescing; the premise for this feature

is that packet overheads can be partially amortized by packing in more data into one data

packet. Although this can be user defined in the d-op implementation, we try to achieve this

automatically by dynamically calculating packet efficiency and ameliorate the efficiency by

grouping packets together. The efficiency formula is based on:

ceff(p) =
exec(p)

exec(p) + overhead(p)
, (4.1)

where exec(p) is the execution time of packet p, overhead(p) is the overhead for send-

ing and unpacking the packet. Although the overhead is influenced by the size of the

packet, a fraction of the overhead remains a constant such as communication latency and

call stack latency for every packet. In very small packet loads the overhead can be much

more than the actual packet processing which lead to inefficient communication. A way to

increase this efficiency is to increase packet sizes which will increase exec(p).

Although this coalescing method has the effect of increasing efficiency it can also im-

pede parallelism. The rational behind this is that any number of packets coalesced in

a single packet are destined to be executed in serial on some node thus in a distributed

system some nodes might lay idle while others are busy processing huge packets. This

phenomena leads to what we describe as potential parallelism efficiency.

COMPUTING FLOW CONTROL 69

Lets assume we have an arbitrary size of data D and this data can be split into it atomic

form d such that d ∈ D for example a line or a word in a file. The cardinality (the

number of atomic data objects in D) of D is given by |D|. Now lets assume we have some

parallel program which is executed on every atomic record d. To scale up the processing

it is common to initiate multiple processes and partition D into chunks of data objects,

Ci, such that D =
⋃n

i=1 Ci. Every process gets a chunk of data, Ci, thus allowing D

to be processed in parallel. A matter of tuning the system revolves around the number of

atomic data objects per chunk. Having a number of resources N , a straight forward split is

p = d |D|N e which means that with enough resources to match the number of data objects,

N ≥ |D|, p = 1 since p can not be less than 1 as atomic data objects can not be further

subdivided. If we increased p to 2 meaning that we split our finite data into chunks of 2,

at most only half of our infinite resources will get a data chunk. The latter shows that with

p = 2 and N ≥ |D| we get a parallel efficiency of 0.5. Parallel efficiency is generalized

by the formula

peff(p) =
|D|
p×N

, p ≥ 1, (4.2)

where |D| is the data window size, p is the number of coalesced packets and N is the

number of nodes with d-op that can process the data. peff(p) is a graph of the form 1
x .

Another packet control flow that we investigated has to do with networks of queues.

Each node receives and sends packets thus a node can be modeled as having two buffer

queues, an inbound rx and outbound tx queue. These buffers are serviced asynchronously

and independent of the running d-op. In any queue system backlog is considered detri-

mental to the whole system thus some level of queue control is needed to minimize such

backlogs. Queue backlogs are problematic in two main ways; the first is buffer flood-

ing where backlogs flood memory which decreases node performance to the extent that

nodes can crash; the second is input queue load imbalance which happens when data is

partitioned unfairly (an unfair data partition is such that slower nodes get more work than

faster nodes) between processing nodes. In our model, backlog is defined as the predicted

data object compute time remaining in the queue and not just the number of packets in the

queue.

A way to deal with backlogs in a queuing network is to minimize the Lyapunov drift

[85]. The Lyapunov quadratic function defined by L(t) = 1
2

n∑
i=1

Qi(t)
2, where Qi(t) is

the queue backlog at Qi at time t. The drift, ∆(t) = L(t + 1) − L(t) is defined as the

change in the backlogs between time intervals t. Minimizing L(t) means reducing overall

backlog of the whole network which in turn reduces strain on nodes and allows for better

scaling by removing the need to have rx to rx packet migration.

70 AUTOMATA-BASED DISTRIBUTED DATA PROCESSING

Since our backlog is based on predicted data object compute time remaining in the

queue, a method needs to be in place to gather such information. Timing bits in the packet

header allow every d-op to time packet execution. From packet processing, histograms are

generated where packet payload sizes are sorted in bins of execution times. Every packet

ameliorates the running average of its bin. d-op implement regression algorithms to fit

predictive models on the histogram data. By default every d-op has a linear regression

implementation which can be overridden since linear regression assumes data processing

time is linear to the data size which is not the case for all types of data processing.

Sender Receiver D-opPredictor RXUpdate Regression

Packet
Predict Execution

& Update Backlog
Queue

Invoke
Tracer Run

Regression
Predict Execution

& Update Backlog
Queue

Invoke

Adjust Backlog

Adjust Backlog

ACK Sender

Regression Params

& Backlog

Adjust

Endpoint

Figure 4.6: Sending tracer packets to calculate compute backlog and update sender with

regression parameters to adjust the packet rate limiter.

On every incoming packet and before being queued on the rx queue, the regression

parameters are used to predict the compute time of the new packet. This prediction in-

formation is attached to the packet header. The backlog for a particular node is the total

predicted compute time of these packets. The method is intended for decentralized sys-

tems therefore a method of using special packets, referred to as tracer packets, was devised

to collect prediction information to be used by the source as the bases of the packet con-

trol limiter. This is done through tracer packets as show in Figure 4.6. A tracer bit can be

activated in a packet. This bit instructs the receiver to run the regression algorithm on the d-

op’s histogram data, update the regression parameters, calculate the compute backlog and

send an acknowledgment back to the sender with the backlog and regression parameters.

Tracer packets are sent at intervals Figure 4.6 which minimizes the need to run regres-

sion and send acknowledgments on every packet. The sender updates the endpoint with the

regression parameters and backlog. The sender will then start limiting packet dispatch by

predicting the execution time using the receiver information, the limiter sends the packet

DATA TRANSITION FUNCTIONS: D-OP 71

and disables the endpoint for the predicted execution time since the receiver should, in the-

ory, be busy computing and any other packet sent will be queued up on the rx buffer. Since

there will always certainly be a deviation from the predicted time and the actual execution

time, packets are still bound to be backlogged. To adjust this deviation the backlog com-

pute time is included in the tracer acknowledgment and this allows the sender to correct

the deviation by initially disable the endpoint until the backlog has been cleared.

This rate limiter is set per endpoint thus a sender with multiple receivers will manage

multiple rate limiters. In a network each receiver is also a potential sender which also im-

plements the rate limiters for its forwarding traffic. The overall outcome of the distributed

rate limiters is the continuous minimization of backlogs.

4.7 Data Transition Functions: d-op

d-op implement the data processing and state transition in our proposed automata model

(Section 4.4). These functions are loaded dynamically at startup of every node or deployed

during runtime. As described in the model, d-op map input data and s-tags to output data

and output s-tags, (D,T)→ (D′, T ′). As part of the meta-data describing each d-op is the

input s-tags and output s-tags.

d-op acts in a service oriented way [86] where functions are invoked upon a request

through data packets and an explicit dispatch() is called instead of a function return. A

function is essentially an implementation of an interface class that overrides a run(), and

optionally pre run(), split(), merge(), on load(), on unload() methods. d-op are annotated

with the list of input s-tags and output s-tags. These s-tags are combined in boolean logic

which allows data splits and merges.

A function is invoked as follows: upon reception of a data packet, the relevant meta-

information from the packet is extracted and a lookup for the appropriate d-op is done.

After a staging sequence where data files might be downloaded from the previous node or

other data sources, the pre run() and run() methods are called in sequence. The pre run()

allows the function to do pre-checks before accepting the packet such as checking if all

dependencies are met. If the pre-run fails then the packet is re-dispatched to another node.

Each d-op can optionally define a split() and merge() methods. This scenario is useful

when processing data packets in parallel would improve execution time. The split() frag-

ments the packet into many packets which enables the data to be partitioning. The newly

generated packets will be distributed to multiple instance of the same class. The results

from the worker peers will be returned to the original peer where the merge() method is

called on every packet thus the splitter node acts as a temporary master node. The merge()

method implements a data specific merging routine. Section 4.7.1 shows a typical code

implementation of a d-op.

72 AUTOMATA-BASED DISTRIBUTED DATA PROCESSING

4.7.1 Pumpkin Data State Network Implementation

The model described in Section 4.4 is implemented as the PUMPKIN framework1. The

aim of the implementation is to exploit the automata-based data processing model as a

decentralized distributed framework. The model lends itself well to distributed computing

since d-op can be easily distributed while the s-tags provide the necessary connectivity

information.

PUMPKIN treats data processing as a network plane whereby data is encapsulated in

packets which are routed on the data processing plane. The automata provides the routing

information thus a packet of data having an automaton as part of the header can find its

way in the network. This is achieved through a P2P distributed system for routing and

processing data based on s-tags. The distributed characteristic of the system removes con-

trol centrality and the P2P characteristic allows for data being processed to pass directly

between nodes thus minimizing third party data stores for intermediate data. The architec-

ture is designed with the emerging cloud computing paradigm and virtual infrastructures

in mind therefore one of the goals of PUMPKIN is to dynamically adapt to the varying

network and resource performances in globally distributed virtual resources.

Figure 4.7: Anatomy of a PUMPKIN node. Connectivity is provided by a set of handlers

(right), the core components (center) provide data packet handling and routing while the

functions are the selection functions described in Sec. 4.4.

The architecture of a single PUMPKIN node in the network is illustrated in Fig. 4.7. The

architecture builds around the concept of dynamically loading functions as is done in many

web service containers. In addition to dynamically loading functions, a PUMPKIN node

1https://github.com/recap/pumpkin

DATA TRANSITION FUNCTIONS: D-OP 73

implements a stack of control functionality to achieve the P2P capabilities. Most notable

is the data routing based on s-tags. Each PUMPKIN node exposes a set of interfaces for

accessibility. Communication interfaces listen for incoming packets. Packets can include

code and data (section 4.5). The relevant information about the d-op to invoke is extracted

from the packet. If the d-op is not present on the current node, the packet is re-dispatched.

47 ##{ "object_name": "bedpostX",

48 ##"parameters": [{ "state" : "DTI_PREPROC" }],

49 ##"return": [{ "state" : "DTI_FIBER | ERROR"}] }

50

51 class bedpostX(PmkSeed.Seed):

52 def on_load(self):

53 #Staging dependencies.

54 pass

55 def pre_run(self, pkt, data_object):

56 #Packet pre-check return True to accept or

57 #False to reject

58 pass

59 def run(self, pkt, data_object):

60 #Main routing called on every data packet.

61 new_data_object = self.process(data_object)

62 if new_data_object:

63 self.dispatch(pkt,new_data_object, "DTI_FIBER")

64 else:

65 self.dispatch(pkt,data_object, "ERROR")

66 pass

67 def on_unload(self):

68 pass

69 def split(self, pkt, data_object):

70 #Split data_object, create new pkts and

71 #dispatch them using DTI_PREPROC s-tag

72 pass

73 def merge(self, pkt, data_object):

74 #Accumulate packet fragments

75 #until a merge is necessary.

76 pass

Listing 4.1: A simple d-op, bedpostX() (Section 6.5), template defining 2-state transitions

DTI PREPROC→ DTI FIBER and DTI PREPROC→ ERROR. The s-tags are defined in

lines 1 to 3 of the code. The dispatch() function is called to release the data object so that

it can be sent to the next d-op which can accept DTI FIBER or ERROR s-tags.

74 AUTOMATA-BASED DISTRIBUTED DATA PROCESSING

Listing 4.1 shows a typical d-op implementation as described in Section 4.7. PUMPKIN

is written in Python and d-op are classes which override a number of functions. After call-

ing the dispatch() function, Pumpkin will lookup is state routing table to find any possible

node that are hosting d-op which accept the new state of data. PUMPKIN will then activate

flow control routines discussed in Section 4.6. If multiple instances of the same d-op are

found, PUMPKIN will try to load balance the packets on all the nodes using a default round

robin method (other schedulers can be implemented). In the case that multiple different

d-op are found that accept the new state of data then the packets are replicated to all differ-

ent instances. The PUMPKIN core implements two queue buffers for packet input rx and

for dispatch tx. These buffers separate the interface abstraction layer and the d-op layer

(Figure 4.8. The interface abstraction layer includes a list of communication adapters such

as ZeroMQ2 , RabbitMQ3 and shared memory. Once PUMPKIN puts a packet in the tx

queue then its up to lower interface abstraction layer to choose the adequate adapter to use

for sending the packet. Similarly each adapter is listening for packets on their respective

interfaces and queue packets in the rx when packets are received. It is then up to the upper

layer of PUMPKIN to parse the packet and invoke the correct d-op.

Upper Core: Invoking
d-ops

Lower Core:
Send/Receive pkts from
interface adapters

rx tx

Figure 4.8: PUMPKIN architecture split into lower core and upper core. Upper core deals

with d-op invocation while the lower core deals with packet transmission, reception and

flow control.

Node discovery is done in two main ways. Nodes on the same local network will dis-

cover each other through UDP broadcasts. This allows PUMPKIN to be easily setup on local

networks. A second method for discovering globally distributed nodes is done through a

publish subscribe method. Nodes can be configures with a RabbitMQ server where each

node can broadcast its presence including which d-op are being hosted and connectivity

information such as public IPs and ports. Nodes are configured in groups. Nodes within

2http://zeromq.org/
3http://www.rabbitmq.com/

http://zeromq.org/

SUMMARY 75

a group are discoverable by each other. The grouping limits interference from discovering

nodes from other users. Through broadcasting information each group builds an identical

routing table which allows each node to immediately route to packet to the next node. Al-

though this method might not seem scalable with larger routing tables it is adequate enough

for the number of nodes we use per group. Nonetheless, if need be, a more dynamic dis-

covery can be envisioned using distributed hash tables where node lookups can be done

remotely. The contents of the data routing table is based on s-tags. What the routing table

describes is how to reach nodes that can make transitions from a certain s-tag. So for an

s-tag RAW we would have an entries in the table which would point to all the d-op that

can transit RAW to other s-tags.

Nodes broadcast their means of communication. These are referred to as endpoints. Ev-

ery node can have multiple ways to be reached e.g. multiple network interfaces, message

queues and distributed file systems. In PUMPKIN we treat every communication possibility

as an endpoint of the node. Typical endpoints would be a private IP, a public IP, a pipe and

a message queue name. This information is broadcast to other nodes and the sender is re-

sponsible to choose which ones work and allows nodes to communicate on local networks

as well as nodes behind restrictive NATs.

Evaluation of the described implementation is given in chapter 6 where we demonstrate

two different application scenarios: a streaming data processing application and a file based

biomedical application. We show how both can be described using our model and how

prediction-based data processing flow control on data packets is applied.

4.8 Summary

In this chapter we introduced a new data processing paradigm based on modeling data

as automata. This paradigm tackles the challenge of describing data processing at an ab-

stract level independent from the task ordering and execution specifics. We believe that

this model is complementary to traditional task ordering models. The model takes a data

centric approach to describe abstract data processing as a sequence of state transitions.

Through PUMPKIN implementation we showed how the automata provides information

about data during the fluidity of processing which guides data to computing. The dis-

tributed decentralized architecture of PUMPKIN and the self-routable data packets creates a

data processing plane where data processing is reduced to a protocol which enables clients

to inter-operate. The usage of data packets as data processing parcels allows us to inves-

tigate added data routing attributes. In the presented model data is routed based solely

on its state. Additional attributes can be easily added to the packet such as energy and

security which would allow packet schedulers to choose were to send the data based on

such attributes. PUMPKIN is our approach to data processing as a data transform network

76 AUTOMATA-BASED DISTRIBUTED DATA PROCESSING

as illustrated in Figure 1.2 where it is placed ontop of the SDNs and programmable in-

frastructure layer. The data transformation network layer provides information about data

processing such as data processing times and data routing which can be picked up by the

underlying layer and used to setup and optimize infrastructure. This technique including

PUMPKIN has been presented and demonstrated as part of the big future of data [87].

In our implementation, data states are tags. These tags give limited context to the data

while processing. So as to aid collaboration tags need to be given a meaning, this we

believe can be done by associating tags with ontologies thus a s-tag would in essence

be a URL to an OWL (Web Ontology Language) class and the automata would define

the transitions between such OWL classes. Since our architecture uses the automata as a

means to route data on the network, the combination of OWL and PUMPKIN would enable

ontology-based routing for data processing. The latter would be a step towards combining

data processors through semantics as envisioned in [88]. Since the data packeting mecha-

nism is intrinsically a protocol, heterogeneous application layers can be brought together

using the same protocol. Ongoing research is investigating the use of PUMPKIN to extend

the traditional resources using web browsers [89]. Another area of interest is to apply our

model to data stores [90] making them smarter whereby data objects are files and each

file having an automaton associated with it describing the possible states of the file thus

allowing users to request different states of the file e.g. image file resolution and a compute

back-end can generate the file on-demand.

CHAPTER 5

LINKING DATA PROCESSING THROUGH

SEMANTICS

In the previous chapters we have discussed and presented data processing in its execution

form where we dealt with infrastructure, scaling and modeling. The latter chapters dealt

with data processing as isolated actions where we assume the user has whole knowledge

of the data processing system. To extend data processing beyond isolated groups so as to

ameliorate data science, knowledge about data processing needs to be shared. Such knowl-

edge includes the semantics of processes and data involved in data processing which would

allow groups to extend and reuse this knowledge. In this chapter we will go beyond tra-

ditional distributed computing frameworks and investigate the possibility of automatically

connecting global processes in a similar way as envisioned in linked data. Our take on the

matter is the fact that data and process are intertwined and solely linking data is but half

the story. We believe that linking processes will enrich the data. The results presented in

this chapter formed the bases of the following publication:-

Reginald Cushing, Marian Bubak, Adam Belloum, and Cees de Laat. Beyond Scien-

tific Workflows: Networked Open Processes. In IEEE 9th International Conference

on eScience, pages 357–364, 2013.

77

78 LINKING DATA PROCESSING THROUGH SEMANTICS

5.1 Introduction

Scientific Workflow Management Systems (SWMS) have, for the past years, been instru-

mental in the area of distributed scientific computing. Although many SWMSs such as Tav-

erna [50], WS-VLAM [39, 92] and Pegasus [93] have emerged with different capabilities,

most share some unique characteristics. Most noticeable is the fact that workflows are de-

signed by humans whereby a scientific programmer implements the component or process

functionality and the domain scientist builds the workflow representing the experiment.

This method, recently enhanced with the idea of research objects [94], works well when

dealing with a handful of processes but with the ever increasing number of processes and

services for scientists to choose from, designing workflows is a tedious task. For example,

BioCatalogue which hosts a catalog for bioinformatics web services contains over 2500

services. Furthermore, the proliferation of repositories such as myExperiment [95], SADI

[96], ProgrammableWeb [97] indicate that sharing services within a scientific community

is commonplace. Building on top of scientific catalogs by means of reasoning about fed-

erated service registries could open new ways for building complex workflows. For these

reasons we believe that the next generation of distributed scientific computing will deviate

from traditional isolated SWMS and move towards open systems that can autonomously

construct workflows using a global space of processes and minimal declarations by scien-

tists to construct experiments. With a global space of processes, adequate semantics and

tools to work with these, interoperability between processes can be discovered giving rise

to Networked Open Processes - (NOP).

The Web of Data a.k.a Linked Open Data (LOD) is the principle whereby data and the

relations between scattered data sources are exposed on the Web. This effort is derived

from research on the Semantic Web [98] and the need for scalable structured machine

readable data. Linked Open Data follows 4 main principles as stated in [99]:

Use URIs as names for things,

Use HTTP URIs so that people can look up those names,

When someone looks up a URI, provide useful information, using the standards (RDF,

SPARQL),

Include links to other URIs, so that they can discover more things.

The main enabler behind Linked Open Data is RDF (Resource Description Framework)

[100] which is a meta-data model for describing concepts in a machine readable structure.

RDF describes objects using a subject-predicate-object structure. This simple model allows

the description of complex objects by creating relations between RDF statements:

INTRODUCTION 79

a:person foaf:name “Asimov” .

a:person auth:wrote book:Foundation .

book:Foundation book:hasGenre “Science Fiction” .

These set of RDF statements create a link between subject person and book. Since one of

the principles of LOD is that names should be given URIs then person and book would be

global unique identifiers and publicly accessible since HTTP URIs are used. The publicly

accessible URIs means that linked data is open and anyone can link to them. RDF relations

between scattered triple store (RDF databases) builds the fabric of the global data space

and is referred to as LOD. SPARQL is the common method for accessing LOD. SPARQL

is a RDF query language similar in syntax to SQL but specifically tailored to deal with

subject-predicate-object statements.

In LOD, we often think of data as representing something concrete such as data about a

city or a protein but here we distinguish between two kinds of data. This traditional data we

refer to as inanimate data which is just value-based data. For example, city hasName “Am-

sterdam”, Amsterdam is an inanimate datum which means it is just a name and nothing

else. In contrast, animate data is the type that deals with data other than dead-end values

such as service hasOperation “sayHelloWorld”, sayHelloWorld is a function and thus can

be invoked and executed.

Describing processes or services (in this chapter we differentiate between process and

service; by process we mean any kind of task such as a cloud or grid job, a service is a

subclass of a process and refers to traditional services such as RESTful and SOAP) in the

context of LOD is an emergent research field. Some work which we consider of particular

importance in this field is done in [101, 102]. SADI [101] is a web service framework

for publishing and discovery of scientific web service. This is made possible by using

semantics in every level from publishing to consuming and producing data. SADI services

consume and produce RDF thus inputs and outputs are defined in OWL-DL. This ability

allows SADI services to embed into the Web of Data as services consume and produce

linked data. The RDF store describing SADI services is an example of an animate data

store. This store is used later on this chapter and underpins the motivation behind our

research.

Another similar approach is Linked Open Services [102]. In this approach, traditional

services are wrapped so that they consume and produce RDF. A mechanism of lowering

RDF input to the native syntactic input type such as JSON is employed. The same tech-

nique is used for output in which case the syntactic native type is lifted to the semantic

RDF type. The aim of this work is to facilitate the interactions between services and linked

data.

80 LINKING DATA PROCESSING THROUGH SEMANTICS

In [103] the authors describe the semantic integration approach to modeling and tran-

scribing complex science domain knowledge into well-structured information models based

on semantics.

The first two mentioned related work are similar in approaches; they employ seman-

tics to annotate web services and devise methods for services to consume and produce

RDF data. The focus of both works is the blurring between LOD and RDF-capable ser-

vices. These type of services produce readily linked data and are referred to as Linked

Open Services or Processes. Our work is focused on process-to-process interaction rather

then service-data interaction. To limit confusion between Linked Open Services and our

approach we refer to our approach as Networked Open Processes (NOP).

Other semantic service repositories such as bioCatalogue [104], myExperiment [95]

and ProgrammableWeb [97] focus more on web APIs (another way how to look at web

services) and their mesh-ups (combining web APIs together in a pipeline fashion). The

emergence of such repositories further motivates our motivation of applying structured

reasoning by federating semantic repositories.

5.2 Building Networks of Interoperable Processing

The concept of Network Open Processes (NOP) stems from the similar notion being tack-

led with data as the Linked Open Data (LOD). In LOD data are exposed publicly in an

RDF/OWL form. This semantic annotation of data coupled with the capability to query

such data with dedicated SPARQL endpoints means that complex queries can be answered.

Linking and uniquely identifying web data means the web is transformed into a global

data space. To date many datasets have been exposed using LOD principles these include

governmental, life sciences, literature, and media data. We use a process to deliberately

distinguish between traditional web service (RESTful, SOAP, etc) and task oriented pro-

cesses which do not necessarily follow a Service Oriented Architecture (SOA) such as Grid

jobs but nonetheless can still be semantically described using the basic notions of opera-

tion, input, output and given an adequate platform can still be accessible using the same

techniques as for services.

Similarly to LOD, the same notion can apply to processes and services by semanti-

cally annotating them in a way that makes it easy for discovering networks between pro-

cesses. Many of the processes and services developed for scientific workflows are either

never made available, locked in process silos, or else are cataloged with no real effective

means to to reuse them. Many of these processes can be described in a way that makes

them linkable, discoverable, and reusable. The ability to link processes through semantics

depends on what type of semantics are used. To date many semantic descriptions have

been proposed mainly in the area of web services namely; OWL-S[105], WSMO[106],

BUILDING NETWORKS OF INTEROPERABLE PROCESSING 81

Figure 5.1: A NOP built from an RDF store describing SADI-services [96]. Vertexes are

operations described in BioMoby Semantics provided. Edges show connections between

output and input parameter.

Figure 5.2: A dense cluster of services that has been extracted from Figure 5.1 for clarity

and illustrates the lack of adequate semantics.

82 LINKING DATA PROCESSING THROUGH SEMANTICS

SAWSDL[107], MSM[108], and BioMoby[109]. F or effective process linking, the se-

mantic of such processes should include the notion of inputs and outputs. This provides

the framework by which processes can be semantically networked i.e. processes that have

their output semantic datatypes as input to other processes. BioMoby [109] is one such

semantic language used by the SADI framework. In Figure 5.1 and Figure 5.2 depicts the

potential interoperability between the thousand or so operations. In this scenario interop-

erability means that a process output also exists as, at least, one input to another process

so for a process [o1, ..., ox] = F (i1, ...ix) a link exists if one of the outputs, ox is the

input, ix to another process. We performed the linking on the text names of inputs and out-

puts, specifically on the hasParameterNameText predicate. The objectType predicate was

ignored due to the convention of naming the object type of outputs with Output instead

of naming the actual data type. This results in operations never matching since an object

named output will not be an input to another process. Using datatypes for linking requires

deeper parsing of the object type, specifically looking into the OWL ontology of the in-

put/output. Although this is possible, it is only possible for a limited number of services.

Using text names gives us a clear idea about the potential interoperability which suffices

as a motivation for this work.

An interesting point to note from Figure 5.1 is the formation of various clusters. A

deeper inspection of these clusters shows that within the clusters, the nodes share the same

few edge labels which in our case means input or output data names therefore these clus-

ters are type clusters where the processes are acting on similar data types. For example the

bottom right cluster deals with alignment edges and therefore functions which deal with se-

quence alignments such as EMBOSS Water and ClustalW reside there. Type clusters tend

to contain two main kinds of processes; producers and consumers. The previously men-

tioned processes are producers while other processes such as runPhylipProtpars which

generate phylogenetic trees from alignments are consumers. What is also evident from

the investigated network is that only a small number of processes provide the core scien-

tific logic while a larger number of processes are tools for manipulating data types. The

latter type we refer to as data-tool processes while the former are core-logic processes.

Although one might think that data-tools are of lesser importance, in reality they provide

much of the network connectivity. This is apparent when ordering nodes with their respec-

tive betweenness-centrality whereby most of the top scorers are data-tools. Furthermore,

the graph in Figure 5.1 follows a power-law degree distribution though, its hard to gen-

eralize and claim that such process networks are scale free. Nonetheless it gives us an

indication that some processes are much more popular than others and serve as network

hubs. Although data-tools provide connectivity they can also induce noise in the graph as

shown in Figure 5.2. The inadequate use of semantics meant that many processes shared

the same edge label sequence which resulted in this dense cluster thus a trade-off lies in

BUILDING NETWORKS OF INTEROPERABLE PROCESSING 83

OWL Reasoners /
SPARQL

Semantic
Processes
Tripple
Stores

Migratable
Process
Stores

POI
Registry

Graph Embellishment and Execution
Engine

Linked
Open

Provenance
Data

Message
Passing
Exchanges

Optimized
Scientific Process

Containers

Traditional Service
Containers

Cloud Grid Desktop Browser

Higher-level User Interfacing

TReQL

Figure 5.3: High-level Framework for Networked Open Processes. The user layer is the

interface into the system such as TReQL. The core components represent the core services

such as network reasoners, triple stores and message exchanges. The resource layer is

where actual execution takes place.

the level of data types used; too generic and produce dense clusters, too specific and risk

disjoint clusters.

Through RDF triple stores many scientific repositories like the one investigated here can

be made available thus adding to the NOP network. These networks present a challenge to

distributed scientific computing; how can one make sense of such networks? Traditional

workflow systems rely on the fact the workflows are manually generated but with such

networks where workflows can entail many processes this manual procedure is surely not

scalable. For these reasons we propose a framework that aims to ameliorate the distributed

scientific computing, re-usability and collaboration.

84 LINKING DATA PROCESSING THROUGH SEMANTICS

5.3 A Framework for Interoperable Processing

Figure 5.3 depicts the main building blocks of the proposed layered framework to real-

ize NOP. At the user layer are the user and agent interfaces to the framework such as a

SPARQL endpoint or TReQL (see Section 5.3.2). The top part of the second layer, core

public services, form the core of the system. Here semantic reasoners are employed to find

graph paths for the user requests. The discovered graphs, which could possibly be disjoint,

are skeletons of workflows that can accomplish the complex task requested by the user.

This abstract graph is embellished with necessary parameters to make it executable by a

graph engine. The engine has at its disposal a plethora of core public services for embel-

lishing abstract graphs such as messaging servers that can be used for process-to-process

communication. Provenance and heuristics can be used to feed back information which can

later be used to optimize the network. E.g. frequently used edges get emphasized and have

better chance of being chosen in future searches. The lower layer of the framework stack

are the resources and their container abstraction. To make most use of global computing

resources the framework does not limit itself to traditional web service architecture where

a service is simply publicly hosted. Common web service containers are not optimized for

scientific computing and therefore are not easy to work with in typical scientific scenarios

such parametric studies. Smart containers can harden services for scientific computing (see

section 5.3.4)

5.3.1 Semantic Description of Processes

SequenceAlignment

sequence1

sequence2

alignment

rdfs:hasInputParameter

rdfs:hasInputParameter

rdfs:hasOutputParameter

BLAST

Clustalw

Emboss_water

rdfs:implements
rdfs:implements

rdfs:implements

Figure 5.4: Semantic Function Templates act like interface classes in object orientation.

They provide a template for which many different implementations can exist.

The fulcrum of NOP concept is semantics. It is only through semantics the processes

are linked together at a higher level. Over the years quite a few semantic standards have

been proposed mainly aimed at semantically annotating web services such as OWL-S,

SAWSDL, etc. Most of these semantic description embody the concept of process with

A FRAMEWORK FOR INTEROPERABLE PROCESSING 85

〈statement〉→WANT TO 〈processes exp〉 [〈where clause〉] [〈invoke clause〉]
〈processes exp〉→〈process exp〉 [AND|THEN|OR〈processes exp〉]
〈process exp〉→〈function domain〉[〈as clause〉]
〈as clause〉→AS〈id〉
〈where clause〉→WHERE { 〈conditions〉 }
〈condition〉→〈left operand〉〈operator〉〈right operand〉
〈left operand〉→〈function domain〉|〈id〉.〈attribute〉
〈operator〉→[NOT]IS|PREFERRED
〈right operand〉→〈value〉
〈invoke clause〉→INVOKE WITH { 〈invoke list〉 }
〈invoke list〉→〈invoke item〉 [{, 〈invoke list〉 }]

〈invoke item〉→〈sqarql〉|〈url〉 FOR 〈process input〉
〈process input〉→〈function domain〉|〈id〉.〈input predicate〉.〈attribute〉
〈sparql〉→SPARQL { 〈sparql select〉 }

Listing 5.1: A simple SQL-like declarative language (dubbed TReQL) aimed to specify

the minimum amount of steps in a workflow.

inputs and outputs and thus are all candidates for a NOP network. The depicted graphs

(Figures 5.2, 5.1)above use BioMoby semantics but our proposed framework is not limited

to using any one semantics description. The aim is not to reinvent yet another semantic

description language but to work with what is already developed. With the aid of seman-

tic adapters RDF graphs can be built which in essence would represent the NOP graph.

Although semantic description languages are in abundance, some conventions need to be

followed to realize a NOP network which boils down to correctly describing the inputs

and output using ontologies. For example, in SADI framework [101] an operation named

named getEcGeneComponentPartsRat has as input KEGG ec Record while the output type

is getEcGeneComponentPartsRat Output which, if taken literally, does not make sense for

a NOP network as such outputs are rarely inputs to other processes. But the output points

to an OWL ontology which describes the type as a collection of KEGG ec Record. Thus,

looking deeper into the ontologies of inputs and outputs we can make better reasoning

about process interactions.

In addition to input/output semantics would be semantics about the process itself, most

importantly what function domain does the process belongs to. Our experience has shown

that within scientific workflows only a few tasks are core-logic processes while most are

data-tool processes. Furthermore, the core logic can often be categorized into higher func-

tion domains where each domain has similar input/output patterns. For example, a Se-

86 LINKING DATA PROCESSING THROUGH SEMANTICS

quenceAlignment function domain may have many implementations of the alignment al-

gorithm but all follow a similar pattern of having one or more sequence inputs and produce

and alignment output. In BioCatalogue [104], service are categorized using tags but using

ontologies to describe such domains would be more powerful. We refer to function do-

mains as Semantic Function Templates (SFT). A SFT is akin to an interface class in object

orientation (see Figure 5.4). SFTs describe the high level structure of processes.

5.3.2 Network Reasoning

RDF graphs are well suited for reasoning. By reasoning we mean that learning implicit

information on how processes are related by following edges. Since the NOP graphs are

already in RDF triple stores, SPARQL combined with OWL reasoners can be used to build

workflows from implicit relationships in the NOP graphs. For example, from the above

graph if a user wants to get a phyogenetic tree from fasta sequence alignments then a

reasoner can follow RDF triples to construct the graph in Figure 5.5.

Combining semantics with reasoning, workflows can be constructed with minimum

knowledge of the processes involved thus the main interface to create and run workflows

would be SPARQL endpoints that query and reason about the network. SPARQL is a

low-level language for RDF graphs, one can consider it as the meta language for RDF on

top of which other simpler declarative languages can be built that can be simpler to use.

Such a higher-level query language is TReQL (Type Reasoning Query Language), aimed

at capturing the users’ core logic which can be synthesized to SPARQL. In TReQL the

user specifies the major core processes such as a SequenceAlignment and their order in the

experiment, the input data type and optionally any restrictions such as output datatypes,

sequence algorithms, etc.

In TReQL processes form part of a function domain. Function domains are ontologies

describing a semantic function template for similar functions (see Section 5.3.1). Thus

conceptually many processes can be interchanged with some effort in handling data type

conversions. In essence, a SFT adorns a process with a type so we not only have data

types but also process types. These two in combination provide a powerful means of

reasoning about a NOP network. In a typical scenario, a user wants to perform a sequence

alignment, he/she knows the input data type as fasta so in TReQL it would translate to

WANT TO spec:SequenceAlign AS sq WHERE sq.input IS spec:Fasta. This will query the

NOP network for processes of type spec:SequenceAlign and have as inputs spec:Fasta. If a

process is found but does not have the same input types, the reasoner will walk the network

links to find if any process can transform the data type into the one required by the process.

The simplified grammar presented in Listing 5.1 shows the main constructs of the lan-

guage. The user specifies the main processes to perform with the WANT TO statement

A FRAMEWORK FOR INTEROPERABLE PROCESSING 87

fasta fasta_alignment

fasta_alignment alignment

alignment phyogenetic_tree

buildMultipleAlignmentWithMAFFT

GetConservedDomainsFromFastaAlignment

BuildPhylogeneticTreeFromFastaAlignment

Figure 5.5: A path found by following network production rules.

and in which order. The AND, THEN, OR define the order of execution. AND means that

the two processes are in a parallel construct, THEN means they are ins sequence and OR

means that any of the processes will do. The inputs and outputs are stated in the WHERE

clause. This allows the user to limit the search to parts of the graph that accept the input

and output types. The operator IS matches an exact condition while PREFERRED will

try to match the value. The NOT negates aforementioned operators. An optional INVOKE

WITH can be used to attempt to start the networked processes. This clause points to the

input data needed by initial processes. The data can itself be a sourced from LOD as a

SPARQL query or through URLs clause. Using TReQL the graph depicted in Figure 5.5

can be generated by the query in Listing 5.2.

The query will output a list of paths that can satisfy the request. An ambiguity arises

when multiple paths are returned to this end the user will be responsible for choosing be-

tween paths or refining the search. The chosen path is then embellished with the necessary

parameters to make it executable and passed to execution engines. A common obstacle in

interoperability between processes is data mismatch which can either be at the data format

level or at the semantic level. There is no golden solution to magically solve these obstacles

but some effort can be made to ease the problem. At the data level a common approach is

to implement adapters that transform the data into desirable formats. Another complemen-

tary approach is to bridge the mismatch at the semantic level through ontologies. Solving

such mismatches will help in linking multiple process databases.

77 WANT TO spec:SequenceAlign AS sq THEN spec:SequenceDisplay AS sd

78 WHERE { sq.hasInputParameter.objectType IS spec:Fasta }

79 INVOKE WITH {

80 URL fasta_url FOR sq.hasInputParameter.sequence1,

81 URL fasta_url FOR sq.hasInputParameter.sequence2

82 }

Listing 5.2: TReQL statement for Figure 5.5.

88 LINKING DATA PROCESSING THROUGH SEMANTICS

5.3.3 Process Object Identifier

Process Object Identifier (POI) (see Figure 5.6) is a feature that deals with making pro-

cesses easily distributable, replicable and better in data provenance. Data can be tagged

with the POI of the process that generated it. Using a POI system the correct process that

acted on the data can be retrieved. This offers a better mechanism than traditional URLs

to point to web services since services behind URLs can change thus invalidating the data

provenance.

A service hosted at a URL and addressed by the same URL is anchored to that location

and dynamic replication is done within the domain. One disadvantage is that if we want to

dynamically replicate the service on a global distributed architecture then there is no easy

way how to address the service farm. With a POI a service is addressable with a location

agnostic address. Resolving the POI will result in a list of of hosted service endpoints.

This is analogous to Internet DNS, websites are addresses using their domain name and

not IP, hosting service can change but the domain name always resolves to the correct

hosting machine. The POI system uproots services from their fixed location and allows for

more dynamic handling as would be the case in dynamically scaling services to perform a

parameter sweep studies.

POIs also help in provenance data. Tagging a data object as being modified or generated

by a URL is not saying much since the service behind the URL can change completely or

even cease to exist. A POI points to a specific process even if archived and not actively

hosted. Through POI resolution, a list of identical services or processes can be looked up.

This allows a system to, for example, distribute workload to these replicas. The intention

of POI is to point to immutable processes thus when a new version of a service is available

a new POI is assigned to it. This distinction between different versions of the same process

is paramount for provenance capture as generated data can be tagged with the process POI.

5.3.4 Process Containers

In the NOP framework any object that is able to compute is a process and an effort is made

to make everything linkable. The framework is not specifically bound to web services

although these are the simplest form of linkable processes. The framework relies on a

system of containers for exposing as many resources as possible. Traditional web services

are already hosted within containers such as Axis2 or Tomcat. The same technique can be

applied to generic processes. As part of ongoing research in process containers optimized

for scientific computing, we have implemented two types of containers; a modified Axis2

container for running traditional services on deep network machines such as grid machines

which have restricted Internet access. This technique which is described in detail in chap-

ter 3 relies on message passing through a message exchange. The Axis2 container was

A FRAMEWORK FOR INTEROPERABLE PROCESSING 89

POI
Registry

10.100.220/8392

http://example.adomain.com/

http://myservice.foo.co.uk/

http://replica.hostings.edu/

http://a23eb3f.dynaservice.com/

Figure 5.6: Process Object Identifiers (POI) enable unique identification of many identical

processes hosted at different locations.

modified so data invocation requests are queued on message queues which are picked up

by the Axis2 container and pushed up to the service. The output is done in reverse thus

the container outputs the return result to the message queue. This messaging interface al-

lows processes to communicate directly with each other since containers are made to listen

on specific queues while a message routers within the message exchange is responsible to

move messages from one process to the next. Messaging servers such as activeMQ im-

plement the AMQP open protocol thus any container able to use AMQP can communicate

with the rest of the processes. Messaging is a common pattern to achieve distributed com-

puting as is done with MPI (Message Passing Interface) on dedicated computing clusters.

Another implemented container is a Python container (used in PUMPKIN) which im-

plements a more workflow oriented process. The Python container uses the same AMQP

to communicate externally thus there is no distinction between an Axis2 service and a

Python task and thus interoperability is as straightforward as pushing messages through

the message exchange. The Python container implements the concept of ports as opposed

to parameters as is done in web services. Ports are typed data channels which tasks use

to communicate. A Python task implements a run() function which is called when the

task is loaded into the container. The task will then listen for data to process on the mes-

sage queue. This container mechanism makes it possible for replicating processes since

containers are able to host many different processes.

Figure 5.7 depicts the architecture of an optimized process container. Using AMQP, the

container can listen for input data on message queues. This allows a container to execute

90 LINKING DATA PROCESSING THROUGH SEMANTICS

on restrictive networks such as grids or desktops. A container can host many processes

by dynamically deploying processes on demand. Data handling is done by the container

using the data handler which can achieve peer-to-peer communication for containers that

are reachable such as on clusters. A provenance component sends provenance data to RDF

stores.

Process containers also make it possible to distribute and replicate processes anywhere

containers are running. This coupled with POIs has the ability to distribute processes glob-

ally. This method of containers makes resource acquisition much simpler. For example, in

a cluster/grid architecture the container is submitted as a pilot job which then can run web

services or Python tasks; in cloud infrastructures, templates are primed with a container

so that when the VM becomes active the container can start hosting processes. Containers

also find their way into unorthodox computing resources as is in web browsers [17]. While

containers vary greatly in what type of processes they host so as to increase the comput-

ing resource outreach, semantically, the processes are indistinguishable and thus a NOP

network can traverse many resources types.

Process

Optimized Container

AMQP
Handler

POI
Loader

Process
Process

Invoke Dynamic Process

Message Exchange

Data Router
Handler

PROV

Process

Optimized Container

AMQP
Handler

POI
Loader

Process
Process

Data Router
Handler

PROV

Provenance RDF
Store

POI/
Input/Output
Data ref

Provenance

Figure 5.7: Python Optimized Process Container. The container is intended to run task

oriented scientific applications on a variety of resources including resources with limited

Internet connectivity such as cluster nodes and private clouds. The container can run any

Python task and handles all communication in a pull fashion thus, allowing tasks to be

invoked behind firewalls.

5.3.5 Usage Scenario

Figure 5.8 combines all the described framework components into a typical usage scenario.

In (1) a user submits a TReQL query such as described in Listing 5.2. This query is

A FRAMEWORK FOR INTEROPERABLE PROCESSING 91

Process

Optimized Container

AMQP
Handler

Data Router
Handler

POI
Loader

Process
Process

Process

Optimized Container

AMQP
Handler

Data Router
Handler

POI
Loader

Process
Process

Message Exchange

OWL Reasoners /
SPARQL

Migratable
Process
Stores

POI
Registry

Graph Embellishment and Execution
Engine

TReQL
Interface

WANT TO ...

Data Stores/
Linked Open Data

1

2

3

4

5

7

Provenance RDF
Store

NOP
Synapses

PROV

PROV

6

8

Figure 5.8: Diagram combining all components into a framework and presenting sequence

of actions of an usage scenario (detailed description in the text).

decomposed into SPARQL queries and run against distributed RDF triple stores which

describe the Networked Open Processes. At this point the user is presented with paths

which need not all be connected. In the case that a desirable path is selected, the path with

the INVOKE part of the TReQL is passed to the Graph Execution Engine in (2) where all

necessary dependencies are included to make the graph executable. The Graph Engine is

responsible to resolve POI for processes in (3). This will result in list of identical processes

(if any) and the user can opt to use all and partition the input data amongst the farm of

identical processes. If the process in question is not active on any of the containers, a

reference to its archive (migratable process stores) is retrieved. In (4) the engine invokes

the processes (the scenario assumes using optimized containers) by publishing a request for

the deployment of the process onto one or more containers. If the process is active then the

engine proceeds to submit the input data to the message queues on which the processes are

listening. The AMQP handler in (5) retrieves input data or process deployment requests

and either invokes the process or retrieves the archived process (6) and deploys it then

proceeds to invoke it. The optimized containers are responsible to retrieve data through the

data handler (7). This relieves any other framework component from handling data which

could potentially cause bottlenecks. The optimized containers also have the possibility of

publishing provenance data back (8) into linked open data. This provenance feedback loop

is used in NOP to perform network optimization. This stage emphasizes edges in the NOP

network so that frequently used links will be preferred in future TReQL searches.

92 LINKING DATA PROCESSING THROUGH SEMANTICS

5.4 Summary

Our investigation shows that the level of semantics on the Internet is reaching a level where

processes or services can be linked together through their common data transformations.

This semantic knowledge represents a top layer in our scheme (Figure 1.2) and would

constitute the primary as the primary route finder in the underlying data transformation

network. In light of the ever increasing scientific services/processes, we have shown how

future distributed and collaborative scientific computing can be done through the new con-

cept of Networked Open Processes NOP. We described a framework for tackling a complex

NOP network. In this chapter we introduced a number of new concepts including the con-

cept of Process Object Identifiers (see section 5.3.3), TReQL, a minimalistic SQL-like

language for specifying main experiment processes (see Section 5.3.2), Semantic Func-

tion Templates which are templates for core scientific processes (see Section 5.3.1), and

Optimized scientific process containers which increase the computing resource outreach

(Section 5.3.4). Although a full reference implementation of the framework is not avail-

able yet, optimized containers have already been investigated and shown to be successful

in uprooting services to exploit grid resources [40]. In Chapter 4 we have also shown

how a protocol can be implemented which would aid the decentralized data processing and

communication. The automata model described in Chapter 4 also lays the foundation for

semantic transformation. In our model we talk about state transformation where states are

described as tags. Using references to OWL classes in place of tags, one can envision data

transformations with semantics.

CHAPTER 6

EVALUATION OF DATA PROCESSING

MODELS

In chapters 3, 4, 5 we have studied scaling, moddelling and usage of semantics in the con-

text of distributed data processing. Based on this research we have built adequate experi-

mental prototypes to validate the elaborated models. In this chapter we present experimen-

tal results of various models discussed in the course of this thesis. Specifically we demon-

strate results for the predication-based scaling discussed in chapter 3, section 3.3, fuzzy-

based scaling and load balancing discussed in chapter 3, section 3.4, the WFaaS-based task

farming discussed in chapter 3, section 3.2, and two applications for the automata-based

modelling approach presented in chapter 4. The results presented in this chapter formed

the bases of the publications listed in chapters 3, 4, and 5.

93

94 EVALUATION OF DATA PROCESSING MODELS

6.1 Prediction-based Auto Scaling

In this section we demonstrate the prediction-based scaling approach using the dataflow

model presented in chapter 3. The method is applied to a image processing workflow. Fig-

ure 6.1 shows an example application using Octave1 [110] aimed at illustrating the task

level scaling implemented in the Dataflow engine. The workflow has two starting points

one being the DirectoryReader which, as the name suggests, reads images from a directory.

The second starting task is the Parameter task. This task acts as a parametric engine which

supplies parameters to the Histogram task. The Normalize task normalises RGB images.

The tasks, Converter2 and Converter1 convert images into different colour spaces. His-

togram calculates the euclidean distance between the two new colour space histograms. At

the end of the workflow the results are collected by Results while intermediate images are

collected by ImageCollector. The core tasks of the workflow i.e. Normalize, Converter2,

Converter1, and Histogram are said to be embarrassingly parallel in nature. These tasks

have no casual dependency between messages on the same port and therefore are ideal for

a driving test case to test our Dataflow and scaling systems.

DirectoryReader Normalize

Converter1

Converter2

Parameters

Generate
Histogram

ImageCollector

ImageCollector

Results

Figure 6.1: An Octave image processing workflow. The workflow converts images into

two different colour spaces and calculates the histogram difference between the two new

colour spaces. The parameter setting for the Histogram is the histogram bin size.

As a resource pool back-end we had access to the Distributed ASCI SuperComputer 3

(DAS3) [111] which is a five wide area distributed system. Tasks where submitted across

all clusters. Each site hosts a GridFtp server which were used to transmit data between

tasks and therefore allow inter-cluster task communication. The timings illustrated in Fig-

ure 6.2, Figure 6.3 show the execution time of each task in the workflow. The execution

time incorporates the the scientific logic execution time as well as overheads associated

with communication, startup and clean up times.

Converter2 and Converter1 are set to auto-scaling. In these cases the Dataflow engine

is responsible for gauging the load on the designated data partition input queue and decide

1Octave is an open source Matlab implementation.

PREDICTION-BASED AUTO SCALING 95

00:00:00

00:05:00

00:10:00

00:15:00

00:20:00

00:25:00

00:30:00

00:35:00

00:40:00

00:45:00

00:50:00

00:55:00

01:00:00

 0 2 4 6 8 10

T
im

e
 h

h
:m

m
:s

s

Number of Tasks

DirectoryReader
Normalize

Parameters

Converter1
Converter2

ImageCollector

Histogram
Results

Figure 6.2: Workflow execution without scaling. The length of the bar represents the total

execution time.

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e
 m

m
:s

s

Number of Tasks

DirectoryReader
Normalize

Parameters

Converter1
Converter2

ImageCollector

Histogram
Results

Figure 6.3: Workflow execution with scaling. Lines preceding the bars represent waiting

time while the length of the bars represent actual execution time of an instance of the

workflow task. Bars with the same line encoding are replicated instances of the same task.

Time 0 represents the start waiting time for the first task.

on how many clones to submit using a user defined threshold. The Parameter task acts as

the parameter engine by reading parameters from a file and sending messages containing

parameters to the Histogram. The latter is not set to auto-scale but instead is scaled on

a per parameter bases. Thus each parameter from Parameter creates a new instance of

96 EVALUATION OF DATA PROCESSING MODELS

Histogram. ImageCollector is set to a fixed replication where the user specifies the number

of clones.

At time 0 DirectoryReader and Parameters are submitted as these have no dependen-

cies. Other tasks are only submitted when some data is available for input. This is clearly

shown by the difference in starting times for each task in figure 6.3. The computation over-

lap between tasks show the effect of message pipelining where tasks can start processing

data immediately as it is produced and need not to wait for the dependant tasks to terminate

before starting execution.

Figure 6.2 shows the workflow execution with scaling disabled. The results clearly

show that Converter2 is relatively slow to process the data and hence causes a flow bot-

tleneck. This has a ripple effect on the dependant tasks (Histogram, ImageCollector and

Results) which spend most of their time in an idling state waiting for new messages to be

delivered to their input ports. Since scaling is completely disabled, the parameter sweep

scenario where the Parameters is the task parameter engine does not take effect and hence

Histogram is not replicated. This results in The Histogram task processing all parameters.

The mean runtime for the non-scaled workflow is around 54 minutes.

Figure 6.3 shows the same example with the same inputs but this time enabling scaling

features. The results immediately show how the previous bottleneck was circumvented

through replication. The Converter2 was replicated as many times as needed hence in-

creasing the data consumption and production. The Histogram is replicated 3 times which

follows the parameter sweep scenario whilst we have four ImageCollectors as defined by

the user. All in all the 8 task workflow unfolded into 44 separate tasks through scaling.

In this example the effect of just auto-scaling achieved a 9 fold improvement over the non

scaled workflow. The single task Converter2 achieves a much better improvement which

is approximately 16 times faster. The execution profile for Converter2 tasks also shows the

burst threshold in action since tasks are replicated in bursts which gives rise to the staircase

profile. From figure 6.3, Converter1 is also dynamically scaled up but since its faster it has

a lower replication count.

6.2 Fuzzy-based Auto Scaling

In this section we demonstrate fuzzy-based scaling and load balancing which were pre-

sented in chapter 3. The methods are applied to a workflow of web services.

The workflow depicted in Figure 6.4 illustrates a typical bio-inforamtics workflow. The

workflow consists of two independent pipelines. The pipelines compute sequence align-

ment using data supplied by the UniProtKB [112]. Each component is a SOAP Axis2 web

service. The source represents the bootstrapping component while the sink represents the

result gathering client. The workflow is induced with 22550 alignments for each pipeline

FUZZY-BASED AUTO SCALING 97

getSequenceId

localAlignment

globalAlignment htmlRender

localAlignment htmlRender

source sink

Figure 6.4: A web service workflow using BioJava to implement sequence alignments.

therefore the whole workflow computes 45100 alignments. The getSequenceIds

web service reads a list of sequence ids and returns the actual sequence data for the

ids. localAlignment performs a local alignment on the passed sequences while

globalAlignment performs a global alignment. Both alignment web services use the

BioJava API [113] for processing the biological data. htmlRender transforms the re-

sults into HTML tags which are then made accessible through a web browser. The sink

concatenates the results into HTML pages.

As a resource pool back-end we had access to the Distributed ASCI SuperComputer

3 (DAS3) which is five wide area distributed system. For purpose of testing the resource

competitiveness between web services we used a single 29 node cluster from the University

of Amsterdam (UvA). The UvA cluster nodes each have 2 2.2GHz AMD Opteron DP275

processors with 4GB of main memory.

The results in Figure 6.5(a) and Figure6.5(b) illustrate the execution pattern of the work-

flow in Figure 6.4. Figure 6.5(a) shows predicted input load for each web service during

the execution lifetime at intervals of 5 seconds. Spikes in the load graph signify when a

considerable amount of data has been queued on the web service input queues. The spikes

in the service load are short lived since the fuzzy controller immediately responds by ini-

tiating multiple instances to deal with the increased load. The response to the service load

spikes is illustrated in Figure 6.5(b) which shows the number of web service instances si-

multaneously running at any particular time. Thus spikes in the service-load graph 6.5(a)

are shortly followed by spikes in the service-instances graph 6.5(b).

Dissecting some notable regions within these results we can note that at the beginning of

the execution getSequenceIds starts with a load close to 1. Since no other web service

is running at this stage, the fuzzy controller does not waist time and aggressively scales the

service up. This can be noted with a spike in 6.5(b). With the autonomous orchestra-

tion feature, as soon as getSequenceIds produces output it also initiates its dependent

successors. Since getSequenceIds produces output for both localAlignment and

globalAlignment, the multiple instances immediately increase the input load on both

these web services. The spikes for the simultaneous load increase is illustrated between the

98 EVALUATION OF DATA PROCESSING MODELS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300 350 400 450 500

s
e

rv
ic

e
 l
o

a
d

seconds

globalAlignment
localAlignment

getSequenceIds
htmlRender

(a) Web service load for all workflow components. A service load of 1 means that

the web service is expected to complete its task within the specified time, service

load of 2 means it will take twice as much to complete.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400 450 500

s
e

rv
ic

e
 i
n

s
ta

n
c
e

s

seconds

globalAlignment
localAlignment

getSequenceIds
htmlRender

(b) Number of web service instances running for each workflow module at any

given time.

Figure 6.5: Results showing the calculated service load 6.5(a) and the number of web

service instances initialized by the fuzzy controller 6.5(b) to control the service load.

50-100 second mark in 6.5(a). As expected, the fuzzy controllers take action and respond

by replicating the instances. At this point the controller on getSequenceIds senses the

increase in resource load and also notes its own load has diminished hence it downscale

itself to make way for other services. Whilst still having a light load, getSequenceIds

will tentatively replicate itself slowly when it detects dips in resource usage. This can be

WFAAS-BASED TASK FARMING 99

noted in the region 100-200 seconds in 6.5(b) where sudden dips by globalAlignment

result in slow increase by both getSequenceIds and htmlRender simultaneously.

As was the case for getSequenceIds at the start of execution, a relative small spike

(between 400 and 450 mark)in the load for htmlRender at the end of execution triggers

an aggressive replication since it is the only running web service at that time. These results

show that the workflow of cooperating web services cooperate on three fronts: cooperation

through communication, cooperation through orchestration, and cooperation through fair

resource usage. During the whole execution, the load on the resources was at an average

of 72%. This is very close to the ideal with regards to the fuzzy controller configuration

where 75% had the highest probability in the normal membership function.

6.3 WFaaS-based Task Farming

In this section we demonstrate the WFaaS-based approach to task farming as presented

in chapter 3. The WFaaS-based approach to task farming was applied to a biomedical

study for which 3000 runs were required to perform a global sensitivity analysis of a blood

pressure wave propagation in arteries (Figure 6.6). Patient-specific simulations involves

many parameters based on data measured in-vivo and subject to uncertainties [114]. The

relationship between the model parameters and the simulated output is complex. Thus,

a global sensitivity analysis is an appropriate method to investigate how the uncertainties

in the model output can be attributed to the different sources of uncertainty in the model

input. A patient specific model was set up for the major arteries of the arm. In a Monte-

Carlo study, 11 model parameters (e.g. Young’s modulus, vessel diameter, artery length)

were varied randomly within their respective uncertainty ranges over 3000 model runs.

The primary goal of running the use case was to speed up the entire sets of farmed

workflow; this speed up is limited by Virtual Organization (VO) membership of the users:

the more this VO membership gives access to computing resource the more the system

will be able to farm concurrent jobs and the faster is the execution of the entire experiment.

In the current setting the workflows are farmed by groups of fixed size; if more resources

become available new groups can be farmed. The results where obtained on the Dutch

ASCII supercomputer (http://www.cs.vu.nl/das3/). Figure 6.7 shows the execution and

waiting times obtained using two scheduling approaches: WFaaS (left), and the original

WS-VLAM farming (right). Each workflow submitted using WFaaS approach performs

multiple simulations, any computing resources that become available is added to the pool

of resources to process the remaining simulations, in total 28 workflows performed all

the 100 targeted simulation. While in the original WS-VLAM farming each submitted

workflow performs only one simulation, which lead to 100 separate submissions. It is

clear that when computing resources are limited and multiple applications are competing

100 EVALUATION OF DATA PROCESSING MODELS

Figure 6.6: Screenshot of the scientists’ desktop. On the top right corner, the scientist can

compose the workflow in intuitive way. The user can also specify how he/she wants to

farm his workflow (list of input files, a range of application parameter). When the user

executes the workflow a monitoring window (window on the top left corner) shows the

farmed workflows and the user can monitor each run separately (cascade of windows on

left bottom corner).

WFAAS-BASED TASK FARMING 101

00:00:00

00:30:00

01:00:00

01:30:00

02:00:00

02:30:00

03:00:00

03:30:00

04:00:00

 0 5 10 15 20 25 30

T
im

e

Job#

Performance on DAS3 - 30 Jobs - 100 Parameter Sweep

Pending time
Running time

00:00

01:00

02:00

03:00

04:00

05:00

06:00

 0 20 40 60 80 100

T
im

e

Job#

Performance on DAS3 - 30 Jobs - 100 Parameter Sweep

Pending time
Running time

Figure 6.7: Performance of WFaaS. On left: 100 simulations of the wave workflow takes

about 3h:15mn using the WFaaS, on right: the same number of simulations take 5h:15mn

farming each workflow separately. Each workflow submitted by following the WFaaS

approach performs multiple simulations which reduce considerably the waiting time. In

both cases workflows are competing to use 28 computing nodes. For the WFaaS example

30 tasks where submitted thus the last 2 tasks are stuck on waiting queues. Once the

slots are freed they terminate immediately since the other tasks performed the work using

WFaaS.

to get access to these resources, the WFaaS approach has a significant advantage as it

reduces the waiting time considerably, leading to the overall speed up of the entire set of

farmed workflows. The overhead of the WS-VLAM in term of data movement among the

workflow component is low and has been discussed in [61].

Figure 6.8: A skeletal workflow intended to simulate blood flow for treatment of thrombo-

sis. This is an extension of the first experiment and is intended to run patient specific blood

flow simulation using many input parameter variations [115].

A second example (Figure 6.8) aims at demonstrating the WFaaS at the task-level. This

experiment is an extension of the previous example where the core module SA analysis

contains the logic of the previous example. In this experiment, the tasks are given short

workloads to simulate short lived tasks. This workflow is executed on the BigGrid (dutch

eScience grid). With short lived tasks, resources are occupied for a relatively small time

span making the queue waiting more apparent which cause noticeable overhead. The ex-

periment was run on the BigGrid (http://www.biggrid.nl/) which is the Dutch grid initia-

102 EVALUATION OF DATA PROCESSING MODELS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

runMC SAanalysis dat2mat fileWriter1 fileWriter2

se
co

n
d
s

Queue Time
Running Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

runMC SAanalysis dat2mat fileWriter1 fileWriter2

se
co

n
d
s

Queue Time
Running Time

Figure 6.9: Workflow as a Service at task-level. On left: traditional workflow submission

with unpredictable and, potentially, large queue waiting times. On right: Workflow harness

jobs act as services by running multiple workflow jobs thus circumventing queue waiting

times. The apparent queue waiting time on the right is due to the harness job polling

interval.

tive.With task-level WFaaS we can instruct a harness to load a sequence of tasks instead

of just loading one task and terminate immediately. This mechanism makes most use of

the resource allocated to the workflow. The results in Figure 6.9 show the difference of

the workflow run with task-level service oriented characteristics (right) and without (left).

On the left shows the typical scenario with grid queue waiting times; queue waiting times

are unpredictable and can vary from seconds to hours. Queue waiting times in shared grid

resources play a crucial role in overall performance of workflow execution since they can

span from minutes to hours [116]. This tend to cause problems in data intensive workflow

execution because data produced by a task, for example runMC, needs to be buffered un-

til the consuming tasks (SA analysis) come into play. The data being produced might be

too large to be buffered thus the faster the consumers comes start executing, the better the

system can handle the load. This is achieved through task-level WFaaS (Figure 6.9 (right))

where acquired resources are reused to execute multiple tasks in sequence. The first task

runMC has the highest queue waiting time since it has to pass the submission queues.

Other tasks can be loaded immediately into already existing harnesses without waiting on

any queue. This results in a reduced and predictable queue waiting time.

6.4 Automata-based Tweeter Filtering

A Twitter workflow is used as a demonstrating application for the distributed architecture

using the automata model described in chapter 4. The choice of Twitter is that it provides

AUTOMATA-BASED TWEETER FILTERING 103

real world data loads while also providing fine grained data atomicity (a tweet message)

thus creating a scenarios for pronounced overhead.

R

S1

S2

S3

S4

S5

E

S6

A

D

P

N

N VA

A A

tweetinject()

filterhasa()

filterenglish()

filterisa()

collectorall()

Autom
aton

to Workflow

Workfl
ow

to Network

R: RAW
S1:ENGLISH
S2:ISA
S3:HASA
S4:NON_ISA
S5:NON_HASA
E:RELEVANT
S6:NON_ENGLISH

A: Amazon
N: Private Cloud
V: VPH
D: Docker
P: PC

Figure 6.10: Top: Automaton for stream processing on Twitter data. Right: Function

workflow for performing the transformations. Bottom: Nodes on EC2 (Ireland, Oregon),

VPH (Krakow), local cloud (Amsterdam), Docker and laptop (Amsterdam).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

P
re

d
ic

te
d

 C
o

m
p

u
te

 B
a

c
k
lo

g
,

s
e

c
o

n
d

s

Time, seconds

mean backlog
total backlog

Figure 6.15: Aggregate and mean of predicted compute backlog on network over time.

The PUMPKIN testbed used for this application scenario is intended to demonstrate the

applicability to globally distributed resources on controlled and uncontrolled resources.

104 EVALUATION OF DATA PROCESSING MODELS

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

P
ac

ke
t P

ar
al

le
l E

ffi
ci

en
cy

Packet Coalesce Efficiency

299
235218

188

147142

116114
107

98
92

86
77

73
68

6462
59

53
50

Figure 6.11: Packet coalescing processing

efficiency, ceff(), between EC2 (Ireland)

and private cloud (Amsterdam) vs paral-

lel packet efficiency, peff(), assuming data

window of 1000 tweets and 20 nodes. The

numbers next to the data points are the actual

number of packets in the grouping.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ac

ke
t P

ar
al

le
l E

ffi
ci

en
cy

Packet Coalesce Efficiency

412229222322172213221002802
482

362302

202
162

142
122

102

82

62

Figure 6.12: Packet coalescing processing

efficiency, ceff(), between EC2 (Ireland)

and EC2 (Oregon) vs parallel packet effi-

ciency, peff(), assuming data window of

1000 tweets and 20 nodes. The numbers next

to the data points are the actual number of

packets in the grouping.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.05 0.1 0.15 0.2 0.25 0.3

P
ac

ke
t P

ar
al

le
l E

ffi
ci

en
cy

Packet Coalesce Efficiency

3921
214319491500

1002
802

602

402

202

Figure 6.13: Packet coalescing process-

ing efficiency, ceff(), between VPH-Share

cloud (Cracow) and private cloud (Amster-

dam) over RabbitMQ vs parallel packet ef-

ficiency, peff(), assuming data window of

1000 tweets and 20 nodes. The numbers next

to the data points are the actual number of

packets in the grouping.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84

P
ac

ke
t P

ar
al

le
l E

ffi
ci

en
cy

Packet Coalesce Efficiency

19221062702662

202182

62

Figure 6.14: Packet coalescing process-

ing efficiency, ceff(), between Docker VM

and Docker host vs parallel packet effi-

ciency, peff(), assuming data window of

1000 tweets and 20 nodes. The numbers next

to the data points are the actual number of

packets in the grouping.

Figure 6.10 illustrates the node network which included 3 nodes on EC22 (Ireland), 1 node

2http://aws.amazon.com/ec2

http://aws.amazon.com/ec2

AUTOMATA-BASED TWEETER FILTERING 105

-400

-300

-200

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000

C
o

m
p

u
te

 B
a

c
k
lo

g
,

L
(t

)

Time, seconds

Lyapunov drift
Lyapunov quadratic function

Figure 6.16: Maintaining system stability by minimizing backlog. Predicted compute

backlog calculated using Lyapunov quadratic function, 1
2

n∑
i=1

Qi(t)
2 where Qi(t) is the

backlog for node i at time slot t, and the Lyapunov drift.

on EC2 (Oregon), 1 node on VPH computing platform3, 2 nodes on private cloud (Amster-

dam), 1 Docker4 node (Amsterdam), 1 PC (Amsterdam). Although EC2 nodes have public

facing IP addresses the other nodes are all behind NATs and thus direct communication

was not possible. In this case the nodes automatically use the RabbitMQ fallback.

The controller-less, dispersed and diverse resources are setup as a state machine using

the automaton described in Figure 6.10. The code is deployed dynamically through the

packet system described in Section 4.7.1 using the laptop node as the bootstrapping node.

Twitter feed data5 is also injected from the same node. The PC node in the network acts as

an interface to the network and also as an optional compute node. The filters where given

an additional synthetic load. This load aims at creating a backlog scenario where each

successive processing node is slower than the previous. The loads for tweetinject(), fil-

terenglish(), filterisa(), filterhasa() are 0, 0.1, 0.2, 0.3 respectively where the load signifies

sleep time on every packet. In this scenario every Tweet is packaged as a data packet and

given the initial state of RAW. These packets are injected into the network and traverse the

3http://www.vph-share.eu
4http://www.docker.com
5http://snap.stanford.edu/data/twitter7.html

 http://www.vph-share.eu
http://www.docker.com

106 EVALUATION OF DATA PROCESSING MODELS

appropriate nodes to end in a final state. Each state transition acts as a filter thus tagging

the data along the way with a state tag. The first filter filterenglish() will tag the tweets

with state ENGLISH or state NONENGLISH . The ENGLISH tagged data pack-

ets will move forward into the network while the other packets are dumped since a final

state was reached. The last final state in Figure 6.10 is an extraction state to which relevant

data transitions too. The node network achieves 3 levels of parallelism; through pipelining

processing and communication overlap each other, d-op filterisa() and filterhasa() are in-

trinsically independent which means they run in parallel and the third level of parallelism

is derived from data partitioning where multiple instances of d-op filterenglish(), filterisa()

and filterhasa() split the streams between themselves.

Figures 6.11, 6.12, 6.13, 6.14 illustrate how the control flow described in Section 4.6 is

able to adapt to the traffic traversing the node network in Figure 6.10. As is expected, the

faster and more stable connections, the higher packet efficiency can be achieved at lower

coalescing factor. Figure 6.14 shows in-memory communication between Docker6 VM and

host where high efficiency is achieved with low coalescing. The trade-off between parallel

efficiency and coalesce efficiency produces a Pareto fronts. From Figure 6.14 between 60

and 100 tweets are enough to obtain adequate efficiency. On the other hand, Figure 6.12

shows that the range 60 to 100 provides an abysmal coalesce efficiency which means a

higher coalescing number is needed.

In Figures 6.15 and 6.16 we demonstrate how we manage to control backlogs in the net-

work using the formulation described in Section 4.6. Figure 6.15 shows both the aggregate

predicted compute backlog over time which never goes over 40 seconds which without flow

control, backlog would spiral out of control. The stark difference between the aggregate

and mean boils down to the EC2 (Oregon) VM which had a slow, low bandwidth connec-

tion which resulted in more pronounced flow controller fluctuations. The Lyapunov drift

in Figure 6.16 shows the effort of the flow controller maintaining a 0 drift progressively

correcting spikes in predicted backlog.

6.5 Automata-based Tracking Brain Regions

A second application based on the automata-based data processing model is a medical

workflow.

Figure 6.17 shows a medical workflow for analyzing brain regions [117] using MRI

(Magnetic Resonance Imaging) and DTI (Diffusion Tensor Imaging). The characteristics

of this workflow are that is it is a long running workflow with few messages passed be-

tween nodes. The automaton in the application represents patient data. In this case having

6www.docker.com

 www.docker.com

AUTOMATA-BASED TRACKING BRAIN REGIONS 107

R

S1
S2 S3

S5

E

S6
bedpostx()

dti_prep()

injector()

freesurfer() tracula()

Autom
aton

to Workflow

Workfl
ow

to Network

R: RAW
S1:DTI_RAW
S2:DTI_PREPROC
S3:DTI_FIBER
S4:MRI_RAW
S5:MRI_BRAINSEFMENT
E:REGION_TRACK
S6:MRI_RAW

N: Private CloudN N N NN NN

N N

NN

N

Figure 6.17: Tracula workflow for tracking fibers between brain regions. Top: tis the

patient data automaton. Right: the workflow as a sequence of d-op. Bottom shows the VM

network hosting various d-op on a private cloud.

a data processing structure represented as a data transition graph aids tracking patient pro-

cessing data by knowing, at any time, in which state the data is. This is important since in

such applications provenance is paramount. Provenance is captured intrinsically within the

packet framework since each packet can carry the data and information from the previous

transition. Listening on the network allows the collection on runtime packet data. The

main functions in the workflow are distributed on different virtual machines.

Patients’ data have an associated automaton which keeps track of data processing progress.

The architecture implicitly allows for scaling up by adding more virtual machines hosting

certain functions of the workflow. This replication of tasks allows multiple patient data

graphs to be processed simultaneously.

A particular feature of this application is the merging of 3 states into the

BRAIN REGION TRACK (reconstructed of major white-matter pathways from

diffusion-weighted MR images). Merging states in a distributed system is a non trivial

procedure especially when replicating the merge node. In the application the d-op trac-

ula() is responsible for merging 3 s-tags from 3 different nodes into 1. In the case where

we only have 1 tracula() running, merging is a matter of waiting for all inputs. PUMPKIN

allows multiple instances of the same d-op to run in which case one packet can be received

by one trcula() instance while the other packet from a different node can be sent to other

instances. To solve this, d-op can implement a pre run() function. This function can reject

packets based on some d-op specific logic. For example in the case of this application

108 EVALUATION OF DATA PROCESSING MODELS

different priority is given to the 3 different input states. If tracula() receives a packet with

highest priority and is idle it will accept the packet and wait for the other two packets with

lower priority and same ship id (for packet format see Section 4.5. Any other packet is

rejected. Upon a rejection, PUMPKIN, will send the packets to other tracula() instances.

The outcome is that low priority packets will hop from one instance to the next until the

corresponding high priority packet is found on some node. Although this distributed merge

routine works it is also quite expensive and thus should be avoided in streaming application

scenarios.

6.6 Summary

Through the presented results we demonstrated that various approaches to scaling data

processing are possible. Predication-based looks at the data charachteristics to gauge the

state of the processing system, fuzzy-based takes this one step further by factoring in also

the state of the resources and coordinates multiple competing and colleborating tasks on

same resources. WFaaS-based approach to task farming demonstrates to effective use of

resources by focusing of data partitioning and scheduling.

The automata approaches demonstrate that a data processing model can also be used as

part of the concrete execution of tasks and an important component in a protocol aimed at

data process routing. The results illustrate various techniques of flow control mechanisms

based on data process performance and prediction.

This chapter brings to an end the methodology life-cycle as outlined in the objectives

whereby we formulated models of solutions, designed artifacts that reflected the models,

implemented artifacts and tested artifacts to validate the models. As the modeling phase in

our methodology we presented a prediction-based, fuzzy-based, WFaaS, automata-based

models. In the design phase we designed and implemented artifacts for various environ-

ments and technologies such grids, clouds, clusters and web services. The implementation

of the artifacts was done in accordance to the studied models. Testing of the artifacts

allowed us to validate the models as described in the previous chapters.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Our research hypothesis was that given the increasing intricacy and volumes in data pro-

cessing and the dynamism of infrastructures, data-centric distributed computing should
be tackled jointly from both the abstract data processing, semantic models and the in-
frastructure fronts so as to increase the knowledge and availability of data. To tackle

our hypothesis we set out four research objectives which were:-

1. To investigate new and emerging resources and resource compositions.

2. To investigate and propose new scaling techniques to fit contemporary data and re-

source set ups.

3. To study new models of data processing and its applicability to concrete data process-

ing.

4. To study the role and implications of semantics in the data processing flora.

Through the course of this thesis we have investigated our research objectives by means

of studies, designing/modeling, implementing and testing through demonstration of exper-

imental results. In chapter 1 we have illustrated a taxonomy for data which was categorized

on an availability-knowledge axis (Figure 1.1). The taxonomy acted as an underlying guide

for each objective where the goal was to increase the data in any of the dimensions. Our

work on the first objective, the investigation of new and emerging resources and resource

compositions as a means to increase data availability (Figure 1.1), resulted in the addi-

tion of Internet browsers as a resource to perform scientific computing. To prove this we

demonstrated how a cluster of such resources can be easily and globally setup (simply

sharing a URL) and how a typical scientific application dealing with sequence alignments

was used on this new resource. We also showed the potential in virtual infrastructures and

how new compositions of infrastructure and SWMS-like middleware paves the way for an

109

110 CONCLUSIONS AND FUTURE WORK

inter-cloud system. Specifically we presented how a symbiosis between application and in-

frastructure can be achieved whereby infrastructure can mold around the application while

we introduced the concept of a new generation of applications that expose new metrics

pertaining to there data performance and network-ability.

Our work on the second objective, the investigation of new data processing scaling

techniques, has resulted in various approaches that increase the knowledge capacity of

data (Figure 1.1) through models and methods for data processing. A prediction-based

auto-scaling approach that can be applied to data-centric workflows as a way to acceler-

ate data processing rates within scientific workflows. The ability of scaling tasks inde-

pendently enables replication of tasks to match the data production rate. This minimizes

workflow bottlenecks and reduces total makespan. Through task harnessing we showed

how scientific logic can be separated from underlying communication and data transport

intricacies. We have shown that the WFaaS approach to task farming is a very promising

approach for large parametric studies. The WFaaS paradigm at the data-level as well at the

task-level reduces common scheduling overheads such as queue waiting times in shared

distributed infrastructures and makes better use of the computing resources by making

most of the allocated time slot given to each task. Another presented approach to scaling

was autonomous scaling of web services using fuzzy controllers. Autonomous orchestra-

tion has been achieved with web services containers having myopic view on the workflow.

The implementation of the architecture demonstrated that the above attributes to dynamic

web service handling can be achieved in a non-intrusive manner thus not modifying the ac-

tual web service code. To make service more scale friendly we implemented a late binding

mechanism and reversed communication pattern so that services can be submitted as jobs

to traditional resources.

Within the scope of the third objective, the studying of new models of data processing,

we presented a new data processing paradigm based on modeling data as automata. The

model also lends itself to compose infrastructures as state machine networks. The bi-

objective model increases data in both knowledge and availability dimensions (Figure 1.1)

since it provides for modeling data processing (knowledge) and compute infrastructure

(availability). The model takes a data-centric approach to describe abstract data processing

as a sequence of state transitions. Through PUMPKIN implementation we showed how the

automata provides information about data during the fluidity of processing which guides

data to computing. The distributed decentralized architecture of PUMPKIN and the self-

routable data packets creates a data processing plane where data processing is reduced

to a protocol which enables clients to inter-operate. The usage of data packets as data

processing parcels allows us to investigate added data routing attributes. In the presented,

model data is routed based solely on its state. Additional attributes can be easily added to

the packet such as energy and security which would allow packet schedulers to choose were

VISION AND FUTURE WORK 111

to send the data based on such attributes. We investigated several protocol control flow

mechanisms pertaining to this model. We introduced the idea of packet-parallel efficiency

and packet-coalesce efficiency which are based on predicting data processing performance.

Using the same mechanism we demonstrated how queue backlogs can be managed.

Finally, the results of our fourth objective, to study the role and implications of seman-

tics in the data processing flora as a means to further expand data knowledge (Figure 1.1)

through processing, have shown that through semantics, processes can be linked together.

To capitalize on this, we introduced a number of new concepts including the concept of

process object identifiers, TReQL, a minimalistic SQL-like language for specifying main

experiment processes, semantic function templates which are templates for core scientific

processes, and optimized scientific process containers which increase the computing re-

source outreach.

Returning to our hypothesis, our first and second objectives aimed at tackling data pro-

cessing from the infrastructure level while our third and forth objectives tackle distributed

data processing from an abstract and semantic stance. The objectives were guided by the

taxonomy (Figure 1.1) We have shown that these objectives work towards a common goal

of data processing to increase data in both knowledge and availability dimensions of our

data taxonomy (Figure 1.1). This confirms the hypothesis that data processing can add

more value to data when tackled holistically from both fronts.

7.2 Vision and Future Work

Our contributions are a step towards intricate data processing on large scale distributed

infrastructures where a novel model for data processing based on automata formalism is

used to model data as a state system. Heterogeneous resources are assimilated through

a common protocol which is the result of synthesizing the automata models into a data

routing mechanism. We believe that the future of knowledge and data processing will be

coupled into a feedback loop where processing of data produces knowledge which invokes

more processing of data. Knowledge graphs have been shown to be successful (e.g. adding

semantics to Google searches). Similarly we believe knowledge of data and its process-

ing will be crucial for future data-based knowledge discovery. This means that such a

semantic layer would need to be coupled with data processing. Our vision of combining

various data processing dimensions is through a layered system (Figure 7.1). The layers

are loosely coupled discrete plane of functionality revolving around data processing. Inter

communication between layers would be done though interfaces.

The bottom layer in Figure 7.1 shows the physical resources in combination with the

virtualized resources. These are represented as one layer but still need different treatment

from higher layers. Layer 2, The immediate resource controllers of the are represented in

112 CONCLUSIONS AND FUTURE WORK

1

2

3

4

5

Data Transformation Netowrks:
Automata Data Processing, Data Routing, Data Packet Control Flows

Data Processing Applications:
Languages, Workflows, etc

Data Processing Knowledge Base:
Networked Open Processes

Data Knowledge Base:
Open Linked Data

Programmable Controllers:
SDNs

Resource Controllers:
Prediction Scaling, Fuzzy Scaling, Task Harnessing

Programmable Infrastructure:
Clouds, OpenFlow, etc

Static Infrastructure:
Clusters, Grids, Browsers, Mobile Devices

Figure 7.1: Envisioned layered system for future data processing incorporating contribu-

tions from our work. Layer 1: programmable and static resources, not all resources. Layer

2: the immediate controllers on top of the resources, programmable resources need addi-

tional controllers. Layer 3: data transformation networks such as an automata for data.

Layer 4: relations between data, processes and states allows for reasoning such as in-

ferencing at a higher level. Layer 5: the application layer where distributed networked

applications such as distributed data-centric workflows are designed and executed based

on the lower layers.

this layer. For the programmable part of the resources additional controllers are needed

which implement management routines such as SDNs, interclouds, migration etc. Along-

side these controllers, low level scheduling and scaling routines are also present in this

layer. The techniques and models presented in chapter 3 are meant to take place at this level

close to the resources. Managing this layer means acquisition of resources and optimiz-

ing various aspects by exploiting the underlying dynamism such as migration, re-routing,

and scaling. Layer 2 is where SDNs are created. The potential of SDNs is the ability to

reconfigure themselves but reconfiguring means that they need a goal to do so. This goal

comes from the layer above which is layer 3. The first class citizen in layer 3 is data and its

states. This layer implements models similar to the automata model described in chapter

4. In such a layer data is self-routable between processing nodes in a similar way to TCP

is self-routable over the Internet. Nodes in layer 3 are compute nodes as well as data store

nodes. This makes data store nodes smart since data stores can store and process data in

transit. At layer 4 we have a semantic layer which captures data processing knowledge

from different groups. Semantic reasoning is used here to discover and explore new data

processing paths. Layer 5 is the application layer. This layer applications can query the

network which invokes workflow-like executions in the underlying layers. Interaction be-

tween layers is both-ways but we only envision communication between successive layers.

FUTURE RESEARCH 113

Layer 2 can talk down to layer 1 e.g. configuring OpenFlow1 switches and can also talk

up to layer 3 to reconfigure its layer based on the data transition network. Similarly layer

3 can talk up to layer 4 as a feedback loop from invocations brought about from layer 4.

These require interfaces between layers and is part of our research in [19].

7.3 Future Research

The future work in this area is to concretely realize this vision. Most notably are the

layers concerned with knowledge generation from data processing and feedback loops from

data processing into the knowledge base. The shift from data to knowledge, we believe,

will shift the focus of processing from the current data-centric processing to knowledge-

centric processing. At the lower levels, further advancement in virtualization, standards

and policies is needed to facilitate true restriction-free intercloud. One such example would

be seamless migration of virtual machines between cloud service providers. This would

result in further dynamism where VMs can autonomously migrate to better providers. The

Internet of Things (IoT) must also be factored into the picture as it is becoming increasingly

evident that capable smart devices with potentially many sensors are becoming widespread.

How will such devices shape the future of data processing? The need to easily collect

data in various stages of processing from the many devices reinforces the need for a data

processing plane.

1https://www.opennetworking.org/sdn-resources/openflow

https://www.opennetworking.org/sdn-resources/openflow

Bibliography

[1] Tony Hey, Stewart Tansley, and Kristin Tolle, editors. The Fourth Paradigm: Data-

Intensive Scientific Discovery. Microsoft Research, Redmond, Washington, 2009.

[2] Presidents Council of Advisors on Science and Technology. Leadership under chal-

lenge: Information technology r&d in a competitive world an assessment of the fed-

eral networking and information technology r&d program. Technical report, August

2007.

[3] Frans Gens. IDC Predictions 2015: Accelerating Innovation and Growth on the

3rd Platform. IDC predictions, 2014.

[4] IDC 3rd Platform. https://www.idc.com/getdoc.jsp?containerId=

252700. accessed: [18-01-2015].

[5] Jeff Hawkins and Sandra Blakeslee. On Intelligence. Henry Holt, 2004.

[6] Linked Data. http://linkeddata.org. accessed: [18-01-2015].

[7] Evans David. The internet of thingshow the next evolution of the internet is

changing everything. Cisco Internet Business Solutions Group (IBSG), April

2011. https://www.cisco.com/web/about/ac79/.../IoT_IBSG_

0411FINAL.pdf.

[8] Charles W Schmidt. Trending now: Using social media to predict and track disease

outbreaks. In Environmental Health Perspectives, 2012.

[9] Albert-Lszl Barabsi and E. Bonabeau. Scale-free networks. Scientific American,

288(60-69), 2003.

[10] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling

scalable virtual organizations. International Journal of High Performance Comput-

ing Applications, 15(3), 2001.

[11] Uwe Schwiegelshohn, Rosa M. Badia, Marian Bubak, Marco Danelutto, Schahram

Dustdar, Fabrizio Gagliardi, Alfred Geiger, Ladislav Hluchy, Dieter Kranzlmller,

Erwin Laure, Thierry Priol, Alexander Reinefeld, Michael Resch, Andreas Reuter,

Otto Rienhoff, Thomas Rter, Peter Sloot, Domenico Talia, Klaus Ullmann, Ramin

114

https://www.idc.com/getdoc.jsp?containerId=252700
https://www.idc.com/getdoc.jsp?containerId=252700
http://linkeddata.org
https://www.cisco.com/web/about/ac79/.../IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/web/about/ac79/.../IoT_IBSG_0411FINAL.pdf

BIBLIOGRAPHY 115

Yahyapour, and Gabriele von Voigt. Perspectives on grid computing. Future Gen-

eration Computer Systems, 26(8):1104 – 1115, 2010.

[12] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud Computing

Principles and Paradigms. Wiley Publishing, 2011.

[13] David P. Anderson. Boinc: A system for public-resource computing and storage. In

Rajkumar Buyya, editor, GRID, pages 4–10. IEEE Computer Society, 2004.

[14] Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor - a hunter of idle

workstations. In ICDCS, pages 104–111. IEEE Computer Society, 1988.

[15] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer

Programming. MIT Press, Cambridge, MA, USA, 2004.

[16] Krishnaprasad Thirunarayan and Amit Sheth. Semantics-empowered approaches to

big data processing for physical-cyber-social applications. 2013.

[17] Reginald Cushing, Ganeshwara Herawan Hananda Putra, Spiros Koulouzis, Adam

Belloum, Marian Bubak, and Cees de Laat. Distributed computing on an ensemble

of browsers. Internet Computing, IEEE, 17(5):54–61, 2013.

[18] Rudolf Strijkers, Reginald Cushing, Marc X Makkes, Pieter Meulenhoff, Adam Bel-

loum, Cees de Laat, and Robert Meijer. Towards an operating system for intercloud.

In Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th Interna-

tional Conference on, volume 2, pages 63–68. IEEE, 2013.

[19] Marc X Makkes, Reginald Cushing, Mikolaj Branowski, Adam Belloum, Cees de

Laat, and Rob Meijer. Data Intrinsic Networked Computing. Manuscript to be

submitted for publication in IEEE Internet Computing, 2015.

[20] Clare Sansom. The dna deluge. Scientific Computing World, Au-

gust 2007. http://spectrum.ieee.org/biomedical/devices/

the-dna-data-deluge.

[21] P. Zikopoulos, D. deRoos, K. Parasuraman, T. Deutsch, J. Giles, and D. Corrigan.

Harness the Power of Big Data – The IBM Big Data Platform. Mcgraw-Hill, 2012.

[22] Globus. https://www.globus.org/. accessed: [18-01-2015].

[23] Unicore. https://www.unicore.eu/. accessed: [18-01-2015].

[24] Egi. http://www.egi.eu/. accessed: [18-01-2015].

[25] Prace. http://www.prace-ri.eu/. accessed: [18-01-2015].

http://spectrum.ieee.org/biomedical/devices/the-dna-data-deluge
http://spectrum.ieee.org/biomedical/devices/the-dna-data-deluge
https://www.globus.org/
https://www.unicore.eu/
http://www.egi.eu/
http://www.prace-ri.eu/

116 BIBLIOGRAPHY

[26] Maciej Malawski, Maciej Kuzniar, Piotr Wjcik, and Marian Bubak. How to use

google app engine for free computing. IEEE Internet Computing, 17(1):50–59,

2013.

[27] A new crankshaft for v8. http://blog.chromium.org/2010/12/

new-crankshaft-for-v8.html. accessed: [15-01-2015].

[28] Node.js. https://nodejs.org/. accessed: [15-01-2015].

[29] Peercdn. https://peercdn.com/. accessed: [18-01-2015].

[30] Computer language benchmarks. http://shootout.alioth.debian.

org/u32/benchmark.php. accessed: [15-01-2015].

[31] Albert-Laszlo Barabasi, Vincent W. Freeh, Hawoong Jeong, and Jay B. Brockman.

Parasitic computing. Nature, 412:894–897, 30 August 2001.

[32] Ganeshwara Herawan Hananda Putra. Workflow orchestration on weevilscout. Mas-

ter’s thesis, University of Amsterdam, 3 2013. https://staff.fnwi.uva.

nl/a.s.z.belloum/MSctheses/thesis_Ganesh.pdf.

[33] Spiros Koulouzis, Reggie Cushing, Kostas Karasavvas, Adam Belloum, and Marian

Bubak. Enabling web services to consume and produce large datasets. IEEE Internet

Computing, 16(1):52–60, 2012.

[34] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang. Comparison of open-source cloud

management platforms: Openstack and opennebula. In Fuzzy Systems and Knowl-

edge Discovery (FSKD). IEEE, 2012.

[35] Hamoun Ghanbari, Bradley Simmons, Marin Litoiu, and Gabriel Iszlai. Exploring

alternative approaches to implement an elasticity policy. In Ling Liu and Manish

Parashar, editors, IEEE CLOUD, pages 716–723. IEEE, 2011.

[36] Tania Lorido-Botran, Jose Miguel-Alonso, and JoseA. Lozano. A review of auto-

scaling techniques for elastic applications in cloud environments. Journal of Grid

Computing, 12(4):559–592, 2014.

[37] Rudolf Strijkers, Marc X. Makkes, Cees de Laat, and Robert Meijer. Internet fac-

tories: Creating application-specific networks on-demand. Computer Networks,

68(0):187 – 198, 2014. Communications and Networking in the Cloud.

[38] Reginald Cushing, Marc X. Makkes, Rudolf Strijkers, and Adam Belloum. Inter-

clouds: Grid prosthesis for workflow systems. The Fifth IEEE International Scal-

able Computing Challenge (SCALE 2012). http://www.cloudbus.org/

ccgrid2012/cfp-scale.html.

http://blog.chromium.org/2010/12/new-crankshaft-for-v8.html
http://blog.chromium.org/2010/12/new-crankshaft-for-v8.html
https://nodejs.org/
https://peercdn.com/
http://shootout.alioth.debian.org/u32/benchmark.php
http://shootout.alioth.debian.org/u32/benchmark.php
https://staff.fnwi.uva.nl/a.s.z.belloum/MSctheses/thesis_Ganesh.pdf
https://staff.fnwi.uva.nl/a.s.z.belloum/MSctheses/thesis_Ganesh.pdf
http://www.cloudbus.org/ccgrid2012/cfp-scale.html
http://www.cloudbus.org/ccgrid2012/cfp-scale.html

BIBLIOGRAPHY 117

[39] Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Applying

workflow as a service paradigm to application farming. Concurrency and Compu-

tation: Practice and Experience, 26(6):1297–1312, 2014.

[40] Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Dynamic

handling for cooperating scientific web services. In E-Science (e-Science), 2011

IEEE 7th International Conference on, pages 232–239. IEEE, 2011.

[41] Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak.

Prediction-based auto-scaling of scientific workflows. In Proceedings of the 9th

International Workshop on Middleware for Grids, Clouds and e-Science, page 1.

ACM, 2011.

[42] Reginald Cushing, Adam Belloum, Vladimir Korkhov, Dmitry Vasyunin, Marian

Bubak, and Carole Leguy. Workflow as a service: an approach to workflow farm-

ing. In Proceedings of the 3rd international workshop on Emerging computational

methods for the life sciences, pages 23–31. ACM, 2012.

[43] Tony Hey, Stewart Tansley, and Kristin Tolle, editors. The Fourth Paradigm: Data-

Intensive Scientific Discovery. Microsoft Research, Redmond, Washington, 2009.

[44] Vladimir Korkhov, Dmitry Vasyunin, Adianto Wibisono, Victor Guevara-Masis,

Adam Belloum, Cees de Laat, Pieter Adriaans, and L.O. Hertzberger. WS-VLAM:

Towards a scalable workflow system on the grid. In WORKS ’07: Proceedings of

the 2nd workshop on Workflows in support of large-scale science, pages 63–68, New

York, NY, USA, 2007. ACM.

[45] David Abramson, Rajkumar Buyya, and Jonathan Giddy. A computational economy

for grid computing and its implementation in the nimrod-g resource broker. Future

Generation Comp. Syst., 18(8):1061–1074, 2002.

[46] Asim YarKhan, Jack Dongarra, and Keith Seymour. Gridsolve: The evolution of a

network enabled solver. In PatrickW. Gaffney and JamesC.T. Pool, editors, Grid-

Based Problem Solving Environments, volume 239 of IFIP The International Fed-

eration for Information Processing, pages 215–224. Springer US, 2007.

[47] Yoshio Tanaka, Hidemoto Nakada, Satoshi Sekiguchi, Toyotaro Suzumura, and

Satoshi Matsuoka. Ninf-g: A reference implementation of rpc-based programming

middleware for grid computing. J. Grid Comput., 1(1):41–51, 2003.

[48] Henri Casanova, Graziano Obertelli, Francine Berman, and Richard Wolski. The

apples parameter sweep template: User-level middleware for the grid. In Jed Don-

nelley, editor, SC, page 60. ACM, 2000.

118 BIBLIOGRAPHY

[49] Henri Casanova and Fran Berman. Parameter sweeps on the grid with apst. In

Concurrency: Practice and Experiance, 2002.

[50] Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole A. Goble, Matthew R.

Pocock, Peter Li, and Tom Oinn. Taverna: a tool for building and running workflows

of services. Nucleic Acids Research, 34(Web-Server-Issue):729–732, 2006.

[51] Andrew Harrison, Ian Taylor, Ian Wang, and Matthew Shields. Ws-rf workflow in

triana. Int. J. High Perform. Comput. Appl., 22(3):268–283, 2008.

[52] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew B. Jones, Bertram Ludscher,

and Steve Mock. Kepler: An extensible system for design and execution of scientific

workflows. In SSDBM, pages 423–424. IEEE Computer Society, 2004.

[53] Ewa Deelman, James Blythe, A Gil, Carl Kesselman, Gaurang Mehta, Sonal Patil,

Mei hui Su, Karan Vahi, and Miron Livny. Pegasus: Mapping scientific workflows

onto the grid. pages 11–20, 2004.

[54] Andreas Hoheisel. User tools and languages for graph-based grid workflows: Re-

search articles. Concurr. Comput. : Pract. Exper., 18(10):1101–1113, 2006.

[55] Adam Barker, Jon Weissman, and Jano van Hemert. The Circulate architecture:

avoiding workflow bottlenecks caused by centralised orchestration. Cluster Com-

puting, 12:221–235.

[56] Shayan Shahand, Stephen J. Turner, Wentong Cai, and Maryam Khademi H. Dy-

naSched: a dynamic web service scheduling and deployment framework for data-

intensive grid workflows. Procedia Computer Science, 1(1):593 – 602, 2010. ICCS

2010.

[57] Markus Keidl, Stefan Seltzsam, and Alfons Kemper. Reliable web service execution

and deployment in dynamic environments. In In Proceedings of the International

Workshop on Technologies for E-Services (TES, pages 104–118, 2003.

[58] Vladimir Korkhov, Jakub T. Moscicki, and Valeria V. Krzhizhanovskaya. Dynamic

workload balancing of parallel applications with user-level scheduling on the grid.

Future Generation Comp. Syst., 25(1):28–34, 2009.

[59] J.T. Moscicki, M. Lamanna, M. Bubak, and P.M.A. Sloot. Processing moldable

tasks on the grid: Late job binding with lightweight user-level overlay. Future

Generation Computer Systems, 27(6):725 – 736, 2011.

BIBLIOGRAPHY 119

[60] Michael Russell Ed Seidel Gabrielle Allen, Tom Goodale and John Shalf. Classify-

ing and enabling grid applications. In A. J. G. Hey F. Berman, G. Fox, editor, Grid

Computing: Making the Global Infrastructure a Reality. John Wiley, 2003.

[61] Vladimir Korkhov, Dmitry Vasyunin, Adianto Wibisono, Adam Belloum, Mrcia A.

Inda, Marco Roos, Timo M. Breit, and Louis O. Hertzberger. VLAM-G: Interactive

data driven workflow engine for grid-enabled resources. Scientific Programming,

15(3):173–188, 2007.

[62] Rudolf J. Strijkers, Willem Toorop, Alain van Hoof, Paola Grosso, Adam Belloum,

Dmitry Vasuining, Cees de Laat, and Robert J. Meijer. Amos: Using the cloud for

on-demand execution of e-science applications. In eScience, pages 331–338. IEEE

Computer Society, 2010.

[63] Erik Elmroth, Francisco Hernndez, and Johan Tordsson. Three fundamental dimen-

sions of scientific workflow interoperability: Model of computation, language, and

execution environment. Future Generation Comp. Syst., 26(2):245–256, 2010.

[64] Warren Smith, Ian T. Foster, and Valerie E. Taylor. Scheduling with advanced reser-

vations. In IPDPS, pages 127–132. IEEE Computer Society, 2000.

[65] W3C. http://www.w3.org/TR/ws-archg. accessed: [20-01-2015].

[66] Axis2. http://axis.apache.org. accessed: [20-01-2015].

[67] ActiveMQ. http://activemq.apache.org. accessed: [20-01-2015].

[68] Reginald Cushing, Adam Belloum, Marian Bubak, and Cees de Laat. Automata-

based dynamic data processing for clouds. In Euro-Par 2014: Parallel Processing

Workshops, volume 8805 of Lecture Notes in Computer Science, pages 93–104.

Springer International Publishing, 2014.

[69] Reginald Cushing, Adam Belloum, Marian Bubak, and Cees de Laat. Towards

Computing Without Borders: Data Processing Plane. Manuscript submitted for

publication in Future Generation of Computer Systems, 2015.

[70] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-

based programming. Theoretical Computer Science, 410(23):202 – 220, 2009. Dis-

tributed Computing Techniques.

[71] G. Kahn. The semantics of a simple language for parallel programming. In J. L.

Rosenfeld, editor, Information processing, pages 471–475, Stockholm, Sweden,

Aug 1974. North Holland, Amsterdam.

http://www.w3.org/TR/ws-archg
http://axis.apache.org
http://activemq.apache.org

120 BIBLIOGRAPHY

[72] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, January 2008.

[73] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition, 2009.

[74] Apache Storm. http://hortonworks.com/hadoop/storm/. accessed:

[18-01-2015].

[75] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd

USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–

10, Berkeley, CA, USA, 2010. USENIX Association.

[76] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale

graph processing. In Proceedings of the 2010 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD ’10, pages 135–146, New York, NY, USA,

2010. ACM.

[77] Paolo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan, Aleksandra Nenadic,

Ian Dunlop, Alan Williams, Thomas Oinn, and Carole Goble. Taverna, reloaded. In

M. Gertz, T. Hey, and B. Ludaescher, editors, SSDBM 2010, Heidelberg, Germany,

June 2010.

[78] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew B. Jones, Bertram Ludscher,

and Steve Mock. Kepler: An extensible system for design and execution of scientific

workflows. In SSDBM, pages 423–424. IEEE Computer Society, 2004.

[79] Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Applying

workflow as a service paradigm to application farming. Concurrency and Compu-

tation: Practice and Experience, pages n/a–n/a, 2013.

[80] Farhad Arbab. Composition of interacting computations. In Dina Goldin, ScottA.

Smolka, and Peter Wegner, editors, Interactive Computation, pages 277–321.

Springer Berlin Heidelberg, 2006.

[81] Mauricio Cortes. A coordination language for building collaborative applications.

Computer Supported Cooperative Work (CSCW), 9(1):5–31, 2000.

[82] Hector Fernandez, Cdric Tedeschi, and Thierry Priol. A chemistry-inspired work-

flow management system for scientific applications in clouds. In eScience, pages

39–46. IEEE Computer Society, 2011.

http://hortonworks.com/hadoop/storm/

BIBLIOGRAPHY 121

[83] Open Provenance Model (OPM). http://openprovenance.org/. accessed:

[18-01-2015].

[84] G. Berry. The constructive semantics of pure esterel. http:

//www-sop.inria.fr/members/Gerard.Berry/Papers/

EsterelConstructiveBook.pdf, 1999.

[85] Michael J. Neely. Stochastic Network Optimization with Application to Communi-

cation and Queueing Systems. Morgan and Claypool Publishers, 2010.

[86] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[87] Marc X. Makkes and Reginald Cushing. Building the Internet of

the Future. In The Big Future of Data, pages 64–65. COMMIT,

2014. http://www.commit-nl.nl/sites/default/files/

TheBigFutureofData-ThedemosLow.pdf.

[88] Reginald Cushing, Marian Bubak, Adam Belloum, and Cees de Laat. Beyond sci-

entific workflows: Networked open processes. In eScience (eScience), 2013 IEEE

9th International Conference on, pages 357–364, Oct 2013.

[89] Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Dynamic

handling for cooperating scientific web services. In E-Science (e-Science), 2011

IEEE 7th International Conference on, pages 232–239, Dec 2011.

[90] Spiros Koulouzis, Dmitry Vasyunin, Reginald Cushing, Adam Belloum, and Marian

Bubak. Cloud data federation for scientific applications. In Euro-Par 2013: Parallel

Processing Workshops, volume 8374 of Lecture Notes in Computer Science, pages

13–22. Springer Berlin Heidelberg, 2014.

[91] Reginald Cushing, Marian Bubak, Adam Belloum, and Cees de Laat. Beyond Scien-

tific Workflows: Networked Open Processes. In IEEE 9th International Conference

on eScience, pages 357–364, 2013.

[92] Adam Belloum, Mrcia A. Inda, Dmitry Vasunin, Vladimir Korkhov, Zhiming Zhao,

Han Rauwerda, Timo M. Breit, Marian Bubak, and Louis O. Hertzberger. Collab-

orative e-science experiments and scientific workflows. IEEE Internet Computing,

15(4):39–47, 2011.

[93] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl

Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anas-

tasia C. Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus: A framework for

http://openprovenance.org/
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
http://www.commit-nl.nl/sites/default/files/The Big Future of Data - The demos Low.pdf
http://www.commit-nl.nl/sites/default/files/The Big Future of Data - The demos Low.pdf

122 BIBLIOGRAPHY

mapping complex scientific workflows onto distributed systems. Scientific Program-

ming, 13(3):219–237, 2005.

[94] Sean Bechhofer, Iain E. Buchan, David De Roure, Paolo Missier, John D.

Ainsworth, Jiten Bhagat, Philip A. Couch, Don Cruickshank, Mark Delderfield,

Ian Dunlop, Matthew Gamble, Danius T. Michaelides, Stuart Owen, David R. New-

man, Shoaib Sufi, and Carole A. Goble. Why linked data is not enough for scientists.

Future Generation Comp. Syst., 29(2):599–611, 2013.

[95] myExperiment. http://www.myexperiment.org. accessed: [18-01-2015].

[96] SADI. http://sadiframework.org. accessed: [18-01-2015].

[97] Programmable Web. http://www.programmableweb.com/. accessed: [18-

01-2015].

[98] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific

American, 284(5):34–43, 2001.

[99] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.

International Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

[100] Resource Description Framework. http://www.w3.org/RDF/. accessed: [18-

01-2015].

[101] Mark Wilkinson, Benjamin Vandervalk, and Luke McCarthy. The semantic auto-

mated discovery and integration (sadi) web service design-pattern, api and reference

implementation. Journal of Biomedical Semantics, 2(1):8, 2011.

[102] John Domingue, Carlos Pedrinaci, Maria Maleshkova, Barry Norton, and Reto

Krummenacher. Fostering a relationship between linked data and the internet of

services. In Future Internet Assembly, volume 6656 of Lecture Notes in Computer

Science, pages 351–366. Springer, 2011.

[103] Tomasz Gubala, Katarzyna Prymula, Piotr Nowakowski, and Marian Bubak. Se-

mantic integration for model-based life science applications. In Tuncer ren, Janusz

Kacprzyk, Leifur . Leifsson, Mohammad S. Obaidat, and Slawomir Koziel, editors,

SIMULTECH, pages 74–81. SciTePress, 2013.

[104] Bio Catalogue. http://www.biocatalogue.org. accessed: [18-01-2015].

[105] OWL-S. http://www.w3.org/Submission/OWL-S. accessed: [18-01-

2015].

http://www.myexperiment.org
http://sadiframework.org
http://www.programmableweb.com/
http://www.w3.org/RDF/
http://www.biocatalogue.org
http://www.w3.org/Submission/OWL-S

BIBLIOGRAPHY 123

[106] Dieter Fensel, Holger Lausen, Axel Polleres, Jos De Bruijn, Michael Stollberg, Du-

mitru Roman, and John Domingue, editors. Enabling Semantic Web Services: The

Web Service Modeling Ontology. Springer-Verlag, Heidelberg, 2006.

[107] SAWSDL. http://www.w3.org/2002/ws/sawsdl. accessed: [18-01-

2015].

[108] Carlos Pedrinaci, Jacek Kopecký, Maria Maleshkova, Dong Liu, Ning Li, and John

Domingue. Unified lightweight semantic descriptions of web apis and web services.

In W3C Workshop on Data and Services Integration, 2011.

[109] Mark Wilkinson, Heiko Schoof, Rebecca Ernst, and Dirk Haase. Biomoby success-

fully integrates distributed heterogeneous bioinformatics web services. the planet

exemplar case. Plant Physiol, 138(1):5–17, May 2005.

[110] Gnu octave. http://www.gnu.org/software/octave. accessed: [20-01-

2015].

[111] The distributed ASCI supercomputer 3. http://www.cs.vu.nl/das3. ac-

cessed: [20-01-2015].

[112] UniProtKB. http://www.uniprot.org. accessed: [20-01-2015].

[113] BioJava API. http://biojava.org. accessed: [20-01-2015].

[114] Wouter Huberts. Personalized computational modeling of vascular ac-

cess creation. PhD thesis, University of Maastricht, 2012. http://

digitalarchive.maastrichtuniversity.nl/fedora/get/guid:

6063b962-9556-4cb4-9435-201df8e0145e/ASSET1.

[115] Huberts Wouter et al. A pulse wave propagation model to support decision-making

in vascular access planning in the clinic. Medical engineering and physics, 34(2),

2012.

[116] J. T. Moscicki. Understanding and Mastering Dynamics in Computing Grids Pro-

cessing Moldable Tasks with User-Level Overlay. PhD thesis, University of Ams-

terdam, 2011. http://dare.uva.nl/record/1/333467.

[117] Tracula. http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula.

accessed: [18-01-2015].

[118] Reginald Cushing, Spiros Koulouzis, Rudolf Strijkers, Adam Belloum, and Marian

Bubak. Service level management for executable papers. In Euro-Par 2011: Parallel

Processing Workshops, pages 116–123. Springer, 2012.

http://www.w3.org/2002/ws/sawsdl
http://www.gnu.org/software/octave
http://www.cs.vu.nl/das3
http://www.uniprot.org
http://biojava.org
http://digitalarchive.maastrichtuniversity.nl/fedora/get/guid:6063b962-9556-4cb4-9435-201df8e0145e/ASSET1
http://digitalarchive.maastrichtuniversity.nl/fedora/get/guid:6063b962-9556-4cb4-9435-201df8e0145e/ASSET1
http://digitalarchive.maastrichtuniversity.nl/fedora/get/guid:6063b962-9556-4cb4-9435-201df8e0145e/ASSET1
http://dare.uva.nl/record/1/333467
http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula

124 BIBLIOGRAPHY

[119] Rudolf Strijkers, Reginald Cushing, Dmitry Vasyunin, Cees de Laat, Adam S.Z.

Belloum, and Robert Meijer. Toward executable scientific publications. Procedia

Computer Science, 4(0):707 – 715, 2011. Proceedings of the International Confer-

ence on Computational Science, ICCS 2011.

[120] Reginald Cushing, Adam Belloum, Marian Bubak, and Cees de Laat. Towards open

linked processes for scientific computing. https://tnc2013.terena.org/

core/poster/26. poster in TERENA Networking Conference (TNC) 2013.

https://tnc2013.terena.org/core/poster/26
https://tnc2013.terena.org/core/poster/26

PUBLICATION AUTHORSHIP

Author contributions to the publications used in this thesis.

Chapter 2

– Reginald Cushing, Ganeshwara Herawan Hananda Putra, Spiros Koulouzis, Adam

Belloum, Marian Bubak, and Cees de Laat. Distributed computing on an ensemble

of browsers. Internet Computing, IEEE, 17(5):54–61, 2013

R.C. designed, implemented and performed the experiments. G.H.H.P contributed

in WebCL tests. S.K. contributed in performing the experiments. A.S.Z.B. con-

sulted the study and publication. M.B. supervised the research and publication.

– Rudolf Strijkers, Reginald Cushing, Marc X Makkes, Pieter Meulenhoff, Adam

Belloum, Cees de Laat, and Robert Meijer. Towards an operating system for in-

tercloud. In Cloud Computing Technology and Science (CloudCom), 2013 IEEE

5th International Conference on, volume 2, pages 63–68. IEEE, 2013

R.S. designed and performed the experiments. R.C. implemented the application

middleware stack. P.M. and M.X.M contributed in the implementation of the

infrastructure control stack. A.S.Z.B. consulted the study and publication. C.d.L

and R.M supervised the work.

– Marc X Makkes, Reginald Cushing, Mikolaj Branowski, Adam Belloum, Cees de

Laat, and Rob Meijer. Data Intrinsic Networked Computing. Manuscript to be

submitted for publication in IEEE Internet Computing, 2015

M.X.M designed and performed the experiments. R.C. implemented the applica-

tion middleware stack. A.S.Z.B. consulted the study and publication. C.d.L and

R.M supervised the work.

Chapter 3

– Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Ap-

plying workflow as a service paradigm to application farming. Concurrency and

Computation: Practice and Experience, 26(6):1297–1312, 2014

R.C. designed, implemented and performed the experiments. S.K. contributed in

extending Freefluo workflow engine. A.S.Z.B. consulted the study and publica-

tion and M.B. supervised the research and publication.

125

– Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Dy-

namic handling for cooperating scientific web services. In E-Science (e-Science),

2011 IEEE 7th International Conference on, pages 232–239. IEEE, 2011

R.C. designed, implemented and performed the experiments. S.K. contributed in

the implementation of Axis2 transport handlers. A.S.Z.B. consulted the study and

publication and M.B. supervised the research and publication.

– Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Prediction-

based auto-scaling of scientific workflows. In Proceedings of the 9th International

Workshop on Middleware for Grids, Clouds and e-Science, page 1. ACM, 2011

R.C. designed, implemented and performed the experiments. S.K. contributed in

extending Freefluo workflow engine. A.S.Z.B. consulted the study and publica-

tion and M.B. supervised the research and publication.

– Reginald Cushing, Adam Belloum, Vladimir Korkhov, Dmitry Vasyunin, Marian

Bubak, and Carole Leguy. Workflow as a service: an approach to workflow farm-

ing. In Proceedings of the 3rd international workshop on Emerging computational

methods for the life sciences, pages 23–31. ACM, 2012

R.C. designed, implemented and performed the experiments. A.S.Z.B. consulted

the study and publication and contributed to running the experiments. V.K., C.L.

and D.V. provided the application use-case. M.B. supervised the research and

publication.

Chapter 4

– Reginald Cushing, Adam Belloum, Marian Bubak, and Cees de Laat. Automata-

based dynamic data processing for clouds. In Euro-Par 2014: Parallel Processing

Workshops, volume 8805 of Lecture Notes in Computer Science, pages 93–104.

Springer International Publishing, 2014

R.C. designed, implemented and performed the experiments. A.S.Z.B. consulted

the study and publication. M.B. supervised the research and publication and

C.d.L. performed an overall supervision.

– Reginald Cushing, Adam Belloum, Marian Bubak, and Cees de Laat. Towards

Computing Without Borders: Data Processing Plane. Manuscript submitted for

publication in Future Generation of Computer Systems, 2015

R.C. designed, implemented and performed the experiments. A.S.Z.B. consulted

the study and publication. M.B. supervised the research and publication and C.d.L

performed an overall supervision.

Chapter 5

PUBLICATIONS AUTHORSHIP 127

– Reginald Cushing, Marian Bubak, Adam Belloum, and Cees de Laat. Beyond Sci-

entific Workflows: Networked Open Processes. In IEEE 9th International Confer-

ence on eScience, pages 357–364, 2013

R.C. designed implemented and performed the experimented. A.S.Z.B. consulted

the study and publication. M.B. supervised the research and publication and

C.d.L. performed an overall supervision.

PUBLICATIONS

Publications in peer-reviewed journals

Reginald Cushing, Ganeshwara Herawan Hananda Putra, Spiros Koulouzis, Adam

Belloum, Marian Bubak, and Cees de Laat. Distributed computing on an ensemble of

browsers. Internet Computing, IEEE, 17(5):54–61, 2013.

Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Applying

workflow as a service paradigm to application farming. Concurrency and Computa-

tion: Practice and Experience, 26(6):1297–1312, 2014.

Reginald Cushing, Adam Belloum, Marian Bubak, and Cees de Laat. Towards Com-

puting Without Borders: Data Processing Plane. Manuscript submitted for publication

in Future Generation of Computer Systems, 2015.

Spiros Koulouzis, Reggie Cushing, Kostas Karasavvas, Adam Belloum, and Marian

Bubak. Enabling web services to consume and produce large datasets. IEEE Internet

Computing, 16(1):52–60, 2012.

Publications in peer-reviewed conference proceedings

Reginald Cushing, Adam Belloum, Vladimir Korkhov, Dmitry Vasyunin, Marian Bubak,

and Carole Leguy. Workflow as a service: an approach to workflow farming. In Pro-

ceedings of the 3rd international workshop on Emerging computational methods for

the life sciences, pages 23–31. ACM, 2012.

Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Prediction-

based auto-scaling of scientific workflows. In Proceedings of the 9th International

Workshop on Middleware for Grids, Clouds and e-Science, page 1. ACM, 2011.

Reginald Cushing, Spiros Koulouzis, Adam Belloum, and Marian Bubak. Dynamic

handling for cooperating scientific web services. In E-Science (e-Science), 2011 IEEE

7th International Conference on, pages 232–239. IEEE, 2011.

Reginald Cushing, Marian Bubak, Adam Belloum, and Cees de Laat. Beyond Scien-

tific Workflows: Networked Open Processes. In IEEE 9th International Conference

on eScience, pages 357–364, 2013.

129

130 PUBLICATIONS

Reginald Cushing, Adam Belloum, Marian Bubak, and Cees de Laat. Automata-based

dynamic data processing for clouds. In Euro-Par 2014: Parallel Processing Work-

shops, volume 8805 of Lecture Notes in Computer Science, pages 93–104. Springer

International Publishing, 2014.

Reginald Cushing, Spiros Koulouzis, Rudolf Strijkers, Adam Belloum, and Marian

Bubak. Service level management for executable papers. In Euro-Par 2011: Parallel

Processing Workshops, pages 116–123. Springer, 2012.

Rudolf Strijkers, Reginald Cushing, Dmitry Vasyunin, Cees de Laat, Adam S.Z. Bel-

loum, and Robert Meijer. Toward executable scientific publications. Procedia Com-

puter Science, 4(0):707 – 715, 2011. Proceedings of the International Conference on

Computational Science, ICCS 2011.

Rudolf Strijkers, Reginald Cushing, Marc X Makkes, Pieter Meulenhoff, Adam Bel-

loum, Cees de Laat, and Robert Meijer. Towards an operating system for intercloud. In

Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th International

Conference on, volume 2, pages 63–68. IEEE, 2013.

Spiros Koulouzis, Dmitry Vasyunin, Reginald Cushing, Adam Belloum, and Marian

Bubak. Cloud data federation for scientific applications. In Euro-Par 2013: Parallel

Processing Workshops, volume 8374 of Lecture Notes in Computer Science, pages

13–22. Springer Berlin Heidelberg, 2014.

Other publications

Reginald Cushing, Adam Belloum, Marian Bubak, and Cees de Laat. Towards open

linked processes for scientific computing. https://tnc2013.terena.org/

core/poster/26. poster in TERENA Networking Conference (TNC) 2013.

Reginald Cushing, Marc X. Makkes, Rudolf Strijkers, and Adam Belloum. Inter-

clouds: Grid prosthesis for workflow systems. The Fifth IEEE International Scalable

Computing Challenge (SCALE 2012). http://www.cloudbus.org/ccgrid2012/

cfp-scale.html.

Supervision

Ganeshwara Herawan Hananda Putra. Workflow orchestration on weevilscout. Mas-

ter’s thesis, University of Amsterdam, 3 2013. https://staff.fnwi.uva.nl/

a.s.z.belloum/MSctheses/thesis_Ganesh.pdf.

https://tnc2013.terena.org/core/poster/26
https://tnc2013.terena.org/core/poster/26
http://www.cloudbus.org/ccgrid2012/cfp-scale.html
http://www.cloudbus.org/ccgrid2012/cfp-scale.html
https://staff.fnwi.uva.nl/a.s.z.belloum/MSctheses/thesis_Ganesh.pdf
https://staff.fnwi.uva.nl/a.s.z.belloum/MSctheses/thesis_Ganesh.pdf

SUMMARY

Distributed computing has always been a challenge due to the NP-completeness of finding

optimal underlying management routines. The advent of big data increases the dimension-

ality of the distributed data processing problem whereby data partitionability, processing

complexity and locality play a crucial role in the effectiveness of distributed systems. The

flexibility and control brought forward by virtualization means that for the first time we

control the whole stack from application down to the network layer but, to a certain extent,

the best way to exploit this level of programmability still eludes us.

Tackling this problem means confronting data processing from different fronts. The

spectrum of data processing ranges from the abstract, semantic level down to the actual ex-

ecution and infrastructure levels. A breadth-first research approach to the data processing

spectrum allows us relate and investigate the different dimensions of data processing while

also studying the interaction between these different dimensions. Models and semantics of

data processing allows us to reason about what data processing is A better understating of

data in its transient processing state could be achieved through effective models or trans-

formation schemas. A data processing schema is in effect an automaton describing the

various stages of data processing. The data schema is a blue print of what can be done with

data which also enriches provenance data since we know, at any stage of data processing,

what has been done and what can be done with data. Using the schema as the fulcrum of

our approach to distributed data processing we can map the data schema onto several lay-

ers including the workflow, the resources and the network so much so that data processing

becomes a plane without borders.

Fitting with the current dynamism in infrastructures, an effective system is one which

is also dynamic in nature and can change and evolve during runtime. Such dynamism in-

cludes: task farming in workflows, prediction based scaling, autonomous controlled scal-

ing, and data processing path discovery. This thesis presents four steps leading to such a

distributed data-oriented computing.

The Internet browser is, most probably, the single most widespread piece of software

installed on mobile devices and computers alike. With 2 billion users online and the shift

towards online services, computing through Internet browsers has the potential of amassing

immense resources. We demonstrate how a cluster of globally distributed Internet browsers

is used to compute thousands of bio-informatics tasks.

131

132 SUMMARY

Next, we investigate an approach to farm workflows employing the service oriented

paradigm in combination with the workflow manager to create, control and monitor work-

flows applications and their components. We study two types of workflow farming: task-

level whereby task harness acts as services by being invoked on which task to load, and

data-level where the actual task is invoked as a service with different chunks of data to

process.

Then, we propose a new data-centric workflow task scaling technique. Scaling is

achieved through a prediction mechanism where the input data load on each task within

a workflow is used to compute the estimated task execution time. Through load pre-

diction, the workflow system can take informed decisions on scaling multiple workflow

tasks independently to improve overall throughput and reduce workflow bottlenecks. We

demonstrate an autonomous mechanism for fair sharing of resources between competing

yet collaborating tasks. Each task is running a fuzzy controller which is autonomously and

continuously trying to ameliorate its resource usage without starving others.

The most important contribution is modeling data processing as units of data undergoing

transformation which can be modelled using automata. The state graphs provides deeper

insight into data manipulation during processing whereby provenance is intrinsically em-

bedded in the model. Implementation-wise, the automaton acts as a routing information

and thus, capsules of data, automaton, code and state are self routable through a distributed

network

Going beyond data processing, we show how links between services can be made purely

at the semantic layer. This introduced the notion of Networked Open Processes which, akin

to Open Linked Data, tries to find interoperable services ith the aim of enriching the ever

increasing open data.

The aforementioned contributions culminate in a system, PUMPKIN, which tries to

encompass all techniques. PUMPKIN can be considered as an overlay data defined net-

work for distributed data processing. In PUMPKIN we achieve computing interoperability

through a data processing protocol. Application use-cases vary from streaming I/O inten-

sive applications to long-running CPU intensive applications.

SAMENVATTING

De optimalisatie van onderliggende routines in gedistribueerde applicaties is uitdagend,

van wege het voldongen feit dat deze routines NP-volledig zijn. De komst van big data

verhoogt de dimensionaliteit van het gedistribueerde data verwerking probleem, hierbij

gaan data partitioneerbaarheid, complexiteit en lokaliteit een cruciale rol voor de doeltref-

fendheid van het gedistribueerde systemen. De flexibiliteit en controle die voort wordt ge-

bracht door virtualisatie betekent dan voor eerst alle lagen van de toepassing gecontroleerd

kunnen worden, tot aan de netwerklaag met een zekere beperking. De beste manier deze

controle te gebruiken op het niveau van programmeerbaarheid ontgaat ons nog steeds.

De aanpak van dit probleem betekend dat we data verwerking moeten confronteren

van uit verschillende fronten. Het spectrum van de gegevensverwerking varieert van de

abstracte, semantisch niveau naar de feitelijke uitvoering en infrastructuur niveaus. Een

breedte-eerst speurtocht benadering van het verwerking van gegevens spectrum, laat ons

relateren en onderzoeken naar de verschillende dimensies van het verwerken van data,

terwijl we ook een studie doen naar interactie tussen verschillende dimensies. Modellen

en semantiek van gegevensverwerking stelt ons in staat te redeneren over welke gegevens

verwerking is. Het beter begrijpen van de data die verwerkt wordt kan worden bereikt door

middel van effectieve modellen van tranformatieschemas. Een dataverwerkingsschemas

is in feite een automaat die de verschillende fasen van de gegevensverwerking beschrijft.

Een gegevensschema is een blauwdruk van de mogelijkheden van wat er met de data kan

worden gedaan, dat zorcht er tevens voor dat het verrijkt worden met de verwerking history,

en dat bij elke fase van de verwerking duidelijk word welke mogelijkheden er nog over zijn.

Als we nu onze schema als uitgangspunt gebruiken van onze aanpak om gedistribueerde

gegevensverwerking te doen, kunnen we het data schema op verschillende lagen in kaart

brengen, waaronder: de workflow, de (computer)middelen en het netwerk, zozeer zelfs dat

dataverwerking wordt als een vliegtuig zonder grenzen

Om met de huidige dynamiek in de infrastructuur om te gaan, zou een doeltreffend

system zelf van dynamische aard moeten zijn, en kunnen veranderen en evolueren tijdens

de looptijd. Dergelijke systeem dynamiek omvat: task farming in werkstromen, schalen op

basis van voorspelling, autonoom gecontroleerd schalen, en automatisch ontdekken van het

dataverwerking pad Dit proefschrift presenteert vier stappen die leiden tot een dergelijke

een gedistribueerde data-georiënteerde computing.

133

134 SAMENVATTING

De Internet browser is, hoogstwaarschijnlijk, de meest wijdverspreide stukje software

en genstalleerd op mobiele apparaten en computers. Met 2 miljard online gebruikers en

een verschuiving naar online-diensten, hebben computers, via Internet browsers, een po-

tentieel van het vergaren van enorme hoeveelheden middelen. We laten zien hoe een clus-

ter van wereldwijd gedistribueerde internet browsers wordt gebruikt om duizenden bio-

informatica taken uit te voeren. Vervolgens hebben we een farm workflows met een dienst

georiënteerde paradigma in combinatie met workflow manager om workflow applicaties

en hun componenten te observeren en te controleren. We bestuderen twee typen farm

workflows: op taak-niveau, waarbij een taak harnas fungeert als een dienst en de dienst

wordt aangeroepen om een taak uit te voeren, en op data-niveau waarbij de taak wordt

aangeroepen als een dienst met verschillende stukken data die moeten worden verwerkt.

Daarna, stellen we een nieuw schaalbaarheidstechniek voor, waarin data centraal staat

in de workflow taak. Hier wordt schaalbaarheid bereikt door het een voorspelling mecha-

nisme die berekend, aan de hand van de binnenkomen data, wat de verwachte data uitvoer

tijd zal zijn voor elke taak.

Door het in acht nemen van de voorspelling van de uitvoertijd, kan het workflow sys-

teem een wel overwogen beslissing nemen over het opschalen van meerdere onafhanke-

lijke workflow taken om prestatie van het algehele systeem te verbeteren en knelpunten

te voorkomen. We demonstreren een autonoom mechanisme, die voor eerlijke verdeling

van middelen zocht, tussen concurrerende nog samenwerkende taken. Elke taak heeft een

fuzzy controller, die autonoom is en voortdurend probeert om het gebruik van bronnen te

verbeteren zonder andere processen te laten verhongeren.

De belangrijkste bijdrage van deze thesis is het modelleren van data verwerking als

eenheden van de gegevens waarbij de transformatie die kan worden gemodelleerd met au-

tomaten. De status grafieken geven dieper inzicht in de manipulatie van gegevens tijdens

het verwerken waarbij de herkomst intrinsiek is ingebed in het model. De staat grafieken

geeft dieper inzicht in Praktisch gezien werkt het als volgt, de automaat werk als router-

ingsinformatie en word geëncapsuleerd samen met de data, status, en code, dit zorgt ervoor

dat routeerbaar is in een gedistribueerd netwerk.

Overstijgende aan gegevensverwerking, tonen we aan hoe de banden tussen diensten

uitsluiten kunnen worden gemaakt op de semantische laag. Deze introduceerd het be-

grip van Networked Open Processes die verwant zijn aan Open linked data, die zijn beurt

probeert de interoperabiliteit te vinnn tussen diensen en het verrijken van de groeiende

hoeveelheid aan open data.

De bovengenoemde bijdragen zijn uitmond in een systeem, PUMPKIN, die tracht alle

technieken omvatten. PUMPKIN kan worden beschouwd als een boven op liggende data

netwerk voor gedistribueerde gegevensverwerking. In PUMKIN hebben we de verw-

erkingsinteroperabiliteit opgelost door middel van een data verwerking protocol. Appli-

SAMENVATTING 135

caties casussen die wij in acht hebben genomen verschillen van Streaming I/O intensieve

toepassingen tot en met langlopende CPU-intensieve applicaties.

ACKNOWLEDGMENTS

The journey here was an expedition through many winding roads, literally and metaphori-

cally, obstacles and sometimes seemingly impasses. It would not have been possible with-

out the help of so many people who patiently stood at crossroads showing me the way for-

ward. Words cannot but express my deepest gratitude for all the people who helped along

the way; Adam Belloum who had to endure my daily jabbering and make sense of it, Mar-

ian Bubak who hosted me many times at Krakow for sessions of intense thesis hackathons

and Cees de Laat for his valued insight into new research directions and new angles of

attack. Ideas where, at many times, polished and waxed through collaborations and long

discussions sometimes past the wee hours. For this, I like to thank Rudolf Strijkers, Marc

Makkes, Spiros Koulouzis, Dmitry Vasunin, Mikołay Baranowski and Ana-Maria Oprescu.

I would also like to thank the whole SNE group for the sense of cohesion, academically

as well as socially, which created an amiable atmosphere to work in. The journey would

not have been pleasant without the new friendships which were forged along the way; a

big thank you to the usual suspects who found me not too annoying to hang around. Last

but not least, Daniela, who through, thick and thin, has accompanied me throughout the

journey and always found ways to brighten up the dark gloomy days.

137

	Motivation and Research Objectives
	Vision of Data Science
	Research Objectives
	Structure of Thesis

	Emerging Infrastructures For Distributed Computing
	Introduction
	Web Browser as a Resource
	JavaScript Performance
	Browser computing with WeevilScout
	Browsers for Scientific Computing

	Intercloud as a Computing Infrastructure
	New Generation of Applications
	Data Defined Networking
	Application Managers as Middlewares

	Summary

	Scaling Data Centric Computing
	Introduction
	Service-based Approach to Farming Workflows
	Data-centric Workflows
	Task Farming with Data Partitioning

	Predication-based Scaling Dataflows
	Dataflow Architecture
	Dataflow Data Queueing
	Dataflow Task Harnessing

	Fuzzy-based Scaling Web Services
	Web Service Container Architecture
	Web Service Back-to-back Communication
	Web Service Autonomous Orchestration
	Web Service Fuzzy Controlled Elastic Scaling

	Summary

	Automata-based Distributed Data Processing
	Introduction
	Paradigms of Distributed Data Processing
	Provenance in Distributed Data Processing
	Automata as a Data Model
	Data Packet as a Unit of Computing
	Computing Flow Control
	Data Transition Functions: d-op
	Pumpkin Data State Network Implementation

	Summary

	Linking Data Processing Through Semantics
	Introduction
	Building Networks of Interoperable Processing
	A Framework for Interoperable Processing
	Semantic Description of Processes
	Network Reasoning
	Process Object Identifier
	Process Containers
	Usage Scenario

	Summary

	Evaluation of Data Processing Models
	Prediction-based Auto Scaling
	Fuzzy-based Auto Scaling
	WFaaS-based Task Farming
	Automata-based Tweeter Filtering
	Automata-based Tracking Brain Regions
	Summary

	Conclusions and Future Work
	Conclusions
	Vision and Future Work
	Future Research

	Publication Authorship
	Publications
	Summary
	Samenvatting
	Acknowledgments

