
536252-L-os-Xiao536252-L-os-Xiao536252-L-os-Xiao536252-L-os-Xiao Processed on: 24-9-2019Processed on: 24-9-2019Processed on: 24-9-2019Processed on: 24-9-2019

JUN XIAO

Improving Application Timing Predictability and
Caching Performance on Multi-core Systems

Im
proving A

pplication T
im

ing Predictability and C
aching Perform

ance on M
ulti-core System

s

JU

N
 X

IA
O

No bookmark was supplied!

Improving Application Timing
Predictability and Caching
Performance on Multi-core

Systems

Jun Xiao

Improving Application Timing
Predictability and Caching
Performance on Multi-core

Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex

ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in

de Aula
op 18 oktober 2019, te 11:00 uur

door

Jun Xiao

geboren te Jiangxi

Promotiecommissie

Promotor:
Prof. dr. ir. Cees T. A. M. de Laat Universiteit van Amsterdam
Dr. Andy D. Pimentel Universiteit van Amsterdam

Overige leden:
Prof. dr. Sebastian Altmeyer University of Augsburg
Prof. dr. Giuseppe Lipari University of Lille
Dr. John Shalf Lawrence Berkeley National Laboratory
Prof. dr. Rob van Nieuwpoort Universiteit van Amsterdam
Prof. dr. Cees G.M. Snoek Universiteit van Amsterdam
Dr. Clemens Grelck Universiteit van Amsterdam
Dr. Ana Lucia Varbanescu Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research was supported by NWO under project number 12696 (CPS-4).

Copyright © 2019 Jun Xiao, Amsterdam, The Netherlands
Cover by Shichen Li
Printed by Ipskamp Printing, Enschede

ISBN: 978-94-028-1739-3

Acknowledgements

It is about four and half years since I started working towards my PhD in March, 2015.
In those years, there were disappointments, worries, and depression, but there were
more joys, cheers and hope. It has been surely a long, hard but enjoyable journey for me.
As I finish this journey, my heart are filled with gratitude for a number of extraordinary
people who made it possible. This dissertation could never have been completed without
the help from them.

First and foremost, I would like to express my sincere gratitude to my daily su-
pervisor Andy Pimentel, for being valuable sources of technical knowledge, tactical
advice and scientific support. You have made selfless dedication to me: I can not count
how much coffee you consumed before our regular meetings, but I remember that you
corrected almost every sentences of the draft I wrote for the first paper of my PhD.
Thank Andy for having faith in me and encouraging me when I got stuck with research
and fell into darkness. I am especially grateful to you for letting me pursue my own
research agenda as you provided the nurturing blend of trust, support, encouragement,
patience, and funding. Your contribution to me as a person goes beyond our professional
relationship: you showed me the art of communication and you taught me the power of
respect. Your teachings and principles will continue to influence me, both as a researcher
and as an individual. Thank you very much for all the help, Andy!

I am also greatly indebted to my promoter Prof. Cees de Laat, for always being
available for discussions on my research and providing me with constructive comments
and suggestions for the improvement of my work.

I was very fortunate to work with, and learn from, a number of (both formal and
current) colleagues in and SNE research group: Benjamin Rouxel, Catalin Ciobanu,
Dolly Sapra, Hao Zhu, Hongyun Liu, Hugo Meyer, Junchao Wang, Julius Roeder, Lu
Zhang, Lukasz Makowski, Ralph Koning, Uraz Odyurt, Wei Quan, Xiaofeng Liao,
Zeshun Shi, Zhiming Zhao and so on. Those incredible colleagues helped by brain-
storming, exchanging ideas, providing feedback, and being exceptional friends. A warm
thanks to Giulio Stramondo for your humor and pleasing words at the moment when
we held a cup of wine and “Ganbei”. A sincere thanks also goes to Simon Polstra, who
provided technical support at the the early stages of my PhD and helped me translate
this dissertation summary into Dutch. I also would like to give special thanks to Huan
Zhou and Hu Yang for interesting talks and jokes we had during our daily coffee times.

I would like to thank the members of my examination committee: Prof. Sebastian
Altmeyer, Prof. Giuseppe Lipari, Dr. John Shalf, Prof. Rob van Nieuwpoort, Prof. Cees
G.M. Snoek, Dr. Clemens Grelck and Dr. Ana Lucia Varbanescu for reviewing this
dissertation, providing me with invaluable comments and feedback and taking time
to come to Amsterdam to discuss the various aspects of this work. Additionally, I
wish to thank Giuseppe for your master course on design patterns in object-oriented
programming, which have profoundly influenced the way I now develop software and
your help in building the SysRT simulator. A Special thanks goes to Sebastian, for
attending my practice talks, proof-reading papers, participating in discussions, listened,
and argued like good friends. I will also not forget your help in preparing the rebuttal
letter for the RTSS paper: we exchanged mails at the very dark night. A sincere thanks

goes to Clemens, for many discussions we had, in which I always benefit from your
critical ideas and insights. I also learned a lot from you about the compilers. Thank
Ana, for giving me the access to equipment for conducting experiments.

I met exceptional people and made formidable friendships throughout the various
stages of my PhD. I would like to thank all my great and cheerful friends during my
stay in the Netherlands: Biwen Wang, Hui Xiong, Jian Lin, Jinglan Wang, Linlin
Zhang, Renjie Lv, Songyu Yang, Shunan He, Shuangshuang Hu, Shaojie Jiang, Si Wen,
Wenyang Wu, Wei Du, Weiyu Li, Xiaolong Liu, Yumei Wang, Yipeng Song, Zijian
Zhou, Ziming Li, Zenglin Shi and so on. Without them, I would never have had such
a wonderful life in the past years. I also want to thank my friends who are far away
from me but have provided support: Binfei Lin, Jiachang Chen, Lianhua Liu, Mao Nie,
Michele Linardi, Shichen Li, Youcai Gao and so on.

I am very grateful to meet and talk with many brilliant researchers. I want to thank
Prof. Lieven Eeckhout for hosting my short visit to your research group, and discussions
we had about simulation and modeling of computer architecture. I desire to thank Prof.
Per Stenstorm for interesting discussions we had about cache contention problems.
I wish to thank Prof. Xu Liu for your guidance in programming with Intel’s PEBS
techniques and cache locality theory. I learned a lot from their expertise. I hope the
cooperation with them will continue.
y+�"⌘ÑªPYdÊÆ⇥ tM`>⇤(✏')Ñf`�;� Èewp

j⌘⇥�"`Ÿõtj4�/��⌃„⇥(⌘Â\�y´UÑˆØ�`;⇢Z
�L}‹�≤ £Kãeí„⌘Ñ1=Æ'⇥(⌘:,å)Ñ≤&QÑˆ
⇡�`;/�åvÊ0,å⌘Ñ∆⌥√`⇥(⌘�˛>⇤f/Kˆ� ˆ–í
⌘ÿ ‘—±ÙÕÅÑ⌧�⇥�"`:Üû∞⌘Ñ¶Û@\˙Ñzr��"≥
6≥ÕÑ·˚�ä®Ï√1Ñs?§Ÿ⌘⇥
�"⌘Ô1⇥ÆÑs?�ñCÓ�"Œ`(⌘ZÎ��6µÑ0e⇥`Ñ

Æ⌘�/⌘Ÿˆ�}Ñ>~⇥
w√�"88ààå�F�˘⌘œ�!âÈå∫�œ�eÑ‡aˆÑ/�

å◆±�®ÏÑY≤å�¸/⌘;˚ZÎ�ZûÑ˙@⇥�"®ÏÑ⌃„�⌘
ÒÂ�⇤t⇢Ñ'2Yf�Ø�é⌘/˝¶�˘é®Ï���Ù⇢Ñ/ÂÂ⌧
⌧Ñ�ı�u⇥⇥�"(⌘åA⇢t⇣�SÔ->ËÑ‡¡Ñ1�©⌘�◊Ÿ
*�LÑé}�Ÿ⌘¢"�LÑ«åÍ1⇥
����"�}-G0Ñœ�*∫–õÑ.©�(d�(Âdá.Ÿ@

⌘1Ñå1⌘Ñ`Ï�Â :*e�»KóÑÍÒ⇥

Jun Xiaoñ
Almere, 18th September 2019

Contents

1 Introduction 1
1.1 Research Outline and Questions . 3
1.2 Main Contributions . 6
1.3 Thesis Overview . 7
1.4 Origins . 8

2 Background 11
2.1 Computer architecture . 11

2.1.1 Multi-core processors . 11
2.1.2 Processor caches . 12
2.1.3 Shared cache interference 14
2.1.4 Cache Partitioning . 14
2.1.5 Cache Allocation technology 15
2.1.6 Hardware prefetching . 16
2.1.7 Hardware PMU . 17

2.2 Real-time systems . 18
2.2.1 Real-time task models . 18
2.2.2 Scheduling algorithms . 18
2.2.3 Schedulability analysis . 22

3 SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space
Exploration 27
3.1 Modeling Framework . 29
3.2 Application model . 30

3.2.1 Task Model . 30
3.2.2 Instruction Model . 32

3.3 RTOS Kernel Model . 33
3.3.1 UNPKernel Model . 33
3.3.2 SMPKernel Model . 34
3.3.3 PartiKernel Model . 35
3.3.4 Scheduler Model . 36
3.3.5 Resource Management Model 36

3.4 Experimental Results . 37
3.4.1 Simulation performance and accuracy 37
3.4.2 Flexibility of SysRT . 38
3.4.3 Benefit of SysRT in DSE . 39

3.5 Conclusion . 42

4 Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches 43
4.1 Related work . 45
4.2 System Model . 46

4.2.1 Task Model . 46
4.2.2 Architecture Model . 46

v

CONTENTS

4.2.3 Global Schedulers . 47
4.3 Schedulability Analysis . 47

4.3.1 Overview . 47
4.3.2 Computation of Īprek . 49
4.3.3 Computation of Īsck . 56

4.4 Iterative Computation . 61
4.5 Experiments . 65
4.6 Conclusions . 68

5 Partitioned Scheduling for Real-time Systems with Shared Caches 71
5.1 System Model and Prerequisites . 73

5.1.1 System Model . 73
5.1.2 The Demand-Bound Function 74
5.1.3 Uniprocessor Schedulability 74
5.1.4 Cache Interference . 75

5.2 Cache interference aware task partitioning : CA-TPAR 75
5.2.1 The Task Partitioning Algorithm: CA-TPAR 76
5.2.2 Calculation of The Upper Bound on Cache Interference: Īck . 78
5.2.3 Schedulability Analysis . 81

5.3 Experiments . 85
5.3.1 Experimental Setup . 85
5.3.2 Results . 85
5.3.3 Average Execution Time . 87

5.4 Conclusions . 87

6 CPpf : a prefetch aware LLC partitioning approach 91
6.1 Motivation . 93

6.1.1 The impact of hardware prefetching on cache performance . . 93
6.1.2 Inter-core prefetch-related cache pollution 95

6.2 PS and NPS applications . 95
6.2.1 Definition of PS and NPS applications 95
6.2.2 Cache sensitivity of PS and NPS applications 96

6.3 Prefetch aware LLC Partitioning . 97
6.3.1 Online classification of applications 97
6.3.2 LLC partitioning for PS and NPS applications 101

6.4 Experiments . 102
6.4.1 CPpf performance gain . 103
6.4.2 Cases study of CPpf . 103
6.4.3 CPpf with multithreaded workloads 104
6.4.4 Sensitivity Analysis . 105
6.4.5 Overhead . 105

6.5 Conclusion . 106

vi

CONTENTS

7 Conclusions 107
7.1 Main findings . 107
7.2 Future work . 112

Bibliography 113

Summary 119

Samenvatting 121

vii

1
Introduction

Both Moore’s Law (the number of transistors in a processor will double every two years)
and Dennard Scaling (power density remains constant because of transistor scaling)
have allowed us to make large improvements over the last decades of microprocessor
design. While Dennard Scaling is seen as now coming to an end, the resulting inability to
increase clock frequencies significantly has fueled the move to the multi-core processors,
which allows to continue to scale the performance of computing platforms through the
use of multiple (and many) efficient cores.

The high performance achieved by the modern multi-core processors has been
accomplished by using new architectural mechanisms. An important class of those
mechanisms aims to overcome the performance gap between the processors and memory,
referred to as the memory wall. For example, a hierarchy of cache memory levels, which
rely on the principle of memory access locality, and hardware prefetching, which
predicts future memory accesses and issues requests for the corresponding memory
blocks in advance of the explicit accesses, are deployed in nearly every modern multi-
core processors to hide memory access latency.

Although there are many benefits to moving from single-core processors to multi-
core processors, architects must address disadvantages and associated risks such as
the contention on the shared hardware resources. Cores on the same processor share
both processor-internal resources like L3 cache, system bus, memory controller, I/O
controllers and interconnects and processor-external resources like main memory, I/O
devices and networks. Multiple applications executing concurrently on a multi-core
system can interfere with each other at those shared resources. Such inter-application
interference, if uncontrolled, could lead to unpredictable execution delay for individual
applications and severe performance degradation for the whole system.

In this dissertation, we investigate two issues raised by the increasing complexity of
the underlying hardware and software for multi-core systems: timing predictability for
embedded computing and caching performance for high performance computing.

Challenges to build timing predictable multi-core embedded sys-
tems

In many embedded systems, a high performance is useless if we can not provide
guarantees on the timing performance of the applications when designing the system.

1

1. Introduction

One example of such systems is real-time systems, where the computing system must
interact with its environment in a timely manner. Violating timing constraints is fatal to
such a system, which may lead to catastrophic consequences such as loss of human life.
For example, an air-bag controller, which must inflate the air-bag in time before the
driver’s head hits the steering wheel. A flight control system must correct turbulence
before the airplane becomes unstable.

A significant trend in embedded computing hardware is the paradigm shift from
uniprocessor to multi-core processors. This brings great benefits such as higher compu-
tation power at lower cost of energy consumption, while at the same time also poses
new challenges for the timing analysis of embedded software executing on a multi-core
processor.

The scheduling of applications on multi-core processors not only involves the time
dimension, i.e., to decide when to execute a certain application, but also involves the
spatial dimension as it also needs to decide where (i.e., on which core) to execute the
application. Apart from the processing cores, different applications also contend on
many shared hardware resources in multi-core processors, such as caches, buses and
main memory. Interleaving of concurrent accesses to these shared hardware resources
results in execution delays for individual applications and creates a tremendous state
space of the system behavior, making its timing analysis extremely difficult.

Challenges to manage shared resources for high performance
computing systems

Different from real-time embedded systems, the primary goal of high performance
computing is to achieve the best system performance, i.e., to increase system throughput
or to process the computing jobs as fast as possible. Here, the major challenges are to
mitigate the inter-application interference and to efficiently manage the shared hardware
resources in multi-core processor for high performance computing.

Applications running simultaneously on different cores utilize a plethora of memory
components including a hierarchy of caches, prefetchers and memory controllers. Inter-
application interference makes it difficult to the predict the performance degradation for
individual applications, as some applications may be slowed down significantly, others
may not

Furthermore, the interaction between these various components can be fairly com-
plicated and it is challenging to study the impact of the interaction on application
performance at run time due to the current limited transparency and monitoring capabil-
ities for hardware behaviors. Since recent commodity CPUs have provided hardware
support for control over hardware resources such as caches and memory bandwidth,
a large amount of research attention is given to the management of shared hardware
resources. However, mitigating the impact of the hardware interaction and resource
contention and allocating the shared resources among the co-running applications to
maximize system performance, remain challenges in high performance computing
systems.

Next, we elaborate more in details on the research questions that we address in the
thesis.

2

1.1. Research Outline and Questions

1.1 Research Outline and Questions

The work in this thesis focuses on developing tools, analyses and algorithmic methods
for addressing the challenges raised in the two general research themes described above:
time predictability for real time embedded computing and shared resource management
for high performance computing. More specifically, in the first research line, we
deal with two subtopics related to simulation and analytical approaches for the timing
analysis: system-level modeling and simulation of real time systems for design space
exploration and schedulability analysis of (global and partitioned) real-time scheduling
for multi-core systems with shared caches. In the second research line, we study the
interaction between the hardware prefetching and shared cache management and we
exploit the opportunity to improve caching performance in the presence of hardware
prefetching.

Modeling and simulation of real time embedded system
In today’s embedded systems, together with the increasing multi-core hardware platform
complexity, the software complexity has also been growing dramatically. Modern em-
bedded systems increasingly execute several applications of different types concurrently
on the underlying computing platform. These applications can have different execution
requirements. For example, control applications typically are hard real-time applications
and thus have stringent timing constraints, while best-effort applications prefer a short
task response time. These systems are usually managed by a Real-Time Operating
System (RTOS).

The complexities of the multi-processor system-on-chip (MPSoC) design space
have made traditional cycle- or instruction-accurate simulators inefficient. Raising
the level of abstraction is generally considered as a solution to address the design
complexity, thus reducing time-to-market. To help in the design space exploration
(DSE) at the early stages of design [68], various system-level design languages (SLDL)
such as SystemC [93] and SpecC [85] have been proposed to provide a simulation
environment. Originally, SLDLs primarily focused on hardware modeling and did not
properly address the modeling of software aspects.

The modeling and simulation of RTOS with SLDL have received widespread at-
tention from many researchers [40, 50, 116, 117]. Those simulators are built by a
quantum-granularity based simulation approach, in which the modeled scheduler is
invoked every simulation quantum, similar to the way a real OS scheduler behaves. This
therefore introduces large overheads, resulting in low simulation speeds. Later efforts
[48, 89] were made to trade-off speed for accuracy. [73] and [78] rely on the prediction
of preemption points to speedup simulation while maintaining accuracy. However,
predictions of preemption points are difficult if the simulation uses more complex task
models like Directed Acyclic Graphs (DAGs) and resource sharing models.

Therefore, our research questions in the first study are the following, which are
referred as RQ1:

RQ1 How to provide fast simulation of real-time embedded systems for design space
exploration at the early stages of system design? How to accurately capture

3

1. Introduction

the timing behaviour of embedded software? How to efficiently implement the
simulator to provide support for easy plug-in of new task models, new schedulers
and new resource sharing protocols?

Schedulability analysis of real-time multi-core systems

In single-core systems, timing behaviour is typically verified via a two-step process [61].
In the first timing analysis step, the Worst-Case Execution Time (WCET) of each task is
derived. The WCET is an upper bound on the execution time, assuming the task runs in
full isolation on the platform, i.e. without preemption, nor any co-runners. The WCET
is then integrated into the second step, schedulability analysis. Schedulability analysis
involves considering the worst-case pattern of task execution under a scheduling policy.
Schedulability analysis determines the Worst-Case Response Time (WCRT) of each
task, by which the timing constraint of each task can be verified.

The clear separation between the two steps can not applied to the timing verification
of multi-core systems where the interference on shared hardware resources can depend
heavily on the behaviour of co-runners executing concurrently on other cores. When
a task executes alone on a multi-core processor platform, the timing behaviour of the
system is defined by that task alone, the same as executing the task on a uniprocessor
platform. However, when multiple tasks run simultaneously on different cores, the
interplay between the tasks on shared hardware resources may results in unpredictable
execution delays. Therefore, using the WCET of tasks executing in isolation on a
multi-core platform without considering the co-runner interference can potentially lead
to incorrect WCRT values.

With a multi-core system, the WCRTs are strongly dependent on the amount of
inter-core interference on shared hardware resources such as main memory, shared
caches and interconnects. In this dissertation, we shall only focus on the shared cache
interference.

The schedulability analysis of global multiprocessor scheduling has been intensively
studied [8, 14, 22, 51, 57, 118], of which comprehensive surveys can be found in [26, 82].
Most multi-core scheduling approaches assume that the WCETs are estimated in an
offline and isolated manner and that WCET values are fixed. A few works address
schedulability analysis for multi-core systems with shared caches [35, 113], but these
works assume that so-called cache space isolation is deployed, which requires explicit
hardware support.

In this thesis, we consider multi-core systems in which cache isolation techniques
are not deployed, i.e. the last level cache is shared by cores. We study the schedulability
analysis of global scheduling (Earliest Deadline First and Fixed Priority) for hard real-
time tasks that exhibit shared cache interferences. Thus, we ask the following research
questions, which are referred as RQ2:

RQ2 Is it possible to derive an upper bound on shared cache interference between
two tasks running simultaneously on a multi-core system? Given a real-time
taskset globally scheduled by EDF or FP, how to obtain an upper bound on the
shared cache interference exhibited by each task in the taskset? How to derive

4

1.1. Research Outline and Questions

a schedulable condition for the globally scheduled taskset, accounting for the
shared cache interference?

Besides the global scheduling, the partitioned (semi-partitioned) scheduling is
another paradigm that are widely used for scheduling real-time tasks. In partitioned
scheduling, tasks are statically allocated to processor cores, i.e., each task is assigned to a
core and is always executed on that particular core. Although the partitioned approaches
cannot exploit all unused processing capacity since a bin-packing-like problem needs
to be solved to assign tasks to cores, it offers lower runtime overheads and provides
consistently good empirical performance at high utilizations [11].

Furthermore, taking the shared cache interference into account, partitioned schedul-
ing may achieve better schedulability than global scheduling, which will be shown in
Chapter 5.

Therefore, it is interesting to extend the answer to the previous question, which is
developed for real-time global scheduling, to the partitioned scheduling. We then ask
the following questions, referred as RQ3:

RQ3 How to develop a cache interference aware partitioned scheduling for real-time
multi-core systems? Is the partitioned scheduling better than global scheduling in
terms of schedulability performance?

Prefetch-aware cache partitioning for high performance caching
Hardware cache prefetching is a popular technique that is deployed in modern multi-
core processors to reduce memory latencies, addressing the memory wall problem [105].
However, it tends to increase the Last Level Cache (LLC) contention among applications
executing on multi-core system, leading to a performance degradation for the overall
system.

Shared cache management has attracted a lot of research attention in the past decades.
Heracles [59] and Dirigent [120] control the amount of shared hardware resources,
including the LLC, used by latency sensitive applications to improve Quality of Service
and utilization. Selfa et. al. [79] cluster applications using the k-means algorithm
and distributes cache ways between the groups to improve system fairness. Pons et.
al. [69] assigns more cache space to critical applications to improve system turnaround
time. [106] proposes a framework that dynamically monitors and predicts a workload’s
cache demand and reallocates the LLC given a performance target. KPart [30] leverages
online profiling to obtain miss ratio curves for clustering applications and assigns each
cluster of applications to a cache partition to improve system throughput.Park et. al. [66]
proposed a coordinated partitioning of the LLC and memory bandwidth to improve the
fairness of workloads on commodity servers. All these works have been implemented
on existing processors, however, those works do not study the impact of hardware
prefetching on cache performance and do not explicitly reveal the interaction between
the hardware prefetching and LLC management.

In a real system, cache references by hardware prefetching also contributes to last
level shared cache (LLC) interference [103]. However, there is little understanding
about the interaction between the hardware prefetching and the shared caches. In this

5

1. Introduction

research line, we focus on the LLC management to improve system performance in the
presence of hardware prefetching.

Our questions in this study, then, are the following , refered as RQ4:

RQ4 How does hardware prefetching affect the caching performance? How to man-
age shared caches to improve system performance in the presence of hardware
prefetching?

1.2 Main Contributions
In this section, we summarize the main contributions presented in this thesis.

Modeling and simulation of RTOS. We developed SysRT, a simulator of RTOS in
SystemC that allows developers and researchers to easily explore and validate embedded
RTOS design alternatives. Compared with quantum-granularity based simulators and
prediction-based simulators, SysRT has two main advantages: (i) it has been developed
to be generic and modular to support for easy plug-in of new schedulers as well as
new resource sharing protocols. Thus, it is more flexible to simulate various real-
time scheduling algorithms; (ii) it typically achieves higher simulation speeds via an
event-driven simulation approach while obtaining identical accuracy results.

A Method to derive the upper bound on shared cache interference. We con-
struct an integer programming formulation to calculate the upper bound on the cache
interference exhibited by a task within a given execution window. We then present an
iterative algorithm to obtain the upper bound on inter-core cache interference a task
may exhibit during its job executions.

The above approach is extended to compute the upper bound on the cache interfer-
ence for tasks under partitioned scheduling.

Schedulability analysis for real-time multi-core systems with shared caches. A
schedulability condition is derived by integrating the calculated upper bound on inter-
core cache interference into the schedulability analysis for global scheduling algorithms
(EDF and FP).

We also propose a novel cache interference aware task partition algorithm: CA-
TPAR. We conduct schedulability analysis of CA-TPAR and formally prove the correct-
ness of CA-TPAR.

Evaluation of schedulability performance for global and partitioned schedul-
ing. We perform a range of experiments to investigate how the schedulability of global
(EDF and FP) and partitioned (CA-TPAR) scheduling are degraded by shared cache
interference. We also compare the schedulability performance of EDF, FP scheduling
and CA-TPAR over randomly generated tasksets.

Study of the interaction between hardware prefetching and cache manage-
ment. We study the interaction between hardware prefetching and LLC management
in a real system instead of in a simulator. We evaluate the variation of application

6

1.3. Thesis Overview

performance when varying the effective LLC space in the presence and absence of
hardware prefetching. We observed that hardware prefetching can compensate the
application performance loss due to the reduced effective cache space. Based on this
observation, we classify applications into two categories, prefetching sensitive (PS)
and non prefetching sensitive (NPS) applications, by the performance benefit they
experience from hardware prefetchers.

A prefetch-aware cache partitioning approach. We propose CPpf , a prefetch-
aware LLC partitioning approach for improving LLC management. CPpf consists of a
method using Precise Event-Based Sampling (PEBS) techniques for online classification
of PS and NPS applications and a LLC partitioning scheme using Cache Allocation
technology (CAT) for PS and NPS applications. We have implemented the prototype
of CPpf as a user-level runtime system on Linux.

1.3 Thesis Overview
This thesis is organized in 7 chapters. After a background chapter, we present four
research chapters containing our core contributions plus a concluding chapter:

Chapter 3 answers the research question RQ1. We present SysRT, a generic,
modular and high-level RTOS simulator that is highly suited for early design space
exploration. The simulator contains different types of application models and a modular
RTOS kernel model, all developed in SystemC. Efficient and precise modeling of
preemptive scheduling is achieved via an event-driven simulation approach, allowing
simulations to be performed much faster than cycle-accurate simulations. We compare
SysRT with state-of-art simulators to show the advantage of SysRT in both simulation
speeds and accuracy. We also demonstrate the flexibility of SysRT and its benefits
for early DSE using experiments with a mixed workload executing on multiprocessor
platforms with different numbers of cores.

Chapter 4 addresses the research question RQ2. We develop a new schedulability
analysis for real-time multicore systems with shared caches, globally scheduled by EDF
and FP algorithms. We construct an integer programming formulation, which can be
transformed to an integer linear programming formulation, to calculate an upper bound
on cache interference exhibited by a task within a given execution window. Using the
integer programming formulation, an iterative algorithm is then presented to obtain the
upper bound on cache interference a task may exhibit during one job execution. The
upper bound on cache interference is subsequently integrated into the schedulability
analysis to derive a new schedulability condition. A range of experiments is performed
to investigate how the schedulability is degraded by shared cache interference. We also
evaluate the schedulability performance of EDF against FP scheduling over randomly
generated tasksets.

Chapter 5 answers the research question RQ3. We propose a novel cache interfer-
ence aware task partitioning algorithm, called CA-TPAR. We extended the approach to
calculating the upper bound on cache interference for tasks that are globally scheduled,
presented in the previous chapter, to bound the shared cache interference for tasks
under partitioned scheduling. We conduct schedulability analysis of CA-TPAR and

7

1. Introduction

formally prove its correctness. A set of experiments is performed to show CA-TPAR
outperforms global EDF scheduling in terms of schedulability performance over the
randomly generated tasksets.

Chapter 6 answers the research question RQ4. We propose CPpf , a prefetch aware
LLC partitioning approach for high performance caching. We first study the interaction
between hardware prefetching and LLC cache management by analyzing the variation
of application performance when varying the effective LLC space in the presence and
absence of hardware prefetching. We observe that hardware prefetching can compensate
the application performance loss due to the reduced effective cache space. Motivated by
this observation, we then classify applications into two categories, prefetching sensitive
(PS) and non prefetching sensitive (NPS) applications, by the performance benefit they
experience from hardware prefetchers. After that, we propose CPpf . CPpf first classifies
PS and NPS applications at run time and then partitions the LLC among PS and
NPS applications. Finally, we show the system performance improvement achieved
by CPpf , compared with the baseline configuration, in which the LLC is unpartitioned
and is fully shared among all applications.

Chapter 7 draws the Conclusions. We summarize our main findings and discuss
directions for future research.

1.4 Origins

For each research chapter, we list on which publication(s) it is based, and we briefly
discuss the role of the co-authors.

Chapter 3 is based on J. Xiao, A. D. Pimentel and G. Lipari [109], SysRT:
A modular multiprocessor RTOS simulator for early design space exploration,
proceedings of the 17th International Conference on Embedded Computer Systems:
Architectures,Modeling, and Simulation (SAMOS),2017. I am the principal author of
this paper. I proposed the ideas, built the simulator, and was the lead writer of the paper.
All the co-authors contributed to the discussions and paper writing.

Chapter 4 is based on J. Xiao, S. Altmeyer and A. D. Pimentel [108], Schedu-
lability analysis of non-preemptive real-time scheduling for multicore processors
with shared caches, proceedings of IEEE Real-Time Systems Symposium (RTSS), 2017,
and its extension as a journal version: J. Xiao, S. Altmeyer and A. D. Pimentel [110],
Schedulability analysis of global scheduling for multicore systems with shared
caches, submited to IEEE Transactions on Computers. I am the principal author of the
two papers. I proposed the ideas, proved the results, conducted the experiments, and
was the lead writer of the two papers. All the co-authors contributed to the discussions
and paper writing.

Chapter 5 is based on J. Xiao and A. D. Pimentel [46], Partitioned non-preemptive
scheduling for real-time multi-core systems with shared caches, submitted to De-
sign, Automation and Test in Europe Conference 2020 (DATE2020). I am the principal
author of this paper. I proposed the ideas, proved the results, conducted the experiments,
and was the lead writer of the paper. All the co-authors contributed to the discussions
and paper writing.

Chapter 6 is based on J. Xiao, A. D. Pimentel and X. Liu [111], CPpf : a prefetch

8

1.4. Origins

aware LLC partitioning approach, proceedings of the International Conference on
Parallel Processing, 2019 (ICPP’19) . I am the principal author of this paper. I proposed
the ideas, conducted the experiments and analyses, and was the lead writer of the paper.
All the co-authors contributed to the discussions and paper writing.

Work on other publications also contributed to the thesis, albeit indirectly. We
mention the following paper:

J. Xiao and G. Buttazzo [107], Adaptive embedded control for a ball and plate
system, proceedings of the 8th International Conference on Adaptive and Self-Adaptive
Systems and Applications, 2016. Buttazzo proposed the project, I did the implementa-
tion, conducted the experiments and analyses, and was the lead writer of the paper. All
the co-authors contributed to the discussions and paper writing.

Paper not related to the thesis but published during the PhD:

• J. Xiao, S. Chiaradonna, F. Di Giandomenico, and A. Pimentel [47], Improv-
ing voltage control in mv smart grids, 2016 IEEE International Conference on
Smart Grid Communications (SmartGridComm).

• S. Chiaradonna, F. Di Giandomenico, and J. Xiao [20], Quantification of the
effectiveness of medium voltage control policies in smart grids, proceedings
of the 17th International Symposium on High Assurance Systems Engineering
(HASE), 2016.

9

2
Background

In this chapter, we provide the concepts and background needed in later chapters in this
thesis. We start with a brief introduction to computer architecture in Section 2.1, then
we briefly describe the real-time scheduling theory in Section 2.2.

2.1 Computer architecture
We begin with a discussion of relevant computer architecture fundamentals. Given the
breadth of the topic, a comprehensive review of computer architecture is beyond the
scope of this dissertation. Instead, we focus on the parts of a computing platform: multi-
core processors, caches, hardware prefetching and hardware performance monitoring
unit.

2.1.1 Multi-core processors
During the last decades, the performance of uniprocessor systems has been increasing
by several magnitudes. The high performance has been achieved by using a high
processor clock frequency. While Dennard Scaling is seen as now coming to an end, the
resulting inability to increase clock frequencies has fueled the move from uniprocessor
systems to the multi-core processors, which allows to continue to boost the performance
of processors through scaling up the number of cores in a processor. By doing so,
the software architect is able to process in parallel, thereby significantly improving
performance.

In this dissertation, a multi-core processor is considered to be a computer system
with multiple (two or more) central processing units (CPUs) that share full access to a
main memory and peripherals. We do not distinguish between multi-core processors
and multiprocessors, thus multi-core processor is used as a synonym for multiprocessor.

Depending on the memory organization and interconnect, multiprocessors can
be divided into two shared-memory model categories: symmetric shared-memory
multiprocessors (SMPs) and distributed shared memory multiprocessors (DSMs) [41].
In SMPs, the processors share a single centralized memory and a bus is typically used
to interconnect the processors and memory. As all processors have a uniform access
latency to the memory, this type of architectures are also called uniform memory access
(UMA) multiprocessors. By contrast, in DSMs, memory is distributed among the

11

2. Background

processors but forms a single shared address space. A processor can access its local
memory faster than accessing remote memories. Therefore, a DSM multiprocessor
is also referred to as a nonuniform memory access (NUMA) multiprocessor. In this
dissertation, we restrict our focus to SMP architectures.

2.1.2 Processor caches

To hide high off-chip memory latencies, a hierarchy of fast cache memories that contain
recently accessed instructions and data is employed, taking the benefits of the principal
of locality and cost-performance of memory technologies.

The principal of locality is the tendency of programs to access the same set of
instructions or data repetitively over a short period of time. There are two types of
locality: temporal and spatial locality [41].

Temporal locality: if an item is referenced, it tends to be referenced again in the
near future.

Spatial locality: if an item is referenced, items whose addresses are close by tend
to be referenced in the near future.

Temporal and spatial locality in programs arise from natural program structures.
For example, most programs contain loops, instructions and data tend to be accessed
repeatedly, experiencing high degrees of temporal locality. It is also common that
instructions and elements of an array or a record are accessed sequentially, showing a
high amounts of spatial locality.

Cache access. Each access to the cache results in either a cache hit or a cache miss.
Cache hits occur when an application accesses data (or instructions) and finds that data
(or instructions) in the cache. A cache miss happens when accessed data is not present
in the cache.

Cache organization. Data is transferred between memory and cache in blocks
of fixed size, referred to as cache lines. A cache line usually contains multiple data
elements. An access to one data element causes the whole cache line to be loaded into
the cache. As a result, a following access to another element in the same cache line also
results in a cache hit.

Caches are typically organized as a hierarchy of several cache levels. The fastest
and smallest caches are denoted level-1 (L1) caches, with deeper caches (L2, L3, etc.)
being successively larger but slower. A cache contains either instructions or data, and
can also contain both if it is unified. In multiprocessors, caches can be either private or
shared. Private caches serve only one core. By contrast, shared caches can be accessed
by multiple cores. Usually lower level caches are private while the last level caches are
shared. A typical design of cache hierarchy is shown in Figure 2.1, where each core has
a private L1 and L2 cache and four cores share an L3 cache.

The size of an L1 cache is about several tens of KB and has an access latency of
less than 5 cycles. If a memory access misses in the L1 cache, the L2 cache is queried.
The capacity of L2 caches may range from hundreds of KB to several MB, with an
access latency of around 10 cycles. In some high performance multi-core processors,
an L3 cache with the size of several tens of MB is deployed to further expand cache
capacity. The access latency of an L3 cache ranges from 40 to 80 cycles. Misses in

12

2.1. Computer architecture

Figure 2.1: A typical design of cache hierarchy in a multi-core processor.

the last level cache trigger accesses to the main memory via the off-chip memory bus,
causing a delay in the order of hundreds of cycles.

Cache mapping. Another issue in cache design is to decide where lines should be
stored, i.e. if a cache line is fetched from main memory, where should it be placed? The
answer depends on the cache mapping. At one extreme is a fully associative cache, in
which a newly fetched memory block can be placed at any location in the cache. At the
other extreme is a direct mapped cache, in which each memory block is mapped directly
to exactly one location in the cache. Intermediate schemes are n-way set associative
caches. In these schemes, every cache set has a fixed number of ways, each of which is
a single cache line. The total number of ways within a cache set is called associativity.
To load a memory block, the processor first determines which cache set the block maps
to and then selects one of the n different ways in the cache set for the data placement.

Cache replacement. When a cache miss occurs in a direct-mapped cache, as the
requested memory block can only be loaded to exactly one position, and the block
occupying that position must be replaced. When a memory block can be mapped to
several different locations in a cache like in a fully associative and n-way set associative
cache, it is necessary to decide which cache line should be replaced. In a fully associative
cache, all cache lines are candidates for replacement. In an n-way set associative cache,
a way within the selected cache set has to be chosen for placing the requested block. A
cache replacement policy is responsible for deciding which cache line is replaced when
a cache miss occurs. The most commonly used scheme is least recently used (LRU). In
an LRU scheme, the cache line that has been unused for the longest time will be chosen
for the replacement. First In First Out (FIFO), and Pseudo-LRU (PLRU) are alternative
cache replacement algorithms currently used by multi-core processors.

Three C’s model. Cache misses are classified into one of three categories in the
three C’s model, by the source of misses in a cache [43]:

• Compulsory misses: these are cache misses caused by the first access to a memory

13

2. Background

block that has never been brought into the cache.

• Capacity misses: these are cache misses caused when the cache cannot contain
all the memory blocks accessed by a program. Capacity misses occur because of
blocks being replaced in the cache and later on requested again by the CPU.

• Conflict misses: these are cache misses that occur when multiple memory blocks
map to and compete for the same cache set. These cache misses are also called
collision misses.

A special Cache: TLB. Processors with virtual memory using memory manage-
ment units (MMU) usually have a translation look-aside buffer (TLB) [64]. A MMU
translates virtual memory addresses into physical memory addresses. Since performing
such a translation is relatively slow, the TLB, a special address translation cache, is
deployed to store previously resolved virtual-to-physical address mappings. Thanks
to the principle of locality (if the accesses have locality, the address translations for
the accesses will also have locality), the TLB ensures that the MMU does not have to
perform a translation on every memory reference.

2.1.3 Shared cache interference
When multiple applications run concurrently on a multi-core processor, they compete
among each other for cache space. The execution time of a task in a multi-core processor
can be affected by two types of cache interference: intra-core cache interference and
inter-core cache interference.

Intra-core cache interference intra-core interference occurs within a core, specifi-
cally, when a task is preempted and its data is evicted from the cache by the preempting
tasks. As a result, the preempted task may experience an extra execution delay due to the
increased data access time as soon as it is rescheduled. The severity of the experienced
delay depends on the particular cache replacement policy, the length of the preemption
and the data access pattern of the preempting task [49, 74].

Inter-core cache interference inter-core interference may happen when tasks ex-
ecuting on different cores access the shared cache simultaneously [49]. If data in the
different addressing spaces of the running tasks are loaded to the same cache line,
memory (i.e. cache) accesses from different tasks can evict each other in cache, leading
to complex timing interactions. Since this type of interference is suffered from tasks
that run in parallel, an exact analysis requires analyzing all the possible interleavings of
task executions, which is intractable. Therefore, it is extremely difficult to integrate the
inter-core interference into a static timing analysis framework.

2.1.4 Cache Partitioning
Cache partitioning, i.e., dividing cache space between applications (or cores), is a
promising approach to mitigate the negative impact of cache sharing. Cache partitioning
has been widely used to improve system performance, fairness and QoS (quality-of-
service) guarantees. We now present three common techniques (hardware, software and
hybrid techniques) for partitioning shared caches in multi-core processors.

14

2.1. Computer architecture

Hardware Techniques. Hardware techniques modify the cache to support parti-
tioning. Way-partitioning [3, 21, 76], the most common technique, restricts insertions
from each partition to its assigned subset of ways. However, simple, way-partitioning
has significant limitations: it supports only coarsely-sized partitions, which is multiples
of the way size, and the number of partitions is proportional to the number of ways.
Prior work has proposed alternative hardware cache partition techniques. For example,
in [12, 72, 96], the cache is partitioned by sets instead of ways by configuring the
indexing function. [63, 77, 97, 102, 112] modify the cache insertion and replacement
policies.

Software Techniques. The most common software-based cache partitioning tech-
nique is page coloring[94]. Page coloring exploits the virtual to physical page address
translations present in virtual memory systems at OS-level. Each partition is allowed to
use its own assigned physical pages that are mapped to specific cache sets. By restricting
the physical pages used by each partition, the overlap of cache spaces can be avoided.
Page coloring has the advantage of no need for hardware support and does not sacrifice
associativity. However, it has several drawbacks. First, page coloring requires heavy
modifications to the OS’s virtual memory subsystem and precludes the use of other
beneficial features, such as superpages. Second, partitions are coarsely sized, which is
in multiples of page size⇥cache ways, resulting in a limited number of partitions. Third,
repartitioning incurs large overheads due to the costly process of recoloring memory
pages.

Hybrid Techniques. As a hybrid cache partition technique, SWAP [98] combines
both set- and way-partitioning to achieve finer-granularity partitions. By cooperatively
managing cache ways and sets, SWAP can successfully provide hundreds of fine-grained
cache partitions for the manycore era. SWAP requires no additional hardware beyond
way partitioning. In fact, SWAP is readily implemented in existing commercial servers
whose processors provide support for hardware way-partitioning. However, SWAP
leverages page coloring, thus inherits the limitations of page coloring.

2.1.5 Cache Allocation technology
Recent Intel processors have proposed the so-called cache allocation technology (CAT),
as hardware support for Way-partitioning [42]. CAT provides software-programmable
control over the amount of cache space that can be used by a given application.

Processors that support CAT have a predefined number of classes of service (CLOS),
for example, 11 in the Intel Xeon Gold 6148 processor and 20 in the Intel Xeon E5
2658 processor. Each CLOS is associated with a capacity bit mask (CBM) that controls
the accessibility of cache lines at cache-way granularity. Each bit CBM grants write
access to the corresponding way in the cache set. Cores (or threads) can be configured
to belong to a CLOS. CBMs can overlap at some cache ways, which means that parts
of cache ways can be shared by different CLOSs. One requirement of configuring a
CBM is that all the bits set in a CBM must be consecutive, i.e. a CLOS uses consecutive
cache ways in the cache. Each application is assigned a CLOS and an application can
only access the cache ways defined by the CBM for that CLOS.

One can use Intel-cat-cmt, which is a library [24] developed by Intel, to
configure CAT. By default, all cores (and applications) are grouped into to CLOS #0.

15

2. Background

Figure 2.2 shows an example of a possible cache partitioning scheme. Each of the
four possible classes of service (CLOS #0 to CLOS #3) has assigned a subset of the 20
ways of the LLC, and each core is mapped to a CLOS. Each CLOS is identified by a
color which marks both the applications that belong to the CLOS and the cache ways
they can access. For instance, core 0 is assigned to CLOS #0 and core 1 to CLOS #1.
Note that all the CBMs are contiguous and core 1 and core 2 share cache ways 10 and
11.

Figure 2.2: An cache partitioning scheme using cache allocation technology.

2.1.6 Hardware prefetching
Hardware prefetching is another optimization technique that is commonly employed to
reduce the observed memory access time and the performance gap between processors
and memory. Prefetching predicts the memory addresses a program will access in
the near future and issues memory requests to those addresses in advance of explicit
accesses. By doing so, prefetching can hide the latency of a memory access since the
processor either does not experience a cache miss for that data access or incurs a cache
miss that is satisfied before the processor needs that data. There have been a myriad
of proposed prefetching techniques, and nearly every modern processor includes some
hardware prefetching mechanisms targeting simple and regular memory access patterns.

For example, there are five distinct hardware prefetchers on Intel Xeon platforms.
Two prefetchers are associated with the L1-data caches: a Data Cache Unit (DCU) IP
prefetcher and a DCU streamer prefetcher per core. The DCU IP prefetcher keeps track
of individual load instructions. It uses sequential load history to determine whether to
prefetch additional lines. The DCU streamer prefetcher is triggered accesses to very
recently loaded data. It fetches the next cache line into L1-D cache.

Two prefetchers are associated with the L2 caches: a Mid-Level Cache (MLC)
spatial prefetcher and a MLC streaming prefetcher. The spatial prefetcher strives to
complete every cache line fetched to the L2 cache with the pair line that comprises a
128-byte aligned chunk. The streamer prefetcher monitors read requests from the L1

16

2.1. Computer architecture

cache for ascending (and descending) sequences of addresses. Monitored read requests
include L1 data cache requests initiated by load and store operations, and L1 instruction
cache requests for fetching code. When a forward or backward stream of requests is
detected, the anticipated cache lines are prefetched into the L2 cache. Prefetched cache
lines must be in the same 4K virtual memory page.

Xeon processors support a special L2 streaming prefetcher, which prefetches data
only into the L3. It is also known as LLC prefetch (or L3 prefetch) though it is still
initiated by L2.

We can activate or deactivate these hardware prefetchers by setting the corresponding
machine state register (MSR) bits [25].

2.1.7 Hardware PMU
To provide realtime micro-architectural information about the processes currently ex-
ecuting on the chip, a rich set of Hardware Performance Monitoring Units (PMUs)
is implemented in today’s processor micro-architectures. PMUs are a set of special-
purpose registers to store the counts of hardware-related activities within computer
systems such as cpu cycles, instructions executed, cache statistics, etc. PMUs also sup-
port advanced event sampling, a mechanism that collects event samples at a predefined
sampling period. The event based sampling is realized by Intel’s Precise Event-Based
Sampling (PEBS) [36] and AMD’s Instruction Based Sampling (IBS) [28].

To use the PEBS mechanism, a counter is configured to overflow after it has counted
a preset number of events. After the counter overflows, the processor copies the current
state of the general-purpose registers and instruction pointer in the records buffer. The
processor then resets the performance counters and restarts the event counter.

As illustrated in Figure 2.3, the event MEM LOAD UOPS RETIRED:L3 MISS is
configured to drive PMU sampling. It precisely monitors cache misses at the LLC. If
the sampling period is set to n, the PMU samples one data address that causes an LLC

miss every n LLC misses.

Figure 2.3: PMU data address sampling.

Linux’ perf event is a standard programming interface to set up performance
monitoring through PMUs. More specifically, perf event open [27] can set the
PMUs in sampling mode, and the overflow event can be enabled via ioctl() calls.
The Linux kernel can deliver a signal to the threads whose PMU event counter overflows.
The user code can mmap a circular buffer into which the kernel keeps appending the
PMU data on each sample. The user can also read those circular buffers.

17

2. Background

2.2 Real-time systems
Some embedded systems, which are referred to as real time systems, must react to
events in the environment with precise time constraints. A real-time system is a
computer system whose behavior depends not only on the functional correctness of the
computation, but also on the time at which results are produced [18]. Violating timing
constraints of a real time system such as chemical and nuclear plant control, railway
switching systems, flight control systems, may lead to catastrophic consequences.

Rather than being computationally fast, a real-time computing system must be
predictable. To achieve predictability, it is necessary to apply methodologies at every
stage of the development of the system, from design to testing. Over the last decades, a
number of methodologies and analysis techniques have been proposed in the literature
to improve the predictability of real-time systems. In the following, we briefly review
the real-time task models, real-time scheduling algorithms and schedulability analysis.

2.2.1 Real-time task models
A task is a computational activity that is executed by the processor in a sequential
fashion. Particularly well-studied real-time task models are the periodic task model
and the sporadic task model. In both models, a task is a infinite sequence of jobs. In
the periodic task model, the jobs of a task are released periodically, separated by a
fixed time interval. In the sporadic task model, two consecutive jobs are separated
by a minimum inter-arrival time. Each task ⌧k = (Ck, Dk, Tk) is characterized by
a worst-case computation time Ck, a period or minimum inter-arrival time Tk, and a
relative deadline Dk.

Three levels of constraint on task deadlines are studied in the literature: (1) Implicit
deadlines, in which task deadlines are equal to their periods (Dk = Tk), (2) Constrained
deadlines, in which task deadlines are less than or equal to their periods (Dk  Tk), (3)
Arbitrary deadlines, in which task deadlines can be less than, equal to, or greater than
their periods. In this dissertation, we restrict our focus to constrained deadlines.

As illustrated in Figure 2.4, a task ⌧k is a sequence of jobs. Let Jj
k denote the jth

instance of task ⌧k. The arrival time of Jj
k , i.e. the time instant when a job becomes

available for execution, is denoted by r
j
k. Once a task is ready for execution, it may not

get executed immediately. The time instant at which J
j
k starts to execute is denoted by

s
j
k and J

j
k completes its execution at f j

k . The absolute deadline of Jj
k is djk = r

j
k +Dk.

J
j
k’s response time, denoted by R

j
k, is the time interval from the arrival time to

the time when the job is terminated, i.e. R
j
k = f

j
k � r

j
k. The goal of a real-time

scheduling algorithm is to guarantee that each job will complete before its absolute
deadline: f j

k  d
j
k.

2.2.2 Scheduling algorithms
From the perspective of real-time scheduling, shared-memory multiprocessors can be
further classified into three categories based on the capabilities of their constituent
processors: identical multiprocessors, uniform multiprocessors and heterogeneous

18

2.2. Real-time systems

Figure 2.4: Periodic (sporadic) task model and task parameters.

multiprocessors. In identical multiprocessors, each processor has the same computation
power, hence the amount of work completed by executing a task for a fixed duration
of time on a processor is the same, regardless of which task is being executed, and on
which processor. In uniform multiprocessors, each processor is characterized by its
own computing capacity hence the execution rate of a task depends on which processor
it executes on. Finally, in heterogeneous multiprocessors, each processor may have
special capabilities such as application-specific co-processors hence the amount of work
completed by executing a job for a fixed duration of time upon a processor depends
on the identities of both the job and the processor. We restrict our focus to identical
multiprocessors in this dissertation.

In multitasking systems, the processor(s) are assigned to the various tasks according
to a predefined criterion, referred as a scheduling policy. The set of rules that determines
the order in which tasks are executed is called a scheduling algorithm. Real-time
scheduling problems can be divided into two categories by the number of processors
in the computation platform: uniprocessor real-time scheduling and multiprocessor
real-time scheduling.

Uniprocessor real-time scheduling

Research on uniprocessor real-time scheduling started in the late 1960s and significant
research efforts were made in the 1980s and 1990s. [5] and [82] provide historical
accounts of the most important achievements in the field of uniprocessor scheduling
during those decades. The uniprocessor real-time scheduling theory is reasonably
mature, as a large amount of research results are documented in the textbooks such
as [17, 18], and some of those results are successfully applied to industrial practice. The
two well-known uniprocessor scheduling policies are fixed-priority (FP) and earliest-
deadline first (EDF) scheduling.

Under FP scheduling, each task is statically assigned a unique priority prior to
execution. At runtime, competing jobs are then scheduled in order of decreasing task
priority. One example of FP scheduling is rate monotonic (RM) scheduling. RM

19

2. Background

scheduling assigns priorities to tasks according to their request rates. Specifically, tasks
with higher request rates, i.e. shorter periods, get higher priorities. Since task periods
are constant, the priority assigned to the task does not change over time.

EDF is a dynamic priority scheduling algorithm that selects tasks according to their
absolute deadlines. Specifically, tasks with earlier deadlines are assigned with higher
priorities. Since each job’s absolute deadline changes over time, the priority of a task
changes dynamically. In a classic result, EDF is optimal for uniprocessor real-time
scheduling with HRT constraints [56].

Multiprocessor real-time scheduling

Multiprocessor real-time scheduling theory also traces its origins back to the late
1960s. As noted in [55], multiprocessor real-time scheduling is intrinsically a much
more difficult problem than uniprocessor scheduling. Few of the results obtained for
a uniprocessor generalize directly to the multiprocessor case. Unlike uniprocessor
scheduling, in which the scheduling of tasks only involves the dimension of time, i.e.,
to decide when to execute a certain task, multiprocessor scheduling also involves the
dimension of space as it also needs to decide where (i.e., on which core) to execute a
task.

There are two fundamental classes of multiprocessor schedulers: global and par-
titioned. Under global scheduling, all processors serve a single queue of tasks ready
to execute and jobs may migrate among processors. In contrast, under partitioned
scheduling, tasks are statically assigned to processors during an offline phase and no
task migration is permitted. Each processor then is scheduled individually using a
uniprocessor policy such as EDF or FP.

In some systems, the running task can be interrupted at any time. If a task with
higher priority becomes ready to execute and all processors are occupied by some other
tasks, the running task with lowest priority is suspended, leaving the processor for the
execution of the ready task with higher priority. The operation of suspending a running
task is called preemption.

Scheduling algorithms can be further classified into three categories with respect to
whether preemption is allowed or not. (1) Preemptive scheduling. The running task can
be preempted at any time, giving the core to another ready task. (2) Non-preemptive
scheduling. Once a task starts executing, it will not be preempted and will therefore
occupy the core until the completion of its execution. (3) Cooperative. Tasks can only
be preempted at defined scheduling points within their execution. We restrict our focus
to preemptive and non-preemptive scheduling in this dissertation.

We now show some examples of preemptive and non-preemptive real-time schedul-
ing by considering a taskset ⌧ consisting of 4 real-time tasks: T1 = (2, 4, 4), T2 =
(2, 5, 5), T3 = (4, 9, 10), T4 = (5, 20, 20) to be scheduled on a processor with 2 cores.
Note that the 3-tuple task model is explained in Section 2.2.1.

Preemptive scheduling

The scheduling of ⌧ under preemptive RM scheduling is depicted in Figure 2.5. RM

scheduling assigns a fixed priority Pi to each task ⌧i (i = 1, 2, 3, 4), such that P1 >

20

2.2. Real-time systems

P2 > P3 > P4.
At t = 0, although all tasks are ready to execute, only ⌧1 and ⌧2 execute as only two

core are available. At t = 2, both ⌧1 and ⌧2 finish execution, so ⌧3 and ⌧4 start their
execution. At t = 4, ⌧1 becomes ready again. Since ⌧1 has the highest priority, the
executing task with the lowest priority, which is ⌧4, is preempted, leaving one core for
the execution of ⌧1. Similarly, at t = 5, ⌧3 is preempted for the execution of ⌧2.

0 2 4 6 8 10 12 14 16 18 20 22

⌧1

⌧2

⌧3

⌧4

Figure 2.5: The scheduling of taskset ⌧ under preemptive RM.

Figure 2.6 shows the scheduling of the same taskset ⌧ under preemptive EDF.
Different from preemptive RM scheduling, at t = 5, ⌧2 can not preempt ⌧3 since the
absolute deadline of the job from ⌧3 (i.e. t = 9) is earlier than the absolute deadline of
⌧2’s ready job (i.e. t = 10). Thus, ⌧2 starts its execution when ⌧3 finishes.

0 2 4 6 8 10 12 14 16 18 20 22

⌧1

⌧2

⌧3

⌧4

Figure 2.6: The scheduling of taskset ⌧ under preemptive EDF.

Non-preemptive scheduling

The scheduling of ⌧ under non-preemptive RM is illustrated in Figure 2.7. At t = 2, ⌧3
and ⌧4 start their job execution. Once a job gets executed, it is assigned with the highest

21

2. Background

priority. Even though ⌧1 and ⌧2 have a higher task priority than ⌧3 and ⌧4, they can not
preempt ⌧3’s and ⌧4’s executing jobs. ⌧1’s job starts its execution when the job of ⌧3
finishes. Similarly, the processing of ⌧2’s job begins when the job of ⌧4 completes.

The scheduling of taskset ⌧ under non-preemptive EDF is same as shown in Fig-
ure 2.7.

0 2 4 6 8 10 12 14 16 18 20 22

⌧1

⌧2

⌧3

⌧4

Figure 2.7: The scheduling of taskset ⌧ under non-preemptive RM.

Preemptive scheduling typically allows higher efficiency, in the sense that it allows
to schedule a real-time task set with higher processor utilization. However, preemption
destroys program locality and consequently may introduce cache preemption related
delay that inflates the execution time of tasks.

2.2.3 Schedulability analysis
A task is schedulable according to a given scheduling algorithm if all of its released
jobs can be guaranteed to complete their executions before their deadlines. A taskset is
schedulable according to a given scheduling algorithm if all of its tasks are schedulable.

The fundamental problem in embedded real-time system design is to analyze and
verify the schedulability of the taskset under the scheduling algorithm, which is referred
to as schedulability analysis.

The schedulability analysis of global multiprocessor scheduling has been intensively
studied, of which comprehensive surveys can be found in [26, 82]. Details on the
analytical schedulability analysis can be found in textbooks like [58] and [18]. As
one of the fundamental methodologies for schedulability analysis, the Response Time
Analysis (RTA) [18], which employs an iterative procedure to compute a task’s worst-
case response time, has been wildly applied to the timing verification of real-time
systems.

Most multi-core scheduling approaches assume that the WCETs are estimated in an
offline and isolated manner and that WCET values are fixed. when two or more tasks
are executed in parallel on different cores. However, the interplay between the tasks on
shared caches may lead to unpredictable delays [95].For example, useful cache blocks
that were loaded by one task can be evicted by another task executing simultaneously

22

2.2. Real-time systems

on a different core. Therefore, using the WCET of tasks executing in isolation on a
multi-core platform without considering co-runner interference can potentially lead
to incorrect WCRT values in the context of the complete multi-core system, which
invalidates the traditional analysis framework with independent program-level and
system-level timing analysis. This problem is a major obstacle to use multi-core
processors for real-time systems [61].

Now we have provided the necessary background for the reminder of this disserta-
tion, we move to the first research chapter: SysRT: A Modular Multiprocessor RTOS
Simulator for Early Design Space Exploration.

23

Timing predictability for
embedded multi-core computing

25

3
SysRT: A Modular Multiprocessor RTOS

Simulator for Early Design Space
Exploration

In the previous chapter we have described the background knowledge for this thesis.
Starting from this chapter, we begin to present our research and answer the research
questions we listed in Chapter 1. This chapter addresses RQ1, which is concerned with
modeling and simulation of real time embedded systems.

In the past years, the design of systems-on-chip (SoCs) has become increasingly
complex. Hardware architectures are migrating from simple single-core based systems
to more complex multi-core architectures. In the embedded systems domain, together
with the increasing hardware complexity, the software complexity has also been growing
dramatically. Modern embedded systems increasingly execute several applications of
different types concurrently on the underlying computing platform. These applications
can have different execution requirements. For example, control applications typically
are hard real-time applications and thus have stringent timing constraints, while best-
effort applications prefer a short task response time. These systems are usually managed
by a Real-Time Operating System (RTOS).

Raising the level of abstraction is generally considered as a solution to address the
design complexity, thus reducing time-to-market. To provide a simulation environment
and to help in the design space exploration (DSE) at the early stages of design, various
system-level design languages (SLDL) and methodologies have been proposed, such
as SystemC [93] and SpecC [85]. Originally, SLDLs primarily focused on hardware
modeling and did not properly address the modeling of software aspects. Later ef-
forts introduced methods to model timing behavior of software in SLDLs. But most
solutions still lack direct support for simulating the real-time behavior of concurrent
applications, such as preemption or scheduling within the RTOS. To verify that the
timing requirements posed by applications are met during the early stages of design, a
fast system-level simulator, capturing both the modeling of software and hardware, is
needed.

The modeling and simulation of RTOS with SLDL have received widespread atten-
tion from many researchers, [50, 116, 117]. In [40], the modeling capability of SystemC

This chapter was published as [109].

27

3. SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space
Exploration

has been extended by RTOS services to provide more realistic software modeling fea-
tures. However, to realize features such as preemption and scheduling, a scheduler
model is invoked every simulation quantum, similar to the way a real OS scheduler
behaves. This quantum-granularity based simulation approach therefore introduces
large overheads, resulting in low simulation speeds. Later efforts such as [48, 89]
focused on improving the accuracy of high-level simulation while maintaining high
performance. However, these works still trade-off speed for accuracy.

In [73], a host-compiled multi-core system simulator is presented for early real-time
performance evaluation. They present an integrated approach for automatic timing
granularity adjustment to optimally navigate simulation speed versus accuracy. This
approach switches between prediction mode and fallback mode. In prediction mode, a
prediction of the next scheduling points is performed based on the simulation parameters
and states of periodic tasks. Schirner et al. [78] introduce preemptive scheduling in
abstract RTOS models using Result Oriented Modeling (ROM). To speed up simulation,
ROM optimistically predicts the finish time of a process already at the start time by a
”run to finish” assumption. ROM records any possible preemption that may alter the
predicted outcome. While time passes, it validates the prediction and takes corrective
measures to ensure accuracy. However, predictions of preemption points are difficult if
the simulation uses more complex task models like Directed Acyclic Graphs (DAGs)
and resource sharing models.

Therefore, we address the following research questions:

RQ1 How to provide fast simulation of real-time embedded systems for design space
exploration at the early stages of system design? How to accurately capture
the timing behaviour of embedded software? How to efficiently implement the
simulator to provide support for easy plug-in of new task models, new schedulers
and new resource sharing protocols?

To answer this question, we develop SysRT, a generic and high-level RTOS simulator
that is highly suited for early design space exploration (DSE). SysRT contains different
types of application models and a modular RTOS kernel model, all developed in
SystemC. Efficient and precise modeling of preemptive scheduling is achieved via an
event-driven simulation approach, which utilizes scheduling events associated with
task states and interrupts, allowing simulations to be performed much faster than
cycle-accurate simulations. At the same time, the kernel model is developed to be
generic and modular to support for easy plug-in of new schedulers as well as new
resource sharing protocols. Comparing SysRT to state-of-art simulators, it achieves
faster simulation speeds with an identically small simulation error. We demonstrate
the flexibility of SysRT and its benefits for early DSE using experiments with a mixed
workload executing on multiprocessor platforms with different numbers of cores.

The rest of the chapter is organized as follows. The overall RTOS simulation
framework is described in Section 3.1. Section 3.2 describes the application mod-
els. In Section 3.3, the kernel model is detailed, and Section 3.4 presents a range of
experimental results. Section 3.5 concludes this chapter.

28

3.1. Modeling Framework

3.1 Modeling Framework
SysRT consists of three layers, as shown in Figure 3.1: the application layer, the kernel
layer, and the architecture layer. In the application layer, the user can model a set of
processes. A process can be a single job instance (named ST in Figure 3.1), a Periodic
Task (PT) of which job instances are invoked periodically, or a process with execution
precedences modeled by a DAG, as will be explained in Section 3.2.

P 0
#

P 1
#

P 2
#

P 3
#

#M
em

or
y #

…#
Process#Management#

Interrupt#Handling#

Resource#Management#

…#

Scheduling#

wait%('me)%####EVENT.no'fy('me)%
####EVENT.cancel(%)%

SystemC#

Resource#Block#Queue#

Task#Ready#Queue#

App#3:DAG#

App#2:PT#

App#1:ST#

Task# Kernel# Architecture#

Scheduling#Overhead#
•  Context#switch#
•  MigraLon#cost#

##Architecture#Model#
• ####Number#of#cores##
• ####InterconnecLon#

Figure 3.1: Simulation framework of SysRT.

The application layer interacts with the RTOS kernel layer. The application informs
the kernel of its execution states, while the kernel model returns task scheduling deci-
sions. We model four functionalities of the OS kernel, namely process management,
resource management, interrupt handling and real-time scheduling. A queue in the
OS kernel is used to order the tasks that become ready for execution. The OS kernel
further has a resource manager sub-module that controls access to resources shared
between tasks. The resource block queues store tasks waiting to get access to a particular
resource due to mutual exclusion. Moreover, interrupt service routines are defined in
the OS kernel model. When an interrupt is generated, either from software or hardware,
the OS kernel schedules the corresponding interrupt handler depending on the handler
priority. Different real-time (preemptive) schedulers are implemented in the scheduling
module of the OS kernel model. The architecture layer models the hardware computing
platform. It specifies the number of cores in the SoC platform, the interconnection
between the cores, and the hardware interrupt interfaces. The current architecture model
mainly accounts for the scheduling overhead including migration and context switching
overhead after a scheduling decision is made by the OS kernel. The implementation
details of the architecture model are beyond the scope of this chapter.

29

3. SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space
Exploration

Application layer, OS kernel layer and architecture layer are implemented on top of
the basic classes and primitives provided by SystemC. We use event-driven simulation,
where events are modeled by the sc event class. This class allows explicit triggering of
events by means of a notification method. The Event.notify(sc time t) method notifies
or posts an event after time t. If a simulation process is set to be sensitive to an event,
then this process acts as the corresponding event handler. When an event occurs, the
corresponding event handler is invoked and scheduled by the SystemC simulation kernel.
Scheduled events may be canceled with the event.cancel() method.

Modelling preemption is always a challenging topic for a RTOS simulator. Most
RTOS simulators that are built on top of SystemC use wait(sc time time) to model task
execution latency. If a task is preempted for some time, then the preemption time is
counted as extra task execution latency, resulting in another execution of wait(sc time
time) for that task. However, this approach comes with a speed penalty due to the fre-
quent computations of the preemption time and the frequent executions of wait(sc time
time). Unlike this approach, SysRT adopts an event-driven approach that uses only
sc event to model preemption. Events are extracted from the task execution states,
which will be discussed soon. Once a task is preempted, the only work to do is to cancel
the task finishing event. When this task is scheduled again, a new task finishing event
is posted after the remaining execution time. compared with the wait(sc time time)
method, this event-driven approach introduces less simulation overhead.

3.2 Application model

The Application is a program that contains a set of coordinated tasks modeled by the
user through the Task module. In this work, the actual task functionality is abstracted
away, and only the timing of task execution is simulated. Here, we assume that timing
information of task execution latencies are estimated or known a-priori.

3.2.1 Task Model
In the task model, three kinds of constraints specified on real-time tasks are considered:
timing constraints, precedence relations, and access control on shared resources. Timing
constraints, such as execution times and job deadlines, are specified at the creation of a
real-time task object. Precedence constraints are realized by a DAG task model [75].
Contention on shared resources is simulated by adding wait/signal instructions in the
task execution routine, as will be explained below.

A task module contains a list of high-level instructions that are executed in sequence.
Instruction sub-modules are added to a task module by the InsertCode method. For
example, consider a task T1 that computes for 500 milliseconds, then tries to get
access to a shared variable R1 after which it occupies the resource for 50 milliseconds
once the access is granted, and after releasing the shared resource the task finishes
its current job by computing for another 300 milliseconds. This can be modeled
by: T1.InsertCode(“execute(500); wait(R1); execute(50); signal(R1); execute(300)”).
Details about the instruction module will be described in Section 3.2.2.

The simulation is driven by events generated by the first job of each task. The typical

30

3.2. Application model

events generated for a task are illustrated in Figure 3.2. A job arrival event is posted
at the activation offset (start time) �i by the start of simulation() method in the Task
module which is called at the beginning of the simulation. A job arrival event is notified
every time when the task becomes ready to execute. Between the job arrival time and
finish time, a job may miss its relative deadline. For such cases, a deadline miss event
is posted at time �i+Di, where Di is the relative deadline of task i. The action of the
deadline miss event handler is specified by the user. Possible actions are to kill the
job instance, to ignore the deadline miss or even to stop the simulation. Once a job
starts its execution, a job end event is posted at time �i+Ci, where Ci is the execution
latency of task i. The responsibility of the job end event handler is to cancel the pending
deadline miss event and to call the kernel interface to inform it to schedule another task.
A schedule event is posted by the OS kernel to a specific task if it was selected to be
scheduled. The schedule event handler schedule() then schedules the instructions of
the task. A deschedule event is generated if a task is preempted by another task with a
higher priority. The deschedule event handler deschedule() cancels the pending job end
event, records the current time stamp and computes the executed job length. When the
task is re-scheduled, a new job end event is posted for the job’s remaining execution
time.

Figure 3.2: Task events.

The UML class diagram of task modules is shown in Figure 3.3(a). AbsTask defines
the interface that must be implemented by a general task. It includes an activate()
method, which activates the task, as well as schedule()/deschedule() methods, which
modify the task state and related variables when a task is scheduled/descheduled.
AbsRTTask defines the interface that should be provided by a real-time task and contains
methods for getting the absolute and relative deadline of a task.

Periodic Task Model: Periodic tasks consist of a number of instances or jobs that
are regularly activated at each period. Periodic tasks are reactivated by the job arrival
event handler, which posts a new job arrival event at the next period.

DAG Task Model: A DAG is a graph of real-time subtasks (also called nodes) that
captures their execution precedences. The subtasks share the same deadline and period
but differ in their WCET. The DagNode module is used to construct a DAG application
model in SysRT.

31

3. SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space
Exploration

DagNode

PeriodicTask

Task

sc_module AbsRTTask

AbsTask

SMPKernel

UNPKernel

sc_module AbsKernel

PartiKernel

(a) (b)

Figure 3.3: (a) Task module and (b) Kernel module.

3.2.2 Instruction Model

Instructions inside tasks are modeled using the Instruction class. There are two kinds of
instructions. First, execute(sc time time) is used to model the execution time required to
execute a real code segment in an application. It can be described by a random variable,
making it possible to model a portion of code with an arbitrarily distributed random
execution time. The other instruction type is wait(Resource res)/signal(Resource res),
which models the request or release of a shared resource. A task executes all the
instructions in sequence. A job instance is completed only after its last instruction was
executed. If a task is activated again (i.e. firing a new job), then the instruction pointer
is reset to the first instruction.

The schedule/deschedule event propagates from a task to its instructions. If a task is
selected to execute at time t, the task calls its instruction interface and notifies a schedule
event in the Instruction module. Suppose that the execution duration of the instruction
is instr time, the schedule event handler in the Instruction module will post an end instr
event at time t+instr time. The end instr event handler increments the instruction
pointer to the next instruction in the task and posts a new end instr event for the next
instruction. If there are no more instructions to execute, the interface of the task module
is invoked and a job end event is posted. During instruction execution, a task may be
preempted and rescheduled. A similar event propagation mechanism between a task
and its instructions applies to the deschedule event.

Based on the assumption that the actual requesting and releasing of a resource takes
zero time, the end instr event is notified immediately if the current scheduled instruction
is wait or signal. The end instr event handler for the wait instruction communicates
with operating system kernel by calling the interface request resource(Kernel, Resource,
resource quantity). As a result, the task gets the resource if a sufficient quantity of
that resource is available. Otherwise, the task is blocked by the operating system
kernel. For the signal instruction, the end instr event handler invokes the interface
release resource(Kernel, Resource, resource quantity) in the operating system kernel
module. The task releases the resource quantity used.

32

3.3. RTOS Kernel Model

3.3 RTOS Kernel Model
Figure 3.3(b) shows the UML class diagram of the OS kernel module. The AbsKer-
nel class is an abstract class that defines the minimal functionality of a kernel. The
UNPKernel and SMPKernel classes are implemented to model an OS kernel running
on a uniprocessor system (UNP) or a symmetric multiprocessor system (SMP), re-
spectively. Traditional real-time multiprocessor schedulers can be classified in two
categories: global and partitioned schedulers. Global Earliest-Deadline-First (G-EDF)
and Partitioned-EDF (P-EDF) are examples of each category. The SMPKernel class
models a general OS kernel with a global scheduler, whereas the PartiKernel class
models an OS kernel with partitioned schedulers.

In this work, we mainly consider services of process management, resource manage-
ment, interrupt handling and real-time scheduling provided by the OS kernel. We have
developed the modules of the OS kernel model with the aim to provide a flexible and
extendable framework to facilitate implementation, testing and evaluation of different
real-time schedulers with various resource sharing protocols.

3.3.1 UNPKernel Model
The UNPKernel module is developed to model a real-time OS kernel running on a unipro-
cessor. It contains sub-components such as the Scheduler module and the ResManager
module that is responsible for performing resource access related operations. These
sub-components are set through methods set sched (Scheduler* s) and set resmanager
(ResManager* rm).

At initialization, a CPU pointer, which points to the modeled architecture, is created
in the UNPKernel module to get information of the architecture platform. Since at most
one task is allowed to execute at a time in a uniprocessor system, one pointer cur exe is
enough to track the current executing task.

For the communication with tasks, the UNPKernel module provides several func-
tions. These include the functions Arrival(AbsRTTask* t) and End(AbsRTTask* t). The
function Arrival(AbsRTTask* t) is called by the task arrival event handler. This method
inserts the task in the ready queue, followed by a function call to make a schedule
decision. End(AbsRTTask* t) is invoked by a task when the task completes its execution.
This function removes the task from the ready queue and sets the cur exe pointer to
null. To suspend a task, the UNPKernel class implements a Suspend(AbsRTTask* t)
function. This function removes the task from the ready queue. If the task was exe-
cuting, then it will first be descheduled. When a task is resumed (from suspension by
the OS or from being blocked on a resource), the kernel reactivates the task by calling
Activate(AbsRTTask* t) which simply inserts the task in the ready queue and changes
the task’s state to ready.

The operation of allocating the CPU for task execution is referred to as dispatching.
The dispatching activity is simulated by the dispatch() function. Any circumstance that
may change the current executing task should invoke dispatch() to make a scheduling
decision:

• when a new task becomes ready;

33

3. SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space
Exploration

• when a task finishes its current job;

• when a task is blocked;

• when an interrupt arrives, activating its corresponding interrupt handler.

On uniprocessor systems, just one execution flow can progress at a time. Therefore,
dispatch() is simple in UNPKernel as compared with its implementation in other kernel
modules. It simply compares the executing task with the first task in the ready queue.
If they are different, it forces a context switch, which involves the participation of
architecture model to simulate the context switch overhead. When the context switch
has finished, the kernel schedules the newly dispatched task. Important to realize is that
the dispatch() function has been decoupled from the scheduler that actually determines
the order of the tasks in the ready queue, according to the implemented scheduling
algorithm.

3.3.2 SMPKernel Model
The SMPKernel is a module modeling a real-time kernel with a global scheduler for
(SMP) multiprocessor systems. On multiprocessor systems, multiple tasks are allowed
to run concurrently. The SMPKernel module keeps track of the status of each individual
processor, storing information about which task is executing on which processor, which
tasks are about to be dispatched to which processor, and whether or not processors are
in the process of performing a context switch.

The functions provided to the Task module and methods related to process man-
agement in the SMPKernel module are similar to those in the UNPKernel module.
However, the function to make a scheduling decision, dispatch(), is more complicated.
Pseudocode 3.1 shows the procedure of the dispatch() method in SMPKernel.

Pseudocode 3.1: The procedure of dispatch() with a system architecture with m processors

1: while newtasks > 0 do
2: t

new
 first non-executing task in ready queue that needs to be scheduled (i.e.,

among the first m entries)
3: c find next free core {return NULL if no more free cores}
4: if c == NULL then
5: tremove first executing task in ready queue not part of the first m entries ;
6: c get the index of core executing task tremove

7: end if
8: dispatch to proc(tnew, c)
9: newtasks newtasks - 1

10: end while

In this code, the variable newtasks denotes the number of tasks that are not execut-
ing but need to be scheduled. Assuming a simulated architecture with m processors,
newtasks therefore equals to the number of tasks that are among the first m tasks in the
task ready queue that are not yet executing or being dispatched. Newly scheduled tasks

34

3.3. RTOS Kernel Model

are dispatched to free processors if there are any available. If all processors are busy,
then task preemption will take place.

The dispatch() method decides on the index of the selected cores for task dispatch.
By calling dispatch to proc(Task * newtask, CPU *c), the OS kernel also deschedules
any task currently executing on processor c and computes the scheduling overhead
including the context switch and task migration costs. The computed scheduling
overhead is passed from the kernel layer to the architecture layer, which subsequently
simulates this overhead. Hereafter, a newly dispatched task is selected to start execution
on processor c. The procedure of dispatch to proc(Task * newtask, CPU *c) is shown
in Pseudocode 3.2.

Pseudocode 3.2: The procedure of dispatch to proc(Task ⇤ newtask, CPU ⇤ c)

1: AbsRTTask current task the task currently executing on core c

2: if current task 6= NULL then
3: deschedule current task

4: end if
5: if newtask == NULL then
6: RETURN
7: else
8: prepare newtask to execute on core c

9: end if
10: Compute the scheduling overhead
11: Send the overhead to architecture model

3.3.3 PartiKernel Model

The structure of a partition-based scheduler is shown Figure 3.4. In a partitioned
scheduler, ready tasks are first inserted in a global ready queue. Through this global
scheduler, ready tasks are then dispatched to a specific local task queue according to the
task’s affinity. Each processor has its own local queue in which the order depends on
the local scheduler. Each processor may use a different scheduler.

Figure 3.4: Structure of a partitioned-based scheduler.

35

3. SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space
Exploration

Since the structure of such a partitioned scheduler is different from the global
scheduler, a different kernel module, PartiKernel, has been implemented to facilitate
the development of partitioned schedulers.

The interface provided to the Task module and functions related to process man-
agement in the PartiKernel module are slightly different than those in SMPKernel due
to task affinity. However, the dispatch() method has been completely re-implemented.
If a task is inserted to or is removed from a local queue, instead of calling dispatch(),
PartiKernel invokes a dispatch(CPU *cpu) function that passes the task affinity as a
parameter to make a local rescheduling decision for the processor in question. Changes
on a local queue have no effect on the ordering of other local queues. In this sense, the
dispatch(CPU *cpu) function is similar to dispatch() in UNPKernel.

3.3.4 Scheduler Model
When a task becomes ready to execute, it is inserted to the ready queue managed by the
scheduler, which is a sub-component of a kernel module. The ready queue is ordered by
task priority assigned by the scheduling algorithm. At a scheduling point, the scheduler
(i.e. dispatcher) is responsible for selecting the task(s) at the front of the ready queue to
execute. In SysRT, the following schedulers have currently been implemented:

• Global Earliest Deadline First [56] (G-EDF)

• First Come First Out (FIFO)

• Fixed Priority Scheduler (FPS)

• Rate Monotonic Scheduler (RMS)

• Round Robin (RR).

• Proportional Fairness [10] (P-FAIR)

• Partitioned-based Scheduler (PS) including P-EDF

• Non-Preemptive EDF (NP-EDF)

3.3.5 Resource Management Model
The Resource module models a resource shared by two or more tasks. It provides
an interface to the OS kernel module to, for example, perform locking operations for
providing access to these shared resources. The resource availability is checked by the
method IsAvailable(int amount). It returns false if the quantity of a certain resource
is not sufficient. Every task uses resources through a critical section surrounded by
wait and signal instructions. If the executing task requests/releases a certain resource
quantity, the resource manager in the OS kernel invokes the interface of the resource,
lock(int amount)/unlock(int amount), to decrease/increase resource availability for that
particular resource.

The ResManager module models a resource manager that implements the resource
accessing protocol. It contains multiple block queues, each associated with a particular

36

3.4. Experimental Results

resource to store tasks blocked on that resource. These block queues are ordered by task
priority. Different resource sharing protocols can be implemented by the ResManager
module.

Taking the Priority Inheritance Protocol [81] as an example, requesting a resource is
implemented by first checking the availability of the requested resource. If there are not
enough available resources, the resource manager calls the kernel interface to suspend
the task that is requesting the resource. Furthermore, the priority of the resource owner
is changed to the maximum priority of those tasks that are blocked for the resource. If
the requested resources are available, the resource manager invokes the unlock interface
of the resource and grants the resources to the task. Releasing a resource unlocks the
resources and changes the priority of the releasing task back to its original priority, after
which it checks if the resource block queue is empty. If the queue is not empty, the
resource manager removes the first task from the block queue, and activates the task
through the kernel interface and locks the resource for the new owner.

3.4 Experimental Results

In this section, we evaluate the accuracy and simulation performance of SysRT, and
demonstrate its flexibility and benefit in DSE. All experiments were conducted on a
3.4GHZ Intel Core I5. The default time unit of the task parameters in the following
experiments is the simulation resolution set by SystemC.

3.4.1 Simulation performance and accuracy
The first experiment is to evaluate the accuracy and simulation performance of SysRT
by comparing it with four other simulators: the state-of-art (prediction-based) HC-
Sim simulator [73] and three conventional quantum-granularity based simulators (also
described in [73]) with a simulation quantum of 1ms, 10ms and 100ms, respectively.
All simulators model a Partitioned-Fixed Priority scheduler, where tasks have been
uniformly partitioned over the simulated processors. Task execution costs and periods,
priorities are randomly distributed over the intervals [50ms, 150ms], [100ms,10s] and
[1, 100], respectively. The simulated time is 10 minutes. Note that all these tasks are
not necessarily real-time tasks.

Figures 3.5 (a), (b) and (c) show the simulation times taken by each simulator
simulating a different number of processors, ranging from 1 to 16, where the number
of tasks is 16, 100 and 1000. Figure 3.5 clearly shows that SysRT achieves the fastest
simulation speed in these experiments. Both SysRT and HCSim are scalable with
respect to the number of processors and the number of tasks.

The simulation speed of the conventional simulator with largest simulation quantum
is similar to that of HCSim and SysRT. However, it suffers from a lower accuracy, as
will be discussed later on. Conventional simulators get much slower if the simulation
quantum size decreases.

To derive a reference for the task response times, we have also performed the
experiment with the same task sets on a real Linux-based RTOS, i.e. Litmus [19],
varying the number of active processors from 1 to 4. For each task, we calculate the

37

3. SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space
Exploration

(a) 16 tasks (b) 100 tasks (c) 1000 tasks

Figure 3.5: Simulation time of five simulators.

relative errors between the response times obtained from simulators and the actual
response times from Litmus. The accuracy is measured by the average error of all tasks
in the testing task set.

Table 3.1 is the average simulation error of those tests. The number of active
processors and the number of tasks in different testing sets is not reported since it
turns out that these factors have little effect on the relative error of each individual task.
SysRT, HCSim and conventional simulation with the smallest simulation quantum yield
high accuracy, whereas conventional simulators with a larger simulation quantum suffer
from degraded accuracy.

Table 3.1: Average Simulation Error of Five Simulators

HCSim SysRT Quantum:1ms Quantum:10ms Quantum:100ms

0.166% 0.166% 0.166% 4.182% >100%

Note that, although SysRT and HCSim are supposed to be theoretically accurate,
several factors in Litmus such as context switches and kernel tasks with high priorities
could lead to small simulation errors. Fortunately, both SysRT and HCSim provide
support to model the scheduling overhead to improve accuracy.

3.4.2 Flexibility of SysRT
As most prediction-based RTOS simulators do not support simulating real-time resource
access protocols due to difficulties in predicting preemption points, we show the flexibil-
ity of SysRT by simulating a set of four periodic tasks T1, ..., T4 that exclusively access
two shared resources R1 and R2. Task parameters are listed in Table 3.2. Pi is the task
activation period and Ci the execution time. Variable ⇠j,i denotes the duration of the

38

3.4. Experimental Results

critical section that Ti occupies Rj . The value 0 for ⇠j,i means that Ti does not use Rj .
Tasks are scheduled on an uniprocessor by a RM scheduler with priority inheritance as
resource sharing protocol.

Table 3.2: Task Parameters and Theoretical WCRT.

Tasks Pi Ci ⇠1,i ⇠2,i WCRTi

T1 100 5 0 0 5
T2 110 16 3 3 71
T3 200 70 20 0 142
T4 350 102 0 30 310

The analytically calculated Worst Case Response Time (WCRT) for each task is
given in the last column of Table 3.2. We have run the simulation for 80000 time
units. The simulated response time of the first 200 jobs of each task are shown in
Figure 3.6. As can be seen from Figure 3.6, the response times obtained from simulation
are consistently lower than the theoretical WCRTs. Thanks to the modular and flexible
implementation of SysRT, the resource sharing protocol is correctly simulated.

Figure 3.6: Response time of jobs in tasks.

3.4.3 Benefit of SysRT in DSE
The second experiment demonstrates the flexibility of SysRT and its benefits for early
DSE. An embedded system with a mixed application workload is simulated. The task
set is composed of three Hard Real-Time (HRT) tasks, five Soft Real-Time (SRT) tasks
and three Best-Effort (BE) tasks. Task types, parameters and utilization (Pi divided by
Ci) are listed in Table 3.3. If an interval [a, b] is assigned to Pi (or Ci), then Pi (or

39

3. SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space
Exploration

Ci) is a random variable uniformly distributed in that interval. This models workload
variations.

Table 3.3: Task Type and Parameters.

Tasks Type Pi Ci Ui

T1 HRT 50 20 0.4
T2 HRT 90 30 0.333
T3 HRT 140 50 0.357
T4 SRT 190 30 0.157
T5 SRT 350 80 0.228
T6 SRT 500 170 0.34
T7 SRT 1000 [200, 700] [0.2, 0.7]
T8 SRT 1300 [500, 900] [0.385, 0.692]
T9 BE [1000, 5000] 200 [0.04, 0.2]
T10 BE [3000, 9000] 500 [0.056, 0.167]
T11 BE [5000, 15000] 1500 [0.1, 0.3]

The application requirement for hard real-time tasks is to guarantee that deadlines
are always met. SRT tasks are allowed to miss deadlines, thus their performance is
measured by the deadline miss ratio. For best-effort tasks, the performance is calculated
by their average response time. We have run simulations with three kinds of schedulers
on different architecture models. EDF and FPS schedulers are tested with systems
containing 2 to 8 processors, and a partitioned-based scheduler (PS) has been tested for
systems with 3 to 5 cores. For the latter, Table 3.4 lists the local scheduling policies and
scheduled task(s) on each processor. The simulation is aborted if a HRT task misses a
deadline.

Table 3.4: Patitioned-based Scheduler Configuration.

Processors Processor Local Scheduler Tasks
1 FPS T1,T2,T9,T11

3 2 EDF T3,T4,T6

3 RR T5,T7,T8,T10

1 P-FAIR T1,T2,
4 2 FPS T3,T4,T6

3 EDF T5,T7,T8

4 RR T9,T10,T11

1 P-FAIR T1,T2,T5

2 FPS T3

5 3 NP-EDF T4,T7

4 EDF T6,T8

5 RR T9,T10,T11

The average deadline miss ratio of the five SRT tasks is shown in Figure 3.7(a). The
deadline miss ratio decreases as the number of processors increases and becomes 0 for

40

3.4. Experimental Results

five processors. HRT tasks are not schedulable under EDF if the number of processors
is less than four, thus no results are plotted for EDF for 2 and 3 processors.

(a) (b)

Figure 3.7: (a) Average deadline miss ratio (b) Scheduling overhead.

Figure 3.7(b) shows the scheduling overhead including the total number of context
switches and task migrations. It is interesting to observe that partitioned schedulers
have no task migration but suffer from a large number of context switches incurred by
P-FAIR, which serves as a local scheduler.

Figure 3.8: Response time of BE tasks.

41

3. SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space
Exploration

Figure 3.8 illustrates the average response times of the BE tasks. As the number
of processors increases, the average response time becomes smaller. The response
times are very large if the number of processors is less than 4, thus they are not plotted.
Evidently, such system performance estimates as obtained by SysRT are helpful to make
design decisions at the very early system design stages.

3.5 Conclusion
In this chapter, we presented SysRT, a generic and high-level SystemC-based multipro-
cessor RTOS simulator. It provides the unique and novel combination of being highly
accurate, efficient and easy to extend to facilitate early DSE. To this end, it contains
different types of application models and a modular RTOS kernel model. Efficient and
precise modeling of preemptive scheduling is achieved via an event-driven simulation
approach. Its modular design allows for easy plug-in of new schedulers as well as new
resource sharing protocols. Comparing SysRT with state-of-art simulators, it achieves
faster simulation speeds with the same small simulation error. We demonstrated the
flexibility of SysRT by experiments with a mixed workload executing on multiprocessor
platforms with different numbers of cores.

42

4
Schedulability Analysis of Global

Scheduling for Multicore Systems with
Shared Caches

In the previous chapter, we studied the simulation and modeling of real time embedded
system. In this chapter, we continue our research on the topic of improving timing
predictability for multicore system by an analytic approach. This chapter addresses RQ2
listed in chapter 1, which is concerned with schedulability analysis of global scheduling
for real time multicore systems with shared caches.

Multicore architectures are increasingly used in both the desktop and the embedded
markets. Modern multicore processors incorporate shared resources between cores to
improve performance and efficiency. Shared caches are among the most critical shared
resources on multicore systems as they can efficiently bridge the performance gap be-
tween memory and processor speeds by backing up small private caches. However, this
brings major difficulties in providing guarantees on real-time properties of embedded
software due to the interaction and the resulting contention in a shared cache.

In a multicore processor with shared caches, a real-time task may suffer from
two different kinds of cache interferences [49], which severely degrade the timing
predictability of multicore systems. The first is called intra-core cache interference,
which occurs within a core, when a task is preempted and its data is evicted from the
cache by other real-time tasks. The second is inter-core cache interference, which
happens when tasks executing on different cores access the shared cache simultaneously.
Inter-core cache interference may cause several types of cache misses including capacity
misses, conflict misses and so on [13].

It is challenging to design real-time applications executing on multicore platforms
with shared caches, which cannot afford to miss deadlines and hence demand timing
predictability. Any schedulability analysis requires knowledge about the Worst-Case
Execution Time (WCET) of real-time tasks. With a multicore system, the WCETs
are strongly dependent on the amount of inter-core interference on shared hardware
resources such as main memory, shared caches and interconnects. In this chapter, we
restrict our focus on the shared cache interferences.

A major obstacle is to predict the cache behavior to accurately obtain the WCET of

This chapter was published as [108] and [110] (submitted)

43

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

a real-time task considering inter-core cache interference since different cache behaviors
(cache hit or miss) will result in different execution times of each instruction. In [91], it
was even pointed out that ”it will be extremely difficult, if not impossible, to develop
analysis methods that can accurately capture the contention among multiple cores in a
shared cache”. In this chapter, we assume that a task’s WCET itself does not account
for shared cache interference but, instead, we determine this interference explicitly (as
will be explained later on). [38] presents such an approach to derive a task’s WCET
without considering shared cache interference.

In this work, we consider non-preemptive task systems, which implies that intra-core
cache interference is avoided since no preemption is possible during task execution. We
therefore focus on inter-core cache interference and study the schedulability analysis
problem for hard real-time tasks that exhibit shared cache interferences. Therefore, we
address the following research questions listed in Chapter 1:

RQ2 Is it possible to derive an upper bound on shared cache interference between
two tasks running simultaneously on a multi-core system? Given a real-time
taskset globally scheduled by EDF or FP, how to obtain an upper bound on the
shared cache interference exhibited by each task in the taskset? How to derive
a schedulable condition for the globally scheduled taskset, accounting for the
shared cache interference?

To answer this research question, we proposes a more general framework for the
schedulability analysis of global scheduling, accounting for shared cache interference.
The main contributions in this chapter are as follows:

• An integer programming formulation, which can be transformed to an integer
linear programming formulation, is constructed to calculate an upper bound on
cache interference exhibited by a task within a given execution window.

• An iterative algorithm is presented to obtain the upper bound on cache interference
a task may exhibit during one job execution.

• A new schedulability condition is derived by integrating the upper bound on
inter-core cache interference into the schedulability analysis.

• A range of experiments is performed to investigate how the schedulability is
degraded by shared cache interference for a range of different tasksets. We
also evaluated the schedulability performance of EDF and FP scheduling over
randomly generated tasksets.

The rest of the chapter is organized as follows. Section 4.1 gives an overview
of the related work. The system model is described in Section 4.2. Section 4.3 de-
scribes the proposed schedulability analysis, where we also detail the computation of
processor-contention and inter-core cache interferences applied in the analysis. Sec-
tion 4.4 presents an iterative computation to obtain the upper bound of inter-core cache
interferences. Section 4.5 presents the experimental results, after which Section 4.6
concludes the chapter.

44

4.1. Related work

4.1 Related work
WCET estimation. For hard real-time systems, it is essential to obtain each real-time
task’s WCET, which provides the basis for the schedulability analysis. WCET analysis
has been actively investigated in the last two decades, of which an excellent overview
can be found in [100]. There are well-developed techniques to estimate real-time tasks’
WCET for single processor systems. Unfortunately, the existing techniques for single
processor platforms are not applicable to multicores with shared caches. Only a few
methods have been developed to estimate task WCETs for multicore systems with
shared caches [39, 52, 119]. In almost all those works, due to the assumption that cache
interferences can occur at any program point, WCET analysis will be extremely pes-
simistic, especially when the system contains many cores and tasks. An overestimated
WCET is not useful as it degrades system schedulability.

Shared cache interference. Since shared caches considerably complicate the
task of accurately estimating the WCET, many researchers in the real-time systems
community have recognized and studied the problem of cache interference in order to
use shared caches in a predictable manner. Cache partitioning, which isolates application
workloads that interfere with each other by assigning separate shared cache partitions
to individual tasks, is a successful and widely-used approach to address contention for
shared caches in (real-time) multicore applications. There are two cache partitioning
methods: software-based and hardware-based techniques [33]. The most common
software-based cache partitioning technique is page coloring [53, 62, 99]. By exploiting
the virtual to physical page address translations present in virtual memory systems
at OS-level, page addresses are mapped to pre-defined cache regions to avoid the
overlap of cache spaces. [114] presented vCAT for dynamic shared cache management
on multicore virtualization platforms based on Intel’s Cache Allocation Technology.
Hardware-based cache partitioning is achieved using a cache locking mechanism [62,
83, 91], which prevents cache lines from being evicted during program execution. The
main drawback of cache locking is that it requires specific hardware support that is not
available in many commercial processors. With shared cache partitioning techniques,
one can apply existing analyses to derive the upper bounds of a task’s WCET assuming
that no cache interference can occur between tasks simultaneously running on different
cores. In that case, it is safe to use the derived WCETs in the schedulability analysis.

Real-time Scheduling. The schedulability analysis of global multiprocessor schedul-
ing has been intensively studied [8, 14, 22, 51, 57, 118], of which comprehensive sur-
veys can be found in [26, 82]. Most multi-core scheduling approaches assume that the
WCETs are estimated in an offline and isolated manner and that WCET values are fixed.

A few works address schedulability analysis for multi-core systems with shared
caches [35, 113], but these works assume that cache space isolation is deployed. These
solutions are not applicable to our problem since we consider systems in which cache
isolation techniques are not deployed. An ongoing work in [37] describes that caches
should be taken into account when performing task partitioning. They formulated a
problem of finding a system partitioning such that the real-time constraints of all tasks
are met while the sum of inter-core cache interference is minimized. [67] proposed a
Predictable Execution Model (PREM), that co-schedules among CPU tasks executions
and memory accesses, to reduce the low-level contention for shared resource such as

45

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

caches, memories, and buses.
Our work also differs from other approaches to the timing verification of multicore

systems [4] in that all other sources of interferences are assumed to be included within
the WCET. We analyze the effect of shared cache interference on the schedulability. To
the best of our knowledge, this is among the first works that integrates inter-core cache
interferences into schedulability analysis.

4.2 System Model

4.2.1 Task Model

We consider a set ⌧ of n periodic or sporadic real-time tasks {⌧1, ⌧2, ... ⌧n} to be
scheduled on a multicore processor. Each task ⌧k = (Ck, Dk, Tk) 2 ⌧ is characterized
by a worst-case computation time Ck, a period or minimum inter-arrival time Tk, and a
relative deadline Dk. All tasks are considered to be deadline constrained, i.e. the task
relative deadline is less or equal to the task period: Dk  Tk.

We further assume that all those tasks are independent, i.e. they have no shared
variables, no precedence constraints, and so on. Moreover, jobs of any task cannot be
executed at the same time on more than one core. A task ⌧k is a sequence of jobs Jj

k ,
where j is the job index. We denote the arrival time, starting time, finishing time and
absolute deadline of a job j as rjk, sjk, f j

k and d
j
k, respectively. Note that the goal of a

real-time scheduling algorithm is to guarantee that each job will complete before its
absolute deadline: f j

k  d
j
k = r

j
k +Dk.

As explained, it is difficult to accurately estimate Ck considering cache interference
of other tasks executing concurrently. It should be pointed out that Ck in this chapter
refers to the WCET of task k, assuming task k is the only task executing on the multicore
processor platform, i.e. any cache interference delays are not included in Ck.

Since time measurement cannot be more precise than one tick of the system clock,
all timing parameters and variables in this chapter are assumed to be non-negative
integer values.

4.2.2 Architecture Model

Our system architecture consists of a multicore processor with m identical cores onto
which the individual tasks are scheduled. Most multicore processors have instruction and
data caches. Caches are organized as a hierarchy of multiple cache levels to address the
tradeoff between cache latency and hit rate. The low level caches (L1) in our considered
multicore processor are assumed to be private, while the last level caches (LLC) are
shared between all cores. Furthermore, we assume that the LLC cache is noninclusive
with respect to the private caches (L1), and that LLC caches are direct-mapped caches.

In this work, we only consider instruction caches since we adopt the approach
in [38], which only accounts for instruction caches, to derive WCET.

46

4.3. Schedulability Analysis

4.2.3 Global Schedulers
In this chapter, we focus on non-preemptive global scheduling. Once a task instance
starts execution, any preemption during the execution is not allowed, so it must run
to completion. So we do not have to consider intra-core cache interference. If not
explicitly stated, cache interference will therefore refer to inter-core cache interference
in the following discussion. We consider two well-known global scheduling algorithms:
Non-Preemptive Earliest Deadline First (EDFnp) and Non-Preemptive Fixed Priority
(FPnp).

EDFnp assigns a priority to a job according to the absolute deadline of that job. A
job with an earlier absolute deadline has higher priority than others with a later absolute
deadline. Since each job’s absolute deadline changes over time, the priority of a task
changes dynamically.

For FPnp scheduling, a fixed priority Pk is assigned to each task ⌧k (k = 1, 2, ...n).
As each task has a unique priority, we use hp(k) to denote the set of tasks with higher
priorities than ⌧k, and hep(k) = hp(k) [{⌧k} the set of tasks whose priorities are
not lower than ⌧k. Similarly, lp(k) is the set of tasks with lower priorities than ⌧k and
lep(k) = lp(k) [{⌧k} the set of tasks whose priorities are not higher than ⌧k.

The EDFnp and FPnp scheduling algorithms are work-conserving, according to
the following definition.

Definition 4.1. A scheduling algorithm is work-conserving if there are no idle cores
when a ready task is waiting for execution.

4.3 Schedulability Analysis
In this section, we give an overview of the new schedulability analysis that accounts for
cache interference. We also present the approaches to derive the upper bound on the
parameters used in the schedulability condition.

4.3.1 Overview

We first analyze the execution of one job J
j
k of a task ⌧k. Let ojk denote the latest

time-instant no later than r
j
k (ojk  r

j
k) at which at least one processor is idle and let

Ak = r
j
k � o

j
k. As all processors are idle when the system starts, there always exists

such a ojk. The time interval [ojk, d
j
k] is named a problem window. This problem window

can be divided into two parts [ojk, s
j
k] and [sjk, d

j
k].

As shown in Figure 4.1, a job J
j
k of task ⌧k exhibits two kinds of interferences during

the problem window. The first interference is called processor-contention interference,
denoted by I

pre
k . It is the cumulative length of all intervals over [ojk, s

j
k] in which all the

processing cores are busy executing jobs other than J
j
k . We define the interference I

pre
i,k

of a task ⌧i on a task ⌧k over the interval [ojk, s
j
k) as the cumulative length of all intervals

in which ⌧i is executing. The second type of interference is the cumulative length of all
extra execution delays caused by shared cache interference from all other tasks running
concurrently on other cores, denoted as Isck . We also define the interference I

sc
i,k as the

47

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

Figure 4.1: Overview of the schedulability analysis that accounts for cache interference.

cumulative length of all extra execution delays of ⌧k caused by shared cache accesses
between task ⌧i and task ⌧k.

Furthermore, we define the upper bound on processor-contention interference as
Ī
pre
k and similarly the upper bound on shared cache interference as Īsck .

Note that the processor-contention interference I
pre
k occurs during [ojk, s

j
k], so I

pre
k

depends on Ak and the length of [rjk, s
j
k]. While the shared cached interference I

sc
k

occurs only during ⌧k’s execution. We will present the derivation of Īsck in the next
section and it can be shown that Īsck does not depend on Ak and the length of [rjk, s

j
k].

Let us now assume Ī
sc
k is known.

We can compute the latest start time of job J
j
k from task ⌧k: ljk = d

j
k�Ck� Ī

sc
k i.e.,

if Jj
k starts its execution before l

j
k, it must be able to finish execution before deadline

d
j
k. The length of [rjk, l

j
k] is Sk = Dk � Ck � Ī

sc
k . Obviously, if Sk  0, Jj

k will miss
its deadline. We assume Sk > 0 in the following description.

As the processor-contention interference only occurs before the start of the ⌧k’s
execution, we restrict Iprek , Iprei,k and Ī

pre
k to the time interval [ojk, l

j
k].

By construction, we have the first schedulability test for ⌧ .

Theorem 4.1. A task set ⌧ is schedulable with a EDFnp or FPnp scheduling policy
on a multicore processor composed of m identical cores with shared caches if for each
task ⌧k 2 ⌧ and all Ak � 0:

Ī
pre
k + Ck + Ī

sc
k < Dk +Ak.

48

4.3. Schedulability Analysis

4.3.2 Computation of Īprek

The workload Wi,k of a task ⌧i is the time task ⌧i executes during time interval [ojk, l
j
k)

of length Ak + Sk, according to a given scheduling policy.

Lemma 4.2. The processor-contention interference that a task ⌧i causes on a task ⌧k

in [ojk, l
j
k) is never greater than the workload of ⌧i in [ojk, l

j
k),

8i, k, j I
pre
i,k Wi,k.

Lemma 4.2 is obvious, since Wi,k is an upper bound on the execution of ⌧i in
[ojk, l

j
k).

Note that ⌧i may execute more than Ci due to the shared cache interference. That is,
the actual execution time of ⌧i’s job is bounded by C

⇤
i = Ci + Ī

sc
i . In the following

discussion, we use C
⇤
i as the upper bound on the workload contribution from a single

job of ⌧i.
As the number of ⌧i’s jobs released in [ojk, l

j
k) is at most

l
Ak+Sk

Ti

m
, Wi,k can be

roughly bounded by
l
Ak+Sk

Ti

m
⇥C

⇤
i . However, a tighter upper bound on the worst-case

workload can be calculated by categorizing each job of ⌧i in [ojk, l
j
k] into one of the

three types [6]:
carry-in job: a job with its release time earlier than o

j
k but with its deadline earlier

than l
j
k;

body job: a job with both its release time and its deadline in [ojk, l
j
k];

carry-out job: a job with its release time in [ojk, l
j
k], but with its deadline later than

l
j
k.

⌧i

⌧k

carry-in job carry-out jobbody job

o
j
k l

j
k

Figure 4.2: Three types of contribution jobs and problem window.

As shown in Figure 4.2, the worst-case workload of ⌧i occurs when a carry-in job (if
⌧i has a carry-in job) finishes execution as late as possible and a carry-out job starts its
execution as early as possible. We use W

n
i,k to denote an upper bound of ⌧i’s workload

in [ojk, l
j
k] if ⌧i has no carry-in job, and use W

c
i,k to denote an upper bound of ⌧i’s

workload if ⌧i has a carry-in job.
Following the approach in [34], we derive a tighter upper bound on W

n
i and W

c
i for

the EDFnp and FPnp scheduling policies, separately. We omit the proof due to space
limitations. Interested readers can refer to [34] for a detailed explanation.

49

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

Upper bound on W
n
i,k for EDFnp.

EDFnp assigns a priority to a job by the absolute deadline of that job. We have the
following lemma.

Lemma 4.3. For EDFnp, if Di > Dk, the necessary condition for J
j
i to cause

interference to J
j
k is rji < r

j
k, i.e.,Jj

i must be released earlier than J
j
k; if Di  Dk, the

necessary condition for Jj
i to cause interference to J

j
k is di  dk, i.e., Ji’s absolute

deadline must be no later than that of Jk.

Since ⌧i has no carry-in jobs in this case, the worst case of Wn
i,k occurs when the

first job of ⌧i is released at time o
j
k. The next jobs of ⌧i are then released periodically

every Ti time units.Thus, Wn
i,k is computed by three cases: (1) i = k, (2) Di  Dk, (3)

Di > Dk.
(1) i = k. As shown in Figure 4.3, only body jobs in [ojk, r

j
k] contribute to processor-

contention interference and the number of ⌧i’s body instances is
j
Ak
Tk

k
. So we have

W
n1
i,k =

�
Ak

Tk

⌫
C

⇤
k (4.1)

⌧k

o
j
k d

j
kr

j
k

Ak

Tk

Figure 4.3: The densest possible packing of jobs of ⌧i without carry-in job, if i = k.

(2) Di  Dk. Figure 4.4 shows the worst case of Wn
i,k for Di  Dk. The number

of body jobs of ⌧i is
j
Ak+Sk

Ti

k
. We use ↵ to denote the distance between o

j
k and the

deadline of ⌧i’s carry-out job, ↵ =
j
Ak+Sk

Ti

k
Ti +Di. The deadline of ⌧i’s carry-out

job is ojk + ↵.
(2.A) If ↵  Ak +Dk, as shown in case (a) in Figure 5.1, the contribution of the

carry-out job is bounded by min(C⇤
i , (Ak + Sk) mod Ti). In this case, we have:

W
n2
i,k =

�
Ak + Sk

Ti

⌫
C

⇤
i +min(C⇤

i , (Ak + Sk) mod Ti) (4.2)

(2.B) If ↵ > Ak + Dk, shown as case (b) in Figure 5.1, the contribution of the
carry-out job is 0, we have

W
n3
i,k =

�
Ak + Sk

Ti

⌫
C

⇤
i (4.3)

(3) Di > Dk. Figure 4.5 shows the worst case of Wn
i,k for Di > Dk. The number

of body jobs of ⌧i is
j
Ak+Sk

Ti

k
. By Lemma 4.3, a job of ⌧i can interfere with J

j
k only if

50

4.3. Schedulability Analysis

⌧i : (a)

⌧i : (b)

⌧k

o
j
k r

j
k d

j
kl

j
k

(a): ↵

(b): ↵
Ak +Dk

Ak + Sk

Di

Ak Dk

Ti

Figure 4.4: The densest possible packing of jobs of ⌧i without carry-in job and Di  Dk.
Case (a): ↵  Ak +Dk, Case (b): ↵ > Ak +Dk.

its release time is earlier than r
j
k. We use � to denote the distance between o

j
k and the

release time of ⌧i’s carry-out job, � =
j
Ak+Sk

Ti

k
Ti.

⌧i : (a)

⌧i : (b)

⌧k

o
j
k r

j
k d

j
kl

j
k

(a): �

(b): �
Ak

Ak Dk

Ti

Ak + Sk

Figure 4.5: The densest possible packing of jobs of ⌧i without carry-in job and Di > Dk.
Case (a): � < Ak, Case (b): � � Ak.

(3.A) If Ak = 0, then o
j
k = r

j
k. Since Di > Dk, any task instance released no

earlier than o
j
k has a deadline later than d

j
k, so, Wn

i,k = 0.
(3.B) If � < Ak, shown as case (a) in Figure 4.5. The contribution of ⌧i’s carry-out

job is bounded by min(C⇤
i , (Ak + Sk) mod Ti). Wn

i,k is computed by Equation (4.2).
(3.C) If � � Ak > 0, as shown in Figure 4.5 case (b), the contribution of ⌧i’s

carry-out job is 0, and W
n
i,k is computed by Equation (4.3).

51

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

By the discussions above, we can compute W
n
i,k for EDFnp by:

W
n
i,k =

8
>>>>>><

>>>>>>:

0 Di > Dk ^Ak = 0

W
n1
i,k i = k

W
n2
i,k (i 6= k ^Di  Dk ^ ↵  Ak +Dk)

_(Di > Dk ^ � < Ak)

W
n3
i,k otherwise

(4.4)

where W
n1
i,k , Wn2

i,k , Wn3
i,k are defined in Equations (4.1), (4.2) and (4.3) respectively.

Upper bound on W
c
i,k for EDFnp.

We now compute the upper bound on W
c
i,k by four cases: (1) i = k, (2) Di  Dk and

Si > C
⇤
k (3) Di > Dk and Si � C

⇤
k (4) the remaining cases.

(1) i = k. The number of body jobs of ⌧k is
j
Ak
Tk

k
. The contribution of the carry-in

job is bounded by min(C⇤
k ,max(0, (Ak mod Tk) � Tk +Dk)). So in this case, we

have:

W
c1
i,k =

�
Ak

Tk

⌫
C

⇤
k +min(C⇤

k ,max(0, (Ak mod Tk)� Tk +Dk)) (4.5)

⌧k

o
j
k d

j
kr

j
k

Ak

Tk

Figure 4.6: The densest possible packing of jobs of ⌧i with carry-in job, if i = k.

(2) Di  Dk ^ Si > C
⇤
k . Shown as case (a) in Figure 4.7, the worst case of W c

i,k

occurs when ⌧i’s last released instance has its deadline at djk. The number of ⌧i’s body
jobs is

j
Ak+Dk

Ti

k
. The contribution of the carry-in job is bounded by min(C⇤

i , (Ak+Dk)

mod Ti). So, we have:

W
c2
i,k =

�
Ak +Dk

Ti

⌫
C

⇤
i +min(C⇤

i , (Ak +Dk) mod Ti) (4.6)

(3) Di > Dk ^ Si � C
⇤
k . Case (b) in Figure 4.7 shows the worst case of W c

i,k. By
Lemma 4.3, ⌧i’s job can interfere with J

j
k only if its release time is earlier than r

j
k. So,

the worst case of W c
i,k occurs when one of ⌧i’s instances is released at rjk � 1.

(3.A) If Ak > 0, the number of ⌧i’s body instances is
j
Ak�1
Ti

k
, the carry-out is C⇤

i ,
the carry-in is bounded by µ = min(C⇤

i ,max(0, (Ak � 1) mod Ti � (Ti �Di))).

52

4.3. Schedulability Analysis

⌧i : (a)

⌧i : (b)

⌧k

o
j
k r

j
k d

j
kl

j
k

Ak
Ak � 1

Ti

Ti

Ak Dk

Ak +Dk

Figure 4.7: The densest possible packing of jobs of ⌧i with carry-in job. Case (a):
Di  Dk ^ Si > C

⇤
k , Case (b):Di > Dk ^ Si � C

⇤
k .

(3.B) If Ak = 0, only the carry-out job contributes at most C⇤
i � 1. So, we have

W
c3
i,k =

(
C

⇤
i � 1 Ak = 0

(
j
Ak�1
Ti

k
+ 1)C⇤

i + µ Ak > 0
(4.7)

(4) For the remaining cases, i.e. (Di  Dk ^ Si  C
⇤
k) _ (Di > Dk ^ Si < C

⇤
k),

the worst case of W c
i,k occurs when one of ⌧i’s instances is released at ljk � C

⇤
i , as

shown in Figure 4.8.

⌧i : (a)

⌧i : (b)

⌧k

o
j
k r

j
k d

j
kl

j
k

Ak Sk

C
⇤
i

(a):Ak + Sk � C
⇤
i

Ak + Sk

C
⇤
i

(b):Ak + Sk � C
⇤
i

Ti

Figure 4.8: The densest possible packing of jobs of ⌧i with carry-in job. Case (a):
Di  Dk ^ Si  C

⇤
k , case (b):Di > Dk ^ Si < C

⇤
k .

(4.A) If Ak + Sk  C
⇤
i , then W

c
i,k = Ak + Sk.

(4.B) If Ak + Sk > C
⇤
i , the number of ⌧i’s body job is

j
Ak+Sk�C⇤

i
Ti

k
, the contri-

bution of the carry-out job is C⇤
i ; carry-in is bounded by ⌫ = min(C⇤

i ,max(0, (Ak +
Sk � C

⇤
i) mod Ti � (Ti �Di))).

W
c4
i,k =

(
Ak + Sk Ak + Sk  C

⇤
i

(
j
Ak+Sk�C⇤

i
Ti

k
+ 1)C⇤

i + ⌫ Ak + Sk > C
⇤
i

(4.8)

53

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

By the discussion above, we can compute W
c
i,k for EDFnp by:

W
c
i,k =

8
>>><

>>>:

W
c1
i,k i = k

W
c2
i,k i 6= k ^Di  Dk ^ Si > C

⇤
k

W
c3
i,k Di > Dk ^ Sk � C

⇤
i

W
c4
i,k otherwise

(4.9)

where W
c1
i,k, W c2

i,k, W c3
i,k and W

c4
i,k are defined in Equation (4.5), (4.6), (4.7) and (4.8)

respectively.

Upper bound on W
n
i,k for FPnp.

The following lemma describes the condition of processor-contention interference on
⌧k caused by lower-priority tasks in lp(k) for FPnp.

Lemma 4.4. For FPnp, a task instance J
j
i of ⌧i 2 lp(k) can interfere with J

j
k only if

J
j
i is released before r

j
k.

We compute the upper bound on W
n
i,j by three cases: (1)i = k, (2)⌧i 2 hp(k),

(3)⌧i 2 lp(k).
(1) i = k. The worst case workload is the same as in the case of EDFnp, thus Wn

i,j

can be computed by Equation (4.1).
(2) ⌧i 2 hp(k). The worst-case workload of task ⌧i occurs when a job of ⌧i arrives

at ojk, as shown in case (a) in Figure 5.1. Wn
i,j can be computed using Equation (4.2).

(3) ⌧i 2 lp(k). The worse case of Wn
i,k occurs when one of ⌧i’s instances is released

at ojk. The number of body jobs of ⌧i is
j
Ak+Sk

Ti

k
. Let � be the distance between o

j
k

and the release time of ⌧i’s last instance. So � =
j
Ak+Sk

Ti

k
.

⌧i : (a)

⌧i : (b)

⌧k

o
j
k r

j
k d

j
kl

j
k

(a): �

(b): �
Ak

Ak Sk

Figure 4.9: The densest possible packing of jobs of ⌧i with carry-in job. Case (a):
� < Ak, Case (b):� � Ak > 0.

(3.A) If Ak = 0, then o
j
k = r

j
k, according to Lemma 4.4, Wn

i,k = 0.

54

4.3. Schedulability Analysis

(3.B) If � < Ak, ⌧i’s last job is released earlier than r
j
k, as shown in Figure 4.9 case

(a), its contribution is bounded by min(Ak + Sk mod Ti, C
⇤
i). In this case, Wn

i,k is
computed by Equation (4.2).

(3.C) If � � Ak > 0, as shown case (b) in Figure 4.9, the contribution of the last
released job of ⌧i is 0. In this case, Wn

i,k can be computed by Equation (4.3).
By the above discussion, we can compute W

n
i,k by:

W
n
i,k =

8
>>><

>>>:

0 ⌧i 2 lp(k) ^Ak = 0

W
n1
i,k i = k

W
n2
i,k ⌧i 2 hp(k) _ (⌧i 2 lp(k) ^ � < Ak)

W
n3
i,k otherwise

(4.10)

where W
n1
i,k , Wn2

i,k , Wn3
i,k are defined in Equations (4.1), (4.2) and (4.3) respectively.

Upper bound on W
c
i,k for FPnp.

We compute the upper bound on W
c
i,k by three cases: (1)i = k, (2) ⌧i 2 lp(k) ^ Sk �

C
⇤
i , (3) the remaining cases.

(1) i = k. The worst case of W c
i,k occurs as it does for EDFnp, and therefore W

c
i,k

is computed by Equation (4.5).
(2) ⌧i 2 lp(k) ^ Sk � C

⇤
i . The worst case of W

c
i,j occurs when one of ⌧i’s

job is released at rjk � 1, as shown case (b) in Figure 4.7. We can compute W
c
i,j by

Equation (4.7).
(3) The remaining cases, i.e. ⌧i 2 hp(k) or ⌧i 2 lp(k) ^ C

⇤
i > Sk. The worst-case

workload of ⌧i is generated when one of ⌧i’s instances is released at time instance
s
j
k � C

⇤
i . Such a situation is depicted in Figure 4.8. In this case, we can compute W

c
i,j

by Equation (4.8).
By the above discussion, we compute W

c
i,j by:

W
c
i,k =

8
><

>:

W
c1
i,k i = k

W
c3
i,k ⌧i 2 lp(k) ^ Sk � C

⇤
i

W
c4
i,k otherwise

(4.11)

where W
c1
i,k, W c3

i,k and W
c4
i,k are defined in Equation (4.5), (4.7) and (4.8) respectively.

Upper bound on I
pre
k .

By the definition of ojk, at least one core is idle at ojk, therefore at most m � 1 tasks
have carry-in jobs. The task set ⌧ can be partitioned into two subsets ⌧ c and ⌧

n that
include tasks with carry-in jobs and tasks without carry-in jobs, respectively. Now we
define ⌦k as the maximal value of the sum of all tasks’ workloads in [ojk, l

j
k] among all

possible cases:

⌦k = max
X

⌧i2⌧

Wi,k

= max
(⌧n,⌧c)2⌧

(
X

⌧i2⌧n

W
n
i,k +

X

⌧i2⌧c

W
c
i,k)

(4.12)

55

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

where ⌧
n and ⌧

c satisfy ⌧
n
[⌧

c = ⌧ , ⌧n \ ⌧
c = ? and |⌧

c
|  m� 1.

By taking the maximum over the task set, ⌦k describes an upper bound on the total
worst-case workload in [ojk, l

j
k]. The complexity to compute ⌦k is O(n), as explained

in [8].
Since both EDFnp and FPnp are work-conserving, the processor-contention inter-

ference exhibited by ⌧k can be bounded by ⌦k
m . So, we have the following Lemma.

Lemma 4.5. If tasks are scheduled with a EDFnp or FPnp scheduling policy on a
multicore processor composed of m identical cores with shared cache,

I
pre
k 

⌦k

m
.

4.3.3 Computation of Īsck
We first identify the maximum cache interference between two tasks and then we
construct an integer programming formulation to calculate the upper bound on the
shared cache interference exhibited by a task within an execution window.

Cache interference between two tasks

We first analyze the cache interference during one job execution between ⌧k and ⌧i. Let
⌧k be the interfered and ⌧i be the interfering task.

Following the approach in [38], we can obtain the WCET of a task by performing a
Cache Access Classification (CAC) and Cache Hit/Miss Classification (CHMC) analysis
for each instruction memory access at the private caches and the shared LLC cache
separately. The CAC determines the possibility that an instruction being fetched from
memory will access a certain cache level, and the access to a certain cache level can
be Always (A), Uncertain (U) or Never (N). CHMC assigns a cache lookup result
to each memory reference according to the cache states. As a result, a reference to a
memory block of instructions can be classified as Always Hit (AH), Always Miss (AM)
or Uncertain (U).

Since we consider noninclusive caches, accesses to the private caches cannot be
affected by tasks executing on other cores. Accesses classified as AM or U at the
shared LLC cache will also not be affected by shared cache interferences, since they
are already counted as misses in the WCET analysis.

We start the cache interference analysis by defining two concepts for cache blocks.

Definition 4.2. A Hit Block (HB) is a memory block whose access is classified as AH

at the shared LLC cache.

Definition 4.3. A Conflicting Block (CB) is a memory block whose access is classified
as A or U at the shared LLC cache.

HB and CB can be identified by the approach proposed in [38].
We use HBk = {mk,1,mk,2, ...,mk,p} to represent the set of HB for task ⌧k and

use nk,x (x = 1, 2, ..., p) to denote the number of mk,x’s accesses that are classified as
a AH at the LLC cache. Similarly, we define CBi = {mi,1,mi,2, ...,mi,q} as the set

56

4.3. Schedulability Analysis

of CB for task ⌧i and denote ni,x as the number of mi,x’s accesses that are classified
as a A or U at the LLC cache. Note that HBk and CBi includes the memory blocks
that meet the requirement in every program path that may be taken by the task.

In our system architecture, cache interference occurs only at the shared LLC cache
when a cache line used by ⌧k is evicted by ⌧i and consequently causing reload overhead
for ⌧k. A cache line that may cause cache interference for ⌧k needs to satisfy at least
two conditions:

(i) access to that cache line will result in a cache hit at the LLC cache in WCET
analysis of ⌧k,

(ii) the cache line may be used by ⌧i.
From the above two conditions, we can analyze memory block accessing that may

cause interference. The first condition implies that only accessing to HBk may cause
cache interference for ⌧k, while the second condition indicates that accessing to CBi

by ⌧i may interfere with ⌧k. Furthermore, cache interference occurs only if ⌧k accesses
memory blocks in HBk and ⌧i accesses memory blocks in CBi concurrently, and those
memory blocks have the same cache index.

We use I
sc
i,k to represent the upper bound on the shared cache interference imposed

on ⌧k by only one job execution of ⌧i.
Suppose the indexes of the LLC cache range from 0 to N � 1, we can derive N

subsets of HBk according to the mapping function idx that maps a memory address to
the cache line index at the LLC cache as follows,

m̂k,u = {mk,x 2 HBk|idx(mk,x) = u} , (0  u < N, u 2 N).

We define the characteristic function of a set A which indicates membership of an
element x in A as:

�A(x) =

(
1 x 2 A

0 otherwise
.

Let Nk,u represent the number of hit accesses to the u-th cache line by ⌧k without
cache interference. Nk,u equals to the total number of access to the HBs mapping to
the k-th cache line,

Nk,u =
pX

x=1

nk,x�m̂k,u(mk,x).

Similarly, we divide CBi into N subsets by

êi,u = {mi,x 2 CBi|idx(mi,x) = u} , (0  u < N, u 2 N).

The number of accesses to the k-th cache line by ⌧i is bounded by

Ni,u =
qX

x=1

ni,x�êi,u(mi,x),

Cache interference can only happen among memory blocks that are in the same
subset that maps to the same cache line. For the u-th cache line, ⌧k can be interfered at

57

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

most Nk,u times and ⌧i can interfere at most Ni,u times. The following formula gives
an upper bound on the number of cache miss by accessing the HBs for task ⌧k.

S(⌧i, ⌧k) =
N�1X

u=0

min(Ni,u, Nk,u)

Suppose the penalty for an LLC cache miss is a constant, Cmiss, then I
sc
i,k satisfies:

I
sc
i,k = S(⌧i, ⌧k)Cmiss.

The computation only takes the memory accesses of ⌧k and ⌧i as input, so I
sc
i,k only

depends on memory accesses of ⌧k and ⌧i.

Lemma 4.6. I
sc
i,k = S(⌧i, ⌧k)Cmiss.

Proof. The lemma holds as discussed above.

Given a taskset, Isci,k can be computed, as shown in the proof of Lemma 4.6. In the
following discussion, we assume I

sc
i,k is known.

Lemma 4.6 gives an upper bound on cache interference for ⌧k imposed by only one
job of ⌧i. It is possible that more than one job of ⌧i interfere with ⌧k. We denote the
number of jobs of ⌧i that interfere with ⌧k as Ni,k.

Lemma 4.7. The total cache interference ⌧k exhibited from Ni,k jobs of ⌧i is bounded
by Ni,kI

sc
i,k.

Proof. For Ni,k jobs of ⌧i, the total number of accesses to each memory block mi,x

is bounded by Ni,kni,x. Thus, the execution of Ni,k jobs of ⌧i accesses the k-th
cache line also at most Ni,kNi,u times. From the proof of Lemma 4.6, the up-
per bound of the total cache interference exhibited by ⌧k from Ni,k jobs of ⌧i isPN�1

u=0 min(Ni,kNi,u, Nk,u)Cmiss.

Ni,kI
sc
i,k = Ni,k

N�1X

u=0

min(Ni,u, Nk,u)Cmiss

=
N�1X

u=0

min(Ni,kNi,u, Ni,kNk,u)Cmiss

�

N�1X

u=0

min(Ni,kNi,u, Nk,u)Cmiss

IP formulation

We can compute an upper bound of the maximum cache interference a task may exhibit
during an execution window by introducing an Integer Programming (IP) formulation,
which can be transformed to an integer linear programming formulation.

58

4.3. Schedulability Analysis

It is necessary to check the schedulability of the task-set without considering cache
interference. If the task-set does not pass the initial schedulability test, there is no need
to calculate the cache interference. Only if all tasks (including ⌧i) pass the schedulability
test (without considering cache interference), the IP is solved to compute the upper
bound on cache interference. Therefore, the IP formulation is based on the assumption
that ⌧i is schedulable without cache interference.

If Ni,k jobs of ⌧i executing concurrently with ⌧k, the cache interference that ⌧i
causes on ⌧k is bounded by Ni,kI

sc
i,k according to Lemma 4.7. As a task may exhibit

cache interference from more than one task during a job execution, the total cache
interference for one job execution of ⌧k is bounded by the sum of the contributions
of all other tasks ⌧i(i 6= k) in the task set ⌧ . Thus, the objective function of the IP

formulation is:

max
X

i 6=k

Ni,kI
sc
i,k. (4.13)

The IP formulation will have an unbounded solution without further constraints to
the variable Ni,k. To get a bounded solution, we analyze the constraints on Ni,k. First,
we define the concept of the execution window of a job.

Definition 4.4. The Execution Window (EW) of the j-th job of ⌧k (Jj
k) is time interval

[sjk, f
j
k] from the staring time to the finishing time of Jj

k .

Note that the length of an execution window may be larger than Ck, since the EW

includes the cache interference. We use C
0
k as the length of the EW because of the

iterative computation which will be described later on.
Ni,k reaches its minimal value when a job of ⌧i starts to execute as soon as it is

released and the execution finishes just before the start of the EW , as shown the case
(a) in Figure 4.10. Denoting C

min
i as the smallest execution time of ⌧i, often called

Best-Case Execution Time (BCET), we have the following constraint:

8i 6= k,

�
max(0, C 0

k � Ti + C
min
i)

Ti

⌫
+ ⇠i  Ni,k (4.14)

where ⇠i =

(
1 ((C 0

k + C
min
i) mod Ti)�Di + C

min
i > 0

0 otherwise
.

The term ⇠i indicates whether the last job of ⌧i released within the EW that
interferes with ⌧k since the last released job should start its execution C

min
i before its

relative deadline if the task is schedulable.
The maximum value of Ni,k is taken when the first interfering job of ⌧i finishes just

after the start of the EW and the last interfering job of ⌧i starts to execute at the time
when it is released. Such a situation is depicted as case (b) in Figure 4.10. Thus, we
have the second constraint on Ni,k:

8i 6= k, Ni,k  1 +

⇠
max(0, C 0

k � Ti +Di)

Ti

⇡
(4.15)

If Ni,k > 2, the first and last interfering jobs of ⌧i may occupy almost 0 computation
capacity in the EW . Let Jj

i be such a job among the remaining Ni,k � 2 interfering

59

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

⌧i : (a)

⌧i : (b)

⌧k

s
j
k f

j
k

C
min
i

Execution window: C 0
k

Figure 4.10: Situations where ⌧i interferes ⌧k with the most and least number of jobs.

jobs of ⌧i between the first and the last ones. Both release time r
j
i and deadline d

j
i of

J
j
i are within the EW of ⌧k.

Lemma 4.8. If ⌧i is schedulable without considering cache interference, Ci computa-
tion capacity of the processing core is reserved for the execution of Jj

i during [rji , d
j
i].

If Jj
i executes for Cact

i < Ci, the processing core will be accumulatively idle (executing
nothing, simply wasting the processing capacity for ⌧i) for at least Ci � C

act
i during

[rji , d
j
i].

Proof. If ⌧i satisfies the schedulability condition without considering cache interference:
⌦i(C)

m + Ci < Di, the core on which J
j
i is executed spends at most Di � Ci in total

for the execution of other interfering tasks during [rji , d
j
i]. J

j
i is guaranteed to have Ci

computation capacity during [rji , d
j
i].

The remaining computation capacity of a multicore processor with m cores is
(m � 1)C 0

k since one core is dedicated to the execution of ⌧k. Due to the limited
computation capacity of the processor, the total execution of the tasks that may interfere
with ⌧k within the EW can not exceed (m� 1)C 0

k. Hence, we have the third constraint:
X

i 6=k

max(0, Ni,k � 2)Ci  (m� 1) C 0
k. (4.16)

The objective function (4.13) together with three constraints on Ni,k i.e. inequali-
ties (4.14), (4.15) and (4.16) form our IP problem. Since C

min
i is a relatively small

number, we take the extreme case: Cmin
i = 0. As task parameters such as Ci, Di, Ti is

known, the optimal solution of the IP only depends on the length of EW . Thus, we
use I

sc(C 0
k) to denote the optimal value of the IP problem if C 0

k is used as the length
of the EW in the IP .

Note that Inequalities (4.14) and (4.16) are based on the assumption that ⌧i is
schedulable. Thus, before solving the IP , we have to check the schedulability of the
taskset assuming no cache interference between tasks, i.e. Īsci = 0.

Computation complexity of the IP . The original IP can be easily transformed to
an Integer Linear Programming (ILP) problem by introducing a new integer variable
yi,j for each Ni,j with two additional constraints: yi,j � 0 and yi,j � Ni,k � 2.

60

4.4. Iterative Computation

Inequality (4.16) can be replaced by
P

i 6=k yi,kCi  (m� 1) C 0
k. In the transformed

ILP problem, we have totally 2(n� 1) variables and 4(n� 1) + 1 constraints. The
complexity of the IP is the same as the complexity of solving the transformed ILP

problem, which is O(n64n ln 4n) [23].

4.4 Iterative Computation
Due to the presence of cache interference, a job may execute longer than Ck on a
multicore platform with shared caches. However, a larger execution time may introduce
more cache interference, as illustrated in Figure 4.11.

In Figure 4.11 (a), if the job of ⌧k executes for C 0
k, only one job of ⌧i interferes

with ⌧k. In Figure 4.11(b), if the job of ⌧k executes for a larger execution time, say
C

0
k + I

sc(C 0
k), two jobs of ⌧i could possibly interfere with ⌧k, which potentially may

increase the cache interference exhibited by ⌧k. This example suggests an iterative
method to find an upper bound on the cache interference.

Figure 4.11: More cache interference if ⌧k executes for a longer time.

Lemma 4.9. I
sc(C 0

k) is non-decreasing with respect to C
0
k.

Lemma 4.9 is explained by the above example.
We give a sufficient condition for a certain value that can be used as an upper bound

on cache interference.

Lemma 4.10. if 9 C⇤
k � Ck such that C⇤

k = Ck + I
sc(C⇤

k), then Ī
sc
k = I

sc(C⇤
k).

Proof. If C⇤
k = Ck + I

sc(C⇤
k), then I

sc(C⇤
k) = I

sc(Ck + I
sc(C⇤

k)). According to
Lemma 4.9, given an execution window of ⌧k that is no more than Ck + I

sc(C⇤
k), the

cache interference exhibited by ⌧k is not larger than I
sc(C⇤

k). Therefore, Isc(C⇤
k) is the

upper bound on cache interference for ⌧k. By definition, Īsck = I
sc(C⇤

k).

We now derive the iterative algorithm, called CacheInterference(⌧) which takes
taskset ⌧ as input, to compute an upper bound on cache interference for each task
⌧k 2 ⌧ :

61

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

• Since the constraints of IP assume the taskset is schedulable, we first check the
schedulability of the taskset assuming no cache interference between each task.
Only if all tasks pass schedulability test, the following steps will be taken.

• C
0
k is initialized with Ck and an upper bound value on the cache interference

I
sc(C 0

k) is created which is initially set to zero

• By solving the IP, we compute a new upper bound of the cache interference
I
sc(C 0

k).

• If the new upper bound of cache interference is the same as the old upper bound,
the Isc(C 0

k) is the final upper bound of ⌧k. Otherwise, another round of computing
the upper bound on cache interference is performed using the upper bound derived
at the previous iteration. The iteration for ⌧k stops either if no update on I

sc(C 0
k)

is possible anymore or if the computed I
sc(C 0

k) is large enough to make ⌧k

unschedulable.

• The previous steps are repeated for every task in ⌧ .

A more formal version of the CacheInterference(⌧,m) algorithm is given by
Pseudocode 4.1. The algorithm returns I⇤ which includes the upper bounds on cache
interference I

sc(C⇤
k) for each task ⌧k and C

⇤ which includes the upper bounds on the
execution length C

⇤
k for each ⌧k. If I⇤ and C

⇤ are empty, the taskset is not schedulable.
Since the solution of the IP is non-decreasing with respect to C

0
k according to

Lemma 4.9 and one termination condition is C 0
k � Dk, the termination of the iterative

algorithm is guaranteed.
Before presenting the final theorem to check the schedulability of the task set, we

define the following notations.
We denote U(⌧i) as task ⌧i’ s utilization taking shared cache interference into

account, U(⌧i) is defined by:

Ui =
C

⇤
i

Ti
.

The utilization of taskset ⌧ , denoted by U(⌧), is defined by:

U(⌧) =
X

⌧i2⌧

Ui =
X

⌧i2⌧

C
⇤
i

Ti
.

We sort all C⇤
i in a non-increasing order, and use �m�1

C⇤
i

to denote the sum of the
first (m� 1) elements in this list, so

�m�1
C⇤

i
=

X

the (m�1) largest

C
⇤
i

For task ⌧k, we also define a constant Lk by:

Lk =

P
⌧i2⌧ C

⇤
i +�m�1

C⇤
i

m� U(⌧)
� Sk.

We propose the following Theorem to check the schedulability of the task set.

62

4.4. Iterative Computation

Pseudocode 4.1: CacheInterference(⌧ , m)
1: Input: Task parameters, number of cores: m
2: I

⇤
 empty list, used to store I

sc(C⇤
k) for each task

3: C
⇤
 empty list, used to store C

⇤
k for each task

4: pass true

5: for all ⌧k 2 ⌧ do
6: for all Ak 2 [0,K] do
7: ⌦k(C) calculation of Equation (4.12) using C

8: if ⌦k(C)
m + Ck � Dk +Ak then

9: pass false

10: break

11: end if
12: end for
13: end for
14: if pass then
15: for all ⌧k 2 ⌧ do
16: update true, Ioldk 0, Inewk 0
17: C

0
k Ck

18: while update do
19: I

old
k I

new
k

20: I
new
k Solution of IP with C

0
k as the EW

21: C
0
k = Ck + I

new
k

22: if Inewk == I
old
k or C

0
k � Dk then

23: update false

24: end if
25: end while
26: Add I

new
k to I

⇤

27: Add C
0
k to C

⇤

28: end for
29: end if
30: return I

⇤, C⇤

Theorem 4.11. A task set ⌧ is schedulable with the EDFnp or FPnp scheduling policy
on a multicore platform composed of m identical cores with shared caches if for each
task ⌧k 2 ⌧ and 0  Ak  Lk,

(1) 9 C⇤
k � Ck such that C⇤

k = Ck + I
sc(C⇤

k),
(2) ⌦k

m + C
⇤
k < Dk +Ak.

Proof. From (1), Īsck is bounded and Ī
sc
k = I

sc(C⇤
k) according to Lemma 5.3.

From Lemma 4.5, Īprek = ⌦k(C
⇤)

m .
8Ak � 0, if ⌦k

m +C
⇤
k = ⌦k

m +Ck + I
sc(C⇤

k) < Ak +Dk then Ī
pre
k +Ck + Ī

sc
k <

Ak +Dk. Theorem 4.11 follows from Theorem 4.1.
We further prove that if condition (2) is to be violated for any Ak, then it must also

be violated for some Ak  Lk.

63

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

W
n
i,k can be bounded by considering the number of body jobs to be

j
Ak+Sk

Ti

k
and

the contribution of the carry-out to be C
⇤
i , so

W
n
i,k 

�
Ak + Sk

Ti

⌫
C

⇤
i + C

⇤
i 

Ak + Sk

Ti
C

⇤
i + C

⇤
i

= (Ak + Sk)Ui + C
⇤
i

Similarly, W c
i,k can be bounded by considering the contribution of both the carry-in and

the carry-out are C
⇤
i :

W
c
i,k 

�
Ak + Sk

Ti

⌫
C

⇤
i + 2C⇤

i  (Ak + Sk)Ui + 2C⇤
i

From Equation (4.12)

⌦k = max
(⌧n,⌧c)2⌧

(
X

⌧i2⌧n

W
n
i,k +

X

⌧i2⌧c

W
c
i,k)

 (Ak + Sk)
X

⌧i2⌧

Ui +
X

⌧i2⌧

C
⇤
i +�m�1

C⇤
i

= (Ak + Sk)U(⌧) +
X

⌧i2⌧

C
⇤
i +�m�1

C⇤
i

If condition (2) is to be violated for any Ak, then 9Ak,
⌦k
m + C

⇤
k � Dk +Ak,

=) ⌦k � m(Dk +Ak � C
⇤
k)

=) (Ak + Sk)U(⌧) +
X

⌧i2⌧

C
⇤
i +�m�1

C⇤
i
� m(Sk +Ak).

Solve the above inequality for Ak, we have:

Ak 

P
⌧i2⌧ C

⇤
i +�m�1

C⇤
i

m� U(⌧)
� Sk = Lk.

This tells us the range of Ak that should be tested.

Finally, we give the procedure CheckSchedulability(⌧,m) to perform the schedu-
lability test, as illustrated by Pseudocode 4.2.

Computational complexity: Let n represent the number of tasks in the task-set.
For ⌧k, let Imin

k be the smallest difference between cache interference caused by
one job of ⌧i and ⌧j , i.e. I

min
k = min

i,j
(Isci,k � I

sc
j,k), the iterative algorithm takes

at most ⌘ = max
k

(Dk�Ck)
Imin
k

iterations to terminate since C
0
k either stays the same or

increases at least with I
min
k in each iteration. Thus, the complexity of the iterative

algorithm to compute the upper bound on cache interference is O(⌘n264nln4n). The
complexity of computing Lk,⌦k is polynomial. Therefore, the complexity to perform
the schedulability test is O(⌘n264nln4n).

64

4.5. Experiments

Pseudocode 4.2: CheckSchedulability(⌧ , m)
1: Input: Task parameters, number of cores: m
2: I

⇤, C⇤
 CacheInterference(⌧,m)

3: if I⇤ == null then
4: return Unschedulable
5: else
6: for all ⌧k 2 ⌧ do
7: for all Ak 2 [0,K] do
8: ⌦k(C⇤) calculation of Equation (4.12) using C

⇤

9: if ⌦k(C
⇤)

m + C
⇤
k � Dk +Ak then

10: return Unschedulable
11: end if
12: end for
13: end for
14: end if
15: return Schedulable

4.5 Experiments

In this section, we evaluate the performance of the proposed schedulability test for
EDFnp and FPnp in terms of acceptance ratio. More specifically, we will quantify the
effects of cache interference on the schedulability of the generated tasksets. We will
also compare the schedulability performance of EDFnp against FPnp over randomly
generated tasksets.

The experiments have been performed varying i) the probability of two tasks having
cache interference on each other: P (P = 0.1, 0.2, 0.3 or 0.4), ii) the cache interference
factor IF (IF = 0, 0.3, 0.6 or 0.9), iii) the number of cores m (m = 2, 4 or 8), iv)
total task utilization Utot (Utot from 0.1 to m � 0.1 with steps of 0.2). Given those
four parameters, we have generated 20000 tasksets in each experiment. As the task
generation policies may significantly affect experimental results, we give the policies
used in the experiments as follows.

Task utilization generation policy. We use Randfixedsum [88] to generate vectors
that consist of N elements and whose components sum to the Utot. Each element in the
vector is assigned an individual task utilization Uk in the taskset.

Task period and WCET generation policy. For each task ⌧k, Tk is uniformly
distributed over the interval [100, 200]. The WCET of ⌧k is derived by Ck = Tk ⇥ Uk.
We consider an implicit deadline task system, which implies that Di = Ti.

Cache interference generation policy. The probability of two task having cache
interference is P . If two tasks ⌧k and ⌧i interfere with each other, Isci,k is generated as
I
sc
i,k = IF ⇥min(0.5Ci, 0.5Ck).

In each experiment, we measure the number of schedulable tasksets that pass the
proposed schedulability test. The acceptance ratio, which is the number of schedulable
tasksets devided by the total number of tasksets (20000), are shown in Figure 4.12 and
Figure 4.13 for EDFnp and FPnp, respectively.

65

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

(a)IF=0.3,m
=4,n=10

(b)P=0.4,m
=4,n=10

(c)IF=0.3,n=10

Figure
4.12:A

cceptance
ratio

of
E
D
F
n
p

schedulerw
hen

varying
IF,P

and
m

.

66

4.5. Experiments

(a
)I

F=
0.

3,
m

=4
,n

=1
0

(b
)P

=0
.4

,m
=4

,n
=1

0
(c

)I
F=

0.
3,

n=
10

Fi
gu

re
4.

13
:A

cc
ep

ta
nc

e
ra

tio
of

F
P
n
p

sc
he

du
le

rw
he

n
va

ry
in

g
IF

,P
an

d
m

.

67

4. Schedulability Analysis of Global Scheduling for Multicore Systems with
Shared Caches

Fixing m = 4, n = 10, IF = 0.3, Figure 4.12a and Figure 4.13a illustrate the
acceptance ratio with different P for EDFnp and FPnp, respectively. With the same
Utot, the acceptance ratio for both EDFnp and FPnp decreases as P increases because
a larger P indicates more tasks in the taskset could interfere with each other, which may
potentially increase the upper bound on cache interference for each task. Fixing P , it
can be observed that the acceptance ratio of EDFnp is slightly higher than FPnp when
Utot 2 [1.1, 2.5].

Figure 4.12b and Figure 4.13b show the acceptance ratio achieved by EDFnp and
FPnp, respectively, for the cases IF = 0, 0.3, 0.6, 0.9, fixing m = 4, n = 10, P =
0.4. The red line with IF = 0 represents the acceptance ratio when tasks have no cache
interference. Evidently, the acceptance ratios with a lower IF are better than those
with a larger IF . As we increase IF with the same amount, the average acceptance
ratio decreases in a slower fashion. However, it does not indicate that a lower bound on
the average acceptance ratio is possible since the cache interference gets larger as IF
increases, eventually making the interfered tasks unschedulable. Fixing IF , it is also
clearly that the acceptance ratio achieved by EDFnp is slightly better than FPnp when
Utot 2 [0.7, 2.5].

Figure 4.12c and Figure 4.13c illustrate the acceptance ratio with respect to the
number of cores for EDFnp and FPnp, respectively. In the two figures, the acceptance
ratio for task having no cache interference are also plotted. Instead of using Utot as
horizontal axis, we scale the horizontal axis with Utot⇥8

m for m = 2, 4. It is worth noting
that an execution platform with fewer cores is more efficient in terms of acceptance ratio
than those with more cores. However, for processors with different cores scheduled
by EDFnp (or FPnp), the difference in the acceptance ratio of scheduling between
the baseline (tasks having no cache interference, IF = 0) and tasks having cache
interference is almost similar.

We measured the execution time of running the proposed schedulability test with
different task-set scales. The executions are conducted on an Intel Xeon processor
using only one core running at 2.4GHz. On average, it takes 0.13 seconds to check the
schedulability of the task-set consisting of 10 tasks, 0.27 seconds for task-set with 20
tasks, while 0.56 seconds for task-set with 30 tasks.

4.6 Conclusions

In this chapter, we developed a new schedulability analysis of global scheduling
(EDFnp and FPnp) for real-time multicore systems with shared caches. We con-
structed an integer programming formulation that can be transformed to an integer
linear programming formulation to calculate the upper bound on cache interference
exhibited by a task during a given execution window. Using this integer formulation,
we subsequently proposed an iterative algorithm to obtain an upper bound on the shared
cache interference a task may exhibit during one job execution. We derived a new
schedulability condition by integrating the upper bound on the cache interference into
the schedulability analysis. A set of experiments has been performed using our proposed
schedulability analysis to demonstrate the effects of cache interference for a range of
different tasksets. We also compared the schedulability performance of EDFnp against

68

4.6. Conclusions

FPnp in the presence of cache interference. Our empirical evaluations showed that
EDFnp is slightly better than FPnp in terms of task sets deemed schedulable.

69

5
Partitioned Scheduling for Real-time

Systems with Shared Caches

In the previous chapter, we studied the schedulability analysis of global scheduling for
real time multicore systems with shared caches. In this chapter, we extend the schedula-
bilty analysis to another real time scheduling paradigm: partitioned scheduling. This
chapter addresses RQ3 listed in chapter 1, which is concerned with cache interference
aware partitioned scheduling for real-time multicore systems.

On multi-core systems, two paradigms are widely used for scheduling real-time
tasks: global and partitioned (semi-partitioned) scheduling. For global scheduling, a job
is allowed to execute on any core. In partitioned scheduling, on the other hand, tasks are
statically allocated to processor cores, i.e., each task is assigned to a core and is always
executed on that particular core. Although the partitioned approaches cannot exploit
all unused processing capacity since a bin-packing-like problem needs to be solved to
assign tasks to cores, it offers lower runtime overheads and provides consistently good
empirical performance at high utilizations [11].

Furthermore, taking the shared cache interference into account, partitioned ap-
proaches can achieve better schedulability than global scheduling. We provide a simple
example to illustrate this. Consider three tasks ⌧1, ⌧2 and ⌧3 with the same period and
relative deadline of 7, the WCETs of ⌧1, ⌧2 and ⌧3 are 3, 3 and 2, respectively. The
execution platform is a processor with 2 cores including a last-level shared cache. If ⌧1
and ⌧2 run concurrently, the maximum cache interference exhibited by ⌧1 and ⌧2 is 3.
We assume that ⌧3 has no cache interference with ⌧1 and ⌧2.

It is impossible to conclude that this taskset is schedulable under global scheduling.
Figure 5.1 shows a case where ⌧3 misses its deadline. At time t = 0, tasks ⌧1 and ⌧2

are scheduled to execute on the two cores. In the figure, the black area of a cumulative
length of 3 denotes the WCET , and the hatched area of a cumulative length of 3
represents the extra execution time due to the cache interference. At t = 6, ⌧1 and ⌧2

both finish their executions, after which ⌧3 starts its execution. At t = 7, ⌧3 misses its
deadline. Similarly, consider another case: at t = 0, ⌧3 and ⌧1 (or ⌧2) are scheduled, at
t = 2, ⌧3 finishes and ⌧2 (or ⌧1) starts its execution. Since cache interference is counted
per job [108], in the worst case, the cache interference exhibited by ⌧2 (or ⌧1) can still
be 3 even though the duration of co-running ⌧2 (or ⌧1) and ⌧1 (or ⌧2) is less than in the

This chapter was published as [46](submitted)

71

5. Partitioned Scheduling for Real-time Systems with Shared Caches

previous case. Due to the cache interference, ⌧2 (or ⌧1) could finish its execution at
t = 8, leading to a deadline miss for ⌧2 (or ⌧1).

0 2 4 6 8

⌧1

⌧2

⌧3

Time(s)

Figure 5.1: Case where ⌧3 misses its deadline if ⌧1, ⌧2 and ⌧3 are scheduled globally.

However, the taskset is schedulable under the partitioned scheduling. Consider,
e.g., the partitioning scheme in which ⌧1 and ⌧2 are assigned to core 1, and task ⌧3

is assigned to core 2. Since ⌧1 and ⌧2 are assigned to the same core, they cannot run
simultaneously. As no cache interference can occur during task execution, it can be
verified that every task meets its deadline.

Motivated by the above example, we address the following main research questions
listed in Chapter 1:

RQ3 How to develop a cache interference aware partitioned scheduling for real-time
multi-core systems? Is the partitioned scheduling better than global scheduling in
terms of schedulability performance?

To answer this question, we propose a novel cache-interference aware task partitioning
algorithm, called CA-TPAR. To the best of our knowledge, this is the first work on
partitioned scheduling for real-time multi-core systems, accounting for shared cache
interference. In chapter 4, we presented an approach to calculating the upper bound
on cache interference for tasks that are globally scheduled. In this chapter, we will
extend the approach to deriving the upper bound on cache interference for partitioned
scheduling, which is required by CA-TPAR. We conduct schedulability analysis of
CA-TPAR and formally prove its correctness. A set of experiments is performed to
evaluate the schedulability performance of CA-TPAR against global EDF scheduling

72

5.1. System Model and Prerequisites

over randomly generated tasksets. Our empirical evaluations show that CA-TPAR
outperforms global EDF scheduling in terms of tasksets deemed schedulable.

As most commodity processors in the embedded domain does not provide support
for cache partitioning, it is worth to note that, in this work, we do not deploy any cache
partitioning techniques to mitigate the inter-core cache interference. Instead, we address
the problem of task partitioning in the presence of shared cache interference.

The rest of the chapter is organized as follows. The system model and some other
prerequisites for this chapter are described in Section 5.1. Section 5.2 describes the
proposed CA-TPAR, where we also detail the computation of the inter-core cache inter-
ference and schedulability analysis of CA-TPAR. Section 5.3 presents the experimental
results, after which Section 5.4 concludes the chapter.

5.1 System Model and Prerequisites

5.1.1 System Model

Task Model and Architecture Model

We continue to use the same task and architecture model discussed in section 4.2 in
chapter 4. We repeat the most important details and notations that will be used in this
chapter.

A taskset ⌧ comprises n periodic or sporadic real-time tasks ⌧1, ⌧2, ... ⌧n. Each task
⌧k = (Ck, Dk, Tk) 2 ⌧ is characterized by a worst-case computation time Ck, a period
or minimum inter-arrival time Tk, and a relative deadline Dk. As explained in chapter 4,
it is difficult to accurately estimate Ck considering cache interference of other tasks
executing concurrently. In our task model, Ck is derived, assuming task k is the only
task executing on the multi-core processor platform, i.e. any cache interference delays
are not included in Ck.

A task ⌧k is a sequence of jobs Jj
k , where j is the job index. We denote the arrival

time, starting time, finishing time and absolute deadline of a job j as rjk, sjk, f j
k and d

j
k,

respectively.
Our system architecture consists of a multi-core processor with m identical cores

onto which the individual tasks are scheduled. The last-level caches (LLC) are shared
between all cores.

Partitioned Non-preemtive Schedulers

In this paper, we focus on non-preemptive partitioned scheduling. Once a task instance
starts execution, any preemption during the execution is not allowed, so it must run
to completion. So we do not have to consider intra-core cache interference. If not
explicitly stated, cache interference will therefore refer to inter-core cache interference
in the following discussion.

Since partitioning tasks among a multi-core processor reduces the multi-core pro-
cessor scheduling problem to a series of single-core scheduling problems (one for
each core), the optimality without idle inserted time [32, 45] of non-preemptive EDF
(EDFnp) makes it a reasonable algorithm to use as the run-time scheduler on each core.

73

5. Partitioned Scheduling for Real-time Systems with Shared Caches

Therefore, we make the assumption that each core, and the tasks assigned to it by the
partitioning algorithm, are scheduled at run time according to an EDFnp scheduler.

EDFnp assigns a priority to a job according to the absolute deadline of that job. A
job with an earlier absolute deadline has higher priority than others with a later absolute
deadline. EDFnp scheduling is work-conserving: using EDFnp, there are no idle
cores when a ready task is waiting for execution.

5.1.2 The Demand-Bound Function
A successful approach to analyzing the schedulability of real-time tasks is to use a
demand bound function [9]. The demand bound function DBF (⌧i, t) is the largest
possible cumulative execution demand of all jobs that can be generated by ⌧i to have
both their arrival times and their deadlines within any time interval of length t. Let t0 be
the starting time of a time interval of length t, the cumulative execution demand of ⌧i’s
jobs over [t0, t0 + t] is maximized if one job arrives at t0 and subsequent jobs arrive as
soon as permitted i.e., at instants t0 + Ti, t0 + 2Ti, t0 + 3Ti,... Therefore, DBF (⌧i, t)
can be computed by Equation (5.1),

DBF (⌧i, t) = max(0, (

�
t�Di

Ti

⌫
+ 1)⇥ Ci). (5.1)

[2] proposed a technique for approximating the DBF (⌧i, t). The approximated
demand bound function DBF

⇤(⌧i, t) is given by the following equation:

DBF
⇤(⌧i, t) =

(
0 t < Di

Ci + Ui ⇥ (t�Di) otherwise
(5.2)

where Ui =
Ci
Ti

.
Observe that the following inequality holds for all ⌧i and all 0  t:

DBF
⇤(⌧i, t) � DBF (⌧i, t) (5.3)

5.1.3 Uniprocessor Schedulability
The schedulabity analysis of uniprocessor scheduling is well studied. [7] presented a
necessary and sufficient condition for the feasibility test of a sporadic task system ⌧

scheduled by EDFnp on a uniprocessor platform.

Theorem 5.1. A taskset ⌧ is schedulable under EDFnp on a uniprocessor platform if
and only if

8t,

nX

i=1

DBF (⌧i, t)  t (5.4)

and for all ⌧j 2 ⌧ :

8t : Cj  t  Dj : Cj +
nX

i=1;i 6=j

DBF (⌧i, t)  t. (5.5)

74

5.2. Cache interference aware task partitioning : CA-TPAR

Note that the computation of DBF (⌧i, t) and DBF
⇤(⌧i, t) by Equation (5.1)

and (5.2) and the two schedulability test conditions (5.4) and (5.5) do not account
for shared cache interference. We will extend the computation of DBF (⌧i, t) and
DBF

⇤(⌧i, t) and the two schedulability conditions to the cases where shared cache
interference is considered.

5.1.4 Cache Interference
As an LLC is shared by multiple cores, it allows running tasks to compete among each
other for shared cache space, which is governed by a cache replacement policy. As a
consequence, the tasks replace blocks that belong to other tasks, causing shared cache
interference.

Let ⌧k be the interfered and ⌧i be the interfering task. We use I
c
i,k to represent the

upper bound on the shared cache interference imposed on ⌧k by only one job execution
of ⌧i. From Lemma 4.6 in chapter 4, Ici,k can be bounded. The proof of Lemma 4.6
in chapter 4 also shows the method to compute I

c
i,k. In the following discussion, we

assume I
c
i,k is known.

It is however possible that multiple jobs of ⌧i interfere with ⌧k. We denote the
number of jobs of ⌧i that interfere with ⌧k as Ni,k.

As stated in Lemma 4.7 in 4, the total cache interference ⌧k exhibits from Ni,k jobs
of ⌧i is bounded by Ni,k · I

c
i,k.

5.2 Cache interference aware task partitioning : CA-
TPAR

Given a taskset ⌧ comprised of n periodic or sporadic tasks and a processing platform
⇡ with m identical cores ⇡ = {⇡1,⇡2, ...,⇡m}, a partitioning algorithm decides how to
assign tasks to cores to avoid task deadline misses. The problem of assigning a set of
tasks to a set of cores is analogous to the bin-packing problem. In this case, the tasks
are the objects to pack and the bins are cores. The bin-packing problem is known to
be NP-hard in the strong sense. Thus, searching for an optimal task assignment is not
practical.

[60] and [31] studied several bin-packing heuristics for the preemptive and non-
preemptive task model. Typically, each of the bin-packing heuristics follows the
following pattern: tasks of the task system are first sorted by some criterion, after which
the tasks are assigned in order to a core that satisfies a sufficient condition.

Let ⌧(⇡x) denote the set of tasks assigned to processor core ⇡x where 1  x  m.
⌧i 2 ⌧(⇡x) means ⌧i is assigned to core ⇡x. If taskset ⌧ can be scheduled by a partitioned
algorithm, the outcome of running a partitioning algorithm is a task partition such that:

• All tasks are assigned to processor cores:

[1xm⌧(⇡x) = ⌧

• Each task is assigned to only one core:

8y 6= x, 1  y  m, 1  x  m, ⌧(⇡y) \ ⌧(⇡x) = ;

75

5. Partitioned Scheduling for Real-time Systems with Shared Caches

In Section 5.2.1, we describe our cache interference aware task partitioning : CA-
TPAR. Section 5.2.2 derives the calculation of the upper bound on the shared cache
interference. Section 5.2.3 conducts the schedulability analysis for CA-TPAR.

Before describing CA-TPAR, we first extend the DBF to account for shared cache
interference. Due to the extra execution delay caused by shared cache interference, a
task ⌧i may execute longer than Ci. Given a task partitioning scheme, one can compute
the upper bound on cache interference exhibited by task ⌧i, denoted as Ī

c
i . We will

show the method to compute this Īci later. In multiprogrammed environment, the actual
execution time including cache interference of ⌧i can be bounded by Ci+ Ī

c
i . We denote

DBF
c(⌧i, t) as the demand bound function which accounts for cache interference.

DBF
c(⌧i, t) can be computed by extending Equation (5.1):

DBF
c(⌧i, t) = max(0, (

�
t�Di

Ti

⌫
+ 1)⇥ (Ci + Ī

c
i)). (5.6)

Similarly, the approximated demand bound function DBF
c⇤(⌧i, t) is given by the

following equation by extending Equation (5.2):

DBF
c⇤(⌧i, t) =

(
0 t < Di

Ci + Ī
c
i + U

c
i ⇥ (t�Di) otherwise

(5.7)

where U
c
i = Ci+Īc

i
Ti

.
It can also be observed that:

DBF
c⇤(⌧i, t) � DBF

c(⌧i, t) (5.8)

5.2.1 The Task Partitioning Algorithm: CA-TPAR
We now propose CA-TPAR, a task partitioning algorithm taking shared cache interfer-
ence into account.

We assume the tasks are sorted in non-decreasing order by means of a certain
criterion. For example, if a task’s relative deadline is chosen as criterion, then Di 

Di+1 for 1  i  n. More criteria for sorting the tasks will be discussed in Section 5.3.
CA-TPAR performs the following steps:
step 1: for each task ⌧i 2 ⌧ :

1. Attempt to assign ⌧i to ⇡x,

2. Calculate the upper bound on cache interference Ī
c
k for ⌧k 2 ⌧(⇡x) [{⌧i}, i.e.

tasks that are already assigned to ⇡x and ⌧i, assuming ⌧i is assigned to ⇡x. We
will show the calculation procedure in the next subsection.

3. Check if the following condition holds for each
⌧k 2 ⌧(⇡x) [{⌧i}

Dk �

X

⌧j2⌧(⇡x)[{⌧i}
DjDk

DBF
c⇤(⌧j , Dk) + max

⌧j2⌧(⇡x)[{⌧i}
Dj>Dk

Cj + Ī
c
j . (5.9)

76

5.2. Cache interference aware task partitioning : CA-TPAR

(a) If no ⌧k violates condition (5.9), the attempt is admitted and ⌧i is added to
⌧(⇡x).

(b) If condition (5.9) is violated by at least one ⌧k, the attempt is rejected. We
attempt to assign ⌧i to the next core ⇡x+1 and repeat steps (2) and (3). If no
core can be assigned to ⌧i, then ⌧i is added to the temporarily non-allocable
taskset, denoted as ⌧ tna.

step 2: after performing step 1, the resulting ⌧
tna is either an empty set or non-

empty.
(a) If ⌧ tna = ;, which means all tasks have been allocated to cores, CA-TPAR

returns Success,
(b) Otherwise, we perform step 1 to each ⌧t 2 ⌧

tna. ⌧t is removed from ⌧
tna if

it can be assigned to a core. We repeatedly perform step 1 to ⌧t 2 ⌧
tna until ⌧ tna

becomes empty or no more tasks in ⌧
tna could be allocated to cores. If ⌧ tna = ; at

the end, CA-TPAR returns Success, otherwise CA-TPAR returns Fail: it is unable to
determine if scheduling ⌧ is feasible on the multi-core platform.

We briefly explain the rationale behind condition (5.9). Given a task ⌧k, the ex-
ecution demand of tasks (including ⌧k) with a relative deadline no larger than Dk is
calculated by the first part (left-hand side) of the sum in condition (5.9). Since we
consider a non-preemptive task system, the second part of the sum accounts for the
blocking time due to the execution of a task with a larger relative deadline than ⌧k

at the time a job of ⌧k arrives. If the sum of the execution demand and the blocking
time is smaller than Dk, the task ⌧k will not miss its deadline. We will prove this in
Section 5.2.3.

A more formal version of the task partitioning algorithm CA-TPAR is given by
Pseudocode 5.1.

Pseudocode 5.1: CATPAR(⌧ , ⇡)
1: sort ⌧ in non-decreasing order by a selected criterion
2: ⌧

tna
 ⌧ , taskAssigned true, ⌧(⇡1), ⌧(⇡2), ..., ⌧(⇡m) ;

3: ⌧(⇡) = (⌧(⇡1), ⌧(⇡2), ..., ⌧(⇡m))
4: while ⌧

tna
6= ; and taskAssigned == true do

5: ⌧
tna

, taskAssigned, ⌧(⇡)=TaskPartition(⌧ tna, ⇡, ⌧(⇡))
6: end while
7: if ⌧ tna == ; then
8: return Success

9: else
10: return Failed

11: end if

The input to procedure CATPAR is the taskset ⌧ to be partitioned and the execution
platform ⇡ consisting of m cores. CATPAR repeatedly invokes the procedure TaskParti-
tion, illustrated by Pseudocode 5.2, to perform step 1 of the CA-TPAR algorithm. The
input to TaskPartition is the temporarily non-allocable taskset ⌧ tna, ⇡, and existing task
assignment ⌧(⇡) = (⌧(⇡1), ⌧(⇡2), ..., ⌧(⇡m). ⌧ tna is initialized as ⌧ . Every time when

77

5. Partitioned Scheduling for Real-time Systems with Shared Caches

TaskPartition finishes, some tasks in the taskset ⌧ tna can be assigned to cores, and thus
⌧
tna and ⌧(⇡) are updated.

Pseudocode 5.2: TaskPartition(⌧ , ⇡, ⌧(⇡))

1: taskAssigned false, ⌧ tna ;
2: for all ⌧i 2 ⌧ do
3: assignTo NULL, coreSuccess true
4: for all ⇡x 2 ⇡ do
5: for all ⌧k 2 ⌧(⇡x) [{⌧i} do
6: calculate Ī

c
k

7: end for
8: for all ⌧k 2 ⌧(⇡x) [{⌧i} do
9: if condition ⇠ (5.9) violates for ⌧k then

10: coreSuccess false
11: break;
12: end if
13: end for
14: if coreSuccess then
15: ⌧(⇡x) ⌧(⇡x) [{⌧i}

16: assignTo ⇡x, taskAssigned true
17: break;
18: end if
19: end for
20: if assignTo == NULL then
21: ⌧

tna
 ⌧

tna
[{⌧i}

22: end if
23: end for
24: return ⌧

tna
, taskAssigned, ⌧(⇡)

Lines 5 � 7 in the procedure of TaskPartition perform step 1.(2) of CA-TPAR to
compute the upper bound on cache interference for tasks. When CA-TPAR attempts
to assign ⌧i to ⇡x, the upper bound on cache interference caused by ⌧k 2 ⌧(⇡x), i.e.
tasks that are already assigned to ⇡x, is recomputed. This is because a tighter bound
can be possibly obtained by the recalculation, as will be shown soon. Considering ⌧i is
more likely to be assigned to ⇡x if the upper bound on the cache interference caused by
⌧k 2 ⌧(⇡x) is smaller, the recalculation makes CA-TPAR less pessimistic.

5.2.2 Calculation of The Upper Bound on Cache Interference: Īck
The CA-TPAR algorithm requires to calculate the upper bound on cache interference
before it assigns a new task to a core. We now describe such a procedure for the
calculation of Īck.

In last chapter, we have presented an approach to calculating the upper bound on
cache interference for tasks that are globally scheduled. By extending the approach,
we compute the upper bound on cache interference for partitioned scheduling. This

78

5.2. Cache interference aware task partitioning : CA-TPAR

is done by two steps. First, given the existing task assignment represented by ⌧(⇡) =
(⌧(⇡1), ⌧(⇡2), ..., ⌧(⇡m) and ⌧

na as the taskset consisting of the tasks that have not
been assigned, we construct an integer programming (IP) formulation to calculate the
upper bound on the cache interference exhibited by a task within an execution window.
Then, we use an iterative algorithm to obtain the upper bound on cache interference a
task may exhibit during its job executions.

IP formulation

In the following discussion, we compute the upper bound on cache interference exhibited
by ⌧k, assuming ⌧i is the interfering task and ⌧k is assigned to ⇡x.

The Execution Window (EW) of the j-th job of ⌧k (Jj
k) is defined as the time interval

[sjk, f
j
k] from the staring time to the finishing time of Jj

k . We use C 0
k as the length of the

EW because of the iterative computation which will be described later on.
The objective function of the IP formulation is to maximize the the total cache

interference exhibited by task ⌧k. The total cache interference for one job execution of
⌧k is bounded by the sum of the contributions of all tasks ⌧i in the taskset ⌧ . So the
objective function is:

max
X

Ni,k · I
c
i,k. (5.10)

To get a bounded solution, we analyze the constraints on Ni,k.
If tasks ⌧i and ⌧k are assigned to the same core ⇡x, at each time instant, at most

one task of ⌧i and ⌧k executes on core ⇡x. No jobs from ⌧i could interfere with ⌧k.
Therefore, we have the following:

8⌧i 2 ⌧(⇡x), Ni,k = 0. (5.11)

Ni,k reaches its minimal value when a job of ⌧i starts to execute as soon as it is
released and the execution finishes just before the start of the EW , as shown in case (a)
of Figure 4.10 in chapter 4. Taking the smallest execution time of ⌧i, Cmin

i , as 0, we
have the following constraint:

8⌧i /2 ⌧(⇡x),

�
max(0, C 0

k � Ti)

Ti

⌫
+ ⇠i  Ni,k (5.12)

where ⇠i =

(
1 (C 0

k mod Ti)�Di > 0

0 otherwise
.

The term ⇠i indicates whether or not the last job of ⌧i released within the EW

interferes with ⌧k.
The maximum value of Ni,k is taken when the first interfering job of ⌧i finishes just

after the start of the EW and the last interfering job of ⌧i starts to execute at the time
when it is released. Such a situation is depicted as case (b) in Figure 4.10 in chapter 4.
Thus, we have the second constraint on Ni,k:

8⌧i /2 ⌧(⇡x), Ni,k  1 +

⇠
max(0, C 0

k � Ti +Di)

Ti

⇡
. (5.13)

79

5. Partitioned Scheduling for Real-time Systems with Shared Caches

If Ni,k > 2, the first and last interfering jobs of ⌧i may occupy almost 0 computation
capacity in the EW . Let Jj

i be a job among the remaining Ni,k � 2 interfering jobs of
⌧i between the first and the last ones. Both release time r

j
i and deadline d

j
i of Jj

i are
within the EW of ⌧k.

If ⌧i is (or will be) successfully assigned to core ⇡y , at least Ci computation capacity
of the processing core is reserved for the execution of Jj

i during [rji , d
j
i]. The total

execution of interfering tasks ⌧i on each processor y (with y 6= x) cannot exceed C
0
k.

Since we do not know the core assignment for tasks in ⌧
na, those tasks are allowed to

execute on any core. Thus, we have the following inequality (5.14),

8y 6= x,

X

⌧i2⌧(⇡y)[⌧na

max(0, Ni,k � 2)Ci  C
0
k. (5.14)

The objective function (5.10) together with constraints on Ni,k i.e. inequali-
ties (5.11), (5.12), (5.13) and (5.14) form our IP problem. As task parameters such as
Ci, Di, Ti are known, the input of the IP formulation is the length of EW: C 0

k, existing
task assignment: ⌧(⇡) = (⌧(⇡1), ⌧(⇡2), ..., ⌧(⇡m), and remaining tasks that need to
be assigned: ⌧na. Thus, we use IP (C 0

k, ⌧(⇡), ⌧
na) to denote the IP problem and use

I
c(C 0

k, ⌧(⇡), ⌧
na) to denote the optimal solution.

When CA-TPAR attempts to assign a task ⌧i to a core ⇡x, the upper bound on
cache interference caused by ⌧k 2 ⌧(⇡x), i.e. tasks that are already assigned to ⇡x,
is recomputed. We now show that a tighter upper bound for task ⌧k can be possibly
obtained by the re-computation.

Given a task ⌧k and an execution window of length C
0
k, let us suppose the IP

formulation in the previous computation of cache interference is IP (C 0
k, ⌧p(⇡), ⌧

na
p),

and the IP formulation for the re-computation is IP (C 0
k, ⌧q(⇡), ⌧

na
q).

Between the two computations for the same task ⌧k, CA-TPAR may assign some
tasks to cores. If a task ⌧i is assigned to a core ⇡x, ⌧i is removed from ⌧

na
p and is added

to ⌧q(⇡x). Obviously, we have ⌧
na
q ✓ ⌧

na
p and 81  x  m, ⌧p(⇡x) ✓ ⌧q(⇡x).

Lemma 5.2. Given ⌧k and C
0
k,

I
c(C 0

k, ⌧q(⇡), ⌧
na
q)  I

c(C 0
k, ⌧p(⇡), ⌧

na
p).

Proof Sketch: We show the proof sketch.
From condition 5.9, one can prove the following: if ⌧i 2 ⌧(⇡x) and ⌧k 2 ⌧(⇡x),

then Ck + Ī
c
k  Di.

By the above statement and the constraints of the IP problem, we can prove that any
solution of IP (C 0

k, ⌧q(⇡), ⌧
na
q) is also feasible for IP (C 0

k, ⌧p(⇡), ⌧
na
p). Thus,

I
c(C 0

k, ⌧q(⇡), ⌧
na
q)  I

c(C 0
k, ⌧p(⇡), ⌧

na
p).

Lemma 5.2 is the reason CA-TPAR forces the recalculation of upper bound on
cache interference caused by tasks that are already assigned to cores by CA-TPAR.

80

5.2. Cache interference aware task partitioning : CA-TPAR

Iterative Computation

Due to the presence of cache interference, a job may execute longer than Ck on a multi-
core platform with shared caches. However, a larger execution time may introduce more
cache interference.

We give a sufficient condition for a certain value that can be used as an upper bound
on cache interference exhibited by ⌧k, denoted by Ī

c
k.

Lemma 5.3. Given ⌧(⇡) and ⌧na, if 9C⇤
k � Ck such that C⇤

k = Ck+I
c(C⇤

k , ⌧(⇡), ⌧
na),

then Ī
c
k = I

c(C⇤
k , ⌧(⇡), ⌧

na).

The equation can be solved by means of fixed point iteration: the iteration starts
with an initial value for the length of EW and upper bound on cache interference,
i.e. C

0
k = Ck and I

c(C 0
k) = 0. By solving the IP, we compute a new upper bound

of the cache interference I
c(C 0

k, ⌧(⇡), ⌧
na) and a new corresponding length of EW ,

C
0
k = Ck + I

c(C 0
k, ⌧(⇡), ⌧

na). The iterative computation for ⌧k stops either if no
update on I

c(C 0
k, ⌧(⇡), ⌧

na) is possible anymore or if the computed I
c(C 0

k, ⌧(⇡), ⌧
na)

is large enough to make ⌧k unschedulable i.e. Ic(C 0
k, ⌧(⇡), ⌧

na) + C
0
k > Dk.

Computational complexity: The original IP can be easily transformed to an
Integer Linear Programming (ILP) problem. In the transformed ILP problem, we
have totally 2n variables and 4n + m � 1 constraints. The complexity of the IP

is the same as the complexity of solving the transformed ILP problem, which is
O((4n+m)64n ln(4n+m)) [23].

From chapter 4, the complexity to compute the upper bound on cache interference
exhibited by each task is O(⌘(4n+m)64n ln(4n+m)) (⌘ is defined in chapter 4). In
TaskPartition, at most n tasks in ⌧ are checked for at most m cores, thus, the complexity
of TaskPartition is O(⌘nm(4n+m)64n ln(4n+m)). Since the while loop in CATPAR
executes at most n times, the complexity of CA-TPAR is O(⌘n3

m64n ln(4n +m)).
Although it is exponential complexity, current implementations of LP solver are very
efficient to get a solution.

5.2.3 Schedulability Analysis

Uniprocessor feasibility

Task partitioning reduces the problem of multi-core processor scheduling into a set of
single-core processor scheduling problems (one for each core). Following Theorem 5.1,
we first propose a schedulability condition, as stated in Theorem 5.4, for uniprocessor
scheduling, taking shared cache interference into consideration. Note that the condition
in Theorem 5.4 is sufficient and not necessary as Īcj is the calculated upper bound on the
shared interference exhibited by ⌧j , the actual cache interference can be smaller than Ī

c
j .

Theorem 5.4. A taskset ⌧(⇡x) is schedulable under EDFnp on a uniprocessor platform
if

8t,

X

⌧i2⌧(⇡x)

DBF
c(⌧i, t)  t (5.15)

81

5. Partitioned Scheduling for Real-time Systems with Shared Caches

and for all ⌧j 2 ⌧(⇡x):

8t : Cj + Ī
c
j  t  Dj : Cj + Ī

c
j +

X

⌧i2⌧(⇡x)
i 6=j

DBF
c(⌧i, t)  t. (5.16)

Schedulability analysis of CA-TPAR

We first derive one property that must be satisfied for tasks assigned to the same core
by CA-TPAR. This is useful for the proof of the feasibility analysis conducted later for
CA-TPAR.

Lemma 5.5. If tasks are assigned to cores by CA-TPAR,

8⇡x 2 ⇡,

X

⌧i2⌧(⇡x)

U
c
i  1. (5.17)

Proof. Let ⌧u be the task with the largest relative deadline among tasks in ⌧(⇡x), so,
Du = max{Di|⌧i 2 ⌧(⇡x)}. Obviously,

⌧i 2 ⌧(⇡x) =) Di  Du.

Since ⌧u satisfies Inequality (5.9), we have

Du �

X

⌧i2⌧(⇡x)

DBF
c⇤(⌧i, Du). (5.18)

From Equation (5.7), DBF
c⇤(⌧i, Du) is computed by:

DBF
c⇤(⌧i, Du) = U

c
i ⇥ (Du �Di + Ti) � U

c
i ⇥Du.

Replacing DBF
c⇤(⌧i, Du) in Inequality (5.18),

Du �

X

⌧i2⌧(⇡x)

U
c
i ⇥Du =)

X

⌧i2⌧(⇡x)

U
c
i  1.

This is Inequality (5.17).

On each core ⇡x 2 ⇡, tasks in ⌧(⇡x) are scheduled under EDFnp. The next lemma
shows the feasibility of ⌧(⇡x).

Lemma 5.6. If the tasks are assigned to cores by CA-TPAR, 8⇡x 2 ⇡, ⌧(⇡x) is feasible
on core ⇡x by EDFnp.

Proof. For the sake of contradiction, assume that each task in ⌧(⇡x) satisfies condi-
tion (5.9), but that a task’s deadline is missed when scheduling the tasks in ⌧(⇡x) on
core ⇡x. Let tf be the time that a task misses a deadline on core ⇡x.

By Theorem 5.4, either
X

⌧i2⌧(⇡x)

DBF
c(⌧i, tf) > tf , (5.19)

82

5.2. Cache interference aware task partitioning : CA-TPAR

or 9⌧p, ⌧p 2 ⌧(⇡x) and 9tf , Cp + Ī
c
p  tf  Dp, such that

Cp + Ī
c
p +

X

⌧i2⌧(⇡x)
i 6=p

DBF
c(⌧i, tf) > tf . (5.20)

It will be shown that if either Inequality (5.19) or (5.20) holds, then a contradiction
is reached.

We first prove the existence of ⌧i 2 ⌧(⇡x) that satisfies Di  tf . Assuming
8⌧i 2 ⌧(⇡x), Di > tf , from Equation (5.7),

X

⌧i2⌧(⇡x)

DBF
c⇤(⌧i, tf) = 0.

By the assumption, neither Inequality (5.19) nor (5.20) will hold. So the assumption
is false.

Therefore, we can always find ⌧i 2 ⌧(⇡x) that satisfies Di  tf . Let ⌧s be the task
with the largest relative deadline, i.e. Ds = max{Di|⌧i 2 ⌧(⇡x) ^Di  tf}

(A) we first prove that if Inequality (5.19) holds, it would lead to contradiction.
From Inequality (5.8) and (5.19),

X

⌧i2⌧(⇡x)

DBF
c⇤(⌧i, tf) > tf . (5.21)

By the definition of DBF
c⇤(⌧i, tf), we have
X

⌧i2⌧(⇡x)
Di>Ds

DBF
c⇤(⌧i, tf) = 0.

X

⌧i2⌧(⇡x)

DBF
c⇤(⌧i, tf)

=
X

⌧i2⌧(⇡x)
DiDs

DBF
c⇤(⌧i, tf) +

X

⌧i2⌧(⇡x)
Di>Ds

DBF
c⇤(⌧i, tf)

=
X

⌧i2⌧(⇡x)
DiDs

Ci + Ī
c
i + U

c
i ⇥ (tf �Di)

=
X

⌧i2⌧(⇡x)
DiDs

Ci + Ī
c
i + U

c
i ⇥ (tf �Ds +Ds �Di)

=
X

⌧i2⌧(⇡x)
DiDs

DBF
c⇤(⌧i, Ds) + U

c
i ⇥ (tf �Ds).

(5.22)

⌧s satisfies condition (5.9):

Ds �

X

⌧i2⌧(⇡x)
DiDs

DBF
c⇤(⌧i, Ds).

83

5. Partitioned Scheduling for Real-time Systems with Shared Caches

From Equation (5.22) and Inequality (5.21), we have

Ds +
X

⌧i2⌧(⇡x)
DiDs

U
c
i ⇥ (tf �Ds) > tf (5.23)

=)
X

⌧i2⌧(⇡x)
DiDs

U
c
i > 1 =)

X

⌧i2⌧(⇡x)

U
c
i > 1.

This contradicts to Lemma 5.5.
(B) we now prove that if Inequality (5.20) holds, it would also lead to contradiction.
We know that 9⌧s, ⌧p such that Ds  tf  Dp. We consider two cases (B1):

Ds = Dp and (B2): Ds < Dp.
(B1) if Ds = Dp, then tf = Dp

DBF
c⇤(⌧p, tf) = Cp + Ī

c
p

From Inequality (5.20), X

⌧i2⌧(⇡x)

DBF
c(⌧i, tf) > tf .

This leads to contradiction as proved in case (A).
(B2) if Ds < Dp, we have

Cp + I
c
p  max

⌧j2⌧(⇡x)
Dj>Ds

Cj + Ī
c
j ,

and X

⌧i2⌧(⇡x)
i 6=p

DBF
c(⌧i, tf) 

X

⌧i2⌧(⇡x)

DBF
c(⌧i, tf).

From Inequality (5.20), we have

max
⌧j2⌧(⇡x)
Dj>Ds

Cj + Ī
c
j +

X

⌧i2⌧(⇡x)

DBF
c⇤(⌧i, tf) > tf .

Replacing
P

⌧i2⌧(⇡x)
DBF

c⇤(⌧i, tf) in the above inequality using equation (5.22), we
have

max
⌧j2⌧(⇡x)
Dj>Ds

Cj + Ī
c
j +

X

⌧i2⌧(⇡x)
DiDs

DBF
c⇤(⌧i, Ds) + U

c
i ⇥ (tf �Ds) > tf . (5.24)

Since ⌧s satisfies condition (5.9),

Ds �

X

⌧i2⌧(⇡x)
DiDs

DBF
c⇤(⌧i, Ds) + max

⌧i2⌧(⇡x)
Di>Ds

Ci + Ī
c
i . (5.25)

84

5.3. Experiments

From Inequality (5.24) and (5.25),
X

⌧i2⌧(⇡x)

U
c
i > 1.

This also contradicts to Lemma 5.5.

The correctness of Algorithm CA-TPAR follows, by application of Lemma 5.6:

Theorem 5.7. If the task partitioning algorithm CA-TPAR returns Success on taskset
⌧ , then the resulting partitioning is schedulable by EDFnp on each core.

5.3 Experiments
In this section, we compare the performance of CA-TPAR using different sorting criteria
with Global EDF (GEDF) in terms of acceptance ratio, that is, the number of tasksets
that are deemed schedulable divided by the number of tasksets tested. We also quantify
the effects of cache interference on the feasibility of the generated tasksets.

As mentioned in the beginning of Section 5.2.1, the CA-TPAR algorithm first
sorts tasks in non-decreasing order using some criterion and then assigns tasks to the
processor cores according to Equations (5.9).

We consider the following five sorting criteria: the reciprocal of a task’s WCET
1
Ci

, a task’s period Ti, the reciprocal of a task’s utilization 1
Ui

= Ti
Ci

, a task’s slack
Si = Ti � Ci and random order.

The schedulability condition for GEDF, taking inter-core cache interference into
consideration, is described in chapter 4.

5.3.1 Experimental Setup
The experiments have been performed varying i) the number of tasks n (n = 10, 20) in
the taskset, ii) total task utilization Utot (Utot from 0.1 to m� 0.1 with steps of 0.2),
iii) the cache interference factor IF (IF = 0.2 or 0.8), and iv) the probability of two
tasks having cache interference on each other: P (P = 0.1 or 0.4). Given those four
parameters, we have generated 20000 tasksets in each experiment.

We use the same task utilization generation policy, task period and WCET generation
policy and cache interference generation policy, described in chapter 4.

In each experiment, we measure the number of tasksets that can be successfully
partitioned by CA-TPAR with different sorting criteria and the number of tasksets that
can be scheduled by GEDF . The acceptance ratio is the number of schedulable tasksets
divided by the total number of tasksets.

5.3.2 Results
We report the major trends characterizing the experimental results, illustrated in Fig-
ures 5.2 and 5.3. In the figures, TPAR<criterion> represents a variant of CA-TPAR
using <criterion> for sorting tasks, GLB stands for the GEDF scheduler.

85

5. Partitioned Scheduling for Real-time Systems with Shared Caches

(a) IF=0.2, P=0.1. (b) IF=0.4, P=0.8.

Figure 5.2: Acceptance ratio with different IF and P when m = 4, n = 10.

(a) IF=0.2, P=0.1. (b) IF=0.4, P=0.8.

Figure 5.3: Acceptance ratio with different IF and P when m = 4, n = 20.

CA-TPAR outperforms global EDF. Our results clearly show that CA-TPAR
outperforms global EDF in all the test cases. It is also evident that CA-TPAR is highly
effective for multi-core real-time systems, accounting for cache interference.

As shown in Figure 5.2a, when IF = 0.2, P = 0.1, all the generated tasksets can
be successfully partitioned by all variants of CA-TPAR if Utot < 2.5. while the global
EDF achieves the full acceptance ratio when Utot < 1.5. CA-TPAR is able to partition
tasksets with the highest tested total utilization, i.e. Utot = 3.9. Global EDF can only
schedule tasksets with a total utilization of up to Utot = 2.5.

It is important to observe that the gap of acceptance ratio between all variants of
CA-TPAR and global scheduling is large when Utot 2 [2, 3.5]. Such a schedulability

86

5.4. Conclusions

performance gap also exists for different degrees of cache interference and different
numbers of tasks in the taskset, as shown in Figure 5.2b, Figure 5.3a and Figure 5.3b.

We have also compared the schedulability performance of CA-TPAR and GEDF
using heterogeneous task periods i.e. Ti 2 [100, 300] or Ti 2 [100, 500] (of which the
results are omitted due to space limitations). In those tests, CA-TPAR still outperforms
GEDF.

Performance gap among different variants of CA-TPAR is small. As is depicted
in Figures 5.2a and 5.3a, when the cache interference is small (IF = 0.2, P = 0.1),
TPAR-T and TPAR-random performed worse than the TPAR-1/C, TPAR-S and
TPAR-1/U when Utot > 3. while as the degree of cache interference increases,
the schedulability performance gap becomes smaller, as shown in Figure 5.2b and
Figure 5.3b. One reason could be that even though tasks are sorted by different criteria,
all variants of CA-TPAR force recalculation of the upper bound on cache interference
to obtain an upper bound that is as small as possible. The cache interference obtained
by all variants of CA-TPAR thus is likely to be similar. Therefore, if cache interference
dominates the schedulability result, the gap of schedulability performance among
different variants of CA-TPAR is small.

Cache interference degrades schedulability performance. Figure 5.2a and Fig-
ure 5.2b compare the acceptance ratio with different P and IF for tasksets consisting of
10 tasks. With the same Utot, the acceptance ratio achieved by all variants of CA-TPAR
and global EDF decrease as P and IF increase. This is because a larger P and IF

indicate more tasks in the taskset having larger cache interference with each other, which
can potentially increase the upper bound on cache interference, eventually making the
interfered tasks unschedulable. Similar observation can be made from Figure 5.3a and
Figure 5.3b for tasksets consisting of 20 tasks.

5.3.3 Average Execution Time
We measured the execution time of CA-TPAR with different taskset sizes. The ex-
ecutions are conducted on an Intel Xeon processor using only one core running at
2.4GHz. On average, it takes 0.85 seconds to run CA-TPAR for assignment of the
taskset consisting of 10 tasks to a processor with 4 cores, while it takes 2.3 seconds for
tasksets with 20 tasks.

5.4 Conclusions

Shared caches in multi-core processors introduce serious difficulties in providing guar-
antees on the real-time properties of embedded software. In this chapter, we addressed
the problem of task partitioning in the presence of cache interference. To achieve this,
CA-TPAR, a cache-interference aware task partitioning algorithm was proposed. To
the best of our knowledge, this is the first work on partitioned scheduling for real-time
multi-core systems, accounting for shared cache interference. An integer programming
formulation was constructed to calculate the upper bound on cache interference exhib-
ited by a task, which is required by CA-TPAR. We conducted schedulability analysis
of CA-TPAR and formally proved the correctness of CA-TPAR. A set of experiments

87

5. Partitioned Scheduling for Real-time Systems with Shared Caches

was performed to evaluate the schedulability performance of CA-TPAR against global
EDF scheduling over randomly generated tasksets. Our empirical evaluations show that
CA-TPAR outperforms global EDF scheduling in terms of tasksets deemed schedulable.

88

Caching performance for high
performance computing

89

6
CPpf : a prefetch aware LLC partitioning

approach

In the previous three chapters, we focused on research about improving timing pre-
dictability of multicore systems. In this chapter, we change our research angle to
high performance caching. This chapter addresses RQ4 listed in chapter 1, which is
concerned with improving caching performance in the presence of hardware prefetching.

Modern multicore processors implement a large Last Level Cache (LLC) to hide
the long memory access latencies. Such a LLC is usually shared by multiple cores to
allow high cache utilization. However, cache sharing also causes inter-application cache
interference, which occurs when concurrently running applications compete among
each other for shared cache space, governed by a cache replacement policy.

Hardware prefetching is another optimization technique that is commonly employed
to reduce memory latencies. Although hardware prefetching can improve the appli-
cations’ performance by fetching useful data in advance, it tends to increase the LLC
contention among applications running concurrently on different cores. Taking the
hardware prefetching into account, inter-application cache interference becomes more
complicated.

Inter-application cache interference and the shared cache management has attracted
a lot of research attention in the past decades.

UCP [71] and ASM [90] designed additional hardware components to modify
the eviction and insertion policies to partition the cache, but these have not been
implemented in existing processors.

Recent Intel processors support hardware-base cache partitioning, called cache
allocation technology(CAT). CAT is used in the following work to improve system
throughput, fairness and (or) average slowdown. Heracles [59] and Dirigent [120]
control the amount of shared hardware resources, including the LLC, used by latency
sensitive applications to improve Quality of Service and utilization.Pons et.al. [79]
clusters applications using the k-means algorithm and distributes cache ways between
the groups to improve system fairness. [69] assigns more cache space to critical appli-
cations to improve system turnaround time. Xiang et.al. [106] proposes a framework
that dynamically monitors and predicts a workload’s cache demand and reallocates the
LLC given a performance target. KPart [30] leverages online profiling to obtain miss

This chapter was published as [111]

91

6. CPpf : a prefetch aware LLC partitioning approach

ratio curves for clustering applications and assigns each cluster of applications to a
cache partition to improve system throughput.Park et.al. [66] proposed a coordinated
partitioning of the LLC and memory bandwidth to improve the fairness of workloads
on commodity servers.

A significant amount of work has been devoted to software-based cache partitioning
approaches [16, 54, 94, 115]. These efforts are based on the classic technique of OS
page-coloring, which is used to control where the physical page required by the target
application is located in the cache.

Most of the previous works involving both hardware-based and software-based
cache partitioning have been implemented and evaluated the performance of their cache
partitioning policies on real machines. However, those works do not study the impact of
hardware prefetching on cache performance nor do they explicitly reveal the interaction
between the hardware prefetching and LLC management.

Some work has also been done to improve the cache management policy in the pres-
ence of hardware prefetching. [104] proposed a prefetching-aware cache replacement
policy that treats prefetch and demand requests identically. [87] estimates prefetcher
accuracy and prefetch-related cache pollution to adjust the aggressiveness of the hard-
ware prefetcher dynamically. In [121, 122], a number of hardware-based prefetch
pollution filtering mechanisms is proposed to differentiate good and bad prefetches
dynamically to reduce the ineffective prefetches. [80] proposed a self-tuning prefetch
accuracy predictor to predict if a prefetch is accurate or inaccurate to mitigate prefetch-
related cache pollution. [29] proposed mechanisms that manage the shared resources on
a multicore chip to obtain high performance and fairness. However, those approaches
require additional hardware components that are not available in existing processors.

In a real system, many factors such as cache references by the operating system and
hardware prefetching contribute to LLC interference [103]. In this study, we focus on
the LLC management in the presence of hardware prefetching for multiprogrammed
workloads.Therefore, we address the following research questions listed in Chapter 1:

RQ4 How does hardware prefetching affect the caching performance? How to man-
age shared caches to improve system performance in the presence of hardware
prefetching?

To answer these questions, we first analyze the variation of application performance
when varying the effective LLC space in the presence and absence of hardware prefetch-
ing, in order to study the interaction between hardware prefetching and LLC cache
management. We show that hardware prefetching can compensate the application per-
formance loss due to the reduced effective cache space. Motivated by this observation,
we then classify applications into two categories, prefetching sensitive (PS) and non
prefetching sensitive (NPS) applications, by the performance benefit they experience
from hardware prefetchers. To address the cache contention and to also mitigate the
potential prefetch-related cache interference, we propose CPpf , a prefetch aware LLC

partitioning approach for improving LLC management. CPpf consists of a method
using Precise Event-Based Sampling (PEBS) techniques for online classification of
PS and NPS applications and a LLC partitioning scheme using Cache Allocation
technology (CAT) for PS and NPS applications. Compared with a non-partitioning
approach, CPpf achieves performance improvements of up to 1.20, 1.08 and 1.06 for

92

6.1. Motivation

workloads with, respectively, 2, 4, and 8 applications and achieves speedups of up to
1.21 and 1.11 for workloads composed of two applications with 4 threads and 8 threads,
respectively.

The prefetch aware cache partitioning approach presented in this work is a software-
only solution by using hardware features like PEBS and CAT, which are readily available
in existing multicore processors.

The rest of the chapter is organized as follows. Section 6.1 presents the motivation of
this work. Section 6.2 provides the definition of PS and NPS applications. Section 6.3
describes CPpf , where we also detail the online classification of PS and NPS applications
and the LLC cache partitioning scheme. Section 6.4 presents the performance evaluation
of CPpf . Section 6.5 concludes the chapter.

6.1 Motivation

6.1.1 The impact of hardware prefetching on cache performance
Hardware prefetching implemented in today’s high performance systems significantly
influences memory sub-system performance. To understand the effects of hardware
prefetching on the LLC performance for a single application, we evaluate the variation
of application performance when varying the number of assigned LLC cache-ways in
the presence and absence of hardware prefetching.

All the experiments in this work are conducted on a 20-core Intel Xeon commodity
processor, of which the specifications are summarized in Table 6.1. There are five
distinct hardware prefetchers on the Xeon platforms. Two prefetchers are associated
with the L1-data caches: a Data Cache Unit (DCU) IP prefetcher and a DCU streamer
prefetcher per core. Two prefetchers associated with the L2 caches: a Mid-Level cache
(MLC) spatial prefetcher and a MLC streaming prefetcher. Finally, there is one LLC
prefetcher. We can activate or deactivate these hardware prefetchers by setting the
corresponding machine state register (MSR) bits [25].

Table 6.1: System Configuration

Component Description
Processor Intel Xeon Gold 6148 CPU @

3.50GHz
L1 I-cache Private, 32KB
L1 D-cache Private, 32KB
L2 cache Private, 1MB
L3 cache Shared, 27.5MB, 11 ways
Memory 376G
OS CentOS 7, Linux Kernel 4.17

Given the number of assigned LLC cache-ways, we run an application in isolation
and measure its execution time for two cases: (1) hardware prefetchers are disabled, (2)
hardware prefetchers are enabled. Figure 6.1 compares the slowdown for applications in

93

6. CPpf : a prefetch aware LLC partitioning approach

the SPEC CPU2017 [84], NPB [65] and Polybench [70] benchmark suites when varying
the number of assigned cache-ways for the two cases. Due to space limitations, we only
show the comparison for six representative applications, each application is identified
by its index (in SPEC CPU2017) or abbreviation for its name (in NPB and Polybench).
In Figure 6.1(a), the slowdown of an application is calculated by taking the execution
time when it utilizes all the cache ways (11, in our experimental platform) and hardware
prefetchers are disabled as the baseline, while in Figure 6.1(b), the baseline is execution
time when the application fully utilizes all cache-cache ways and hardware prefetchers
are enabled. Note that the baselines in Figure 6.1(a) and Figure 6.1(b) are thus different.

Figure 6.1: Comparison of application slowdown when varying the number of cache-
ways allocated: (a) prefetching is disabled, (b) prefetching is enabled.

As illustrated in Figure 6.1, some applications, which originally experience signifi-
cant performance degradation from a smaller LLC space in the absence of prefetching,
encounter less performance degradation when the hardware prefetchers are enabled. For
example, when hardware prefetching is disabled, the worst slowdowns for applications
lu and ua are 1.41 and 1.42, respectively. However, the worst slowdowns are improved
to 1.05 and 1.02 for lu and ua, if hardware perfetching is enabled. Thus, we make the
following observation:

Observation 6.1. Hardware prefetching can compensate the application performance
loss due to a reduced effective LLC space.

This can be explained by the fact that a prefetch-enabled LLC cache-controller will
prefetch data from main memory before the actual references take place in order to try
to avoid memory access latencies. Even though the effective LLC size for an application
is decreased, the demanded data can often still be directly and timely serviced by the
hardware prefetchers.

94

6.2. PS and NPS applications

6.1.2 Inter-core prefetch-related cache pollution
The prefetched data for one application are placed in the shared LLC, competing for
the available cache resources with its co-runners (i.e., other, simultaneously running
applications). Therefore, one major drawback of hardware prefetching is the prefetch-
related cache pollution which occurs when prefetched blocks of one application evict
useful blocks of another application from the LLC. In this work, we assume that
hardware prefetching taking place on behalf of an application itself has a more positive
than negative influence on its performance. Thus, we neglect cache interference caused
by self-prefetching and only consider inter-core prefetch-related LLC interference.

In a multicore system, inter-core prefetch-related cache pollution impacts the per-
formance of applications in a non-uniform fashion. Some applications can be slowed
down severely as a large number of their useful blocks are replaced by prefetched
blocks, while others may not. Hardware prefetching can interact poorly with LLC
management, which unnecessarily reduces the overall system performance. This leaves
a significant opportunity to improve LLC management by means of prefetch-aware
cache partitioning.

6.2 PS and NPS applications
In this section, we first classify applications into two categories: prefetching sensitive
(PS) and non prefetching sensitive (NPS) applications by the performance benefit they
experience from hardware prefetchers. We then study the performance sensitiveness to
the available cache space for PS and NPS applications.

6.2.1 Definition of PS and NPS applications
We measure the execution time of an application in the presence and absence of hardware
prefetching, respectively. We calculate the speedup of an application i by SpeedUpi =
ETi,nopf

ETi,enpf
, where ETi,nopf is the execution time of application i when prefetchers are

disabled and ETi,enpf is the execution time when hardware prefetchers are enabled.
We define applications whose performance is significantly improved by hardware

prefetching as prefetching sensitive (PS) applications. In this work, application i is
considered a PS application if SpeedUpi > 20%. An application that is not a PS
application is considered to be an NPS application. By this definition, we classify the
applications in the SPEC CPU2017 [84], NPB [65] and Polybench [70] benchmark
suites into PS and NPS applications. The classification is shown in Table 6.2.

Table 6.2: Classification of PS and NPS applications.

Type Applications
PS

applications
619,654,628,638,603,mg,cg,sp,
is,bt,ft,fdtd2d,jacobi2d,heat3d

NPS
applications

602,605,607,631,623,627,600,641,
644,648,657,620,ua,lu,dc,ep,adi

95

6. CPpf : a prefetch aware LLC partitioning approach

6.2.2 Cache sensitivity of PS and NPS applications
In a multiprogramming environment, the shared cache interference caused by co-
runners (i.e., simultaneously running applications) reduces the effective number of
cache-ways that an application can use. To study the impact of available cache-ways
on the performance of PS and NPS applications, we conduct several experiments in
which we use CAT to adjust the number of LLC ways available to the application from
1 to 11 (i.e., the total cache space in our experimental platform). In the experiments, all
hardware prefetchers are enabled. Using this approach, we model the reduction in the
available LLC space due to cache interference caused by co-runners.

Figure 6.2a and Figure 6.2b show the slowdown for 8 representative PS and NPS
applications, respectively. The slowdown is calculated by taking the execution time
when an application runs in isolation and utilizes all the cache ways as the baseline.

As can be seen, compared with NPS applications, the effective LLC size has, on
average, a relatively small influence on the performance of PS applications. The
performance of most PS application is sightly degraded if the effective LLC size
decreases. The average maximum slowdown (obtained when an application runs with
one cache-way) for PS applications is 1.05 with a worst-case slowdown of 1.15 for
SPEC CPU2017 benchmark 654. For NPS applications, however, the average slowdown
is 1.18 with a worst case of 1.62, experienced by SPEC CPU2017 benchmark 607.
Thus, we make the following observation:

Observation 6.2. If hardware prefetchers are enabled, on average, the effective LLC
size has a relatively small influence on the performance of PS applications, while the
performance of NPS applications can be significantly affected by the effective LLC size.

The much smaller influence of the LLC size on the performance of PS applications
can be explained by:

(a) PS applications (b) NPS applications

Figure 6.2: Application slowdown when varying the number of available ways with
respect to a 11-way cache, if hardware prefethers are enabled.

96

6.3. Prefetch aware LLC Partitioning

1. PS applications may have a low reuse of data cached in the LLC because of
timely prefetched data in the smaller, upper-levels of the cache hierarchy (L1/L2
caches) [80]. Subsequent data requests are directly serviced by the prefetched
cache lines inserted into the L1/L2 caches, and rarely reach the LLC.

2. PS applications can more easily cope with higher LLC miss rates caused by the
reduction of effective LLC space as a majority of demanded data elements can
still be directly and timely serviced by the hardware prefetchers.

6.3 Prefetch aware LLC Partitioning

To exploit Observation 6.2, this section presents the prefetch aware LLC partitioning
approach CPpf . The general idea is to classify PS and NPS applications at run time
and then divide the LLC into two partitions: one for PS applications and the other
for NPS applications. Section 6.3.1 describes the online classification of PS and NPS
applications, and Section 6.3.2 presents the LLC partitioning approach.

6.3.1 Online classification of applications

A classification criterion: cache miss distribution

The definition of PS and NPS application cannot be used directly for the online
classification of PS and NPS applications. Due to the uncontrollable and unclear nature
of hardware prefetching mechanisms implemented in modern commodity processors, we
developed a non-trivial solution for the online classification of PS and NPS applications,
which is based on the distribution of cache misses over the cache sets. The idea
comes from the fact that prefetchers do not prefetch across virtual page boundaries. As
indicated in [25], prefetched data will always be within the same 4K bytes memory
page as the load instruction that triggered the prefetching.

The first (several) references to a data element in a new virtual page usually cannot
be prefetched. Therefore, accesses to those data elements always result in LLC misses.
After these first accesses, the hardware prefetchers start to recognize the data access
patterns and start to predict and prefetch the data that is expected to be referenced in
the near future. As a consequence, later data references inside the same virtual page do
not necessarily cause LLC misses, as the hardware prefetchers may have inserted those
data elements into the LLC before referencing them.

By using the PMU sampling mechanism, one can obtain the virtual addresses that
were missed by a process in the LLC. Given a missed virtual address, one can determine
the associated LLC set that the virtual address maps to. We will show the method
to determine the missed cache set soon. By sampling the LLC misses over a short
execution period (for instance, 1 second) for a process, we can obtain the cache miss
distribution over the cache sets for the sampled process.

We use histograms to represent the distribution of LLC misses over the LLC sets.
Figure 6.3 illustrates the histogram of missed cache sets when hardware prefetchers are
disabled. Due to space limitations, we only show the histograms for four representative

97

6. CPpf : a prefetch aware LLC partitioning approach

applications. As can be seen, when all hardware prefetchers are disabled, cache misses
are mostly uniformly distributed over all the cache sets.

Figure 6.3: Histogram of missed LLC sets when hardware prefetchers are disabled.

Although we only show cache miss distributions of PS applications for later com-
parison, the uniform distribution is observed also for NPS applications. Observation 6.3
follows:

Observation 6.3. When hardware prefetchers are disabled, cache misses are mostly
uniformly distributed over all the LLC sets for both PS and NPS applications.

Observation 6.3 verifies the assumption that a program block has a uniform probabil-
ity of being present in any of the cache sets in the works on analytic cache models [1].

However, if hardware prefetchers are enabled, we obtain different cache miss
distributions for PS and NPS applications, as illustrated in Figure 6.4. Note that the
scale of the y-axes in Figure 6.4a and Figure 6.4b are different.

As shown in Figure 6.4a, the cache miss distributions over cache sets are non-
uniform for PS applications. It is clear that cache sets associated with spikes exhibit
many more (more than 10⇥) cache misses than other sets. In most cases, the index
of those sets is 64p with p = 1, 2, 3, ..., where the beginning of a new virtual page is
mapped to. From this, we infer that cache misses at those sets are caused by the first
references to the data in a new virtual memory page.

Figure 6.4b depicts the distributions of missed cache sets for NPS applications when
hardware prefetchers are enabled. Although there exist a few cache sets with spikes,
the gap between the spikes and the average number of misses over a cache set is much
smaller. Overall, the cache misses are still uniformly distributed over all the cache sets.
Thus, we make the following observation:

Observation 6.4. When hardware prefetchers are enabled, cache miss distributions
over cache sets are non-uniform for PS applications, while the distributions are mostly
uniform for NPS applications.

Based on the difference in cache miss distributions between PS and NPS applications
when hardware prefetchers are enabled, we propose a ratio between the maximum value

98

6.3. Prefetch aware LLC Partitioning

(a) PS applications

(b) NPS applications

Figure 6.4: Histogram of missed cache sets when hardware prefetchers are enabled.

and the median value of the frequency of LLC misses exhibited by one cache set to
determine whether an application is PS or not. To reduce the complexity, the median
value is approximately computed as the average of LLC misses exhibited by 30 randomly
selected cache sets. We skip selecting the cache sets that exhibit misses more than 70%
of the maximum value. When the ratio is larger than a threshold (10, in this work), the
application is classified as a PS application. Otherwise, it is considered to be an NPS
application.

Obtaining cache miss distribution

As described, the cache miss distribution over the cache sets can be obtained by fol-
lowing these steps: virtual addresses that missed in the LLC can be obtained by using
the PMU sampling mechanism, after which each obtained virtual address needs to be
translated to the corresponding physical data address to determine the missed LLC
cache set. By sampling the LLC misses over a short execution period, one can obtain
the cache miss distribution. We describe those steps in details below.

99

6. CPpf : a prefetch aware LLC partitioning approach

PMU sampling. Intel PEBS supports address sampling, a type of event-based sam-
pling that allows associating sampled performance events with instruction pointers (IP)
and effective data addresses. Moreover, PEBS address sampling in recent Intel proces-
sors (i.e., Haswell and its successors) allows precisely monitoring cache misses at mem-
ory level. In this work, we choose the event MEM LOAD UOPS RETIRED:L3 MISS

to drive PMU sampling. After experimenting with different sampling periods ranging
from 5 (i.e., every 5th miss) to 1000, we decided to use a sampling period of 10, as it
incurs a small overhead while still providing enough samples for the later analysis. In
this configuration, the PMU therefore samples one per ten data addresses that missed in
LLC. Note that the sampled data addresses are virtual addresses.

Virtual-to-physical address translation. As LLCs are physically indexed and
physically tagged (PIPT), a virtual address obtained from a PMU sample does not
suffice to get the information about the missed LLC set. Therefore, a virtual-to-physical
address translation is required. This translation can be done by using Pagemap, a set
of interfaces in the Linux kernel that allow user space programs to examine the page
tables and related information.

Since the default page size of most Linux systems in the virtual address space is
4K bytes, during the virtual-to-physical address translation, bits 0� 11 of the virtual
address that encode the page offset are preserved. Bits 12 and above of the virtual
address, which encode the page number in the virtual address space, are replaced by the
physical page frame number. The mapping from the virtual page to the physical page
frame can be found in /proc/self/pagemap, a component in Pagemap.

LLC addressing. The LLC in a modern multicore processor is usually organized
into as many slices as the number of cores with the purpose of reducing the bandwidth
bottleneck when more than one core attempts to retrieve data from the LLC at the same
time.

Typically, the LLC is set-associative, with a total of k cache sets in each cache slice
and m ways. A cache line with a size of c bytes occupies a single way of a cache set.
The slice and cache set to which a physical memory address maps is determined by its
address bits, as shown in Figure 6.5.

As indicated in [44], the least significant log2 c bits of the physical address are used
to address a byte or word within a cache line. The next log2 k bits select the set that the
cache line belongs to. Bits log2 k+log2 c and above are utilized as a tag for comparison
when looking for data in the cache. The Intel processors use an undocumented hash
function of higher bits (bits log2 k + log2 c and above) of a physical address to decide
the cache slice.

In the absence of knowledge about the hash function used for mapping, a given
cache line can be present in any of the slices. As cache miss behavior in different cache
slices is very similar, in this work, we do not distinguish the cache lines in different
cache slices.

Histogram of missed cache sets. The histogram of missed cache sets can be
derived by sampling the LLC misses for a short execution period and calculating the
missed cache set that corresponds to each sampled miss. We have set the sampling
period to 1 second in this work.

The proposed detection approach is accurate and able to detect all the PS applications
in the benchmarks used in this study, even when they co-run with 10 other applications.

100

6.3. Prefetch aware LLC Partitioning

Figure 6.5: LLC addressing. A virtual data address is translated to a physical data
address by the memory management unit (MMU). For a typical caching system with
k = 2048, c = 64, the lowest 6 bits (bits 0� 5) are used to determine the offset within
a cache line and bits 6 � 16 select the cache set. Higher bits (bits 17 and above) are
used as tag and input to a hash function to decide the cache slice.

6.3.2 LLC partitioning for PS and NPS applications

Most of the PS applications are memory-intensive. When PS applications run simulta-
neously with NPS applications fully sharing the LLC, we observe that PS applications
often occupy more LLC space than the NPS applications, leading to significant per-
formance degradation of NPS applications. We will show such a scenario in the next
section.

One of the reasons PS applications can occupy more LLC space is that PS ap-
plications can generate a large number of prefetching requests. As observed in [86],
applications that gain more benefit from hardware prefetching tend to generate more
prefetch requests.

When the hardware prefetchers are enabled, we observed in Section 6.2 that the
effective LLC size has only very limited effect on the performance of PS applications.
The aim of the cache partitioning in this work is therefore to limit the LLC size occupied
by PS applications and reserve more LLC space for NPS applications. By doing so, the
potential prefetch-related cache pollution for NPS applications is also mitigated.

Our cache partitioning scheme is simple: it initially allocates one exclusive cache-
way to each newly classified PS application as it does not benefit greatly from a larger
LLC size. It then allocates the remainder of the cache-ways to the NPS applications.
When a PS application finishes its execution, the exclusive cache-way that was previ-
ously owned by that application is assigned to the NPS applications.

We also observed that the performance of PS applications degrades only slightly

101

6. CPpf : a prefetch aware LLC partitioning approach

even when multiple of such applications share a single way of the LLC. If multiple PS
applications are present, we randomly select two among these applications to share the
same way for a short time interval (0.1 second, in this work), We repeat the dynamic
adjusting of one shared way for two randomly selected PS applications for up to 10
times, each time measuring the IPC of all co-running applications. When the repetition
finishes, we keep the best CAT configuration with the maximum sum of IPC of all
co-running applications.

Note that, in this work we only focus on LLC partitioning between PS and NPS
applications. Further improvement can be achieved by LLC partitioning among NPS
applications, as has already been done in [30, 79, 106].

6.4 Experiments

The prototype of CPpf is implemented as a user-level runtime system on Linux. This
section evaluates the performance of CPpf . The experiment platform is described in
Section 6.1.1. It has 376GB of main memory and the maximum memory bandwidth is
119.21 GB/s, so the memory contention will be small. Hyperthreading is disabled to
avoid intra-core interference. All of the hardware prefetchers are kept enabled during
the experiments.

Single-threaded workload mixes: The experiments have been conducted with
more than 200 workload mixes from the SPEC 2017 [84], NPB [65] and Polybench [70]
benchmark suites. We select three representative sets of 50 multiprogram mixes. The
first set contains ten 2-application workloads with index W0 �W9, the second set
twenty 4-application workloads with index W10�W29 and the third set has twenty
8-application workloads with index W30�W49. Though we would have liked to go
beyond 8-application workloads, CAT in our tested platform can only support at most
11 CLOSs.

In each set, the workload mixes were randomly generated by varying the ratio of
PS applications (25%, 50% and 75%). The proportions of PS applications in each
workload mix are listed in Table 6.3. For each workload mix, performance is measured
by executing each application until all the applications have completed the same number
of instructions they execute when running alone for 20 seconds. The applications are
pinned to cores to facilitate the performance monitoring and cache partitioning.

Table 6.3: Composition of workload mixes.

PS applications
(%)

Workloads Index

25% W10�W15, W30�W36
50% W0 �W9, W16 �W22, W37 �

W41
75% W23�W29, W42�W49

Metrics: We measure system performance using the average speedup, calculated as

102

6.4. Experiments

follows for the workload with a mix of N applications:

AverageSpeedup =
1

N

NX

i=1

IPCi,CPpf

IPCi,FullShare

where IPCi,FullShare is the IPC of program i measured in the baseline configura-
tion, in which the LLC is unpartitioned and is fully shared among all the application;
IPCi,CPpf is the IPC of program i obtained when CPpf is applied.

6.4.1 CPpf performance gain
Figure 6.6 summarizes the performance gained by CPpf for the workload mixes com-
posed of single-threaded applications. Note that, in Figure 6.6, workload mixes having
the same number of applications and same proportions of PS applications are sorted by
their speedups. Compared with the baseline performance, CPpf improves the perfor-
mance for 45 out of 50 workload mixes.

Figure 6.6: Average speedup for each single-threaded workload mix.

CPpf achieves a speedup of 1.08 on average for workloads with 2 applications, with
a best case speedup of 1.20. The average speedup for workloads with 4 applications is
1.04 with a best case of 1.08. Finally, for workloads with 8 applications, the average
speedup is 1.03, with a best case of 1.06.

6.4.2 Cases study of CPpf

We now take a closer look at representative workload mix W11 consisting of four
applications (i.e. jacobi2d, 620, 607, 602) to better understand how CPpf can improve
the overall system performance.

Figure 6.7a and Figure 6.7b illustrate the run-time cache occupancy of the 4 appli-
cations in case the LLC is fully shared and CPpf is applied, respectively, during a 20
seconds time interval. When the LLC is fully shared (Figure 6.7a), the PS application
jacobi2d occupies more than half of the LLC space for most of the time. As a result,
NPS applications 620, 607, 602 get less LLC space. This situation is improved by CPpf .
Once CPpf has identified jacobi2d as the only PS application, it allocates only one way
to jacobi2d, leaving the rest of the LLC shared by the NPS applications 620, 607, 602,
as depicted in Figure 6.7b. In this case, CPpf achieves a 1.10, 1.02 and 1.06 speedup

103

6. CPpf : a prefetch aware LLC partitioning approach

(a) when LLC is shared (b) CPpf is applied

Figure 6.7: Dynamic cache occupancy by applications in workload W11.

for 620, 607 and 602, respectively, while the speedup of jacobi is 0.99. At the cost of a
small slowdown of PS applications, CPpf yields a higher speedup for NPS applications.

We also take a look at one the the workload mixes that exhibits a performance
degradation under CPpf : W9. W9 is composed of cg (the PS application) and 641
(the NPS application). The performance of 641 cannot be improved enough by getting
more cache space, in this case, the speedup of 641 is 1.001. The performance of cg
is degraded by 0.975 as CPpf allocates a one-way cache space to cg. However, no
significant performance losses are observed as the lowest speedup (i.e., slowdown) is
0.988.

6.4.3 CPpf with multithreaded workloads

CPpf also supports multithreaded workloads. For multithreaded workloads, cache miss
distributions are obtained per thread, and the LLC is partitioned per thread.

We generate two sets of totally 30 multithreaded workload mixes. Each workload
mix consists of two multithreaded applications, one randomly selected from PAR-
SEC [15] or SPLASH [101] as an NPS application, and the other from NPB [65] or
an OpenMP version of Polybench [70] as a PS application (we skip applications from
SPEC CPU2017 [84] as it provides multithreaded implementations for a very limited
number of applications). The first set contains fifty 4-threaded workloads with index
W50�W64 and the second set has fifty 8-threaded workloads with index W65�W79.

Figure 6.8 presents the average speedups for the multithreaded workload sets.
Compared with the baseline performance where caches are fully shared among all the
threads, CPpf achieves a speedup of 1.05 on average for workloads with 4 threads, with
a best case speedup of 1.22. The average speedup for workloads with 8 threads is 1.04
with a best case of 1.11.

104

6.4. Experiments

Figure 6.8: Average speedup for each multithreaded workload mix.

6.4.4 Sensitivity Analysis
We now analyze CPpf ’s sensitivity to the characteristics of the workload mix, particu-
larly the ratio between PS and NPS applications and the workload mix size.

The effect of workload distribution. CPpf achieves average speedups of 1.03 ,
1.06 and 1.04 for workloads with 25%, 50% and 75% of PS applications.

When the workload mixes are dominated by PS applications, the performance
improvement due to an increased LLC space allocated for NPS applications by CPpf

will be limited by the small number of NPS applications in the workload mixes.
When workload mixes are dominated by NPS applications, the benefits of CPpf

also become more muted. This is because, as indicated in Section 6.3.2, CPpf does
not partition the cache among the NPS applications. Even though the cache space
occupied by PS applications is limited, most of the rest of the cache can be occupied
by NPS applications whose performance will not be improved greatly by getting more
cache space. CPpf cannot guarantee that those NPS applications whose performance
significantly improves from a larger effective cache size will always occupy more cache
space than other applications.

The effect of workload size. We compare the performance gained by CPpf under
different sizes of workload mixes (ranging from 2 to 8 applications per workload
mix). CPpf gains less performance when the number of co-executing applications
increases. This is inevitable because cache contention for both LLC space and cache set
associativity is increased as more applications share the LLC.

6.4.5 Overhead
In order to obtain the actual performance degradation that CPpf results in, we compare
the execution times of the applications in SPEC CPU2017, NPB and Polybench bench-
marks with two settings, CPpf off and CPpf on. The results show that CPpf causes
0.56% slowdown on average with a worst case of 1.72%.

The overhead of CPpf mainly comes from the online classification of PS and NPS
applications at run time. For an execution phase which typically lasts more than 30
seconds, the PMU samples LLC misses for only 1 second, during which on average
30% of the time is dedicated to PMU sampling and virtual-physical address translation.
As PMU can sample up to 200000 data addresses in 1 second, it takes up to 100

105

6. CPpf : a prefetch aware LLC partitioning approach

milliseconds to obtain the miss distribution over cache sets.

6.5 Conclusion
Hardware prefetching can interact poorly with LLC management, leading to perfor-
mance degradation. To study the interaction between hardware prefetching and LLC
cache management, we analyzed the variation of application performance when varying
the effective LLC space in the presence and absence of hardware prefetching. We
observed that hardware prefetching can compensate the application performance loss
due to the reduced effective cache space. Motivated by this observation, we classi-
fied applications into two categories, prefetching sensitive (PS) and non prefetching
sensitive (NPS) applications, by the degree of performance benefit they experience
from hardware prefetchers. To address the cache contention and to also mitigate the
potential prefetch-related cache interference, we proposed CPpf , a prefetch aware cache
partitioning approach for improving the LLC management in the presence of hard-
ware prefetching. CPpf consists of a method using PEBS techniques for the online
classification of PS and NPS applications and a LLC partitioning scheme via CAT to
distribute the cache space among PS and NPS applications. We have implemented CPpf

as a user-level runtime system on Linux. Compared with a non-partitioning approach,
CPpf achieves speedups of up to 1.20 (1.08 on average), 1.08 (1.04 on average) and
1.06 (1.03 on average) for workloads with 2, 4 and 8 single-threaded applications,
respectively. Moreover, it achieves speedups of up to 1.22 (1.05 on average) and 1.11
(1.04 on average) for workload mixes composed of two applications with 4 threads and
8 threads, respectively.

106

7
Conclusions

The research presented in this dissertation revolves around two research themes: im-
proving timing predictability and caching performance for multi-core systems. The
four research chapters of this thesis address the challenges as follows. First, in Chap-
ter 3, we focused on how to improve the timing predictability and evaluate the timing
performance for real-time multi-core system by a simulation and modeling approach.
In particular, we developed SysRT, a generic and modular high-level RTOS simulator
that is highly suited for early DSE to study RTOS design alternatives. Second, in
Chapter 4, we study the timing predictability of multi-core systems by an analytical
approach. We developed a novel schedulability analysis of real-time global scheduling
for multi-core systems with shared caches. We proposed an approach to calculating
the upper bound on shared cache interference for tasks that are globally scheduled.
By extending the approach to the partitioned scheduling paradigm, in Chapter 5, we
developed a cache-interference aware task partitioning algorithm. Finally, in Chapter 6,
we focused on high performance caching. Motivated by the study on the interaction
between hardware prefetching and LLC management, we proposed CPpf , a prefetch
aware cache partitioning approach for improving the LLC management in the presence
of hardware prefetching.

Below, we provide a more detailed summary of the contributions and results of our
research, and answer the research questions set out in Chapter 1 of the dissertation. We
conclude with an outlook on future research directions.

7.1 Main findings

Modeling and simulation of real-time embedded systems
We addressed the research problems related to the modeling and simulation of real-time
embedded systems. Specifically, our research questions in this study are:

RQ1 How to provide fast simulation of real-time embedded systems for design space
exploration at the early stages of system design? How to accurately capture
the timing behaviour of embedded software? How to efficiently implement the
simulator to provide support for easy plug-in of new task models, new schedulers
and new resource sharing protocols?

107

7. Conclusions

To answer these questions, we developed SysRT [92], a generic and modular high-
level RTOS simulator that is highly suited for early DSE to study embedded RTOS
design alternatives. SysRT contains different types of application models, an RTOS
kernel model and an abstract architecture model. The kernel model is developed to
be generic and modular to support for easy plug-in of new schedulers as well as new
resource sharing protocols.

To precisely model the timing in RTOS, it is necessary to model preemption. SysRT
adopts an event-driven simulation approach that utilizes scheduling events associated
with task states and interrupts, to achieve efficient and precise modeling of preemp-
tive scheduling. Events are extracted from the task execution states, for example, a
job arrival and a job end event are posted at the time instance when a task becomes
ready to execute and when a task is supposed to finish, respectively. Schedule and de-
schedule are the scheduling events. Once a task is preempted, job end event is cancelled.
When this task is scheduled again, a new task finishing event is posted after the remain-
ing execution time. compared with quantum-granularity based and prediction-based
simulation approaches, this event-driven simulation approach introduces less simulation
overhead.

SysRT implements a set of interfaces to model the services of process manage-
ment, resource management, interrupt handling and real-time scheduling provided
by the OS kernel. For example, Arrival(AbsRTTask* t), Suspend(AbsRTTask* t) and
Activate(AbsRTTask* t) are invoked in the kernel module to schedule, suspend and
reactivate a task, respectively. Those generic interfaces can be reused in the different
implementation of specific schedulers.

The kernel module is developed to be modular. The UNPKernel module is devel-
oped to model a real-time OS kernel running on a uniprocessor. The SMPKernel is a
module modeling a real-time kernel with a global scheduler for (SMP) multiprocessor
systems. Since the structure of such a partitioned scheduler is different from the global
scheduler, a different kernel module, PartiKernel, has been implemented to facilitate
the development of partitioned schedulers. All the kernel modules contain a Scheduler
module in which different schedulers are implemented. In the current version of SysRT,
a number of schedulers have currently been implemented including First Come First Out,
Round Robin, Fixed Priority Scheduler, Proportional Fairness, global and partitioned
Earliest Deadline First and so on.

The kernel also contains the ResManager module that models the management
of shared software resources such as shared variables. In the ResManager module, a
set of interfaces are implemented to perform access to shared software resources. For
example, lock(int amount)/unlock(int amount) is used to decrease/increase resource
availability for a particular resource. Based on those generic interfaces, a number of
resource accessing protocols such as Non-Preemptive Protocol and Priority Inheritance
Protocol are implemented.

A set of experiments are performed to evaluate the accuracy and simulation per-
formance of SysRT by comparing it with four the state-of-art simulators. It has been
shown that SysRT typically achieves higher simulation speeds while obtaining identical
accuracy results.

The flexibility of SysRT has been demonstrated by simulating real-time resource ac-
cess protocols. We also showed the benefits of SysRT for early design space exploration

108

7.1. Main findings

by simulating an embedded system with a mixed application workload consisting of
hard real-time tasks, soft real-time tasks and best-effort tasks using different schedulers.

Schedulability analysis of real-time multi-core systems

We performed research on the schedulability analysis of real-time scheduling for multi-
core systems with shared caches. In particular, we conducted analysis on both global
and partitioned scheduling. Regarding global scheduling, our research questions are:

RQ2 Is it possible to derive an upper bound on shared cache interference between
two tasks running simultaneously on a multi-core system? Given a real-time
taskset globally scheduled by EDF or FP, how to obtain an upper bound on the
shared cache interference exhibited by each task in the taskset? How to derive
a schedulable condition for the globally scheduled taskset, accounting for the
shared cache interference?

Shared caches in multi-core processors introduce serious difficulties in providing
guarantees on the real-time properties of embedded software due to the interaction and
the resulting contention in the shared caches. To answer this question, we develop a new
schedulability analysis for real-time multi-core systems with shared caches, globally
scheduled by Earliest Deadline First (EDF) and Fixed Priority (FP) algorithms.

In the new schedulability analysis, we defined the problem window for the interfered
task. In the problem window, a job of task exhibits two kinds of interference. The first
interference is processor-contention interference which is the cumulative length of all
intervals over in which all the processing cores are busy executing interfering jobs other
than interfered jobs. The second type of interference is shared cache interference which
is the cumulative length of all extra execution delays caused by cache sharing.

Based on the previous work, we computed an upper bound on the processor-
contention interference.

We came up with an approach to derive an upper bound on shared cache interference
a task may exhibit during an job execution. To do so, we first analyze the cache
interference during one job execution between two tasks by performing a Cache Access
Classification and Cache Hit/Miss Classification analysis for each instruction memory
access of the two tasks. Let ⌧i be the interfering task and ⌧k be the interfered task,
Lemma 4.6 in Chapter 4 gives an upper bound on cache interference for ⌧k imposed by
only one job of ⌧i.

We compute an upper bound of the maximum cache interference a task may exhibit
during an execution window by introducing an Integer Programming formulation, which
can be transformed to an integer linear programming formulation. The objective function
of the IP formulation is to maximize the sum of the contributions of all interfering tasks
⌧i in the task set ⌧ . Three constraints on the number of jobs from each interfering task
that can interfere with ⌧k are derived. The optimal solution is the upper bound on the
cache interference the task ⌧i may exhibit during an execution window.

Due to the presence of cache interference, a job may execute longer than its worst-
case execution time on a multi-core platform with shared caches. Based on the observa-
tion that a larger execution time may introduce more cache interference, we derive an

109

7. Conclusions

iterative algorithm to refine the bound until a fixed-point is reached. The fixed point is
an upper bound on cache interference during a job execution.

The upper bound on shared cache interference, together with the upper bound on
processor contention are subsequently integrated into the schedulability analysis to
derive a new schedulability condition for the globally scheduled taskset, which is stated
in Theorem 4.11 in Chapter 4.

Using our proposed schedulability analysis, a set of experiments has been performed
to investigate how the schedulability is degraded by shared cache interference, varying
various factors such as the probability of two tasks having cache interference and the
amount of cache interference between two tasks.

We also compared the schedulability performance of non-preemptive EDF (EDFnp)
against non-preemptive FP (FPnp) in the presence of cache interference. Our empirical
evaluations showed that EDFnp is better than FPnp in terms of tasksets deemed
schedulable.

Regarding partitioned scheduling, our research questions are:

RQ3 How to develop a cache interference aware partitioned scheduling for real-time
multi-core systems? Is the partitioned scheduling better than global scheduling in
terms of schedulability performance?

As most commodity processors in the embedded domain does not provide support
for cache partitioning, we do not deploy any cache partitioning techniques to mitigate
the inter-core cache interference. Instead, we address the problem of task partitioning
in the presence of shared cache interference.

To answer these questions, we proposed CA-TPAR, a cache-interference aware task
partitioning algorithm. Tasks are sorted by means of a certain criterion, for example, by
tasks’ relative deadline. CA-TPAR then assigns the tasks to cores. Each core, and the
tasks assigned to it, are scheduled at run time by an non-preemptive EDF scheduler.

We extended the approach presented in Chapter 4 to calculate the upper bound
on cache interference exhibited by a task for the partitioned scheduling. We proved
that the bound on cache interference exhibited by a task under paritioned scheduling
can not be larger than the bound for that task under global scheduling. We conducted
schedulability analysis of CA-TPAR using demand bound function and formally proved
its correctness.

A set of experiments was performed to evaluate the schedulability performance
of CA-TPAR against global EDF scheduling over randomly generated tasksets. Our
empirical evaluations show that CA-TPAR outperforms global EDF scheduling in terms
of task sets deemed schedulable.

Prefetch-aware cache partitioning for high performance caching
We exploited the opportunity to improve caching performance by a prefetching-aware
cache partitioning approach. Our research questions are:

RQ4 How does hardware prefetching affect the caching performance? How to man-
age shared caches to improve system performance in the presence of hardware
prefetching?

110

7.1. Main findings

To answer these questions, firstly we analyzed the variation of application per-
formance when varying the effective LLC space in the presence and absence of of
hardware prefetching. We observed that hardware prefetching can compensate the
application performance loss due to the reduced effective cache space. Motivated by
this observation, we classified applications into two categories, prefetching sensitive
(PS) and non prefetching sensitive (NPS) applications, by the degree of performance
benefit they experience from hardware prefetchers. We define applications whose per-
formance is significantly improved by hardware prefetching as prefetching sensitive
(PS) applications.

We studied the cache sensitivity of PS and NPS applications by conducting several
experiments in which we used CAT to adjust the number of LLC ways available to
the application. We observed that if hardware prefetchers are enabled, on average,the
effective LLC size has a relatively small influence on the performance of PS applications,
while the performance of NPS applications can be significantly affected by the effective
LLC size.

To address the cache contention among PS and NPS applications and to also mitigate
the potential prefetch-related cache interference, we proposed CPpf , a prefetch aware
cache partitioning approach for improving the LLC management in the presence of
hardware prefetching. CPpf consists of a method using PEBS techniques for the online
classification of PS and NPS applications and a LLC partitioning scheme via CAT to
distribute the cache space among PS and NPS applications. The proposed prefetch aware
cache partitioning approach is a software-only solution by using hardware features like
PEBS and CAT, which are readily available in existing multi-core processors.

The non-trivial solution for the online classification of PS and NPS applications is
based on the distribution of cache misses over the cache sets. The idea comes from the
fact that prefetched data will always be within the same 4K bytes memory page as the
load instruction that triggered the prefetching and prefetchers do not prefetch across
virtual page boundaries.

A set of experiments are performed to obtain the cache miss distribution for both
PS and NPS applications. As observed, when hardware prefetchers are disabled, cache
misses are mostly uniformly distributed over all the LLC sets for both PS and NPS
applications. While when hardware prefetchers are enabled, cache miss distributions
over cache sets are non-uniform for PS applications, while the distributions are mostly
uniform for NPS applications. One can distinguish PS and NPS applications by their
differences in cache miss distributions when hardware prefetchers are enabled.

Our LLC partitioning scheme is simple: it allocates one exclusive cache-way to
each newly classified PS application as it does not benefit greatly from a larger LLC
size. It then allocates the remainder of the cache-ways to the NPS applications.

We have implemented CPpf as a user-level runtime system on Linux. Compared
with a non-partitioning approach, CPpf achieves speedups of up to 1.20 (1.08 on
average), 1.08 (1.04 on average) and 1.06 (1.03 on average) for workloads with 2, 4
and 8 single-threaded applications, respectively. Moreover, it achieves speedups of up
to 1.22 (1.05 on average) and 1.11 (1.04 on average) for workloads mixes composed of
two applications with 4 threads and 8 threads, respectively.

111

7. Conclusions

7.2 Future work
As described in the previous four chapters, the research presented in this dissertation
has addressed four research problems in two different domains: timing predictability of
embedded computing and caching performance for high performance computing. In
this section we lay out some future research directions.

In Chapter 4, we proposed an approach to calculating the upper bound on cache
interference a task may exhibit during a job execution. We plan to perform evaluations on
real benchmarks to show the pessimism of upper bounding the shared cache interference
using the proposed method.

In Chapter 4 and 5, we addressed the schedulability analysis of real-time scheduling
for multi-core systems with shared caches. Cache partitioning is a widely used technique
to isolate the accesses to shared caches to prevent cache interference. However, if cache
partitioning is deployed, tasks’ WCET can be larger due to the reduced available
caches during tasks’ execution. Therefore, it would be very interesting to compare the
schedulability performance of real time scheduling in which a cache is fully shared
among all tasks against the case where the cache is partitioned to tasks.

In Chapter 6, we presented CPpf , a prefetch aware cache partitioning approach
to improve the average speedup for all applications in the system. We plan to apply
CPpf for other purposes such as to improve fairness and to provide quality-of-service
guarantees. For example, we plan to extend CPpf to the cache management in data
centers where latency critical applications are co-located with throughput oriented
applications. The goal of cache management is to provide guarantees with respect to
the latency while also maximizing the throughput of the other applications.

Finally, cache-related problems have attracted a lot of attention from different re-
search communities. This dissertation deals with the cache issues in real time computing
and high performance computing. It is interesting to investigate the possibilities to
extend the presented tools, analyses, observations to improving the design of secure
caching in the computer security domain.

112

Bibliography

[1] A. Agarwal, J. Hennessy, and M. Horowitz. An analytical cache model. ACM Transactions on
Computer Systems (TOCS), 7(2):184–215, 1989. (Cited on page 98.)

[2] K. Albers and F. Slomka. An event stream driven approximation for the analysis of real-time systems. In
Proceedings. 16th Euromicro Conference on Real-Time Systems, 2004. ECRTS 2004., pages 187–195.
IEEE, 2004. (Cited on page 74.)

[3] D. H. Albonesi. Selective cache ways: On-demand cache resource allocation. In MICRO-32. Proceed-
ings of the 32nd Annual ACM/IEEE International Symposium on Microarchitecture, pages 248–259.
IEEE, 1999. (Cited on page 15.)

[4] S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke. A generic and compositional
framework for multicore response time analysis. In Proceedings of the 23rd International Conference
on Real Time and Networks Systems, pages 129–138. ACM, 2015. (Cited on page 46.)

[5] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings. Fixed priority pre-emptive
scheduling: An historical perspective. Real-Time Systems, 8(2-3):173–198, 1995. (Cited on page 19.)

[6] T. P. Baker. Multiprocessor edf and deadline monotonic schedulability analysis. In RTSS 2003. 24th
IEEE Real-Time Systems Symposium, 2003, pages 120–129. IEEE, 2003. (Cited on page 49.)

[7] S. Baruah. The limited-preemption uniprocessor scheduling of sporadic task systems. In 17th
Euromicro Conference on Real-Time Systems (ECRTS’05), pages 137–144. IEEE, 2005. (Cited on
page 74.)

[8] S. Baruah. Techniques for multiprocessor global schedulability analysis. In 28th IEEE International
Real-Time Systems Symposium (RTSS 2007), pages 119–128. IEEE, 2007. (Cited on pages 4, 45,
and 56.)

[9] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-time sporadic tasks on
one processor. In In Proceedings of the 11th Real-Time Systems Symposium, pages 182–190. IEEE
Computer Society Press, 1990. (Cited on page 74.)

[10] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: A notion of
fairness in resource allocation. ALGORITHMICA, 15:600–625, 1996. doi: 10.1.1.123.2848. (Cited on
page 36.)

[11] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. An empirical comparison of global, partitioned,
and clustered multiprocessor edf schedulers. In 2010 31st IEEE Real-Time Systems Symposium, pages
14–24. IEEE, 2010. (Cited on pages 5 and 71.)

[12] N. Beckmann and D. Sanchez. Jigsaw: Scalable software-defined caches. In Proceedings of the 22nd
international conference on Parallel architectures and compilation techniques, pages 213–224. IEEE,
2013. (Cited on page 15.)

[13] E. Berg, H. Zeffer, and E. Hagersten. A statistical multiprocessor cache model. In 2006 IEEE
International Symposium on Performance Analysis of Systems and Software, pages 89–99. IEEE, 2006.
(Cited on page 43.)

[14] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability analysis of global scheduling algorithms on
multiprocessor platforms. IEEE Transactions on parallel and distributed systems, 20(4):553–566,
2008. (Cited on pages 4 and 45.)

[15] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: Characterization and
architectural implications. In Proceedings of the 17th international conference on Parallel architectures
and compilation techniques, pages 72–81. ACM, 2008. (Cited on page 104.)

[16] J. Brock, C. Ye, C. Ding, Y. Li, X. Wang, and Y. Luo. Optimal cache partition-sharing. In 2015 44th
International Conference on Parallel Processing, pages 749–758. IEEE, 2015. (Cited on page 92.)

[17] A. Burns and A. J. Wellings. Real-time systems and programming languages: Ada 95, real-time Java,
and real-time POSIX. Pearson Education, 2001. (Cited on page 19.)

[18] G. C. Buttazzo. Hard real-time computing systems: predictable scheduling algorithms and applications,
volume 24. Springer Science & Business Media, 2011. (Cited on pages 18, 19, and 22.)

[19] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson. Litmusrt: A testbed for empiri-
cally comparing real-time multiprocessor schedulers. In Proc. of the 27th IEEE Real-Time Systems
Symposium, pages 111–123, 2006. doi: 10.1.1.92.3483. (Cited on page 37.)

[20] S. Chiaradonna, F. D. Giandomenico, and J. Xiao. Quantification of the effectiveness of medium
voltage control policies in smart grids. In 2016 IEEE 17th International Symposium on High Assurance
Systems Engineering (HASE), pages 284–291, Jan 2016. doi: 10.1109/HASE.2016.42. (Cited on
page 9.)

[21] D. Chiou, P. Jain, L. Rudolph, and S. Devadas. Application-specific memory management for

113

7. Bibliography

embedded systems using software-controlled caches. In Proceedings of the 37th Annual Design
Automation Conference, pages 416–419. ACM, 2000. (Cited on page 15.)

[22] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-time scheduling algorithm for multiprocessors.
In 2006 27th IEEE International Real-Time Systems Symposium (RTSS’06), pages 101–110. IEEE,
2006. (Cited on pages 4 and 45.)

[23] K. L. Clarkson. Las vegas algorithms for linear and integer programming when the dimension is small.
Journal of the ACM (JACM), 42(2):488–499, 1995. (Cited on pages 61 and 81.)

[24] I. Corporation. User space software for intel(r) resource director technology. Available:
https://github.com/intel/intel-cmt-cat. (Cited on page 15.)

[25] I. Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2018. (Cited on
pages 17, 93, and 97.)

[26] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems. ACM
computing surveys (CSUR), 43(4):35, 2011. (Cited on pages 4, 22, and 45.)

[27] P. developers. perf event open - Linux man page. URL https://linux.die.net/man/2/

perf_event_open. (Cited on page 17.)
[28] A. M. Devices. BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models 30h-3Fh

Processors, February, 2015. (Cited on page 17.)
[29] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Prefetch-aware shared resource management for

multi-core systems. In ACM SIGARCH Computer Architecture News, volume 39, pages 141–152.
ACM, 2011. (Cited on page 92.)

[30] N. El-Sayed, A. Mukkara, P.-A. Tsai, H. Kasture, X. Ma, and D. Sanchez. Kpart: A hybrid cache
partitioning-sharing technique for commodity multicores. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 104–117. IEEE, 2018. (Cited on pages 5,
91, and 102.)

[31] N. Fisher and S. Baruah. The partitioned multiprocessor scheduling of non-preemptive sporadic task
systems. In 14th International conference on real-time and network systems, 2006. (Cited on page 75.)

[32] L. George, P. Muhlethaler, and N. Rivierre. Optimality and non-preemptive real-time scheduling
revisited. PhD thesis, INRIA, 1995. (Cited on page 73.)

[33] G. Gracioli and A. A. Fröhlich. An experimental evaluation of the cache partitioning impact on
multicore real-time schedulers. In 2013 IEEE 19th International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 72–81. IEEE, 2013. (Cited on page 45.)

[34] N. Guan, W. Yi, Z. Gu, Q. Deng, and G. Yu. New schedulability test conditions for non-preemptive
scheduling on multiprocessor platforms. In 2008 Real-Time Systems Symposium, pages 137–146.
IEEE, 2008. (Cited on page 49.)

[35] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and analysis for multicores. In
Proceedings of the seventh ACM international conference on Embedded software, pages 245–254.
ACM, 2009. (Cited on pages 4 and 45.)

[36] P. Guide. Intel® 64 and ia-32 architectures software developer’s manual. Volume 3B: System
programming Guide, Part 2, 2, 2011. (Cited on page 17.)

[37] Z. Guo, Y. Zhang, L. Wang, and Z. Zhang. Work-in-progress: Cache-aware partitioned edf scheduling
for multi-core real-time systems. In 2017 IEEE Real-Time Systems Symposium (RTSS), volume 1,
pages 384–386, Dec 2017. (Cited on page 45.)

[38] D. Hardy and I. Puaut. Wcet analysis of multi-level non-inclusive set-associative instruction caches.
In 2008 Real-Time Systems Symposium, pages 456–466. IEEE, 2008. (Cited on pages 44, 46, and 56.)

[39] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten wcet estimates for multi-core processors
with shared instruction caches. In 2009 30th IEEE Real-Time Systems Symposium, pages 68–77. IEEE,
2009. (Cited on page 45.)

[40] P. Hastono, S. Klaus, and S. A. Huss. Real-time operating system services for realistic systemc
simulation models of embedded systems. In FDL, pages 380–392, 2004. (Cited on pages 3 and 27.)

[41] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.
(Cited on pages 11 and 12.)

[42] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and R. Iyer. Cache qos:
From concept to reality in the intel® xeon® processor e5-2600 v3 product family. In 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages 657–668. IEEE,
2016. (Cited on page 15.)

[43] M. D. Hill and A. J. Smith. Evaluating associativity in cpu caches. IEEE Transactions on Computers,
38(12):1612–1630, 1989. (Cited on page 13.)

[44] G. Irazoqui, T. Eisenbarth, and B. Sunar. Systematic reverse engineering of cache slice selection in

114

https://linux.die.net/man/2/perf_event_open.
https://linux.die.net/man/2/perf_event_open.

intel processors. In 2015 Euromicro Conference on Digital System Design, pages 629–636. IEEE,
2015. (Cited on page 100.)

[45] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of period and sporadic tasks.
In [1991] Proceedings Twelfth Real-Time Systems Symposium, pages 129–139. IEEE, 1991. (Cited on
page 73.)

[46] X. Jun and A. D. Pimentel. In Design, Automation and Test in Europe Conference 2020, under review.
(Cited on pages 8 and 71.)

[47] Jun Xiao, S. Chiaradonna, F. Di Giandomenico, and A. Pimentel. Improving voltage control in mv smart
grids. In 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm),
pages 382–387, Nov 2016. doi: 10.1109/SmartGridComm.2016.7778791. (Cited on page 9.)

[48] R. S. Khaligh and M. Radetzki. Modeling constructs and kernel for parallel simulation of accuracy
adaptive tlms. In 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010),
pages 1183–1188. IEEE, 2010. (Cited on pages 3 and 28.)

[49] H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for practical os-level cache man-
agement in multi-core real-time systems. In 2013 25th Euromicro Conference on Real-Time Systems,
pages 80–89. IEEE, 2013. (Cited on pages 14 and 43.)

[50] R. Le Moigne, O. Pasquier, and J.-P. Calvez. A generic rtos model for real-time systems simulation
with systemc. In Proceedings Design, Automation and Test in Europe Conference and Exhibition,
volume 3, pages 82–87. IEEE, 2004. (Cited on pages 3 and 27.)

[51] J. Lee, K. G. Shin, I. Shin, and A. Easwaran. Composition of schedulability analyses for real-time
multiprocessor systems. IEEE Transactions on Computers, 64(4):941–954, 2014. (Cited on pages 4
and 45.)

[52] Y. Liang, H. Ding, T. Mitra, A. Roychoudhury, Y. Li, and V. Suhendra. Timing analysis of concurrent
programs running on shared cache multi-cores. Real-Time Systems, 48(6):638–680, 2012. (Cited on
page 45.)

[53] J. Liedtke, H. Hartig, and M. Hohmuth. Os-controlled cache predictability for real-time systems. In
Proceedings Third IEEE Real-Time Technology and Applications Symposium, pages 213–224. IEEE,
1997. (Cited on page 45.)

[54] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and real systems. In 2008 IEEE 14th International
Symposium on High Performance Computer Architecture, pages 367–378. IEEE, 2008. (Cited on
page 92.)

[55] C. L. Liu. Scheduling algorithms for multiprocessors in a hard real-time environment. JPL Space
Programs Summary, 1969, 1969. (Cited on page 20.)

[56] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM, 20(1):46–61, Jan. 1973. ISSN 0004-5411. doi: 10.1145/321738.321743. URL
http://doi.acm.org/10.1145/321738.321743. (Cited on pages 20 and 36.)

[57] D. Liu, N. Guan, J. Spasic, G. Chen, S. Liu, T. Stefanov, and W. Yi. Scheduling analysis of imprecise
mixed-criticality real-time tasks. IEEE Transactions on Computers, 67(7):975–991, 2018. (Cited on
pages 4 and 45.)

[58] F. Liu, A. Narayanan, and Q. Bai. Real-time systems. 2000. (Cited on page 22.)
[59] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis. Heracles: Improving resource

efficiency at scale. In ACM SIGARCH Computer Architecture News, volume 43, pages 450–462. ACM,
2015. (Cited on pages 5 and 91.)

[60] J. M. López, J. L. Dı́az, and D. F. Garcı́a. Utilization bounds for edf scheduling on real-time
multiprocessor systems. Real-Time Systems, 28(1):39–68, 2004. (Cited on page 75.)

[61] C. Maiza, H. Rihani, R. Concepcion, J. Maria, J. Goossens, S. Altmeyer, and D. Robert. A survey of
timing verification techniques for multi-core real-time systems. Technical report, Verimag Research
Report TR-2018-9 (Technical Report), 2018. (Cited on pages 4 and 23.)

[62] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time cache
management framework for multi-core architectures. In 2013 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 45–54. IEEE, 2013. (Cited on page 45.)

[63] R. Manikantan, K. Rajan, and R. Govindarajan. Probabilistic shared cache management (prism). In
2012 39th Annual International Symposium on Computer Architecture (ISCA), pages 428–439. IEEE,
2012. (Cited on page 15.)

[64] S. Mittal. A survey of techniques for architecting tlbs. Concurrency and Computation: Practice and
Experience, 29(10):e4061, 2017. (Cited on page 14.)

[65] NASA. NAS Parallel Benchmarks 3.3. URL https://www.nas.nasa.gov/assets/npb/.

115

http://doi.acm.org/10.1145/321738.321743
https://www.nas.nasa.gov/assets/npb/.

7. Bibliography

(Cited on pages 94, 95, 102, and 104.)
[66] J. Park, S. Park, and W. Baek. Copart: Coordinated partitioning of last-level cache and memory

bandwidth for fairness-aware workload consolidation on commodity servers. In Proceedings of the
Fourteenth EuroSys Conference 2019, page 10. ACM, 2019. (Cited on pages 5 and 92.)

[67] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A predictable
execution model for cots-based embedded systems. In 2011 17th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 269–279. IEEE, 2011. (Cited on page 45.)

[68] A. D. Pimentel. Exploring exploration: A tutorial introduction to embedded systems design space
exploration. IEEE Design & Test, 34(1):77–90, 2016. (Cited on page 3.)

[69] L. Pons, V. Selfa, J. Sahuquillo, S. Petit, and J. Pons. Improving system turnaround time with intel
cat by identifying llc critical applications. In European Conference on Parallel Processing, pages
603–615. Springer, 2018. (Cited on pages 5 and 91.)

[70] L. Pouchet and T. Yuki. Polybench/c 4.1. https://sourceforge.net/projects/polybench, 2015. (Cited on
pages 94, 95, 102, and 104.)

[71] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-overhead, high-performance, run-
time mechanism to partition shared caches. In 2006 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06), pages 423–432. IEEE, 2006. (Cited on page 91.)

[72] P. Ranganathan, S. Adve, and N. P. Jouppi. Reconfigurable caches and their application to media
processing, volume 28. ACM, 2000. (Cited on page 15.)

[73] P. Razaghi and A. Gerstlauer. Host-compiled multicore system simulation for early real-time perfor-
mance evaluation. ACM Transactions on Embedded Computing Systems (TECS), 13(5s):166, 2014.
(Cited on pages 3, 28, and 37.)

[74] J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability of cache replacement policies.
Real-Time Systems, 37(2):99–122, 2007. (Cited on page 14.)

[75] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. Multi-core real-time scheduling for generalized parallel
task models. In Proceedings of the 2011 IEEE 32Nd Real-Time Systems Symposium, RTSS ’11, pages
217–226, Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4591-2. doi:
10.1109/RTSS.2011.27. URL http://dx.doi.org/10.1109/RTSS.2011.27. (Cited on
page 30.)

[76] D. Sanchez and C. Kozyrakis. The zcache: Decoupling ways and associativity. In 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 187–198. IEEE, 2010. (Cited on
page 15.)

[77] D. Sanchez and C. Kozyrakis. Vantage: scalable and efficient fine-grain cache partitioning. In ACM
SIGARCH Computer Architecture News, volume 39, pages 57–68. ACM, 2011. (Cited on page 15.)

[78] G. Schirner and R. Dömer. Introducing preemptive scheduling in abstract rtos models using result
oriented modeling. In Proc. of DATE’08, pages 122–127, New York, NY, USA, 2008. ISBN 978-3-
9810801-3-1. doi: 10.1145/1403375.1403408. (Cited on pages 3 and 28.)

[79] V. Selfa, J. Sahuquillo, L. Eeckhout, S. Petit, and M. E. Gómez. Application clustering policies to
address system fairness with intel’s cache allocation technology. In 2017 26th International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 194–205. IEEE, 2017. (Cited on
pages 5, 91, and 102.)

[80] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry. Mitigating
prefetcher-caused pollution using informed caching policies for prefetched blocks. ACM Transactions
on Architecture and Code Optimization (TACO), 11(4):51, 2015. (Cited on pages 92 and 97.)

[81] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: an approach to real-time
synchronization. IEEE Transactions on Computers, 39, 1990. (Cited on page 37.)

[82] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo,
J. Lehoczky, and A. K. Mok. Real time scheduling theory: A historical perspective. Real-time systems,
28(2-3):101–155, 2004. (Cited on pages 4, 19, 22, and 45.)

[83] M. Shekhar, A. Sarkar, H. Ramaprasad, and F. Mueller. Semi-partitioned hard-real-time scheduling
under locked cache migration in multicore systems. In 2012 24th Euromicro Conference on Real-Time
Systems, pages 331–340. IEEE, 2012. (Cited on page 45.)

[84] SPEC. SPEC CPU Benchmarks. URL https://www.spec.org/cpu2017/. (Cited on
pages 94, 95, 102, and 104.)

[85] SpecC. http://www.cecs.uci.edu/ specc/. (Cited on pages 3 and 27.)
[86] A. Sridharan, B. Panda, and A. Seznec. Band-pass prefetching: An effective prefetch management

mechanism using prefetch-fraction metric in multi-core systems. ACM Transactions on Architecture
and Code Optimization (TACO), 14(2):19, 2017. (Cited on page 101.)

116

http://dx.doi.org/10.1109/RTSS.2011.27
https://www.spec.org/cpu2017/.

[87] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching: Improving the perfor-
mance and bandwidth-efficiency of hardware prefetchers. In 2007 IEEE 13th International Symposium
on High Performance Computer Architecture, pages 63–74. IEEE, 2007. (Cited on page 92.)

[88] R. Stafford. Random vectors with fixed sum, 2006. URL http://www.mathworks.com/

matlabcentral/fileexchange/9700. (Cited on page 65.)
[89] S. Stattelmann, O. Bringmann, and W. Rosenstiel. Fast and accurate resource conflict simulation for

performance analysis of multi-core systems. In 2011 Design, Automation Test in Europe, pages 1–6,
March 2011. doi: 10.1109/DATE.2011.5763044. (Cited on pages 3 and 28.)

[90] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu. The application slowdown model:
Quantifying and controlling the impact of inter-application interference at shared caches and main
memory. In Proceedings of the 48th International Symposium on Microarchitecture, pages 62–75.
ACM, 2015. (Cited on page 91.)

[91] V. Suhendra and T. Mitra. Exploring locking & partitioning for predictable shared caches on multi-
cores. In 2008 45th ACM/IEEE Design Automation Conference, pages 300–303. IEEE, 2008. (Cited
on pages 44 and 45.)

[92] SysRT. https://github.com/jxiao90/SysRT. (Cited on page 108.)
[93] SystemC. http://www.accellera.org. (Cited on pages 3 and 27.)
[94] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing shared l2 caches on multicore systems in

software. In Workshop on the Interaction between Operating Systems and Computer Architecture,
pages 26–33, 2007. (Cited on pages 15 and 92.)

[95] P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to improve isolation in multicore
real-time systems. In 2016 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 1–12. IEEE, 2016. (Cited on page 22.)

[96] K. Varadarajan, S. Nandy, V. Sharda, A. Bharadwaj, R. Iyer, S. Makineni, and D. Newell. Molecular
caches: A caching structure for dynamic creation of application-specific heterogeneous cache regions.
In Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture, pages
433–442. IEEE Computer Society, 2006. (Cited on page 15.)

[97] R. Wang and L. Chen. Futility scaling: High-associativity cache partitioning. In Proceedings of
the 47th Annual IEEE/ACM International Symposium on Microarchitecture, pages 356–367. IEEE
Computer Society, 2014. (Cited on page 15.)

[98] X. Wang, S. Chen, J. Setter, and J. F. Martı́nez. Swap: Effective fine-grain management of shared
last-level caches with minimum hardware support. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 121–132. IEEE, 2017. (Cited on page 15.)

[99] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson. Outstanding paper award: Making shared
caches more predictable on multicore platforms. In 2013 25th Euromicro Conference on Real-Time
Systems, pages 157–167. IEEE, 2013. (Cited on page 45.)

[100] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, et al. The worst-case execution-time problem—overview of methods and
survey of tools. ACM Transactions on Embedded Computing Systems (TECS), 7(3):36, 2008. (Cited
on page 45.)

[101] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2 programs: Characterization
and methodological considerations. ACM SIGARCH computer architecture news, 23(2):24–36, 1995.
(Cited on page 104.)

[102] C.-J. Wu and M. Martonosi. A comparison of capacity management schemes for shared cmp caches.
In Proc. of the 7th Workshop on Duplicating, Deconstructing, and Debunking, volume 15, pages 50–52.
Citeseer, 2008. (Cited on page 15.)

[103] C.-J. Wu and M. Martonosi. Characterization and dynamic mitigation of intra-application cache
interference. In (IEEE ISPASS) IEEE International Symposium on Performance Analysis of Systems
and Software, pages 2–11. IEEE, 2011. (Cited on pages 5 and 92.)

[104] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely Jr, and J. Emer. Pacman: prefetch-aware cache man-
agement for high performance caching. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 442–453. ACM, 2011. (Cited on page 92.)

[105] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the obvious. ACM SIGARCH
computer architecture news, 23(1):20–24, 1995. (Cited on page 5.)

[106] Y. Xiang, X. Wang, Z. Huang, Z. Wang, Y. Luo, and Z. Wang. Dcaps: dynamic cache allocation with
partial sharing. In Proceedings of the Thirteenth EuroSys Conference, page 13. ACM, 2018. (Cited on
pages 5, 91, and 102.)

[107] J. Xiao and G. Buttazzo. Adaptive embedded control for a ball and plate system. In The Eighth

117

http://www.mathworks.com/matlabcentral/fileexchange/9700
http://www.mathworks.com/matlabcentral/fileexchange/9700

7. Bibliography

International Conference on Adaptive and Self-Adaptive Systems and Applications, 2016. (Cited on
page 9.)

[108] J. Xiao, S. Altmeyer, and A. Pimentel. Schedulability analysis of non-preemptive real-time scheduling
for multicore processors with shared caches. In 2017 IEEE Real-Time Systems Symposium (RTSS),
pages 199–208. IEEE, 2017. (Cited on pages 8, 43, and 71.)

[109] J. Xiao, A. Pimentel, and G. Lipari. Sysrt: A modular multiprocessor rtos simulator for early design
space exploration. In 2017 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), pages 38–45. IEEE, 2017. (Cited on pages 8 and 27.)

[110] J. Xiao, S. Altmeyer, and A. D. Pimentel. Schedulability analysis of global scheduling for multicore
systems with shared caches. IEEE Transactions on Computers, under review, 2019. (Cited on pages 8
and 43.)

[111] J. Xiao, A. D. Pimentel, and X. Liu. Cppf : A prefetch aware llc partitioning approach. In Proceedings
of the 48th International Conference on Parallel Processing, ICPP 2019, pages 17:1–17:10, New
York, NY, USA, 2019. ACM. ISBN 978-1-4503-6295-5. doi: 10.1145/3337821.3337895. URL
http://doi.acm.org/10.1145/3337821.3337895. (Cited on pages 8 and 91.)

[112] Y. Xie and G. H. Loh. Pipp: promotion/insertion pseudo-partitioning of multi-core shared caches. In
ACM SIGARCH Computer Architecture News, volume 37, pages 174–183. ACM, 2009. (Cited on
page 15.)

[113] M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee. Analysis and implementation of global preemptive
fixed-priority scheduling with dynamic cache allocation. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 1–12. IEEE, 2016. (Cited on pages 4 and 45.)

[114] M. Xu, L. Thi, X. Phan, H.-Y. Choi, and I. Lee. vcat: Dynamic cache management using cat
virtualization. In 2017 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 211–222. IEEE, 2017. (Cited on page 45.)

[115] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache partitioning system using page coloring.
In 2014 23rd International Conference on Parallel Architecture and Compilation Techniques (PACT),
pages 381–392. IEEE, 2014. (Cited on page 92.)

[116] Y. Yi, D. Kim, and S. Ha. Fast and time-accurate cosimulation with os scheduler mod-
eling. Des. Autom. Embedded Syst., 8(2-3):211–228, June 2003. ISSN 0929-5585. doi:
10.1023/B:DAEM.0000003963.20442.29. URL http://dx.doi.org/10.1023/B:DAEM.

0000003963.20442.29. (Cited on pages 3 and 27.)
[117] H. Zabel, W. Müller, and A. Gerstlauer. Accurate rtos modeling and analysis with systemc. In

Hardware-dependent Software, pages 233–260. Springer, 2009. (Cited on pages 3 and 27.)
[118] F. Zhang and A. Burns. Schedulability analysis for real-time systems with edf scheduling. IEEE

Transactions on Computers, 58(9):1250–1258, 2009. (Cited on pages 4 and 45.)
[119] W. Zhang and J. Yan. Accurately estimating worst-case execution time for multi-core processors with

shared direct-mapped instruction caches. In 2009 15th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pages 455–463. IEEE, 2009. (Cited on page 45.)

[120] H. Zhu and M. Erez. Dirigent: Enforcing qos for latency-critical tasks on shared multicore systems.
ACM SIGARCH Computer Architecture News, 44(2):33–47, 2016. (Cited on pages 5 and 91.)

[121] X. Zhuang and S. L. Hsien-Hsin. Reducing cache pollution via dynamic data prefetch filtering. IEEE
Transactions on Computers, 56(1):18–31, 2006. (Cited on page 92.)

[122] X. Zhuang and H.-H. Lee. A hardware-based cache pollution filtering mechanism for aggressive
prefetches. In 2003 International Conference on Parallel Processing, 2003. Proceedings., pages
286–293. IEEE, 2003. (Cited on page 92.)

118

http://doi.acm.org/10.1145/3337821.3337895
http://dx.doi.org/10.1023/B:DAEM.0000003963.20442.29
http://dx.doi.org/10.1023/B:DAEM.0000003963.20442.29

Summary

Modern computing systems are constructed using commodity multi-core processors,
on which part of the memory subsystem is shared by different cores on the same
processor. Multiple applications executing simultaneously on a multi-core system
contend for the shared memory resources, such as last level caches (LLC) and main
memory, causing inter-application interference. Such inter-application interference,
if uncontrolled, results in unpredictable execution delay for individual applications
and severe system performance degradation. In this dissertation, we focus on shared
cache interference and investigate two issues raised by the increasing complexity of
underlying hardware and software for multi-core systems: timing predictability of
real-time computing and caching performance for high performance computing.

In the first research line, we improve the timing predictability for embedded multi-
core system by simulation and analytical approaches for the timing analysis. With
regard to the simulation approach, we developed SysRT, a simulator of real-time
operating systems (RTOS) that allows developers and researchers to easily explore and
validate embedded RTOS design alternatives. The simulator contains different types
of application models and a modular RTOS kernel model, all developed in SystemC.
Efficient and precise modeling of preemptive scheduling is achieved via an event-driven
simulation approach, allowing simulations to be performed much faster than cycle-
accurate simulations. SysRT outperforms state-of-art simulators in both simulation
speeds and accuracy. We also demonstrate the flexibility of SysRT and its benefits in
evaluation of timing performance for software tasks .

With regards to the analytical approach, we first develop a new schedulability
analysis of global scheduling for real-time multi-core systems with shared caches. We
construct an integer programming formulation and an iterative algorithm to obtain the
upper bound on shared cache interference a task may exhibit during one job execution.
The upper bound on shared cache interference is subsequently integrated into the
schedulability analysis to derive a new schedulability condition for global scheduling.
Later, we extend the schedulability analysis for the partitioned scheduling. We propose
a novel cache-interference aware task partitioning algorithm, called CA-TPAR. We
conduct schedulability analysis of CA-TPAR and formally prove its correctness. A
range of experiments is performed to investigate how the schedulability is degraded by
shared cache interference. We also evaluate the schedulability performance of global
scheduling (Earliest Deadline First and Fixed Priority) against CA-TPAR over randomly
generated tasksets.

In the second research line, We propose CPpf , a prefetch aware LLC partitioning
approach to improving LLC management for high performance caching. We first
study the interaction between hardware prefetching and LLC management by analyzing
the variation of application performance when varying the effective LLC space in
the presence and absence of hardware prefetching. Motivated by this study, we then
classify applications into two categories, prefetching sensitive (PS) and non prefetching
sensitive (NPS) applications, by the performance benefit they experience from hardware
prefetchers. CPpf consists of a method using Precise Event-Based Sampling techniques
for the online classification of PS and NPS applications and a cache partitioning scheme
using Cache Allocation technology to distribute the cache space among PS and NPS

119

7. Summary

applications. The prototype of CPpf is implemented as a user-level runtime system on
Linux. Finally, we show the system performance improvement achieved by CPpf .

120

Samenvatting

Moderne computersystemen worden gebouwd met behulp van commodity multi-core
processors, waarbij een gedeelte van het geheugensubsysteem gedeeld wordt door
verschillende cores op dezelfde processor. Meerdere applicaties die gelijktijdig worden
uitgevoerd op een multi-core systeem strijden om het gedeelde geheugen, zoals last
level caches (LLC) en hoofdgeheugen, wat inter-applicatie interferentie veroorzaakt.
Dergelijke inter-applicatie interferentie kan als deze niet goed beheerst wordt, resulteren
in onvoorspelbare vertragingen van individuele toepassingen en ernstige verslechtering
van de systeemprestaties. In dit proefschrift richten we ons op interferentie in gedeelde
caches en onderzoeken we twee aspecten die worden beı̈nvloed door de toenemende
complexiteit van onderliggende hardware en software voor multi-core systemen: timing
voorspelbaarheid van real-time systemen en cachingprestaties bij high performance
computing.

In de eerste onderzoekslijn verbeteren we de voorspelbaarheid van de timing van
embedded multi-core systemen door simulatie en analytische benaderingen van de tim-
ing analyse. Met betrekking tot de simulatie benadering hebben we SysRT ontwikkeld,
een simulator van real-time besturingssystemen (RTOS) waarmee ontwikkelaars en
onderzoekers eenvoudig embedded RTOS kunnen onderzoeken en alternatieven ontwer-
pen kunnen valideren. De simulator bevat verschillende soorten applicatie modellen en
een modulair RTOS-kernelmodel, allemaal ontwikkeld in SystemC.

EfficiÎnt en nauwkeurig modelleren van preemptive scheduling wordt bereikt via
een event gestuurde simulatie benadering, waardoor simulaties veel sneller kunnen
worden uitgevoerd dan bij klok-cyclusnauwkeurige simulaties. SysRT overtreft moderne
simulatoren in zoveel simulaties snelheid als in nauwkeurigheid. We tonen ook de
flexibiliteit van SysRT en zijn voordelen bij de evaluatie van timing prestaties voor
software taken.

Met betrekking tot de analytische aanpak ontwikkelen we eerst een nieuwe schedul-
ingsanalyse van de globale planning voor real-time multi-core systemen met gedeelde
caches. We construeren een geheeltallig lineaire programmering formulering en een
iteratief algoritme om de bovengrens te verkrijgen van de gedeelde cache-interferentie
die een taak kan vertonen tijdens één taakuitvoering. De bovengrens van de gedeelde
cache-interferentie wordt vervolgens geı̈ntegreerd in de planningsanalyse om een nieuwe
planningsvoorwaarde af te leiden voor een globale planning. Later breiden we de plan-
ningsanalyse uit voor de gepartitioneerde planning. We introduceren CA-TPAR, een
nieuw partitioneringsalgoritme dat rekening houd met cache-interferentie. We voeren
een planningsanalyse uit van CA-TPAR en geven een formeel bewijs van correctheid.
Een scala aan experimenten is uitgevoerd om te onderzoeken hoe de planningsmogelijk-
heden worden verminderd door interferentie in de gedeelde cache. We vergelijken ook
de planningsprestaties van globale planning methoden (vroegste deadline eerst en vaste
prioriteit) met CA-TPAR voor willekeurig gegenereerde takensets.

In de tweede onderzoekslijn stellen we CPpf voor, een prefetch bewust LLC parti-
tioneringsbenadering om LLC-beheer te verbeteren voor hoge caching prestaties. We
bestuderen eerst de interactie tussen hardware prefetching en LLC management door
analyse van de variatie van applicatieprestaties bij het variëren van de effectieve LLC-
ruimte in aanwezigheid en afwezigheid van hardware prefetching. Gemotiveerd door

121

7. Samenvatting

deze studie, classificeren we toepassingen vervolgens in twee categorieën, prefetch-
gevoelige (PS) en niet prefetch-gevoelige (NPS) applicaties, door het prestatievoordeel
dat ze ervaren met hardware prefetching. CPpf bestaat uit een methode die nauwkeurige
event-gebaseerde sampling technieken gebruikt voor de online classificatie van PS en
NPS-applicaties en een cache-partitioneringsschema dat met behulp van een cache
allocatie technologie de cacheruimte verdeeld over de PS- en NPS-applicaties. Het
prototype van CPpf is geı̈mplementeerd als een runtime-systeem op gebruikersniveau
op Linux. Tot slot laten we de systeem prestatieverbetering zien die is bereikt door
CPpf .

122

	Introduction
	Research Outline and Questions
	Main Contributions
	Thesis Overview
	Origins

	Background
	Computer architecture
	Multi-core processors
	Processor caches
	Shared cache interference
	Cache Partitioning
	Cache Allocation technology
	Hardware prefetching
	Hardware PMU

	Real-time systems
	Real-time task models
	Scheduling algorithms
	Schedulability analysis

	SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space Exploration
	Modeling Framework
	Application model
	Task Model
	Instruction Model

	RTOS Kernel Model
	UNPKernel Model
	SMPKernel Model
	PartiKernel Model
	Scheduler Model
	Resource Management Model

	Experimental Results
	Simulation performance and accuracy
	Flexibility of SysRT
	Benefit of SysRT in DSE

	Conclusion

	Schedulability Analysis of Global Scheduling for Multicore Systems with Shared Caches
	Related work
	System Model
	Task Model
	Architecture Model
	Global Schedulers

	Schedulability Analysis
	Overview
	Computation of prek
	Computation of sck

	Iterative Computation
	Experiments
	Conclusions

	Partitioned Scheduling for Real-time Systems with Shared Caches
	System Model and Prerequisites
	System Model
	The Demand-Bound Function
	Uniprocessor Schedulability
	Cache Interference

	Cache interference aware task partitioning : CA-TPAR
	The Task Partitioning Algorithm: CA-TPAR
	Calculation of The Upper Bound on Cache Interference: kc
	Schedulability Analysis

	Experiments
	Experimental Setup
	Results
	Average Execution Time

	Conclusions

	CPpf: a prefetch aware LLC partitioning approach
	Motivation
	The impact of hardware prefetching on cache performance
	Inter-core prefetch-related cache pollution

	PS and NPS applications
	Definition of PS and NPS applications
	Cache sensitivity of PS and NPS applications

	Prefetch aware LLC Partitioning
	Online classification of applications
	LLC partitioning for PS and NPS applications

	Experiments
	CPpf performance gain
	Cases study of CPpf
	CPpf with multithreaded workloads
	Sensitivity Analysis
	Overhead

	Conclusion

	Conclusions
	Main findings
	Future work

	Bibliography
	Summary
	Samenvatting

