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Introduction

Both Moore’s Law (the number of transistors in a processor will double every two years)
and Dennard Scaling (power density remains constant because of transistor scaling)
have allowed us to make large improvements over the last decades of microprocessor
design. While Dennard Scaling is seen as now coming to an end, the resulting inability to
increase clock frequencies significantly has fueled the move to the multi-core processors,
which allows to continue to scale the performance of computing platforms through the
use of multiple (and many) efficient cores.

The high performance achieved by the modern multi-core processors has been
accomplished by using new architectural mechanisms. An important class of those
mechanisms aims to overcome the performance gap between the processors and memory,
referred to as the memory wall. For example, a hierarchy of cache memory levels, which
rely on the principle of memory access locality, and hardware prefetching, which
predicts future memory accesses and issues requests for the corresponding memory
blocks in advance of the explicit accesses, are deployed in nearly every modern multi-
core processors to hide memory access latency.

Although there are many benefits to moving from single-core processors to multi-
core processors, architects must address disadvantages and associated risks such as
the contention on the shared hardware resources. Cores on the same processor share
both processor-internal resources like L3 cache, system bus, memory controller, I/O
controllers and interconnects and processor-external resources like main memory, I/O
devices and networks. Multiple applications executing concurrently on a multi-core
system can interfere with each other at those shared resources. Such inter-application
interference, if uncontrolled, could lead to unpredictable execution delay for individual
applications and severe performance degradation for the whole system.

In this dissertation, we investigate two issues raised by the increasing complexity of
the underlying hardware and software for multi-core systems: timing predictability for
embedded computing and caching performance for high performance computing.

Challenges to build timing predictable multi-core embedded sys-
tems

In many embedded systems, a high performance is useless if we can not provide
guarantees on the timing performance of the applications when designing the system.
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One example of such systems is real-time systems, where the computing system must
interact with its environment in a timely manner. Violating timing constraints is fatal to
such a system, which may lead to catastrophic consequences such as loss of human life.
For example, an air-bag controller, which must inflate the air-bag in time before the
driver’s head hits the steering wheel. A flight control system must correct turbulence
before the airplane becomes unstable.

A significant trend in embedded computing hardware is the paradigm shift from
uniprocessor to multi-core processors. This brings great benefits such as higher compu-
tation power at lower cost of energy consumption, while at the same time also poses
new challenges for the timing analysis of embedded software executing on a multi-core
processor.

The scheduling of applications on multi-core processors not only involves the time
dimension, i.e., to decide when to execute a certain application, but also involves the
spatial dimension as it also needs to decide where (i.e., on which core) to execute the
application. Apart from the processing cores, different applications also contend on
many shared hardware resources in multi-core processors, such as caches, buses and
main memory. Interleaving of concurrent accesses to these shared hardware resources
results in execution delays for individual applications and creates a tremendous state
space of the system behavior, making its timing analysis extremely difficult.

Challenges to manage shared resources for high performance
computing systems

Different from real-time embedded systems, the primary goal of high performance
computing is to achieve the best system performance, i.e., to increase system throughput
or to process the computing jobs as fast as possible. Here, the major challenges are to
mitigate the inter-application interference and to efficiently manage the shared hardware
resources in multi-core processor for high performance computing.

Applications running simultaneously on different cores utilize a plethora of memory
components including a hierarchy of caches, prefetchers and memory controllers. Inter-
application interference makes it difficult to the predict the performance degradation for
individual applications, as some applications may be slowed down significantly, others
may not

Furthermore, the interaction between these various components can be fairly com-
plicated and it is challenging to study the impact of the interaction on application
performance at run time due to the current limited transparency and monitoring capabil-
ities for hardware behaviors. Since recent commodity CPUs have provided hardware
support for control over hardware resources such as caches and memory bandwidth,
a large amount of research attention is given to the management of shared hardware
resources. However, mitigating the impact of the hardware interaction and resource
contention and allocating the shared resources among the co-running applications to
maximize system performance, remain challenges in high performance computing
systems.

Next, we elaborate more in details on the research questions that we address in the
thesis.
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1.1 Research Outline and Questions

The work in this thesis focuses on developing tools, analyses and algorithmic methods
for addressing the challenges raised in the two general research themes described above:
time predictability for real time embedded computing and shared resource management
for high performance computing. More specifically, in the first research line, we
deal with two subtopics related to simulation and analytical approaches for the timing
analysis: system-level modeling and simulation of real time systems for design space
exploration and schedulability analysis of (global and partitioned) real-time scheduling
for multi-core systems with shared caches. In the second research line, we study the
interaction between the hardware prefetching and shared cache management and we
exploit the opportunity to improve caching performance in the presence of hardware
prefetching.

Modeling and simulation of real time embedded system

In today’s embedded systems, together with the increasing multi-core hardware platform
complexity, the software complexity has also been growing dramatically. Modern em-
bedded systems increasingly execute several applications of different types concurrently
on the underlying computing platform. These applications can have different execution
requirements. For example, control applications typically are hard real-time applications
and thus have stringent timing constraints, while best-effort applications prefer a short
task response time. These systems are usually managed by a Real-Time Operating
System (RTOS).

The complexities of the multi-processor system-on-chip (MPSoC) design space
have made traditional cycle- or instruction-accurate simulators inefficient. Raising
the level of abstraction is generally considered as a solution to address the design
complexity, thus reducing time-to-market. To help in the design space exploration
(DSE) at the early stages of design [68], various system-level design languages (SLDL)
such as SystemC [93] and SpecC [85] have been proposed to provide a simulation
environment. Originally, SLDLs primarily focused on hardware modeling and did not
properly address the modeling of software aspects.

The modeling and simulation of RTOS with SLDL have received widespread at-
tention from many researchers [40, 50, 116, 117]. Those simulators are built by a
quantum-granularity based simulation approach, in which the modeled scheduler is
invoked every simulation quantum, similar to the way a real OS scheduler behaves. This
therefore introduces large overheads, resulting in low simulation speeds. Later efforts
[48, 89] were made to trade-off speed for accuracy. [73] and [78] rely on the prediction
of preemption points to speedup simulation while maintaining accuracy. However,
predictions of preemption points are difficult if the simulation uses more complex task
models like Directed Acyclic Graphs (DAGs) and resource sharing models.

Therefore, our research questions in the first study are the following, which are
referred as RQ1:

RQ1 How to provide fast simulation of real-time embedded systems for design space
exploration at the early stages of system design? How to accurately capture

3
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the timing behaviour of embedded software? How to efficiently implement the
simulator to provide support for easy plug-in of new task models, new schedulers
and new resource sharing protocols?

Schedulability analysis of real-time multi-core systems

In single-core systems, timing behaviour is typically verified via a two-step process [61].
In the first timing analysis step, the Worst-Case Execution Time (WCET) of each task is
derived. The WCET is an upper bound on the execution time, assuming the task runs in
full isolation on the platform, i.e. without preemption, nor any co-runners. The WCET
is then integrated into the second step, schedulability analysis. Schedulability analysis
involves considering the worst-case pattern of task execution under a scheduling policy.
Schedulability analysis determines the Worst-Case Response Time (WCRT) of each
task, by which the timing constraint of each task can be verified.

The clear separation between the two steps can not applied to the timing verification
of multi-core systems where the interference on shared hardware resources can depend
heavily on the behaviour of co-runners executing concurrently on other cores. When
a task executes alone on a multi-core processor platform, the timing behaviour of the
system is defined by that task alone, the same as executing the task on a uniprocessor
platform. However, when multiple tasks run simultaneously on different cores, the
interplay between the tasks on shared hardware resources may results in unpredictable
execution delays. Therefore, using the WCET of tasks executing in isolation on a
multi-core platform without considering the co-runner interference can potentially lead
to incorrect WCRT values.

With a multi-core system, the WCRTSs are strongly dependent on the amount of
inter-core interference on shared hardware resources such as main memory, shared
caches and interconnects. In this dissertation, we shall only focus on the shared cache
interference.

The schedulability analysis of global multiprocessor scheduling has been intensively
studied [8, 14, 22, 51, 57, 118], of which comprehensive surveys can be found in [26, 82].
Most multi-core scheduling approaches assume that the WCETS are estimated in an
offline and isolated manner and that WCET values are fixed. A few works address
schedulability analysis for multi-core systems with shared caches [35, 113], but these
works assume that so-called cache space isolation is deployed, which requires explicit
hardware support.

In this thesis, we consider multi-core systems in which cache isolation techniques
are not deployed, i.e. the last level cache is shared by cores. We study the schedulability
analysis of global scheduling (Earliest Deadline First and Fixed Priority) for hard real-
time tasks that exhibit shared cache interferences. Thus, we ask the following research
questions, which are referred as RQ2:

RQ2 Is it possible to derive an upper bound on shared cache interference between
two tasks running simultaneously on a multi-core system? Given a real-time
taskset globally scheduled by EDF or FP, how to obtain an upper bound on the
shared cache interference exhibited by each task in the taskset? How to derive
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a schedulable condition for the globally scheduled taskset, accounting for the
shared cache interference?

Besides the global scheduling, the partitioned (semi-partitioned) scheduling is
another paradigm that are widely used for scheduling real-time tasks. In partitioned
scheduling, tasks are statically allocated to processor cores, i.e., each task is assigned to a
core and is always executed on that particular core. Although the partitioned approaches
cannot exploit all unused processing capacity since a bin-packing-like problem needs
to be solved to assign tasks to cores, it offers lower runtime overheads and provides
consistently good empirical performance at high utilizations [11].

Furthermore, taking the shared cache interference into account, partitioned schedul-
ing may achieve better schedulability than global scheduling, which will be shown in
Chapter 5.

Therefore, it is interesting to extend the answer to the previous question, which is
developed for real-time global scheduling, to the partitioned scheduling. We then ask
the following questions, referred as RQ3:

RQ3 How to develop a cache interference aware partitioned scheduling for real-time
multi-core systems? Is the partitioned scheduling better than global scheduling in
terms of schedulability performance?

Prefetch-aware cache partitioning for high performance caching

Hardware cache prefetching is a popular technique that is deployed in modern multi-
core processors to reduce memory latencies, addressing the memory wall problem [105].
However, it tends to increase the Last Level Cache (LLC) contention among applications
executing on multi-core system, leading to a performance degradation for the overall
system.

Shared cache management has attracted a lot of research attention in the past decades.
Heracles [59] and Dirigent [120] control the amount of shared hardware resources,
including the LLC, used by latency sensitive applications to improve Quality of Service
and utilization. Selfa et. al. [79] cluster applications using the k-means algorithm
and distributes cache ways between the groups to improve system fairness. Pons et.
al. [69] assigns more cache space to critical applications to improve system turnaround
time. [106] proposes a framework that dynamically monitors and predicts a workload’s
cache demand and reallocates the LLC given a performance target. KPart [30] leverages
online profiling to obtain miss ratio curves for clustering applications and assigns each
cluster of applications to a cache partition to improve system throughput.Park et. al. [66]
proposed a coordinated partitioning of the LLC and memory bandwidth to improve the
fairness of workloads on commodity servers. All these works have been implemented
on existing processors, however, those works do not study the impact of hardware
prefetching on cache performance and do not explicitly reveal the interaction between
the hardware prefetching and LLC management.

In a real system, cache references by hardware prefetching also contributes to last
level shared cache (LLC) interference [103]. However, there is little understanding
about the interaction between the hardware prefetching and the shared caches. In this

5
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research line, we focus on the L LC' management to improve system performance in the
presence of hardware prefetching.
Our questions in this study, then, are the following , refered as RQ4:

RQ4 How does hardware prefetching affect the caching performance? How to man-
age shared caches to improve system performance in the presence of hardware
prefetching?

1.2 Main Contributions

In this section, we summarize the main contributions presented in this thesis.

Modeling and simulation of RTOS. We developed SysRT, a simulator of RTOS in
SystemC that allows developers and researchers to easily explore and validate embedded
RTOS design alternatives. Compared with quantum-granularity based simulators and
prediction-based simulators, SysRT has two main advantages: (i) it has been developed
to be generic and modular to support for easy plug-in of new schedulers as well as
new resource sharing protocols. Thus, it is more flexible to simulate various real-
time scheduling algorithms; (ii) it typically achieves higher simulation speeds via an
event-driven simulation approach while obtaining identical accuracy results.

A Method to derive the upper bound on shared cache interference. We con-
struct an integer programming formulation to calculate the upper bound on the cache
interference exhibited by a task within a given execution window. We then present an
iterative algorithm to obtain the upper bound on inter-core cache interference a task
may exhibit during its job executions.

The above approach is extended to compute the upper bound on the cache interfer-
ence for tasks under partitioned scheduling.

Schedulability analysis for real-time multi-core systems with shared caches. A
schedulability condition is derived by integrating the calculated upper bound on inter-
core cache interference into the schedulability analysis for global scheduling algorithms
(EDF and FP).

We also propose a novel cache interference aware task partition algorithm: CA-
TPAR. We conduct schedulability analysis of CA-TPAR and formally prove the correct-
ness of CA-TPAR.

Evaluation of schedulability performance for global and partitioned schedul-
ing. We perform a range of experiments to investigate how the schedulability of global
(EDF and FP) and partitioned (CA-TPAR) scheduling are degraded by shared cache
interference. We also compare the schedulability performance of EDF, FP scheduling
and CA-TPAR over randomly generated tasksets.

Study of the interaction between hardware prefetching and cache manage-
ment. We study the interaction between hardware prefetching and LLC management
in a real system instead of in a simulator. We evaluate the variation of application

6
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performance when varying the effective LLC space in the presence and absence of
hardware prefetching. We observed that hardware prefetching can compensate the
application performance loss due to the reduced effective cache space. Based on this
observation, we classify applications into two categories, prefetching sensitive (PS)
and non prefetching sensitive (NPS) applications, by the performance benefit they
experience from hardware prefetchers.

A prefetch-aware cache partitioning approach. We propose C'P,, a prefetch-
aware L LC partitioning approach for improving L LC management. C'P, ¢ consists of a
method using Precise Event-Based Sampling (PEBS) techniques for online classification
of PS and N PS applications and a LLC' partitioning scheme using Cache Allocation
technology (CAT) for P.S and N PSS applications. We have implemented the prototype
of C'P,y as a user-level runtime system on Linux.

1.3 Thesis Overview

This thesis is organized in 7 chapters. After a background chapter, we present four
research chapters containing our core contributions plus a concluding chapter:

Chapter 3 answers the research question RQ1. We present SysRT, a generic,
modular and high-level RTOS simulator that is highly suited for early design space
exploration. The simulator contains different types of application models and a modular
RTOS kernel model, all developed in SystemC. Efficient and precise modeling of
preemptive scheduling is achieved via an event-driven simulation approach, allowing
simulations to be performed much faster than cycle-accurate simulations. We compare
SysRT with state-of-art simulators to show the advantage of SysRT in both simulation
speeds and accuracy. We also demonstrate the flexibility of SysRT and its benefits
for early DSE using experiments with a mixed workload executing on multiprocessor
platforms with different numbers of cores.

Chapter 4 addresses the research question RQ2. We develop a new schedulability
analysis for real-time multicore systems with shared caches, globally scheduled by EDF
and FP algorithms. We construct an integer programming formulation, which can be
transformed to an integer linear programming formulation, to calculate an upper bound
on cache interference exhibited by a task within a given execution window. Using the
integer programming formulation, an iterative algorithm is then presented to obtain the
upper bound on cache interference a task may exhibit during one job execution. The
upper bound on cache interference is subsequently integrated into the schedulability
analysis to derive a new schedulability condition. A range of experiments is performed
to investigate how the schedulability is degraded by shared cache interference. We also
evaluate the schedulability performance of EDF against FP scheduling over randomly
generated tasksets.

Chapter 5 answers the research question RQ3. We propose a novel cache interfer-
ence aware task partitioning algorithm, called CA-TPAR. We extended the approach to
calculating the upper bound on cache interference for tasks that are globally scheduled,
presented in the previous chapter, to bound the shared cache interference for tasks
under partitioned scheduling. We conduct schedulability analysis of CA-TPAR and
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formally prove its correctness. A set of experiments is performed to show CA-TPAR
outperforms global EDF scheduling in terms of schedulability performance over the
randomly generated tasksets.

Chapter 6 answers the research question RQ4. We propose CP,, a prefetch aware
LLC partitioning approach for high performance caching. We first study the interaction
between hardware prefetching and LLC cache management by analyzing the variation
of application performance when varying the effective LLC space in the presence and
absence of hardware prefetching. We observe that hardware prefetching can compensate
the application performance loss due to the reduced effective cache space. Motivated by
this observation, we then classify applications into two categories, prefetching sensitive
(PS) and non prefetching sensitive (NPS) applications, by the performance benefit they
experience from hardware prefetchers. After that, we propose CP),¢. CP,,f first classifies
PS and NPS applications at run time and then partitions the LLC among PS and
N PS applications. Finally, we show the system performance improvement achieved
by C'P, s, compared with the baseline configuration, in which the LLC is unpartitioned
and is fully shared among all applications.

Chapter 7 draws the Conclusions. We summarize our main findings and discuss
directions for future research.

1.4 Origins

For each research chapter, we list on which publication(s) it is based, and we briefly
discuss the role of the co-authors.

Chapter 3 is based on J. Xiao, A. D. Pimentel and G. Lipari [109], SysRT:
A modular multiprocessor RTOS simulator for early design space exploration,
proceedings of the 17th International Conference on Embedded Computer Systems:
Architectures,Modeling, and Simulation (SAMOS),2017. 1 am the principal author of
this paper. I proposed the ideas, built the simulator, and was the lead writer of the paper.
All the co-authors contributed to the discussions and paper writing.

Chapter 4 is based on J. Xiao, S. Altmeyer and A. D. Pimentel [108], Schedu-
lability analysis of non-preemptive real-time scheduling for multicore processors
with shared caches, proceedings of IEEE Real-Time Systems Symposium (RTSS), 2017,
and its extension as a journal version: J. Xiao, S. Altmeyer and A. D. Pimentel [110],
Schedulability analysis of global scheduling for multicore systems with shared
caches, submited to IEEE Transactions on Computers. I am the principal author of the
two papers. I proposed the ideas, proved the results, conducted the experiments, and
was the lead writer of the two papers. All the co-authors contributed to the discussions
and paper writing.

Chapter 5 is based on J. Xiao and A. D. Pimentel [46], Partitioned non-preemptive
scheduling for real-time multi-core systems with shared caches, submitted to De-
sign, Automation and Test in Europe Conference 2020 (DATE2020). 1 am the principal
author of this paper. I proposed the ideas, proved the results, conducted the experiments,
and was the lead writer of the paper. All the co-authors contributed to the discussions
and paper writing.

Chapter 6 is based on J. Xiao, A. D. Pimentel and X. Liu [111], CP,;: a prefetch
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aware LLC partitioning approach, proceedings of the International Conference on
Parallel Processing, 2019 (ICPP’19) . I am the principal author of this paper. I proposed
the ideas, conducted the experiments and analyses, and was the lead writer of the paper.
All the co-authors contributed to the discussions and paper writing.

Work on other publications also contributed to the thesis, albeit indirectly. We
mention the following paper:

J. Xiao and G. Buttazzo [107], Adaptive embedded control for a ball and plate
system, proceedings of the 8th International Conference on Adaptive and Self-Adaptive
Systems and Applications, 2016. Buttazzo proposed the project, I did the implementa-
tion, conducted the experiments and analyses, and was the lead writer of the paper. All
the co-authors contributed to the discussions and paper writing.

Paper not related to the thesis but published during the PhD:

* J. Xiao, S. Chiaradonna, F. Di Giandomenico, and A. Pimentel [47], Improv-
ing voltage control in mv smart grids, 2016 IEEE International Conference on
Smart Grid Communications (SmartGridComm).

¢ S. Chiaradonna, F. Di Giandomenico, and J. Xiao [20], Quantification of the
effectiveness of medium voltage control policies in smart grids, proceedings

of the 17th International Symposium on High Assurance Systems Engineering
(HASE), 2016.







Background

In this chapter, we provide the concepts and background needed in later chapters in this
thesis. We start with a brief introduction to computer architecture in Section 2.1, then
we briefly describe the real-time scheduling theory in Section 2.2.

2.1 Computer architecture

We begin with a discussion of relevant computer architecture fundamentals. Given the
breadth of the topic, a comprehensive review of computer architecture is beyond the
scope of this dissertation. Instead, we focus on the parts of a computing platform: multi-
core processors, caches, hardware prefetching and hardware performance monitoring
unit.

2.1.1 Multi-core processors

During the last decades, the performance of uniprocessor systems has been increasing
by several magnitudes. The high performance has been achieved by using a high
processor clock frequency. While Dennard Scaling is seen as now coming to an end, the
resulting inability to increase clock frequencies has fueled the move from uniprocessor
systems to the multi-core processors, which allows to continue to boost the performance
of processors through scaling up the number of cores in a processor. By doing so,
the software architect is able to process in parallel, thereby significantly improving
performance.

In this dissertation, a multi-core processor is considered to be a computer system
with multiple (two or more) central processing units (CPUs) that share full access to a
main memory and peripherals. We do not distinguish between multi-core processors
and multiprocessors, thus multi-core processor is used as a synonym for multiprocessor.

Depending on the memory organization and interconnect, multiprocessors can
be divided into two shared-memory model categories: symmetric shared-memory
multiprocessors (SMPs) and distributed shared memory multiprocessors (DSMs) [41].
In SMPs, the processors share a single centralized memory and a bus is typically used
to interconnect the processors and memory. As all processors have a uniform access
latency to the memory, this type of architectures are also called uniform memory access
(UMA) multiprocessors. By contrast, in DSMs, memory is distributed among the
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processors but forms a single shared address space. A processor can access its local
memory faster than accessing remote memories. Therefore, a DSM multiprocessor
is also referred to as a nonuniform memory access (NUMA) multiprocessor. In this
dissertation, we restrict our focus to SMP architectures.

2.1.2 Processor caches

To hide high off-chip memory latencies, a hierarchy of fast cache memories that contain
recently accessed instructions and data is employed, taking the benefits of the principal
of locality and cost-performance of memory technologies.

The principal of locality is the tendency of programs to access the same set of
instructions or data repetitively over a short period of time. There are two types of
locality: temporal and spatial locality [41].

Temporal locality: if an item is referenced, it tends to be referenced again in the
near future.

Spatial locality: if an item is referenced, items whose addresses are close by tend
to be referenced in the near future.

Temporal and spatial locality in programs arise from natural program structures.
For example, most programs contain loops, instructions and data tend to be accessed
repeatedly, experiencing high degrees of temporal locality. It is also common that
instructions and elements of an array or a record are accessed sequentially, showing a
high amounts of spatial locality.

Cache access. Each access to the cache results in either a cache hit or a cache miss.
Cache hits occur when an application accesses data (or instructions) and finds that data
(or instructions) in the cache. A cache miss happens when accessed data is not present
in the cache.

Cache organization. Data is transferred between memory and cache in blocks
of fixed size, referred to as cache lines. A cache line usually contains multiple data
elements. An access to one data element causes the whole cache line to be loaded into
the cache. As a result, a following access to another element in the same cache line also
results in a cache hit.

Caches are typically organized as a hierarchy of several cache levels. The fastest
and smallest caches are denoted level-1 (L.1) caches, with deeper caches (L2, L3, etc.)
being successively larger but slower. A cache contains either instructions or data, and
can also contain both if it is unified. In multiprocessors, caches can be either private or
shared. Private caches serve only one core. By contrast, shared caches can be accessed
by multiple cores. Usually lower level caches are private while the last level caches are
shared. A typical design of cache hierarchy is shown in Figure 2.1, where each core has
a private L1 and L2 cache and four cores share an L3 cache.

The size of an L1 cache is about several tens of KB and has an access latency of
less than 5 cycles. If a memory access misses in the L1 cache, the L2 cache is queried.
The capacity of L2 caches may range from hundreds of KB to several MB, with an
access latency of around 10 cycles. In some high performance multi-core processors,
an L3 cache with the size of several tens of MB is deployed to further expand cache
capacity. The access latency of an L3 cache ranges from 40 to 80 cycles. Misses in
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Figure 2.1: A typical design of cache hierarchy in a multi-core processor.

the last level cache trigger accesses to the main memory via the off-chip memory bus,
causing a delay in the order of hundreds of cycles.

Cache mapping. Another issue in cache design is to decide where lines should be
stored, i.e. if a cache line is fetched from main memory, where should it be placed? The
answer depends on the cache mapping. At one extreme is a fully associative cache, in
which a newly fetched memory block can be placed at any location in the cache. At the
other extreme is a direct mapped cache, in which each memory block is mapped directly
to exactly one location in the cache. Intermediate schemes are n-way set associative
caches. In these schemes, every cache set has a fixed number of ways, each of which is
a single cache line. The total number of ways within a cache set is called associativity.
To load a memory block, the processor first determines which cache set the block maps
to and then selects one of the n different ways in the cache set for the data placement.

Cache replacement. When a cache miss occurs in a direct-mapped cache, as the
requested memory block can only be loaded to exactly one position, and the block
occupying that position must be replaced. When a memory block can be mapped to
several different locations in a cache like in a fully associative and n-way set associative
cache, it is necessary to decide which cache line should be replaced. In a fully associative
cache, all cache lines are candidates for replacement. In an n-way set associative cache,
a way within the selected cache set has to be chosen for placing the requested block. A
cache replacement policy is responsible for deciding which cache line is replaced when
a cache miss occurs. The most commonly used scheme is least recently used (LRU). In
an LRU scheme, the cache line that has been unused for the longest time will be chosen
for the replacement. First In First Out (FIFO), and Pseudo-LRU (PLRU) are alternative
cache replacement algorithms currently used by multi-core processors.

Three C’s model. Cache misses are classified into one of three categories in the
three C’s model, by the source of misses in a cache [43]:

» Compulsory misses: these are cache misses caused by the first access to a memory
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block that has never been brought into the cache.

* Capacity misses: these are cache misses caused when the cache cannot contain
all the memory blocks accessed by a program. Capacity misses occur because of
blocks being replaced in the cache and later on requested again by the CPU.

* Conflict misses: these are cache misses that occur when multiple memory blocks
map to and compete for the same cache set. These cache misses are also called
collision misses.

A special Cache: TLB. Processors with virtual memory using memory manage-
ment units (MMU) usually have a translation look-aside buffer (TLB) [64]. A MMU
translates virtual memory addresses into physical memory addresses. Since performing
such a translation is relatively slow, the TLB, a special address translation cache, is
deployed to store previously resolved virtual-to-physical address mappings. Thanks
to the principle of locality (if the accesses have locality, the address translations for
the accesses will also have locality), the TLB ensures that the MMU does not have to
perform a translation on every memory reference.

2.1.3 Shared cache interference

When multiple applications run concurrently on a multi-core processor, they compete
among each other for cache space. The execution time of a task in a multi-core processor
can be affected by two types of cache interference: intra-core cache interference and
inter-core cache interference.

Intra-core cache interference intra-core interference occurs within a core, specifi-
cally, when a task is preempted and its data is evicted from the cache by the preempting
tasks. As a result, the preempted task may experience an extra execution delay due to the
increased data access time as soon as it is rescheduled. The severity of the experienced
delay depends on the particular cache replacement policy, the length of the preemption
and the data access pattern of the preempting task [49, 74].

Inter-core cache interference inter-core interference may happen when tasks ex-
ecuting on different cores access the shared cache simultaneously [49]. If data in the
different addressing spaces of the running tasks are loaded to the same cache line,
memory (i.e. cache) accesses from different tasks can evict each other in cache, leading
to complex timing interactions. Since this type of interference is suffered from tasks
that run in parallel, an exact analysis requires analyzing all the possible interleavings of
task executions, which is intractable. Therefore, it is extremely difficult to integrate the
inter-core interference into a static timing analysis framework.

2.1.4 Cache Partitioning

Cache partitioning, i.e., dividing cache space between applications (or cores), is a
promising approach to mitigate the negative impact of cache sharing. Cache partitioning
has been widely used to improve system performance, fairness and QoS (quality-of-
service) guarantees. We now present three common techniques (hardware, software and
hybrid techniques) for partitioning shared caches in multi-core processors.
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Hardware Techniques. Hardware techniques modify the cache to support parti-
tioning. Way-partitioning [3, 21, 76], the most common technique, restricts insertions
from each partition to its assigned subset of ways. However, simple, way-partitioning
has significant limitations: it supports only coarsely-sized partitions, which is multiples
of the way size, and the number of partitions is proportional to the number of ways.
Prior work has proposed alternative hardware cache partition techniques. For example,
in [12, 72, 96], the cache is partitioned by sets instead of ways by configuring the
indexing function. [63, 77, 97, 102, 112] modify the cache insertion and replacement
policies.

Software Techniques. The most common software-based cache partitioning tech-
nique is page coloring[94]. Page coloring exploits the virtual to physical page address
translations present in virtual memory systems at OS-level. Each partition is allowed to
use its own assigned physical pages that are mapped to specific cache sets. By restricting
the physical pages used by each partition, the overlap of cache spaces can be avoided.
Page coloring has the advantage of no need for hardware support and does not sacrifice
associativity. However, it has several drawbacks. First, page coloring requires heavy
modifications to the OS’s virtual memory subsystem and precludes the use of other
beneficial features, such as superpages. Second, partitions are coarsely sized, which is
in multiples of page size X cache ways, resulting in a limited number of partitions. Third,
repartitioning incurs large overheads due to the costly process of recoloring memory
pages.

Hybrid Techniques. As a hybrid cache partition technique, SWAP [98] combines
both set- and way-partitioning to achieve finer-granularity partitions. By cooperatively
managing cache ways and sets, SWAP can successfully provide hundreds of fine-grained
cache partitions for the manycore era. SWAP requires no additional hardware beyond
way partitioning. In fact, SWAP is readily implemented in existing commercial servers
whose processors provide support for hardware way-partitioning. However, SWAP
leverages page coloring, thus inherits the limitations of page coloring.

2.1.5 Cache Allocation technology

Recent Intel processors have proposed the so-called cache allocation technology (CAT),
as hardware support for Way-partitioning [42]. CAT provides software-programmable
control over the amount of cache space that can be used by a given application.

Processors that support CAT have a predefined number of classes of service (CLOS),
for example, 11 in the Intel Xeon Gold 6148 processor and 20 in the Intel Xeon ES
2658 processor. Each CLOS is associated with a capacity bit mask (CBM) that controls
the accessibility of cache lines at cache-way granularity. Each bit CBM grants write
access to the corresponding way in the cache set. Cores (or threads) can be configured
to belong to a CLOS. CBMs can overlap at some cache ways, which means that parts
of cache ways can be shared by different CLOSs. One requirement of configuring a
CBM is that all the bits set in a CBM must be consecutive, i.e. a CLOS uses consecutive
cache ways in the cache. Each application is assigned a CLOS and an application can
only access the cache ways defined by the CBM for that CLOS.

One can use Intel-cat—-cmt, which is a library [24] developed by Intel, to
configure CAT. By default, all cores (and applications) are grouped into to CLOS #0.
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Figure 2.2 shows an example of a possible cache partitioning scheme. Each of the
four possible classes of service (CLOS #0 to CLOS #3) has assigned a subset of the 20
ways of the LL.C, and each core is mapped to a CLOS. Each CLOS is identified by a
color which marks both the applications that belong to the CLOS and the cache ways
they can access. For instance, core 0 is assigned to CLOS #0 and core 1 to CLOS #1.
Note that all the CBMs are contiguous and core 1 and core 2 share cache ways 10 and
11.
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Figure 2.2: An cache partitioning scheme using cache allocation technology.

2.1.6 Hardware prefetching

Hardware prefetching is another optimization technique that is commonly employed to
reduce the observed memory access time and the performance gap between processors
and memory. Prefetching predicts the memory addresses a program will access in
the near future and issues memory requests to those addresses in advance of explicit
accesses. By doing so, prefetching can hide the latency of a memory access since the
processor either does not experience a cache miss for that data access or incurs a cache
miss that is satisfied before the processor needs that data. There have been a myriad
of proposed prefetching techniques, and nearly every modern processor includes some
hardware prefetching mechanisms targeting simple and regular memory access patterns.

For example, there are five distinct hardware prefetchers on Intel Xeon platforms.
Two prefetchers are associated with the L1-data caches: a Data Cache Unit (DCU) IP
prefetcher and a DCU streamer prefetcher per core. The DCU IP prefetcher keeps track
of individual load instructions. It uses sequential load history to determine whether to
prefetch additional lines. The DCU streamer prefetcher is triggered accesses to very
recently loaded data. It fetches the next cache line into L1-D cache.

Two prefetchers are associated with the L2 caches: a Mid-Level Cache (MLC)
spatial prefetcher and a MLC streaming prefetcher. The spatial prefetcher strives to
complete every cache line fetched to the L2 cache with the pair line that comprises a
128-byte aligned chunk. The streamer prefetcher monitors read requests from the L1

16



2.1. Computer architecture

cache for ascending (and descending) sequences of addresses. Monitored read requests
include L1 data cache requests initiated by load and store operations, and L1 instruction
cache requests for fetching code. When a forward or backward stream of requests is
detected, the anticipated cache lines are prefetched into the L2 cache. Prefetched cache
lines must be in the same 4K virtual memory page.

Xeon processors support a special L2 streaming prefetcher, which prefetches data
only into the L3. It is also known as LLC prefetch (or L3 prefetch) though it is still
initiated by L2.

We can activate or deactivate these hardware prefetchers by setting the corresponding
machine state register (MSR) bits [25].

2.1.7 Hardware PMU

To provide realtime micro-architectural information about the processes currently ex-
ecuting on the chip, a rich set of Hardware Performance Monitoring Units (PMUSs)
is implemented in today’s processor micro-architectures. PMUSs are a set of special-
purpose registers to store the counts of hardware-related activities within computer
systems such as cpu cycles, instructions executed, cache statistics, etc. PMUs also sup-
port advanced event sampling, a mechanism that collects event samples at a predefined
sampling period. The event based sampling is realized by Intel’s Precise Event-Based
Sampling (PEBS) [36] and AMD’s Instruction Based Sampling (IBS) [28].

To use the PEBS mechanism, a counter is configured to overflow after it has counted
a preset number of events. After the counter overflows, the processor copies the current
state of the general-purpose registers and instruction pointer in the records buffer. The
processor then resets the performance counters and restarts the event counter.

As illustrated in Figure 2.3, the event MEM_LOAD_UOPS_RETIRED:L3_MISS is
configured to drive PMU sampling. It precisely monitors cache misses at the LLC'. If
the sampling period is set to n, the PMU samples one data address that causes an LLC'
miss every n LLC misses.

M
Rty —{ Al0)0] [AILIO] | ... (Aol [ Ao [ ARIO | o [Als)io] —
gggz; L3 Miss| L2hit| - | L1Hit | L3 Miss| L2Hit | o L3 Miss|
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Event ) AlOIO] ... : : A[1](0] : A[5][0]
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Figure 2.3: PMU data address sampling.

Linux’ perf_event is a standard programming interface to set up performance
monitoring through PMUs. More specifically, perf_event_open [27] can set the
PMUs in sampling mode, and the overflow event can be enabled via ioctl () calls.
The Linux kernel can deliver a signal to the threads whose PMU event counter overflows.
The user code can mmap a circular buffer into which the kernel keeps appending the
PMU data on each sample. The user can also read those circular buffers.
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2.2 Real-time systems

Some embedded systems