IONS On
Yang Hu

Cloud Infrastructure

—TOOTrFrTrOOFrmrmrOTr 0000~ T OO~ OO+ 0O
OO0 00O ~TO T OO~ 0O0OT

IcCat

~Or-Ov+rOr

OO+ v+
11111 OrOrOrOTrO™Or

—TOOTrF~TOOFTFrrOrmrmrmrOr-rOT+-O0O0O0000O0

- —T O+~ O+~ O0OO0OO0OT+~O0O -—Or-~OOOO
OO0+ cor
~—Or-rOr+rO0OO0OOT
] =]
OO+ TOr
Or-Orr+oOo
OO0+~ OO0O
~~OOT+TOrr+rr v+ r O0OO0OO0O0OTrOrr-r+~Or-Or

Or~O+rv+vr+TO
—TOO T~ OO0OO0OO0O0O0OTr0O0000O0OTT0OO0OO0O0O0O T+

-Cr

37

Resource Scheduling for
ical Appl

Qual

Resource Scheduling for Quality-Critical Applications on Cloud Infrastructure Yang Hu

Resource Scheduling for
Quality-Critical Applications on
Cloud Infrastructure

Yang Hu

BE,

&

”,
rtorarers®

The research received funding from China Scholarship Council.

0 H g

ey 59

This research was also supported by the European projects of Horizon 2020
Programme under grant agreement No. 643963 (SWITCH), No. 825134
(ARTICONF), No. 654182 (ENVRIPLUS), No. 824068 (ENVRIFAIR), and
No. 676247 (VRE4EIC).

= WEE
§8 ArTICONF agee C o
SWITCH ENVRI ENVR] ane

The author also would like to thank ExoGENI and DAS5 for providing testbeds
to conduct the experiments.

0 DAS 3.

€xoGENI

Copyright © 2019 by Yang Hu

Cover design by Ludan Tan

Printed and bound by Ipskamp Printing, Enschede
ISBN: 978-94-028-1713-3

Resource Scheduling for
Quality-Critical Applications on
Cloud Infrastructure

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in
de Agnietenkapel
op woensdag 23 oktober 2019, te 12:00 uur

door
Yang Hu

geboren te Hunan

Promotiecommissie

Promotor:
Prof. dr. ir. C.T.A.M. de Laat
Co-promotor:
Dr. Z. Zhao
Overige leden:
Prof. dr. ir. A. Tosup
Prof. dr. R. Prodan
Prof. dr. R.V. van Nieuwpoort
Prof. dr. P.W. Adriaans
Dr. A.S.Z. Belloum
Prof. dr. D. Li

Universiteit van Amsterdam
Universiteit van Amsterdam

Vrij Universiteit Amsterdam

University of Klagenfurt

Universiteit van Amsterdam

Universiteit van Amsterdam

Universiteit van Amsterdam

National University of Defense Technology

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The words of truth are always paradoxical.

Laozi

1 Introduction

1.1
1.2

1.3
14

1.5
1.6

2.1
2.2
2.3

2.4

2.5
2.6

3.1
3.2

3.3
3.4

3.5

Motivation
Virtualization and Cloud Computing . . .
1.2.1 Virtual Machine
1.2.2 Container
Container Orchestration System

Contents

Quality-Critical Requirements and Cloud Applications

1.4.1 Quality-Critical Requirements . . .
1.4.2 Cloud Applications
Research Questions
Contributions and Thesis Outline

Deadline-aware Deployment for Time Critical Applications
Introduction
Problem Statement
Deadline-aware Deployment System . . .
2.3.1 Design Principles
2.3.2 Scheduling Algorithm
Evaluation.
2.4.1 Repository Evaluation
2.4.2 Testbed Experiments
2.4.3 Large-scale Simulations
Related Work
Conclusion

Enhancing Scheduling for Concurrent Container Requests
Introduction oL
Problem Formulation
3.2.1 Model Description
3.2.2 Deployment Requirements
Minimum Cost Flow Problem
ECSched Approach
3.4.1 Flow Network Structure

3.4.2 Encoding Deployment Requirements

3.4.3 MCFP Algorithms
3.4.4 Implemention
Evaluation.
3.5.1 Experimental Setup

3.5.2 Comparison of Container Performance

3.5.3 Comparison of Resource Efficiency

13
13
15
17
17
19
21
21
22
24
26
27

29
29
32
32
33
34
36
36
37
41
42
43
43
44
45

CONTENTS

3.5.4 Impact of Concurrent Scheduling
3.5.5 Overhead Evaluation
3.6 Related Work
3.7 Conclusion

Optimizing Placement for Service-based Applications
4.1 Introduction

4.2 Problem Formulation 00
4.2.1 Model Description,
4.2.2 Objective

4.3 Minimum K-Cut Problem

4.4 Placement Algorithm L0
4.4.1 Application Partition,
4.4.2 Heuristic Packing00
4.4.3 Placement Finding

4.5 Evaluation.
4.5.1 Experimental Methodology
4.5.2 Comparison with Baselines
4.5.3 Impact of Threshold v
4.5.4 Overhead Evaluation

4.6 Related Work oo

4.7 Conclusion

Learning Scheduling Policies for DAG jobs

5.1 Imtroduction. oo
5.2 Problem Formulation
5.2.1 Model Description
5.2.2 Objective
5.3 Deep Reinforcement Learning
5.3.1 Reinforcement Learning
5.3.2 Value Functions
5.3.3 Actor-Critic Method
54 GoTask Approach
54.1 Design Lo

5.4.2 Task Selection with Deep Reinforcement Learning
5.4.3 Machine Selection with Deep Reinforcement Learning

5.4.4 Training Algorithm
5.5 Evaluation.
5.5.1 Implementation L.
5.5.2 Experimental Methodology
5.5.3 Experimental Results
5.6 Discussion L e

vi

CONTENTS

5.7 Related work 95
5.8 Conclusion 96
6 Conclusion and Future Work 97
6.1 Conclusion 98
6.2 Future Work 100
Bibliography 103
Summary 111
Samenvatting 113
Publications 115
Acknowledgements 119

vii

Introduction

1.1 Motivation

As a major disruptive technology in the last decade, cloud computing enables
an organization to effectively outsource its IT resource management to a third
party at any level between application software and underlying infrastructure.
The virtualized, elastic, and on-demand resource-as-a-service offered by the
cloud have made a great impact on applications in both industry and academia.
Instead of provisioning the maximum capacities in advance, cloud environments
allow applications to start from the small and increase resources when the
resource demand rises [153]. According to the state of the cloud report of
RightScale in 2019!, 79% of companies’ workloads nowadays are in cloud
environments. The cloud market is poised to grow by around 27.5% and
expected to reach $1,250 billion by 20252.

The cloud virtualization technologies allow software developers to encap-
sulate software systems with their runtime system contexts as self-contained
virtual machines or containers, which can significantly improve the efficiency of
delivering software products to customers and reduce the cost of application
deployment. Thus, the software components, especially for data-intensive
and computing-intensive applications, can be flexibly scaled across distributed
cloud environments in an elastic way. Due to these advantages, cloud
computing has been widely used in various fields, e.g., enhancing the computing
capacity of robotics [140], storing and streaming virtual and augmented reality
(VR/AR) content [74], and accelerating machine learning and data mining [100].
Furthermore, the applications with high-performance requirements or critical
timeliness constraints also start to migrate to clouds. Typical examples like
disaster early warning, business collaborating or live event broadcasting are

Lhttps://www.rightscale.com /lp/state-of-the-cloud
2https://www.researchandmarkets.com /reports,/4039738 /global-cloud-computing-market-
analysis-and-trends

1. Introduction

highlighted in the EU H2020 SWITCH project?.

Moreover, cloud computing has also generated a significant impact on the
software lifecycle. By automating the pipeline of software testing, integration,
and deployment, cloud infrastructure potentially enables software development
and operations (DevOps) to be seamlessly integrated. In this way, online
applications or services can be continuously operated and accessible.

Besides the benefits that cloud computing as we can see above brings to
the applications and software DevOps, we also have to face the challenges of
achieving the desired Quality of Service (QoS) or Quality of Experience (QoE)
required by cloud applications. For instance, in the environment and earth
observations, near-realtime data has to be processed within a specific time
window in order to be useful by a certain modeling framework. The response
time of sensor data processing jobs is crucial for the cloud infrastructure to
serve their user communities, as indicated in the EU H2020 ENVRIPLUS?,
ENVRI-FAIR? and VRE4EIC® projects. Such kind of cloud applications
typically involve distributed and parallel components (e.g., geo-distributed
sensors) to handle massive and complex tasks in acquiring and processing data.
Depending on their performance characteristics, the application components
often require specific resource configurations (e.g., a combination of CPU,
memory, and storage) from the underlying cloud infrastructure to be running
properly. Moreover, application-specific properties, such as network traffic
among collaborative services and dependency of batch tasks, also require
careful treatment by cloud resource schedulers for achieving the desired system
performance. When the scale of cloud applications and the complexity of cloud
infrastructure grow, as we can see from the use cases of the Internet of Things
(IoT) and social applications in the EU H2020 ARTICONF project”, effective
cloud resource scheduling mechanisms become extremely important.

To efficiently schedule cloud resources, recent work has explored various
directions. Google’s Borg system [139] is a cluster manager that schedules tasks
based on a scoring model across heterogeneous resources, which tries to reduce
the amount of stranded resources. Microsoft’s Apollo system [40], employing a
distributed and loosely coordinated framework, schedules a task on the machine
with the earliest estimated completion time. Alibaba’s Fuxi [154] system, a
resource management and job scheduling system, tries to schedule a task on the
machine which meets both the multi-resource demands and the application’s
locality requirements. Fairness is another essential aspect in allocating multiple
types of resources to users with heterogeneous demands [60, 143, 144]. For the
scheduling speed, distributed schedulers [113] and hybrid schedulers [48, 84]

3EU H2020 SWITCH: https://www.switchproject.eu

4EU H2020 ENVRIPLUS: https://www.envriplus.eu

SEU H2020 ENVRI-FAIR: https://www.envri.eu/envri-fair
SEU H2020 VRE4EIC: https://www.vredeic.eu

"EU H2020 ARTICONF: https://www.articonf.eu

1.2. Virtualization and Cloud Computing

have been proposed to schedule massive and diverse workloads on large-scale
clusters efficiently. For the scheduling quality, resource efficiency [67, 31] and
application performance [117, 68] are the two main factors considered when
designing a scheduler.

While many research efforts have been devoted to the cloud resource
scheduling problems, a number of important research questions still remain,
particularly for the applications with quality-critical requirements. As cloud
can provide elastic and on-demand computing resources for applications to
handle rapidly changing requirements, many time-critical applications tend
to be deployed in clouds [156]. However, support for deploying complex and
distributed applications with critical time constraints is lacking in current cloud
computing platforms. As the adoption of cloud services increases and the scale
of cloud applications grows, modern cloud platforms have to deal with a large
number of application requests. In many cases, they are concurrent requests
at the same time. It becomes more challenging when those concurrent tasks
have high performance requirements and diverse resource requirements on the
cluster with heterogeneous machines. Furthermore, besides the performance
and resource requirements, schedulers have to consider different application-
specific properties, such as traffic demands between collaborative services and
dependency constraints of batch tasks, in scheduling decisions for being able to
handle diverse cloud applications.

We are thus motivated to tackle these scheduling challenges for handling
the increasingly growing complexity in both cloud applications and cloud
infrastructure. We formulate our main research question as:

RQ: How can we efficiently schedule resources to satisfy quality-
critical requirements of diverse applications on cloud infrastructure?

1.2 Virtualization and Cloud Computing

The virtualization technologies provide the ability to partition a computer
system as multiple isolated spaces at a specific level (e.g., hardware level,
or operating system level). It essentially enables effective resource isolation,
flexible resource management, and on-demand resource provisioning. Based on
virtualization, cloud computing is able to deliver software, computing capacity,
data storage, and other types of resources, to remote users via three typical
service models [103]: Infrastructure as a service (IaaS), Platform as a service
(PaaS) and Software as a service (SaaS).

1. Introduction

ror | [z |[ows
‘ Bin/Lib H Bin/Lib H Bin/Lib ‘ ‘ App 1 H App 2 H App 3 ‘
‘ Bin/Lib H Bin/Lib H Bin/Lib ‘
Guest Guest Guest
(o] oS oS . .
‘ Container Engine ‘
‘ Hypervisor ‘ ‘ Operating System ‘
Infrastructure Infrastructure
Virtual Machines Containers

Figure 1.1: Comparison of the architecture between virtual machine and
container

1.2.1 Virtual Machine

Virtual machine (VM) is one of the most important virtualization technologies
for cloud computing. In IaaS model, cloud providers mainly rely on virtual
machine technologies to provide virtual infrastructure to users. A virtual
machine is an emulation of a computer system, which is backed by the physical
resources of the underlying infrastructure. Figure 1.1 shows the architecture of
virtual machines. Each virtual machine runs its own guest operating system
(OS) and applications on top of the hypervisor. A hypervisor is a hardware
virtualization technique that creates and runs virtual machines on the physical
machines, which expands the hardware capability to do more simultaneous work,
improves the security for each independent instance, and enhances the ability
to run OS-dependent applications. The most commonly adopted hypervisor
technologies in clouds are KVM [10], XEN [35] and VMware ESXi [18]. To
efficiently configure and schedule virtual machines on a computer cluster, several
management platforms, such as OpenStack [15] and OpenNebula [107], are
leveraged in clouds.

1.2.2 Container

Compared to virtual machine, container is a lightweight virtualization tech-
nology for running software in isolated and portable virtual environments.
Figure 1.1 shows the difference of the architecture between virtual machine
and container. Container technology leverages OS-level virtualization to create
virtual environments. Unlike hardware virtualization, OS-level virtualization
partitions the operating system by using system kernel features. For instance,

4

1.3. Container Orchestration System

namespaces [14] are one feature of the Linux kernel, which are used to provide
the isolation environment for containers. Every aspect of a container that
runs in a namespace can only see or use the resources in the same namespace.
Another example is cgroups [4], which provides resource limitation for different
containers. Depending on the OS-level virtualization, the containers that are
running on the same machine share the host operating system kernel and can
only contain the necessary libraries and binaries in their virtual environments.

Container engine is a software that helps users to build and containerize ap-
plications. There are many competing container engines including Docker [105],
CoreOS rkt [16], Mesos Containerizer [12]. Docker has attracted the most
attention and achieved great success recently. One of the main reasons for the
success is that Docker provides an efficient way to package up an application
with all its dependencies as a Docker image, which is widely adopted by many
companies and tends to be the standard container image to deliver containerized
applications. Therefore, the applications can be assured to run on any machine
without considering the customized settings and dependent libraries. It thus
makes it easier to migrate local applications to clouds.

As containers are emerging as a key technology for encapsulating appli-
cations and managing tasks in cloud computing, we assume all application
components are containerized, and the cloud infrastructure is configured to
support container deployment in our thesis. Although we conduct the research
based on the containerized applications, we believe that the proposed solutions
of our work can be easily extended to apply to other common resource scheduling
problems in clouds.

1.3 Container Orchestration System

Efficiently managing and scheduling containerized applications on a computer
cluster requires flexible and sophisticated systems. The container orchestration
system, such as Docker Swarm [17] and Google Kubernetes [9], is commonly
adopted to coordinate the placement and deployment of containers among
multiple host machines. In this section, we first introduce the typical
architecture of the container orchestration system, as shown in Figure 1.2, that
we empirically used to build our work on.

For a common container orchestration system, there are two kinds of nodes:
master node and worker node. The master node manages the overall state of
the cluster, which includes handling requests from users, running a control loop
that watches the state of the cluster and makes changes to move the current
state towards the desired state, and scheduling the requested containers. The
worker nodes manage and execute containers on a machine as dictated by the
scheduling decisions from master nodes. In order to run applications on the

1. Introduction

Master Node

. ‘ | API Server |
| .
| Controller | Container Image

‘- Registry

Users | Scheduler |

ree T == === -
' ' :
| \ A

Worker Node Worker Node Worker Node

| Node | Container| Node Container Node Container
Agent Engine Agent Engine Agent Engine

Container

Container

Container

Container

Container

—_———— e —— -
—_———— e —— -
—_———— e —— -

Container

Figure 1.2: The typical architecture of the container orchestration system

cluster, users have to first upload their container images (a package of the
applications) to the worker nodes or the container image registry, such as Docker
Hub [19] and Google Container Registry [7]. A worker node would fetch the
container image from the registry if it does not have the image of the container
which is scheduled to run on it. When a user submits a deployment request to
the master node, the API server receives the request and puts it into a queue.
The scheduler continuously fetches a request from the queue and assigns the
requested container to a worker node according to its scheduling strategies. The
corresponding worker node receives the scheduling decision via the node agent
and starts executing the requested container. At the runtime, the controller
watches the state of the cluster. If some containers fail, it tries to restart or
recreate the failed containers for maintaining the desired state.

In this thesis, we mainly focus on the scheduler, where we strive to place
containers on the best possible machines. In general, a high-quality scheduling
solution should consider following properties:

e Application performance is the primary requirement of users. To
ensure the desired application performance, a scheduling solution has
to meet different types of requirements. Multi-resource demand of the
application, such as CPU and memory demand, is the fundamental
requirement that has to be satisfied. Service-level agreements (SLAs)
define the level of service users expect from the cloud provider. Thus,
SLAs (e.g., deadlines) should be guaranteed for the cloud applications.

1.4. Quality-Critical Requirements and Cloud Applications

Moreover, application-specific properties also need to be well dealt with
for effectively handling different applications.

e Resource efficiency is another essential aspect of the scheduling quality.
Most computer clusters in cloud operate at very low resource utilization
which greatly reduces cost-effectiveness ratio [36, 119]. This is the case
even for the clusters that use resource management frameworks to enable
cluster sharing across different applications. For instance, according to the
analysis of two production cluster traces: Google Cluster [8] and Alibaba
Cluster [1], only around half of the CPU and memory are utilized [123].
Therefore, the scheduler should be designed to improve the resource
efficiency of computer clusters.

e Scheduling time indicates how fast a scheduler can generate a scheduling
solution for the application. The scheduling time is critical for time-critical
requests and low-latency interactive data processing, which are sensitive
to the scheduling delay. Especially, when a large number of requests arrive
simultaneously, the scheduling time would have a more severe impact on
the overall performance.

e Scalability is defined as the ability of a scheduler to handle user requests
for large-scale clusters. The scale of a modern cluster can range from
several thousand machines to ten thousand or several hundred thousand
machines because of a large number of applications simultaneously
running in the system [139]. Hence, a scheduling solution with good
scalability is quite necessary.

1.4 Quality-Critical Requirements and Cloud Applications

Quality-critical cloud applications refer to the cloud applications with quality-
critical requirements. These applications typically demand a high standard
of QoS (e.g., emergency response time of disaster early warning systems) or
QoE (e.g., smooth delivery of ultra-high definition audio and video for live
events) [156] to achieve their expected business value and outstanding social
impact.

1.4.1 Quality-Critical Requirements

Quality-critical requirements are the requirements that the cloud system has to
satisfy to achieve the desired application performance. Resource requirements,
such as CPU demand and memory demand, are the fundamental requirements
of the applications deployed in clouds, which have to be met by the underlying
infrastructure for running the applications properly. Time constraints are

7

1. Introduction

one of the most important quality requirements needed to achieve expected
business value, particularly for the time critical applications. The common
form of the time constraints is a deadline which is a time before which a
particular task of the application must be finished or a particular request must
be done. For instance, a cloud disaster early warning system has to report
the emergent event within a certain time period to save lives and property in
case of disaster [161]. Another important quality requirements are the speed
requirements, which are specified to minimize the completion time (i.e., the
sooner, the better). For instance, a stream processing platform needs to process
the data streams as soon as possible to achieve high throughput. Besides,
several other essential requirements are also imposed on the cloud platforms for
maintaining high-quality performance, such as network traffic requirements and
robustness requirements.

1.4.2 Cloud Applications

In this thesis, we generally classify cloud applications into two categories:
Service-based Application and Batch Job.

Service-based Application

Service-based applications are the applications that are composed by a number
of services made available over networks to offer diverse and flexible function-
alities. A service is typically a long running or constantly running program. At
runtime, a service is waiting for requests. When a request arrives, the service
processes the request and gives a response. As the microservice architecture is
emerging as a main architectural style choice in the service oriented software
industry [27, 131], many developers are trying to divide a traditional monolithic
system into small and modular services that work cohesively to provide the
business function. Each service can run in its own process and communicates
with other services through communication protocols, such as HTTP and TCP.
For instance, an online shopping application could be basically divided into
product service, cart service and order service. The microservice architecture is
becoming increasingly popular because it can greatly improve the productivity,
agility, scalability, and resilience of the application. However, it also brings
challenges. When deploying a service-based application in clouds, the scheduler
has to carefully schedule each service, which may have diverse resource demand,
on distributed compute clusters. Furthermore, the network communication
between different services needs to be handled well, as the communication
conditions significantly influence the quality of service, especially the response
time of service.

1.5. Research Questions

Batch Job

A batch job is a set of tasks processed in batch mode. A typical example of batch
jobs is a data processing job which consists of a number of tasks that convert
raw data to meaningful and usable form. A batch job usually can be modeled as
a Directed-Acyclic Graph (DAG), where each vertex represents a task and edges
encode precedence constraints. A task in a DAG relies on the outputs of the
precedent tasks and cannot be started until all its required inputs are in place.
Big data processing frameworks, such as Apache Hadoop [20], Apache Tez [120]
and Apache Spark [152], and distributed scientific application frameworks [47]
are developed to compile user scripts into DAG jobs. For a DAG job, the job
completion time (the difference between the job arrival time and the completion
time of the last task) is the main concern of users. To efficiently schedule batch
jobs, the schedule has to ensure that independent tasks run in parallel as many
as possible, and no tasks that are ready to run are blocked if there are available
resources. However, existing cluster schedulers ignore this challenge. They fetch
tasks as soon as the tasks become ready and schedule them in an arbitrary order
without considering the job characteristic.

1.5 Research Questions

As mentioned in section 1.1, our main goal is to efficiently schedule re-
sources to satisfy quality-critical requirements of diverse applications on
cloud infrastructure. Different resource scheduling strategies lead to different
application performance and resource efficiency on cloud infrastructure. In this
thesis, we investigate application-centric scheduling approaches to improve the
performance of diverse cloud applications. Specifically, we address the following
research questions.

RQ1: How can we effectively deploy distributed applications with
critical time constraints in clouds? Time critical applications tend to be
deployed in clouds due to the rapid elasticity of cloud resources. A common
deployment procedure is to transmit application packages from the application
provider to the cloud and install the application there. Thus, users need to
manually deploy their applications into clouds step by step with no guarantee
for deployment time. Therefore, we first investigate scheduling mechanisms for
meeting the deployment deadlines of time critical applications in clouds. This
is also very important for adaptive applications that must automatically and
seamlessly scale, migrate, or recover swiftly from failures.

RQ2: How can we efficiently handle concurrent container requests
with multi-resource constraints on heterogeneous clusters? As more
and more applications move to cloud computing, modern cloud platforms have

1. Introduction

to handle a large number of concurrent container requests at the same time.
However, existing queue-based container schedulers have crucial limitations
to achieve high-quality schedules for concurrent requests, because they lack
a global view on the waiting containers. For instance, a queue-based scheduler
makes a decision early for a requested container (to be placed on a machine),
which would restrict its choices for other waiting containers. The requested
applications are often constrained by multiple resources, such as database
applications that are compute-intensive and network-intensive. —Moreover,
the underlying cluster may consist of heterogeneous machines to support
different applications. Therefore, it is essential to investigate scheduling
approaches for efficiently handling concurrent container requests with multi-
resource constraints on heterogeneous clusters.

RQ3: How can we optimize the placement of service-based appli-
cations in clouds? As microservice architecture is becoming more popular
than ever, developers intend to transform traditional monolithic applications
into service-based applications. To deploy a service-based application in clouds,
besides the resource demands of each service, the traffic demands between
collaborative services are crucial for the overall performance. Poor handling
of the traffic demands can result in severe performance degradation, such
as high response time and jitter. However, current cluster schedulers fail
to place services at the best possible machine, since they only consider the
resource constraints but ignore the traffic demands between services. In order
to guarantee a desired performance, the cluster scheduler has to place each
service with respect to service traffic demands carefully.

RQ4: How can we learn scheduling policies of DAG jobs with deep
reinforcement learning on multi-resource clusters? DAG scheduling
problems are pervasive in data-parallel clusters [68]. Efficiently scheduling DAG
jobs on multi-resource clusters requires intricate algorithms, since the scheduler
has to consider all the characteristics of the cluster and the DAG job, such
as the cluster resource utilization, task resource demands (e.g., CPU, memory,
network, etc.), task duration and inter-task dependencies, to make scheduling
decisions. That is algorithmically hard. Due to recent advances in deep
learning, applying deep neural networks in reinforcement learning can make
it possible to deal with more complex problems which have high-dimensional
states or actions [108, 126]. This breakthrough of deep reinforcement learning
also provides a promising technique for dealing with DAG scheduling. Thus,
we decided to investigate how to apply deep reinforcement learning to the
scheduling problem of DAG jobs on multi-resource clusters.

10

1.6. Contributions and Thesis Qutline

1.6 Contributions and Thesis Outline

This thesis consists of 6 chapters. All the research questions are addressed in
Chapter 2 through Chapter 5, respectively. The contributions of this thesis are
listed below.

e Deadline-aware Deployment for Time Critical Applications (Chap-
ter 2) To address research question RQ1, we propose a Deadline-aware
Deployment System (DDS)® for time critical applications in clouds.
DDS enables users to automatically deploy time critical applications and
provide scheduling mechanisms to guarantee deployment deadlines. To
be deadline-aware, DDS schedules deployment requests based on Earliest
Deadline First (EDF) which is an effective real-time scheduling algorithm
to minimize the number of missed deadlines. Furthermore, we design a
bandwidth-aware approach to facilitate parallel transmission of multiple
application packages and improve the utilization of network bandwidth.

e Enhancing Scheduling for Concurrent Container Requests (Chap-
ter 3) To address research question RQ2, we propose an Enhanced
Container Scheduler (ECSched)? for efficiently scheduling concurrent con-
tainer requests with multi-resource constraints on heterogeneous clusters.
To handle concurrent requests, we formulate the container scheduling
problem as a minimum-cost flow problem (MCFP) and represent the
container requirements using a specific graph data structure (flow net-
work). In the flow network, we propose a novel approach to encode the
multi-resource demands and affinity requirements of requested containers.
By analyzing the properties of different classical MCFP algorithms, we
choose an appropriate variant of the successive shortest path algorithms
implemented in ECSched. At each scheduling event, ECSched first
constructs a flow network based on a batch of concurrent requests and
then performs the MCFP algorithm to schedule the batch of concurrent
requests at the same time. In the experiments, we evaluate the container
performance, resource efficiency, and scheduling overhead of ECSched with
workloads derived from production workload traces.

e Optimizing Placement for Service-based Applications (Chap-
ter 4) To address research question RQ3, we propose a new approach
to optimize the placement of service-based applications in clouds. Con-
sidering the traffic demands among services, we aim to find a placement
solution to minimize the overall traffic between the services that are
placed on different machines (i.e., minimize inter-machine traffic), while

8https://github.com/huyang1022/Deployment-Agent
9https://github.com/huyang1022/ECSched

11

1. Introduction

satisfying multi-resource demands of services. To address this problem,
first, we partition a requested application into several parts while keeping
overall traffic between different parts to a minimum. Meanwhile, we
introduce a resource demand threshold to determine how many parts the
application is partitioned into. Second, we try to pack all the parts of
the partition into machines with multi-resource constraints. Finally, by
adjusting the resource demand threshold, we combine the partition and
packing to find an appropriate placement solution for the service-based
application. We conduct extensive experiments to demonstrate the quality
of our placement solution and the run time of the proposed algorithms.

Learning Scheduling Policies for DAG jobs (Chapter 5) To address
research question RQ4, we present GoTask!?, an approach that can learn
to well schedule DAG jobs on multi-resource clusters. GoTask directly
learns scheduling policies from experience through deep reinforcement
learning. In order to deal with the complexity and scale of the DAG
scheduling problem, we propose a two-stage approach to learn scheduling
policies in GoTask. In the first stage, we leverage a deep reinforcement
learning agent to learn policies for selecting a pending task of DAG
jobs. In the second stage, we leverage another agent to learn policies
for selecting a machine to run the selected task. In order to encode inter-
task dependencies, we adopt an approach based on tasks’ longest path and
critical path in the state representation for task selection. For machine
selection, we represent fitness scores of several packing heuristics in the
state to facilitate the learning of scheduling policies. We implement a
prototype of GoTask and a simulator for simulation of task execution on
multi-resource clusters. In the experiments, we evaluate the performance
and the convergence of our prototype.

In Chapter 6, we summarize the conclusions of this thesis and discuss future
research directions.

10https://github.com/huyang1022/RLSched

12

Deadline-aware Deployment for Time
Critical Applications

In this chapter, we investigate how to effectively deploy distributed applications
with critical time constraints in clouds. We first analyze the procedure of
deploying applications in clouds. We find that the transmission time is widely
varying while the installation time is roughly stable in different locations.
Regarding the transmission process of deployment, we propose a Deadline-aware
Deployment System (DDS) for deploying time critical applications in clouds.

This chapter is based on:

e Hu, Y., Wang, J., Zhou, H., Martin, P., Taal, A., De Laat, C. and Zhao,
Z. Deadline-aware Deployment for Time Critical Applications in Clouds. In
2017 European Conference on Parallel Processing (EuroPar) (Pages 345-357).
Springer, Cham.

2.1 Introduction

Cloud computing is the platform of choice for deploying and running many
of today’s businesses. When executing applications in clouds, deployment is
an important step to make the required software and data of an application
available before execution. In cloud environments, Software as a Service
(SaaS), e.g., Google Apps, or Platform as a Service (PaaS), e.g., Amazon
EMR [2], aims at hiding the deployment complexity by automating deployment
during resource provisioning [136]. However, these solutions are not sufficient
for applications that require infrastructure-level optimization under the given
platform services or application-level customized environments, which are not
included in predefined virtual machines or container images.

Time critical applications, such as disaster early warning systems, of-

13

2. Deadline-aware Deployment for Time Critical Applications

ten have very high-performance requirements for data communication and
processing[158]. To support time critical applications using cloud environments,
developers often use Infrastructure as a Service (IaaS) to optimize overall
system-level performance by selecting the most suitable virtual machines,
customizing their network topology and optimizing the scheduling of execution
on the virtual infrastructure [75, 159, 141]. During the execution, the virtual
infrastructure often has to adapt to, e.g., virtual machines scaling out/in or
up/down to handle dynamically changing workloads [156]. A deployment
service is thus needed not only before the application execution for making
the environment available but also at runtime. In particular, it is necessary to
ensure that components can be deployed immediately whenever the application
needs to rescale to handle increased workloads or migrate components to new
VMs. Moving the repository of components closer to the application is necessary
to ensure that such deployments can be handled as rapidly as possible for time
critical applications. Furthermore, the deployment service also has to be aware
of time constraints, e.g., deadlines, required for acceptable system performance.
Deployments that fail to finish within certain deadlines harm user experience,
affect application performance, and even incur penalties for application failure.
However current cloud providers lack explicit support for deploying time critical
applications where users need to manually deploy their applications step by step
and have no guarantee regarding deployment deadlines.

In this chapter, we propose a Deadline-aware Deployment System (DDS) for
time critical applications in clouds. DDS enables users to automatically deploy
time critical applications and provides scheduling mechanisms to guarantee
deployment deadlines. First, DDS helps users to create a local repository for
application components instead of using a remote repository. It provides a guar-
antee of bandwidth for transmitting application packages as the transmission
rate directly from the remote repository is widely varying. To be deadline-
aware, DDS schedules deployment requests based on Earliest Deadline First
(EDF) [98] which is a classical scheduling technique to minimize the number of
missed deadlines. Furthermore, we design bandwidth-aware EDF to facilitate
DDS to satisfy a greater number of deadline requirements and achieve sufficient
utilization of network bandwidth. In the evaluation, we demonstrate that DDS
significantly reduces the number of missed deployment deadlines and leverages
network bandwidth sufficiently. We summarize our contributions as follows:

e We design and implement DDS, a deadline-aware deployment system
which can support automatic deployment of time critical applications in
clouds.

e We build on DDS to implement deployment scheduling algorithms that
minimize the number of missed deployment deadlines and maximize the
utilization of network bandwidth.

14

2.2. Problem Statement

e We experimentally evaluate the benefits of DDS on the ExoGENI [34]
test-bed and large-scale simulations by comparing it with three different
scheduling schemes.

2.2 Problem Statement

A typical scenario for deploying distributed applications in clouds involves two
basic steps: transmitting necessary application packages or software compo-
nents from remote repositories to virtual machines (VMs) in the provisioned
infrastructure, and installing the software once runnable. In this work, we
assume containers, e.g., Docker [105], are the default way to wrap application
components.

For a distributed application, the deployment service has to know the
location of application components and the location to deploy in for each
component. Those container images are often stored in a public registry, e.g.,
Docker hub, which stores a collection of repositories and is not a part of the
provisioned virtual infrastructure. The deployment service should schedule
the sequence of each component based on the application description for
transmitting and installing each individual component. The time for deploying a
single container (Ty) typically contains time cost for transmitting the component
from its repository (7f) and installing (extracting files from the Docker image)
the component (7;). The total deployment time of the whole application
starts from the first component transmission until the last component finishes
its installation. When an application contains more components, careless
scheduling of the deployment sequence might lead to a high time cost, which
can eventually influence the execution of the application if key application
components are delayed during deployment.

Ty depends on the size of the container and the network bandwidth between
a repository and a target. 7; mainly depends on the performance of the VM
and the complexity of the container itself. In many cases, T is much bigger
than T;. Table 2.1 shows some observations in a private cloud environment
(ExoGENT [34]). We created VMs which are “XOMedium” configuration in
three different locations: Boston, Washington, and Houston. We found that 77
is widely varying because the internet connection between VMs and Docker hub
is different in different locations, and T; is stable for the same VM configurations.
For meeting the deployment time constraints of time critical applications in
a provisioned virtual infrastructure, the key challenge is how to minimize the
transmission time 7' and predict the installation time 7;. Note that installation
time prediction is not the focus in this work, as we assume that existing
predictors [127] can achieve good estimations of installation time. In this work,
we focus on the transmission process (i.e., T¢) of deployment.

15

2. Deadline-aware Deployment for Time Critical Applications

Yy pe— PR Vr—— Py
eati Ir | (werweis ip | (rerrga gy | WO | v
a0 11 | (wernors Lr | (ogrnvaar: fy| O | womon
e rngoe 1y | Gogomse Ty | (sem .ty | W | o

sQ° seq:? ST sH°Q 1t sa* sgg:?

v te: Ty | egrmmse: by | Grammor gy | Wow | wman

JorY UOISNOL]

| spey uoySurysep |

JorY u03Isog

| oz1g o8ew] | o8ewy 13O

SUOIYeI0[JUSIOHIP UL SUII} UOIYR[[BISUI PUR SUII) UOISSIWISURI} Jo uostredulo)) :1°g 9[qe],

16

2.3. Deadline-aware Deployment System

The deployment model in this work is a set of deployment requests. The
deployment service has to optimize the time cost by scheduling application
transmissions carefully and parallelize the data transfer based on the time
constraints of the requested applications. We model the deployment request as
a tuple R; = (v;, 84, d;), where v; is the target virtual machine to deploy request
R;, s; is the application size (e.g., Mb), and d; is its deadline. As we concentrate
on transmission, we model bandwidth information for provisioned VMs as a set
B = {b1,ba,bs,...,b,}, where b; denotes the bandwidth of virtual machine s.
This means that the throughput of virtual machine ¢ cannot exceed b; during
the transmission process, and the bandwidth is stable because of the service-
level agreement (SLA) assurance [43] in the cloud. We denote the bandwidth of
the target machine v; as b;, so that the transmission time of request R; can be

Si

represented as Ty = 7-. Similarly, the deployment time can be represented as

Ty = ;—] + T;. The pro]blem of this chapter is thus to investigate the scheduling

mechanisms for meeting the deployment deadlines (i.e., ensure that Ty < d;) of
time critical applications in clouds.

2.3 Deadline-aware Deployment System

This section highlights our approach in DDS. DDS aims to provide a deadline-
aware, efficient and automatic deployment system that supports time critical
applications on laaS cloud systems. As we mainly consider the transmission
part of the deployment procedure in this work, DDS focuses on the network of
the underlying distributed system to provide the best guarantee for deployment
within deadlines.

2.3.1 Design Principles

Repository location

The repository for applications is a shared storage from which application
packages can be fetched to be installed on another machine. The repository
can be located in a remote server or in the cloud already. The location of
the repository can directly impact the deployment time because the network
bandwidth between cloud VMs and the network bandwidth between a VM and
a remote repository in a different location can be very different. Compared
to a remote repository, a local repository within a cloud has some obvious
advantages. First, the local repository has greater transmission capacity than
the remote repository. Second, the bandwidth of the local repository inside a
cloud is more stable, which provides a guarantee regarding the transmission
time. Third, the local repository is more flexible due to the possibility of

17

2. Deadline-aware Deployment for Time Critical Applications

personalized configuration. Thus, DDS would help users to create a local
repository first for fast and stable network transmission.

Non Deadline Aware Deadline Aware

Requests
R1

S
o mm

A

Time Time

Figure 2.1: Awareness of deadlines can be used to meet two deadlines

Deadline-aware mechanism

As the goal of DDS to meet the deadline of requests, whether the system
is aware of the deadline is important for deployment. Consider a common
time critical application scenario involving two deployment requests sent to the
same application repository simultaneously, where one request has a tighter
deadline than the other. The resulting requests share a bottleneck via which to
transmit application packages. As shown in Figure 2.1, with today’s setup, the
transport protocol (e.g., TCP) strives for fairness and the transmission finishes
for both requests almost simultaneously. However, only one of the requests
meets its deadline which makes another request invalidated or degrades its
value. Alternatively, given explicit information about deployment deadlines,
the system can arrange the transmission order to better meet the deployment
deadline.

Bandwidth-aware mechanism

In addition to deadline-aware scheduling, to be aware of bandwidth is another
significant attribute for deployment. Consider another scenario with two
deployment requests, where the second request pulls a larger application
package. The resulting requests also share a link to transmit their respective
packages. As shown in Figure 2.2, the deployment system has information about
the deadlines and schedules the transmission based on those deadlines. However,
only one request meets its deadline. Because the transmission bottleneck is the
bandwidth of the target machine, there is some spare bandwidth on the server

18

2.3. Deadline-aware Deployment System

Non Bandwidth Aware Bandwidth Aware
A A
R2 R2 |
Requests !
R1 X R1 ;
di d2 - di d2 -
Time Time

Figure 2.2: Awareness of bandwidth can be used to meet two deadlines

of the repository which is not used. Thus, given explicit information about the
bandwidth capacity of each machine in the cloud, the system could schedule
more deployment requests and leverage the bandwidth more efficiently.

2.3.2 Scheduling Algorithm

In this section, we zoom in on the design principles presented in Section 2.3.1
by providing an algorithmic description. The main goal of our algorithms is to
minimize the deadline miss rate: the application packages should be transmitted
to the target machine within the deadline wherever possible. In addition
to minimizing the deadline miss rate, we should maximize the bandwidth
utilization to reduce the total transmission time. To achieve both these goals, we
employ EDF to prioritize requests and design bandwidth-aware EDF to support
parallel transmission and realize dynamic rate control.

EDF scheduling

The key insight guiding the design of deadline-aware scheduling is derived from
the classic real-time scheduling algorithm Earliest Deadline First (EDF) [98],
which prioritizes tasks based on their deadline. EDF is an optimal scheduling
algorithm in that if a set of deadlines can be satisfied under some schedule, then
EDF can satisfy them too.

We adopt EDF to schedule deployment requests. When a deployment
request comes, DDS compares the deadline of new request with previous
requests and then sets the corresponding priority relative to the other deadlines.
DDS then puts the new request into the request queue where the requests are
sorted by priority. The algorithm is described in Algorithm 1. Consequently,
DDS obtains the request from the queue and starts to transmit application

19

2. Deadline-aware Deployment for Time Critical Applications

packages to the target machine.

Algorithm 1: EDF scheduling

Input: The new deployment request Ri

Output: The request queue R(Q where requests sorted by the deadline
1: for each Rj € RQ do

2: if Ri.deadline < Rj.deadline then
3 RQ.insert(Ri)

4 return RQ

5: end if
6
7
8

: end for
: RQ.append(Ri)
: return RQ

Bandwidth-aware EDF scheduling

In addition to EDF scheduling, we design bandwidth-aware scheduling in
cooperation with EDF scheduling. The key idea of bandwidth-aware scheduling
is to make use of the spare bandwidth available between the local repository
and the target as much as possible for parallelizing multiple requests. Thus,
DDS needs the bandwidth information for each machine in the cloud. DDS
would collect the bandwidth information before the whole deployment procedure
begins.

EDF is optimal when the deadlines can be satisfied. However, without
bandwidth information, EDF would schedule requests in a sequential way
which leads to insufficient utilization of bandwidth or even missing deployment
deadlines. However, if we directly schedule requests in a parallel way, the
bandwidth contention among different requests can also cause deployment
deadlines to be missed. Therefore, the challenge of bandwidth-aware scheduling
is how to dynamically allocate transmission rates for deployment requests in
order to avoid unnecessary contentions. For this purpose, we design bandwidth-
aware EDF algorithm as described in Algorithm 2.

As per the description of bandwidth-aware EDF, if there is spare bandwidth
in the local repository, DDS will continue to obtain requests from the request
queue until the required bandwidth is equal or greater than the local repository
bandwidth. DDS then sets the specific rate for the last deployment request
to make sure the total required bandwidth is equal to the bandwidth of
local repository. Consequently, it avoids bandwidth contention with previous
deployment requests and makes full use of spare bandwidth to transmit.
Once a new deployment request arrives, DDS performs bandwidth-aware EDF
scheduling after the request is put into the request queue. When one deployment

20

2.4. Evaluation

Algorithm 2: Bandwidth-aware EDF scheduling

Input: throughput and bandwidth of the local repository
1: while throughput < bandwidth do

2: if RQ ¢ () then

3: R; = RQ.pop()

4: b; = GetBandwidth(v;)

5: if throughput 4+ b; < bandwidth then
6: throughput = throughput + b;

7: else

8: SetTransmissionRate(R;, bandwidth — throughput)
9: throughput = bandwidth

10: end if

11: StartTransmission(R;)

12: end if

13: end while

14: return

request finishes, DDS will allocate the released bandwidth for the running
requests first, and then perform bandwidth-aware EDF scheduling again.

2.4 Evaluation

In this section, we describe experiments for quantitative evaluation of the
deadline-aware deployment system. We perform three kinds of experiments.
First, we evaluate the transmission time using a DDS local repository versus a
remote repository. Second, we evaluate DDS in comparison with three typical
scheduling algorithms by running experiments on our cloud test-bed. Third, we
evaluate DDS with large-scale simulations.

2.4.1 Repository Evaluation

In this section, we compare the transmission time to a target machine from
a DDS local repository and a remote repository based on Docker. In most
common cases, the application provider only has the repository outside clouds.
Thus, DDS would help users to create local repository within their cloud first.
We provision two virtual machines with 50Mbps bandwidth in the ExoGENI
Boston rack and create a local repository in one of them. Then, we use the other
machine to fetch the image from the local repository and also the original remote
repository (Docker Hub). The comparative results are shown in the Table 2.2.
We observe that the transmission time (7) from the local repository is much

21

2. Deadline-aware Deployment for Time Critical Applications

less than from the remote repository. The reason is the network bandwidth
between cloud VMs is much better than the network bandwidth between VMs
and remote repositories.

Table 2.2: Comparison of transmission time from different repository
Docker Image \ Image Size \ Local Repository \ Remote Repository

ubuntu 400Mb Ty : 8.1s(£1.1s) Ty : 40.85(£2.2s)
nginx 576Mb Ty :11.7s(£1.3s) | Ty :58.7s(£2.5s)
mongodb 1200Mb | Ty : 24.4s(£1.2s) | Ty :122.45(£3.0s)
cassandra 1296Mb | Ty : 26.4s(£1.5s) | Ty :132.2s(£3.1s)

2.4.2 Testbed Experiments

In this section, we evaluate DDS alongside three typical scheduling algorithms
in ExoGENTI [34] test-bed. ExoGENI is a networked infrastructure-as-a-service
(NIaaS) platform where researchers can define the network topology and
bandwidth of virtual infrastructures. In our experimental setup, we chose the
“XOXLarge” type of machine as our local repository, and all other application
nodes we chose “XOMedium” type machines. The guest OS in VMs which are
provisioned for evaluation is Ubuntu 14.04. In the experiment, we use iPerf
[133] to simulate the application package transmission, therefore the size of
the application package can be customized via iPerf in the evaluation. For
transmission rate control, we leverage Linux Traffic Control (TC) to perform
the rate limiting. We use two-level Hierarchical Token Bucket (HTB) in TC:
the root node classifies requests to their corresponding leaf nodes based on IP
address and the leaf nodes enforce the rate limiting.
Schemes to compare: we compare the following schemes with DDS.

e FIFO: all the deployment requests are scheduled by the arrival time of
the request in a sequential way.

e EDF': all the deployment requests are scheduled by the EDF algorithm
in a sequential way.

¢ PARALLEL: all the deployment requests are scheduled immediately
after arrival in a parallel way.

Through comparison with these three schemes, we can inspect the benefits of
DDS from different aspects. FIFO is the most common scheduling algorithm in
application distribution. EDF is optimal in sequential scheduling when the
deadline can be satisfied, but it is not bandwidth-aware. PARALLEL can
achieve high utilization of the bandwidth, but it is not deadline-aware.

22

2.4. Evaluation

Metrics. In this section, we compare the number of schedulable requests
(requests that meet the deadline) and the total deployment time among different
schemes. The number of schedulable requests can indicate the satisfaction of
deadline requirements. The total deployment time can indicate the utilization
of the network bandwidth.

In this experiment, we provide two kinds of bandwidth configuration to
evaluate DDS as described in Table 2.3. We instantiate four nodes to deploy
time critical applications in ExoGENI. For these four nodes, we generate six
deployment requests which include the target machine, application size, arrival
time, and the deadline as described in Table 2.4. To understand the scheduling
mechanisms in DDS better, we assume that the installation time T; of each
application is 1s in this experiment.

Table 2.3: Bandwidth Configuration
(a) Configuration A (Mbps)
] Repository Nodel Node2 Node3 Noded ‘
[100 20 50 70 100 |

(b) Configuration B (Mbps)
] Repository Nodel Node2 Node3 Noded \
[100 70 70 70 70 |

Table 2.4: Deployment Request
’ Machine Size Deadline Arrival Time

Nodel 200Mb 14s 0s
Nodel 160Mb 20s 10s
Node2 320Mb 9s 11s
Node2 560Mb 15s 30s
Node3 960Mb 20s 30s
Node4 640Mb 25s 30s

In Figure 2.3, we inspect the number of schedulable requests on different
schemes. We observe that DDS can schedule more requests in two different
bandwidth configurations, because sequential scheduling (EDF, FIFO) cannot
meet all the deadlines when multiple requests emerge simultaneously, and direct
parallel scheduling suffers from the bandwidth contention. Figure 2.4 shows the
total deployment time of various schemes. We note that the total deployment
time of DDS is less than EDF and FIFO, and comparable to PARALLEL.

23

2. Deadline-aware Deployment for Time Critical Applications

o

EEm DDS
I FIFO
N EDF
3 PARALLEL

w

N

N

=

Number of schedulable requests
o w

Configuration A Configuration B
Bandwidth configuration

Figure 2.3: Comparison of the number of schedulable requests in various
schemes

70,
= DDS
. FIFO
E EDF

65 [0 PARALLEL

60|

w
w

Total deployment time (S)

u
o

Configuration A Configuration B
Bandwidth configuration

Figure 2.4: Comparison of the total deployment time in various schemes

This indicates that DDS makes full use of network bandwidth to process the
deployment requests.

2.4.3 Large-scale Simulations

We evaluate DDS with large-scale simulations in this section. We compare the
deployment schedulable ratio which is the number of schedulable requests to
the number of total requests in different schemes.

VMs configuration. We equip the repository server with 10Gbps
bandwidth connection and the nodes for deploying applications with 1Gbps
bandwidth connection which are the typical configurations in public clouds. In
the simulation, the number of nodes ranges over 10, 20, 40 and 80 which are
sufficient to account for most distributed cloud applications.

24

2.4. Evaluation

Deployment requests. We simulate the deployment service running 10
days Trunning in the experiment. During this period, we generate deployment
requests in different densities to simulate deploying various applications on each

node. We denote S}, ,,; as the total application size of all deployment requests on
o

node i. The request density of node i is equal to #;:llcbps,
density of whole system is the average for each node. The overall request density
varies from 0.1 to 0.9. In the experiment, the deadline d; of each request ranges
from 10s to 100s, and the application size is equal to (d; — 1) * 1Gbps. We

assume the installation time T; is 1s in the simulation.

and the request

=
=)

-
=)
¥
B
¥
o
D

o
©
o
©

o
o
o
o

1N
>
o
>

Deployment Schedulable Ratio

Deployment Schedulable Ratio

A-A DDS A-A DDS
0.2 0O EDF — 0.2 00 EDF
0-O FIFO —OoO— o 0O FIFO
%X PARALLEL %X PARALLEL \\' —O0
0.0 0.0
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Request Density Request Density
(a) 10 nodes (b) 20 nodes
2 h=l
5 1.0 A-A DDS s 1.0 A=A DDS
o 00 EDF o -0 EDF
[0} OO FIFO 1) O-O FIFO
5 0.8 %X PARALLEL 5 0.8 %-X PARALLEL
o o
=} =3
Qo6 Qo6
5 N 5
$oa T Loa
b 5} T
T
g 0.2) g 0.2
o o
o 9 [}
8 o0 R B S— 8 0.0 A ——
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Request Density Request Density
(c) 40 nodes (d) 80 nodes
Figure 2.5: Comparison of the deployment schedulable ratio in different
scenarios

Figure 2.5 shows the deployment schedulable ratio in different scenarios.
We observe that: compared to EDF, DDS can reduce the deployment deadline
miss ratio by 24% to 83%; compared to FIFO, DDS can reduce the ratio by
26% to 89%; compared to PARALLEL, DDS can reduce the ratio by up to
86%. Because EDF and FIFO schedule deployment requests in a sequential

25

2. Deadline-aware Deployment for Time Critical Applications

way, DDS can benefit from parallelized deployments. The PARALLEL
scheme parallelizes deployments but suffers severe bandwidth contention as
request density increases. In contrast, DDS is bandwidth-aware and provides
dynamic transmission rate control to avoid bandwidth contention for different
deployment requests. In summary, due to the EDF and bandwidth-aware
scheduling, DDS significantly reduces the number of deadline missing requests
for deploying cloud applications.

2.5 Related Work

In recent years, deployment has been an important topic in a distributed
environment, service-oriented systems, and cloud computing. The techniques
in DDS are related to the following areas of research:

Automatic cloud application deployment. To enable automatic
deployment has been the focus of several recent works [79, 81]. SO-MVDS
[58] allows users to design and create virtual machines with specific services
running in them and define a service deployment request to enhance the
efficiency of service deployment. Li et al. [97] propose a general approach to
application deployment. They adopt the contextualization process which is to
embed various scripts in VM images to initiate applications. These approaches
mainly focus on automating service deployment on virtual machines to improve
deployment performance. DDS, on the other hand, leverages emerging container
technologies, such as Docker, to achieve automatic application deployment with
critical time constraints.

On-demand image distribution. The idea of efficiently distributing
images in clouds has been explored in recent works [155, 118]. Vaquero et
al. [138] proposes a solution based on combining hierarchical and Peer to Peer
(P2P) data distribution techniques. VDN [115], a new VM image distribution
network on the top of chunk-level, enables collaborative sharing in cloud data
centers. These approaches focus on fast network transmission to reduce the VM
instance provisioning time. In contrast, DDS is not only transmitting images
efficiently but is also aware of deadlines via EDF scheduling mechanisms.

Deadline-aware scheduling techniques. D?[145] and D*TCP [137]
are transport protocols designed for deadline-aware transmission inside data
centers. These protocols add the deadline information to TCP and provide
control mechanisms based on the deadline information. Techniques like Karuna
[45] and pFabric [26] prioritize network flows to transmit. All these approaches
schedule transmission at the flow level. Different to these efforts, DDS exploits
the information of bandwidth to schedule transmission at application level which
is more relevant to users’ requirements.

26

2.6. Conclusion

2.6 Conclusion

It is challenging to deploy time critical applications in clouds while meeting
the critical time constraints of deployment. This is an important and
practical problem, but has been neglected by prior work in this field. In
this chapter, we propose a Deadline-aware Deployment System (DDS) which
helps users to create a local repository and automatically deploy applications
into clouds. We investigate the scheduling mechanisms in cloud deployment
system and implement EDF and bandwidth-aware scheduling algorithms in
DDS. DDS schedules deployment requests based on the deadline and provides
dynamic transmission rate control to avoid bandwidth contention for different
deployment requests. In the evaluation, we show that DDS leverages network
resources sufficiently and significantly reduces the number of missed deployment
deadlines.

27

Enhancing Scheduling for Concurrent
Container Requests

In this chapter, we investigate how to efficiently handle concurrent container
requests with multi-resource constraints on heterogeneous clusters. We first
expose the new features of container-based infrastructure comparing with VM-
based infrastructure. We then point out the limitations of using existing
container schedulers to schedule concurrent requests. With respect to the
limitations, we propose an Enhanced Container Scheduler (ECSched) for effi-
ciently scheduling concurrent container requests with multi-resource constraints
on heterogeneous clusters.

This chapter is based on:

e Hu, Y., Zhou, H., de Laat, C. and Zhao, Z. Ecsched: Efficient Container
Scheduling on Heterogeneous Clusters. In 2018 European Conference on
Parallel Processing (EuroPar) (Pages 365-377). Springer, Cham.

e Hu, Y., Zhou, H., de Laat, C. and Zhao, Z. Concurrent Container
Scheduling on Heterogeneous Clusters with Multi-Resource Constraints.
Future Generation Computer Systems, Volume 102, Pages 562-573. 2020.
Elsevier.

3.1 Introduction

Container technologies effectively virtualize the operating system and are
becoming increasingly popular in cloud computing. By encapsulating runtime
contexts of software components and services, containers significantly improve
portability and efficiency for cloud application deployment. Major cloud
providers have recently announced container-based cloud services to cater for
this popularity [3, 5]. Meanwhile, container orchestration platforms, such as
Docker Swarm [17], Mesosphere Marathon [72], and Google Kubernetes [42], are

29

3. Enhancing Scheduling for Concurrent Container Requests

emerging to provide container-based infrastructure for automating deployment,
scaling, and management of containers on underlying clusters.

Typically, Infrastructure as a Service (IaaS) offered by the cloud providers
(e.g., Amazon EC2, Microsoft Azure [3, 5]) relies on the underlying Virtual
Machines (VMs). Compared with VM-based infrastructure, container-based
infrastructure has some new features.

e It can be deployed on both physical and virtual machines, and the
highly diverse configuration of VMs makes the clustered machines more
heterogeneous.

e It can provide fine-grained resource allocation due to the operating-
system-level virtualization techniques of containers, which is much more
flexible than predefined VM types in VM-based infrastructure.

e It can support users specifying affinities among containers (e.g., Affinity
in Kubernetes) for a distributed application, which facilitates container
orchestration over the cluster.

With these new features, container-based infrastructure imposes emerging
and stringent requirements on container scheduling in order to provide perfor-
mance guarantee for deployed applications.

1. The resources demanded by a container are often a combination of
multiple resources (CPU, memory, network, etc.), which have to be
satisfied by the underlying container cluster; it becomes extremely
challenging when the nodes have diverse capacity and capability.

2. Containers of a distributed application often have strong affinity with
other containers (due to frequent data communication) or specific ma-
chines (due to data locality). Placing containers on the appropriate
node can significantly reduce the latency of container communication or
decrease the volume of data transferred. Hence, the affinity has to be
taken into account when scheduling containers.

3. The high scheduling overhead in large clusters may hurt the performance
of applications with high-quality constraints [76, 141, 157, 159], e.g.,
real-time analytics [113, 130]. Moreover, the scheduling algorithms are
frequently invoked during the application execution, in particular when
scaling out or recovering from failure, which often have critical time
constraints. Thus, the scheduling overhead should be small so that the
scheduler is able to scale to large clusters.

Meanwhile, with the adoption of cloud services and the scale of applications
increase, modern cloud platforms have to deal with a large number of concurrent

30

3.1. Introduction

requests at the same time. By analyzing the Google cluster trace [119], the
scheduler needs to make hundreds of task placement decisions per second in peak
hours. When considering the above requirements, it inevitably introduces new
challenges to the container schedulers. In recent years, container management
and scheduling have attracted quite a lot of research attentions. A queue-based
scheduler is widely used in the orchestration platforms, such as Marathon [11],
Swarm [17] and Kubernetes [9]. All deployment requests first enter a queue; the
scheduler fetches requests from the queue and processes one container (one pod
in Kubernetes) at a time. Regarding the scheduling algorithms to the queue-
based schedulers, variants of heuristic packing algorithms, such as Best-Fit
Decreasing (BFD) and First-Fit Decreasing (FFD) [99, 24], are often adopted
to achieve practical solutions.

Machine1 Container1 Machine1
CPU: 2 CPU:1 o= = = CPU: 2
4 MEM: 2 MEM: 1 S MEM:2
Queue /’

Ci i Ci i C inert | / Machine2 Container2 Machine2
CPU: 2 CPU: 2 CPU: 1 CPU: 2 CPU:2 4, CPU:2
MEM: 3 MEM: 2 MEM: 1 1 MEm:3 MEM:2 |* . MEM:3

~ .
S S S 7 N .
~ ~a - " " PR .
~ o Machine3 Container3 . S o Machine3
>~ _ CPU: 3 cPU2 |, ¢ CPU:3
T T MEM:2 MEM: 3 MEM: 2
(a) Container-by-container Scheduling (b) Concurrent Scheduling

Figure 3.1: An example of container-by-container scheduling and concurrent
scheduling for three concurrent requests

Container-by-container scheduling has the advantage for making parallel
decisions on distributed deployment [49, 113], but it also has crucial limitations
for achieving high-quality placements of the entire workloads (concurrent tasks),
due to its lack of global view on the waiting containers. For instance, the
scheduler makes a decision early for a requested container, which would restricts
its choices for the waiting containers. Figure 3.1 shows an example of container-
by-container scheduling and concurrent scheduling for three concurrent requests,
where the resource demands of containers and the available resources of
machines are depicted. For the container-by-container scheduling, if we apply a
simple scheduling algorithm (i.e., First come, first served), Container3 cannot
be scheduled at this moment. It is because Machine3 does not have enough
resources to run Container3. For the concurrent scheduling, as the scheduler
has a global view of the entire workloads, it could schedule all the containers
to the machines. The problem of scheduling a batch of concurrent requests can
be usually formulated as an integer programming problem [41, 134] or a mixed
integer programming problem [124]. However, those are NP-hard [122].

31

3. Enhancing Scheduling for Concurrent Container Requests

In this chapter, we propose an Enhanced Container Scheduler (ECSched)
for efficiently scheduling concurrent container requests with multi-resource
constraints on heterogeneous clusters. We formulate the container scheduling
problem as a minimum-cost flow problem (MCFP) and represent the container
requirements using a specific graph data structure (flow network). In the
flow network, we propose a novel approach to encode the multi-resource
demands and affinity requirements of requested containers. By analyzing the
properties of different classical MCFP algorithms, we choose an appropriate
variant of successive shortest path algorithm implemented in ECSched. In our
implementation, ECSched first constructs the flow network based on a batch of
concurrent requests, and then performs the MCFP algorithm to schedule the
concurrent requests at the same time. To evaluate the scheduling quality, we
compare the container performance and the resource efficiency of ECSched and
state-of-the-art container schedulers in different testbed clusters. To understand
the scheduling overhead, we measure the algorithm runtime of ECSched and
state-of-the-art container schedulers by performing large-scale simulations.

we summarize our contributions as follows:

o We identify the specific challenges in effectively handling concurrent con-
tainer requests on heterogeneous clusters with multi-resource constraints.

e We propose a novel and efficient approach to address concurrent multi-
resource container scheduling problem using minimum-cost flow model.

e We show that ECSched outperforms state-of-the-art container schedulers
in container performance and resource efficiency, and only introduces a
small and acceptable scheduling overhead in large-scale clusters.

3.2 Problem Formulation

In this section, we first present the formulation of the containers scheduling
problem. Then, we analyze different deployment requirements of container
requests.

3.2.1 Model Description

In container-based infrastructure, the cluster is typically composed of a set of
networked heterogeneous machines M = {my, ma, ..., mps }, where M = | M| is
the number of machines. We consider R types of resources R = {ry,r2,...,7r}
(e.g., CPU, memory, or network bandwidth) in each machine. For machine m;,
let V; = (v}, v, ...,vf?) be the vector of its resource capacities where the element
vf denotes the total amount of resource r; available on machine m;.

32

3.2. Problem Formulation

We consider the container requests continuously arrive over time. At one
moment, we assume there is a set of concurrent requests C = {01,02, ...,cN}
that are to be deployed on the cluster, and N = |C| is the number of requests.
For container ¢;, let D; = (d}, d?, ...,d®) be the vector of its resource demands,
where the element dg denotes the amount of resource r; that the container c;
demands. To affinity specification, let 0-1 matrix A = [a;j]nxn denote the
container affinity. If a;; = 1, it means that the container c¢; has an affinity
with container ¢;. Let 0-1 matrix B = [b;;]nxam denote the machine affinity. If
bi; = 1, it means that the container ¢; has an affinity with machine m;.

Next, we model a placement solution of the scheduler. Note that a placement
solution means a mapping of containers to machines on the cluster in this work.
Let 0-1 matrix X = [z;;]nxar denote a solution, where z;; is 1 if container ¢; is
to be deployed on machine m;.

3.2.2 Deployment Requirements

By analyzing the features of container-based infrastructure, a placement
solution is desired to satisfy the following requirements.

Multi-resource Guarantee

Providing multi-resource guarantee for each container on the heterogeneous clus-
ter is the primary requirement to the scheduler. Container-based infrastructure,
which has the advantages and benefits of container techniques inherently, can
allocate resources in a more fine-grained way than VM-based infrastructure;
it facilitates the flexibility of resource allocation for applications. Given the
constraints of Service Level Agreements (SLAs) with users, different types of
resource demands should be at least guaranteed with a placement solution so
that SLAs are not violated. Thus, the resource demands of the containers in
one machine should not exceed its capacity.

D> @iy di <0
c, €C (3.1)

Vm; € M, Vrp € R

Affinity Awareness

In container-based infrastructure, users can specify the affinity of containers in
a deployment request, which represents the demands of data communication or
the location of data input. As distributed applications transfer data frequently,
especially data-intensive applications, the network condition would directly
affect the overall performance. Considering the influence of the network, the

33

3. Enhancing Scheduling for Concurrent Container Requests

scheduler should be aware of the affinity requirements so that it can make
effective use of this information to adjust container placements. The intuitive
and effective solution is to co-locate the containers which have affinity to others
on the same machine,

E Tik - Tjk = Aij

Ve;, VCJ' eC

and place the container on the affinity machine.

Tk > bk

(3.3)
Ve; € C,V¥my € M

Accordingly, the challenge for a scheduler is how to efficiently schedule
the concurrent requests while satisfying all the deployment requirements of
requested containers.

3.3 Minimum Cost Flow Problem

As existing queue-based schedulers process one container at a time, the
other waiting requests cannot be considered in the decision-making phase.
Consequently, it is hard for a scheduler to achieve high-quality placements,
since it makes a separate decision for each container. In this work, we choose a
graph-based approach to model the container scheduling problem as minimum
cost flow problem (MCFP) [23], which can perform the container scheduling of
concurrent requests at the same time.

The minimum cost flow problem is an optimization and decision problem to
find the minimum-cost way of sending a certain amount of flow through a flow
network. A flow network is a directed graph G = (V, E) with a source node
s € V and a sink node t € V, where each edge e, , € E has a capacity c,,, > 0
and a unit transportation cost w,,. Figure 3.2 shows an example of a flow
network.

In the flow network, the cost of sending a flow of f,, > 0 units along the
edge ey y i8 fu,p- Wy ». The problem requires K units of flow (source node with a
supply of K units) to be sent from source s to sink ¢, and the goal is to minimize
the total cost of the flow over all edges:

34

3.3. Minimum Cost Flow Problem
c:1 <1
1

(Vo) =%
w:2
c
w: 2 W
c:1
v T
7

c: 2
w: 1
@ c:1
w: 2

Figure 3.2: An example of a flow network

1
1

ie

Minimize Z Juw - Wyw (3.4)
euvEE
subject to: fu.» < Cuw (3.5)
zeV zeV
Z fs,ac = Z fac,t =K (3.7)
zeV zeV

Equation 3.5 guarantees that the amount of the flow that goes through an
edge cannot exceed its capacity. Equation 3.6 guarantees that the amount of
the flow that goes into a node is equal to the amount of the flow that comes out
of the node, except source node and sink node. Equation 3.7 guarantees that
both the amount of the flow that comes out of source node and the amount of
the flow that goes into sink node are equal to K. Equation 3.4 expresses the
goal of the minimum cost flow problem.

MCEFP is a well-studied problem in the past years [23]. A solution of MCFP
can be extracted as a mapping between the nodes in the flow network. If we
can convert the container scheduling problem to the MCFP by representing the
status of requested containers and clustered machines with a flow network, we
could apply effective MCFP algorithms to the concurrent scheduling problem
and obtain a feasible placement solution (mapping) from the algorithms.
Therefore, the question is how to convert the container scheduling problem
to the MCFP, and what MCFP algorithm is used to solve the problem.

35

3. Enhancing Scheduling for Concurrent Container Requests

3.4 ECSched Approach

In this section, we describe how to construct the specific graph data structure
(flow network) of MCFP to solve the container scheduling problem, what MCFP
algorithms to use, and how to build ECSched scheduler.

3.4.1 Flow Network Structure

To map the container scheduling problem to the MCFP, we formulate the
problem using a specific structure of flow networks. Figure 3.3 shows a case
flow network of tackling the container scheduling problem, but we only annotate
the capacity on the edges in the figure. The flow network corresponds to an
instantaneous status of the container cluster, while encoding a set of requested
containers and clustered machines. The overall structure of the flow network
can be described as follows.

Supply=3 e:1 -’@c: 1

Figure 3.3: A case flow network of tackling the container scheduling problem

e Source Node: The source node s on the left hand with a supply of
K units of flow, which represents how many containers can be handled
at a time in our context. The maximum supply is the total number of
requested containers in the scheduler (K = N).

e Container Node: Each requested container in the flow network is
represented as a node C; and has an edge from source node s with a
capacity of 1 unit.

e Machine Node: Each clustered machine in the flow network is repre-
sented as a node M; and has an edge from a container node with a capacity
of 1 unit if the machine is eligible to place the container.

36

3.4. ECSched Approach

e Unscheduled Node: Inspired by previous works [61, 80], we add a new
node in the flow network, which called unscheduled node U. All container
nodes have an outgoing edge to the node U with a capacity of 1 unit.

e Sink Node: The sink node ¢ on the right hand is the place to drain off
the flow. All machine nodes have an edge to the sink node with a capacity
of 1 unit, and the unscheduled node has an edge to the sink node with a
capacity of IV units.

MCFP algorithms would optimally route the flow from the source to the
sink without exceeding the capacity constraints on any edge. A path of one
MCFP solution first gets to a container node from the source node, and then
reaches the sink node through a machine node or the unscheduled node. Thus,
if a path goes through a machine node, it corresponds to an assignment for the
container. Otherwise, if a path goes through an unscheduled node, it does not
schedule the container at this moment.

For instance, all bold edges can be one possible solution returned by MCFP
algorithms as shown in Figure 3.3. The solution corresponds to a placement
solution: Container0 is not scheduled at this moment; Containerl is assigned to
Machine0; Container2 is assigned to Machinel. Accordingly, the scheduler can
successively perform MCFP algorithms to continuously schedule containers.

3.4.2 Encoding Deployment Requirements

As the goal of the MCFP problem is to minimize the total cost of the flow over
all edges, flexible assignment of the costs on the edges can make the MCFP
algorithms return a placement solution which we desire for container scheduling.
Considering two deployment requirements as described in the previous section,
we propose following methods to encode them in the flow network.

Multi-resource Guarantee

Providing multi-resource guarantee for each requested container is the primary
objective of the container scheduling. In order to make the values of different
resources comparable to each other and easy to handle, we first normalize the
resource number to be the fraction of the maximum capacity in the cluster
independently. For instance, there are two requested containers with resource
demands: (CPU: 1 core, MEM: 2 GB) and (CPU: 2 cores, MEM: 1 GB), and
there are two machines in the cluster with resource capacities: (CPU: 4 cores,
MEM: 2 GB) and (CPU: 2 cores, MEM: 4 GB). After normalization, the vector
of container resource demands becomes (CPU: 0.25, MEM: 0.5) and (CPU:
0.5, MEM: 0.25); the vector of machine resource capacities becomes (CPU: 1.0,
MEM: 0.5) and (CPU: 0.5, MEM: 1.0), since the maximum number of CPU
cores is 4 and the maximum capacity of memory is 4 GB in the cluster.

37

3. Enhancing Scheduling for Concurrent Container Requests

Next, the scheduler would construct the flow network as mentioned earlier.

To construct the flow network, the scheduler checks whether the machines in the
cluster have sufficient resources to place the requested containers. If a machine
is eligible for a container, it adds an edge from the container node to the machine
node with a capacity of 1 unit. The key challenge here is how to assign the costs
on the edges to distinguish the quality of different mappings between containers
and machines. In this work, we introduce two strategies which are inspired
by vector bin packing algorithms: dot-product heuristic [114] and most-loaded
heuristic.

M
w: -(0.8*1.0+0.5*0.8)=-1.2
MEM: 0.8

(a) An example of dot-product heuristic

(b) A flow network example of dot-product heuristic

Figure 3.4: An example for encoding the multi-resource requirements based on
dot-product heuristic

e Dot-product: In this heuristic, we prioritize different placements based

on the dot product. Here, the dot product between the demand vector of
container ¢; and the capacity vector of machine m; is defined as dp;; =
D oreRr dfv;?. Figure 3.4(a) shows an example. The dot product between
the container and the machine in the figure can be calculated as: 0.8x1.0+
0.5 x 0.8 = 1.2. The idea of this heuristic is that it takes into account not
only the resource demands of containers but also how well its demands
align with the resource capacities of machines; the dot product implies
the degree of the alignment. Thus, for this heuristic, the higher dp;; is,
the better the placement is. In MCFP, the cost on the edge is inversely

38

3.4. ECSched Approach

related, which is a flow is better if the cost of the flow is lower. Therefore,
the cost on the edge between the container node and the machine node is
assigned to —dp;; in the flow network. For the edge from container node
to unscheduled node, the cost is assigned to 0 which is the highest. A flow
network example is shown in Figure 3.4(b).

M
w: -(0.8/1.0+0.5/0.8)=-1.425 *
MEM: 0.8

(a) An example of most-loaded heuristic

(b) A flow network example of most-loaded heuristic

Figure 3.5: An example for encoding the multi-resource requirements based on
most-loaded heuristic

e Most-loaded: In this heuristic, we prioritize different placements based
on the load situations of the machines. The container tends to be placed
on the most loaded machine in the cluster. In this cost model, it is also

. . d¥ .
based on a scalar value which is defined as ml;; = Zrk er o+ which

implies the mapping quality between the container c¢; and the machine
m;. Figure 3.5(a) shows an example. The value between the container
and the machine in the figure can be calculated as: % + % = 1.425.
Thus, the higher ml;; is, the more loaded the machine is in this heuristic.
Similar to dot-product heuristic, the cost on the edge is assigned to —ml;;.
For the edge from container node to unscheduled node, the cost is also
assigned to 0. A flow network example is shown in Figure 3.5(b).

39

3. Enhancing Scheduling for Concurrent Container Requests

Affinity Awareness

When submitting a deployment request, users can specify the affinities among
the containers. It represents the demands of data communication or the location
of data input. An appropriate placement of containers can lead to lower network
latency and better network utilization. Thus, the location of containers is crucial
for the overall performance. In the flow network, it is flexible to handle container
affinity (co-located on the same machine) and machine affinity (located on a
specific machine) by dynamically adjusting the edges in the flow network.

Figure 3.6: A flow network for encoding the machine affinity requirements based
on dot-product heuristic

e Machine affinity: Considering the location of input data or container
image, users would specify the machine affinity to indicate the preferred
machine. Placing the container on the specified machine can reduce
network transmission time significantly. Thus, we adjust the flow network
to only connect the container with the preferred machine, which can limit
placement options of the requested container. Figure 3.6 shows an example
with machine affinity, where container ¢; has a machine affinity to machine
my. In the example, container c¢; has only one edge to machine m; but
no edge to machine myq that is also eligible for container ¢;. Accordingly,
container ¢y can only be scheduled to machine m.

e Container affinity: Considering the network latency within the contain-
ers, users would specify the container affinity among certain containers.
Placing these containers on the same machine can reduce network latency
significantly. In the flow network, we add a new node, called aggregator
node A;, to merge affinity containers. Figure 3.7 shows an example with
container affinity, where container ¢y and container ¢; have an affinity. In
the example, we add an aggregator node Ag in the flow network. Both

40

3.4. ECSched Approach

Figure 3.7: A flow network for encoding the container affinity requirements
based on dot-product heuristic

container ¢y and container ¢; have an edge to aggregator node Ag. Hence,
the scheduler would treat these two container nodes as one node to perform
scheduling.

3.4.3 MCFP Algorithms

After constructing the flow network, the scheduler will perform MCFP algo-
rithms to find the optimal routing solution with respect to the costs we have
assigned. In this section, we discuss two kinds of classical MCFP algorithms:
cycle canceling algorithm and successive shortest path algorithm. We
then explain the MCFP algorithm that we implemented in ECSched.

The simplest MCFP algorithm is cycle canceling algorithm [87]. This
algorithm maintains a feasible solution meeting Equation (3.5)-(3.7) and at
every iteration attempts to improve its optimality. The algorithm first
establishes a feasible flow in the flow network by solving a maximum flow
problem [23]. Then it iteratively finds negative cost-directed cycles in the
residual network and augments flows on these cycles. The residual network
is defined as follows. In this flow network, each edge e, , € E with a capacity
Cu,p > 0 and a unit transportation cost w,,, is replaced by two edges: ey,
and e, ,. Then edge e, , has a residual capacity 7y, = ¢y — fu and a unit
transportation cost w,, ,,, while edge e, ,, has a residual capacity 7y, = fu,, and
a unit transportation cost —w,, .. All constraints of MCFP can also be applied
in the residual network. The cycle canceling algorithm terminates when the
residual network contains no negative cost-directed cycle.

The cycle canceling algorithm maintains feasibility of the solution at every
step and attempts to achieve optimality. In contrast, the successive shortest
path algorithm [54] maintains optimality of the solution at every step and strives

41

3. Enhancing Scheduling for Concurrent Container Requests

to attain feasibility. At each step, the algorithm sends flow from the source
node s to the sink node t along the shortest path in the residual network. The
algorithm terminates when the current solution meets Equation (3.5)-(3.7) of
MCFP.

Based on these two classical MCFP algorithms, many optimization methods
and scaling algorithms have been proposed [64, 63, 62, 51, 112]. Known
worst-case complexity bounds on the MCFP are O(N2C'log(N)) [112] for the
successive shortest path based algorithm, and O(N2?M log(NW)) [64] for the
cycle canceling based algorithm. N is the number of nodes; M is the number
of edges; C' is the number of the largest edge capacity; W is the number of
the largest edge cost. In our container scheduling problem, it is the case as
M > N > C > W. Thus, the successive shortest path based algorithm would
perform better due to the complexities (C'log(N) < Mlog(NW)). On the
other hand, the cost on the edges is not integer in the flow network as we defined
in above sections; it can be easier to solve through the successive shortest path
based algorithm. Therefore, we choose to implement a variant of successive
shortest path algorithm in our ECSched.

3.4.4 Implemention

The Implemention of ECSched is based on a heartbeat mechanism. On a
heartbeat, ECSched first fetches a set of container requests to construct a
flow network, and then performs the MCFP algorithm to place the requested
containers. The details are explained as follows.

Constructing flow network

First, ECSched would fetch a certain number of concurrent container requests
from the queue system. In our implementation, users can customize the
maximum number of requests that ECSsched can fetch. Considering the tradeoff
between scheduling quality and scheduling overhead, selecting a proper number
is crucial for the overall performance. We discuss the tradeoff in Section 3.5.5.
Then, ECSched constructs the flow network according to the strategies we
described earlier.

Placing requested containers

Next, ECSched would perform the MCFP algorithm (a variant of successive
shortest path algorithm) to find an optimal flow solution over the flow network.
Then, ECSched extract the container placements out of the optimal flow
solution. According to the placements, ECSched places the scheduled containers
on the corresponding machines and puts the unscheduled containers back to the
queue system for the next scheduling.

42

3.5. Evaluation

3.5 Evaluation

We implement ECSched with a container manager and a variant of MCFP
algorithm in Python. In this section, we evaluate our ECSched in testbed
clusters of ExoGENT [34] experimental environment to compare the scheduling
quality with state-of-the-art container schedulers. In order to understand
the scheduling overhead of ECSched, we measure the algorithm runtime by
performing large-scale simulations.

3.5.1 Experimental Setup

Cluster. We create two different container clusters with 30 virtual machines
(VM) in ExoGENI [34] which is a multi-domain Infrastructure-as-a-Service
testbed. For the first cluster, we use 30 homogeneous VMs of “XOLarge” type
(2-core CPU, 6 GB of memory) in the testbed. Considering the heterogeneity,
we choose three types of VM configurations for the second cluster. The cluster
is composed of 10 VMs of “XOMedium” type (1-core CPU, 3 GB of memory),
10 VMs of “XOLarge” type (2-core CPU, 6 GB of memory) and 10 VMs of
“XOXLarge” type (4-core CPU, 12 GB of memory). After normalization, the
capacity vectors of the machines in the homogeneous cluster are all: (CPU: 0.5,
MEM: 0.5); the capacity vectors of the machines in the heterogeneous cluster
are: (CPU: 0.25, MEM: 0.25), (CPU: 0.5, MEM: 0.5), and (CPU: 1, MEM: 1)
respectively.

Workloads. To test our prototype, we yield container requests based
on the Google cluster trace [119], which provides data from a 12,500-machine
cluster over a month-long period. As we choose to spend 6 hours at each
experiment, we analyzed the trace of the first 6 hours. There are around
100,000 tasks completed within the first 6 hours, and the average duration
of the tasks is around 740 seconds. Considering the scale of our testbed cluster,
we randomly sample 2,500 tasks (2.5%) from them at each experiment. The
generator yields container requests according to following aspects from the trace:
task submission times, task durations and task resource requirements. The
resource requirements have been normalized in the trace. Additionally, we add
the requirements of container affinity and machine affinity with a probability
according to the task constraints in the trace [119].

ECSched. We implement two strategies in our scheduler. ECSched-dp is
based on dot-product heuristic; ECSched-ml is based on most-loaded heuristic.
For the heartbeat mechanism, the scheduling interval is set to be 100 ms in
the scheduler. Unless otherwise specified, the maximum number of container
requests that ECSched can fetch from the queue system on a heartbeat is 100.

Baselines. We compare ECSched to the state-of-the-art scheduling
algorithms implemented in two container orchestration systems: Google Ku-

43

3. Enhancing Scheduling for Concurrent Container Requests

bernetes [9] and Docker Swarm [17]. Under multi-resource requirements, the
default scheduler of Kubernetes tends to distribute pods (smallest deployable
units in Kubernetes) evenly across the cluster to balance the overall resource
usage, while the scheduler of Swarm tends to place containers on the most loaded
machines to improve resource utilization over the cluster. Both are queue-based
schedulers, which process one unit at a time.

Metrics. The primary metric to quantify container performance is the
improvement in the average container completion time. We define the Factor
of Improvement as follows:

Duration of a Baseline
Duration of ECSched

Factor of Improvement = (3.8)
Factor of Improvement greater than 1 means ECSched performs better, and
vice versa.

Additionally, we use Average Resource Utilization over the cluster to
measure resource efficiency during experiments.

Finally, to evaluate scheduling overhead, we compute Algorithm Runtime of
schedulers in different scenarios.

3.5.2 Comparison of Container Performance

We first compare the container performance with baseline schemes to handle
2,500 container requests on both clusters. Figure 3.8 shows the results on the
cluster with homogeneous machines. Overall, ECSched speeds up 83% to 86%
of the containers and only slows down 8% to 12% of the containers. The reason
is that ECSched schedules a batch of requests at the same time to find a more
compact placement for the overall performance, which may hurt a small part
of the requests due to the contention. We observe that ECSched-dp slightly
outperforms ECSched-ml in the evaluation, as dot-product heuristic is that it
takes into account not only the resource demands of containers but also how
well its demands align with the resource capacities of machines. Compared to
the scheduler of Kubernetes, ECSched-dp speeds up containers by 1.32x at the
median and 1.68x at the 80th percentile. Compared to the scheduler of Swarm,
ECSched-dp speeds up containers by 1.23x at the median and 1.57x at the
80th percentile.

Figure 3.9 shows the results on the cluster with heterogeneous machines. In
this cluster, ECSched speeds up 79% to 81% of the containers and slows down
10% to 15% of the containers. Similar to the homogeneous cluster, ECSched-dp
performs better than ECSched-ml. Compared to the scheduler of Kubernetes,
ECSched-dp speeds up containers by 1.20x at the median and 1.50x at the
80th percentile. Compared to the scheduler of Swarm, ECSched-dp speeds up
containers by 1.28x at the median and 1.63x at the 80th percentile.

44

3.5. Evaluation

100, 100+

80- 80-

60- 60-

Fraction of Containers (%)
Fraction of Containers (%)

= ECSched-dp vs. Kubernetes

= ECSched-dp vs. Swarm
—’_‘J = = ECSched-ml vs. Kubernetes / = = ECSched-ml vs. Swarm
o] 0

05 1.0 15 2.0 25 3.0 0.5 1.0 15 2.0 25 3.0
Factor of Improvement Factor of Improvement
(a) Comparing with Kubernetes (b) Comparing with Swarm

Figure 3.8: CDFs of Factor of Improvement on the cluster with homogeneous
machines

100+

100+
S IS
< 80- < g0-
4 &
v Q
£ £
& 60- S 60;
= c
o o
o]
‘5 40- ‘5 40+
< =
S k)
E 20+ = ECSched-dp vs. Kubernetes E 20+ = ECSched-dp vs. Swarm
A = = ECSched-ml vs. Kubernetes —/ = = ECSched-ml vs. Swarm
Q Q
0.5 1.0 15 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0
Factor of Improvement Factor of Improvement
(a) Comparing with Kubernetes (b) Comparing with Swarm

Figure 3.9: CDFs of Factor of Improvement on the cluster with heterogeneous
machines

Relative to the baselines, the performance of containers is improved in both
clusters. ECSched lowers the average container completion time by up to 1.3x
throughout the experiments. The improvements accrue from the increase in the
number of simultaneously running containers on the cluster (less waiting time in
the queue), as ECSched takes a batch of concurrent requests into consideration
to make placement decisions.

3.5.3 Comparison of Resource Efficiency

Next, we compare the average resource utilization over the cluster to evaluate
the resource efficiency of different schedulers. During the experiments, we
monitor the resource utilization across the cluster in every second. The

45

3. Enhancing Scheduling for Concurrent Container Requests

100+ 100+

r W" \ ;-:h\‘u
—~ 804] ¥ . 80- “
2 i, M
c] c
S 60- S 60
® | © 1.
i ' o J
S 404 35 404
2 ! g
S s
20t —— ECSched-dp 201 — Ecsched-dp
| Kubernetes] Kubernetes
0 0
0 10000 20000 30000 40000 0 10000 20000 30000 40000
Time (s) Time (s)
(a) CPU utilization (b) Memory utilization

Figure 3.10: Comparing the resource utilization on the cluster with
homogeneous machines

100-) 100-
\ rf"’ﬂ.{f"* e
80t § * 80
9 ," (.‘ 9 ‘
e ' = §
(] < N
5 604 S 60+ S ' LS
® © + r
g g ¥
5 404 3 a0
2] =]
S 5
|
20; —— ECSched-dp 201 — Ecsched-dp
i Kubernetes | Kubernetes
0 0
0 10000 20000 30000 40000 0 10000 20000 30000 40000
Time (s) Time (s)
(a) CPU utilization (b) Memory utilization

Figure 3.11: Comparing the resource utilization on the cluster with
heterogeneous machines

resource utilization here is the ratio of the utilized resources to the total
resources in the cluster. Table 3.1 and Table 3.2 show the average resource
utilization throughout the entire experiment. We observe that ECSched sustains
higher resource utilization than the baselines. Consistent with the container
performance, ECSched-dp achieves the highest average resource utilization.
For the cluster with homogeneous machines, ECSched-dp increases resource
utilization by 4.1% to 5.3% compared to the two baselines. For the cluster with
heterogeneous machines, ECSched-dp increases resource utilization by 3.7% to
4.6% compared to the two baselines. In order to better understand the resource
efficiency, we choose to plot the exact resource utilization of ECSched-dp and
Kubernetes during the experiment.

Figure 3.10 and Figure 3.11 show the details of ECSched-dp and Kubernetes

46

3.5. Evaluation

Table 3.1: Average resource utilization on the cluster with homogeneous
machines

Scheduler ~ CPU utilization Memory utilization

ECSched-dp 76.57% 67.03%
ECSched-ml 76.10% 66.61%
Kubernetes 71.21% 62.33%

Swarm 71.88% 62.92%

Table 3.2: Average resource utilization on the cluster with heterogeneous
machines

Scheduler CPU utilization Memory utilization

ECSched-dp 79.81% 69.86%
ECSched-ml 79.22% 69.34%
Kubernetes 75.53% 66.11%

Swarm 75.18% 65.80%

for both clusters. We observe that the requests we yielded are more CPU
intensive. The CPU resources are highly competitive, and the utilization of
CPU remains high during the experiments. Nevertheless, ECSched-dp still
achieves higher resource utilization than Kubernetes in the peak hours. These
improvements are because ECSched leverages the MCFP algorithm to find
a better placement solution for the concurrent container requests, which can
lead to less resource fragmentation of machines. Overall, it demonstrates that
the ECSched outperforms existing container schedulers in terms of resource
efficiency on different cluster.

3.5.4 Impact of Concurrent Scheduling

Compared to state-of-the-art schedulers, scheduling a set of concurrent requests
at the same time is an innovative advantage of ECSched. As described earlier,
ECSched would fetch a certain number of container requests from the queue
system to construct a flow network for scheduling. For the above experiments,
we set the maximum number that ECSched can fetch to 100. Thus, ECSched
can schedule up to 100 container requests at a time. In this section, we configure
the ECSched with the maximum fetch number of 1, 10, 50 and 100 to evaluate
the container performance in different configurations. In order to understand
how much influence does it have on the container completion time, we compare
the configuration with the number of 10, 50, 100 to the configuration with the
number of 1 in this experiment.

47

3. Enhancing Scheduling for Concurrent Container Requests

100-
=
S
< 80-
4
[
£
S 60-
c
o
[s)
G 40-
c
e
g 20 —— ECSched-dp (10 vs. 1)
“ = = ECSched-ml (10 vs. 1)
%.5 1.0 1.5 2.0 2.5 3.0
Factor of Improvement
(a) 10 vs. 1
100-
S
~ 80,
4
(9
£
S 60-
f=s
[e}
O
G 40-
C
o
® 20- — H
L ECSched-dp (50 vs. 1)
== = ECSched-ml (50 vs. 1)
%‘5 1.0 1.5 2.0 2.5 3.0
Factor of Improvement
(b) 50 vs. 1
100-
S
< 80-
4
[
=
S 60-
c
je}
[s]
G 40-
c
e
@ 20- — b
© ECSched-dp (100 vs. 1)
) 4/" = = ECSched-ml (100 vs. 1)
%.5 1.0 1.5 2.0 2.5 3.0

Factor of Improvement

(c) 100 vs. 1

Figure 3.12: Comparing the container performance in the configurations with
maximum fetch number of 1, 10, 50 and 100

48

3.5. Evaluation

Figure 3.12 shows the results of Factor of Improvement on the cluster with
heterogeneous machines. We observe that along with the increase of maximum
fetch number, the improvement of the container performance also increases. The
impact to these two heuristics is quite similar in the experiment. Compared
to the configuration with maximum fetch number of 1, ECSched lowers the
average container completion time by 1.08x with the number of 10, 1.21x
with the number of 50, and 1.30x with the number of 100. Consequently, it
demonstrates that ECSched can efficiently handle concurrent container requests,
and significantly benefits from concurrent scheduling.

3.5.5 Overhead Evaluation

As we model the scheduling problem as a MCFP, the scheduling algorithm in
our scheduler is more complex than existing schedulers. It would cause the
overhead of ECSched to be higher than the others. To estimate the scheduling
overhead, we perform large-scale simulations to measure the algorithm runtime
of different schedulers. We consider two cluster sizes in the simulation: 1000-
machine cluster and 5000-machine cluster (largest cluster which Kubernetes can
support currently). In order to make the simulated cluster more heterogeneous,
the configuration of each machine is chosen uniformly at random from 4 types of
VM instances of ExoGENI experimental environment. As hundreds of requests
need to be processed per second in peak hours according to the Google cluster
trace [119], we choose to submit 100, 200 and 300 concurrent container requests
to the scheduler for testing at the same time. Accordingly, we configure the
ECSched with maximum fetch number of 100, 200 and 300. In order to fairly
compare the algorithm runtime, we also implement the scheduling algorithm
of Kubernetes and Swarm in Python, which is the same with ECSched. We
conduct this experiment on a dedicated server with Intel Xeon E5-2630 2.4GHz
CPU and 64GB memory.

Figure 3.13 shows the results of the average algorithm runtime which
we repeated one hundred times. We observe that the algorithm runtime
of ECSched is highest while Swarm is lowest. The algorithm of Swarm is
a simple greedy search to place requested containers on the most loaded
machines. Compared to Swarm, the algorithm of Kubernetes is a bit complex,
which has multiple predicated policies and priorities policies to filter and score
machines. Obviously, our algorithm is the most complicated one, and has higher
overhead. Nevertheless, ECSched can respond in sub-second time when the
number of concurrent requests is less than 100. When processing 300 containers
concurrently, the ECSched responds in about 1.8 seconds for 1000-machine
cluster and about 3.4 seconds for 5000-machine cluster. Actually, compared to
the average duration (740 seconds in our experiments) of the containers in the
cluster [119], this overhead is relatively small and acceptable. Considering the

49

3. Enhancing Scheduling for Concurrent Container Requests

2000
ECSched
EZ& Kubernetes
15007 EE Swarm

1000

w
o
o

Algorithm Runtime (ms)

100 200 300
Number of Requested Containers

(a) 1000-machine cluster

33500 ECSched o
E3000 EZ= Kubernetes 7,
o E= Swarm
£ 2500
> 2000
£ 1500 7
=]
'g 1000 7/
<)
< 500

o L e 0.9 =

100 200 300

Number of Requested Containers

(b) 5000-machine cluster

Figure 3.13: Comparing algorithm runtime with large-scale simulations

container performance we discussed in previous section, there thus is a tradeoff
between the quality and the overhead when scheduling containers. Users can
dynamically adjust the maximum fetch number of ECSched to seek a best
tradeoff for their workloads. Overall, we believe that ECSched is effective and
usable in practice.

3.6 Related Work

The problem investigated in this chapter - container scheduling on heteroge-
neous clusters with multi-resource constraints - is related to a variety of research
topics as follows.

Bin packing The problem of VM placement or consolidation which is
similar to our problem is often formulated as vector bin packing problem, and
various heuristics have been proposed for this problem [99, 93, 116, 57, 94].

50

3.6. Related Work

Stillwell et al. [128] studied the resource allocation problem in shared hosting
platforms for static workloads with machines which provide multiple types of
resources. They proposed several kinds of vector bin packing algorithms and
evaluated them over a wide range of simulations. They concluded that the
first fit decreasing (FFD) heuristic that reasons on the sum of the resource
demands of the tasks are the most effective. Furthermore, Panigrahy et al. [114]
systematically studied variants of the FFD algorithm that have been proposed
for VM placement problems, and presented a different generalization of the
classical FFD heuristic. In their empirical evaluations, it showed that the Dot-
Product heuristic often outperforms FFD-based heuristics. These studies focus
on the packing problem with identical bins (i.e., machines), and consider each
request independently. Different from them, we tackle the problem of scheduling
concurrent requests on heterogeneous cluster and consider the requirements of
container affinity and machine affinity at the same time.

Metaheuristics In recent years, many metaheuristic techniques have
become prevalent for the approximate solution of multi-objective optimization
problems [149, 59, 55, 101]. Mi et al. [106] proposed a genetic algorithm based
approach, namely GABA, to adaptively self-reconfigure the virtual machines
on large-scale clusters which is composed of heterogeneous machines. Xu et
al. [149] presented a modified genetic algorithm to find global optimal solutions
of virtual machine placement problem. Their approach leverages a fuzzy-logic
based evaluation for incorporating different objectives. Gao et al. [59] proposed
a multi-objective ant colony system algorithm to find a set of Pareto solutions
for the virtual machine placement problem. However, these approaches often
take minutes or even hours, particularly for large-scale clusters, to generate
a placement solution, which would face difficulties for a online response. In
contrast, we formulate the scheduling problem as a minimum cost flow problem,
which can be solved in a polynomial time.

Cluster schedulers Many cluster schedulers have been proposed for
different purposes [77, 68, 67, 82]. Sparrow [113] and Tarcil [49] are distributed
schedulers developed for clusters that achieve a high throughput for short tasks.
Quincy [80], a fair cluster scheduler, models the fair scheduling problem as a
minimum cost flow problem to schedule jobs into slots. In their flow network,
the edge capacities and weights encode the demands of starvation-freedom, data
locality, and fairness. And then, they used a standard solver to compute the
optimal solution based on a cost model. In contrast, we focus on the concurrent
container requests with multi-resource demands and implement an appropriate
MCEFP algorithm for our problem. Firmament [61], a centralized scheduler that
can scale to over ten thousand machines at sub-second placement latency via
a min-cost max-flow (MCMF) optimization. They proposed some problem-
specific optimizations for MCMF algorithms and can achieve low latency by
solving the problem incrementally. However, they cannot handle the requests

o1

3. Enhancing Scheduling for Concurrent Container Requests

with multi-resource demands. ECSched shows that how to encode multi-
resource constraints and affinity requirements in minimum cost flow problem.

3.7 Conclusion

In this chapter, we have presented ECSched, an efficient solution for handling
concurrent container requests on heterogeneous clusters with multi-resource
constraints. ECSched is a graph-based scheduler, which can leverage the
minimum-cost flow model to effectively process concurrent container requests.
In the testbed experiments, we demonstrate that ECSched can achieve better
scheduling quality than state-of-the-art container schedulers, which can lower
the average container completion time by up to 1.3x and noticeably improve
resource utilization. The large-scale simulations show that there is relatively
small overhead of ECSched, but it is acceptable in practice.

52

Optimizing Placement for Service-based
Applications

In this chapter, we investigate how to optimize the placement of service-based
applications in clouds. For deploying a service-based application in clouds,
besides the resource demands of each service, the traffic demands between
collaborative services are crucial for the overall performance. To tackle this
problem, we propose a new approach to optimize the placement of service-based
applications in clouds.

This chapter is based on:

e Hu, Y., de Laat, C. and Zhao, Z. Multi-objective Container Deployment
on Heterogeneous Clusters. International Workshop on Network-Aware
Big Data Computing, In Proceedings of 2019 IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID) (Pages 592-
599). IEEE. (Best paper award)

e Hu, Y., de Laat, C. and Zhao, Z. Optimizing Service Placement for
Microservice Architecture in Clouds. Applied Sciences. (Under review)

4.1 Introduction

Microservices architecture is a new trend rising fast for application development,
as it enhances flexibility to incorporate different technologies, reduces complex-
ity by using lightweight and modular services, and improves overall scalability
and resilience of the system. In the definition [13], the microservice architectural
style is an approach to developing a single application as a suite of small
services, each running in its own process and communicating with lightweight
mechanisms, often an HT'TP resource API. The application then is composed by
a number of services (service-based application) that work cohesively to provide

53

4. Optimizing Placement for Service-based Applications

complex functionalities. Due to the advantages of microservices architecture,
many developers intend to transform traditional monolithic applications into
service-based applications. Ensuring the desired performance of service-based
applications, especially the network performance between the involved services,
becomes increasingly important and also brings new challenges.

In general, service-based applications involve numerous distributed and
complex services which usually require more computing resources beyond single
machine capability. Therefore, a cluster of networked machines or cloud
computing platforms (e.g., Amazon EC2 [5], Microsoft Azure [3], or Google
Cloud Platform [6]) are generally leveraged to run service-based applications.
More importantly, containers are emerging as the disruptive technology for
effectively encapsulating runtime contexts of software components and services,
which significantly improves portability and efficiency of deploying applications
in clouds. When deploying a service-based application in clouds, several
essential aspects have to be taken into account. First, services involved in the
application often have diverse resource demands, such as CPU, memory and
disk. The underlying machines has to ensure sufficient resources to run each
service at the same time to provide cohesive functionalities. Efficient resource
allocation to each service is difficult, while it becomes more challenging when
the cluster consists of heterogeneous machines. Second, services involved in the
application often have traffic demands among them due to data communication,
which require meticulous treatment. Poor handling of the traffic demands can
result in severe performance degradation, as the response time of a service is
directly affected by its traffic situation. Considering the traffic demands, an
intuitive solution is to place the services that have large traffic demands among
them on the same machine, which can achieve intra-machine communication and
reduce inter-machine traffic. However, such services cannot all be co-located on
one machine due to the limited resource capacities. Hence, placement of service-
based applications is quite complicated in clouds. In order to achieve a desired
performance of a service-based application, cluster schedulers have to carefully
place each service of the application with respect to the resource demands and
traffic demands.

Recent cluster scheduling methods mainly focus on the cluster resource
efficiency or job completion time of batch workloads. For instance, Tetris [66],
a multi-resource cluster scheduler, adapts heuristics for the multi-dimensional
bin packing problem to efficiently pack tasks on multi-resource cluster. Fir-
mament [61], a centralized cluster scheduler, can make high-quality placement
decisions on large-scale clusters via a min-cost max-flow optimization. Un-
fortunately, these solutions would face difficulties for handling service-based
applications, as they ignore the traffic demands when making placement
decisions. Some other research works [151, 69] concentrate on composite
Software as a service (SaaS) placement problem, which try to minimize the

54

4.2. Problem Formulation

total execution time for composite SaaS. However, they only focus on a set of
predefined service components for the application placement. For traffic-aware
scheduling, relevant research solutions [104, 142] are proposed to handle virtual
machine (VM) placement problem, which aims to optimize network resource
usage over the cluster. However, these solutions rely on a certain network
topology, while most of existing cluster schedulers are agnostic to network
topology. In particular, it is hard to get the network topology information
when deploying a service-based application on a virtual infrastructure.

In this chapter, we propose a new approach to optimize the placement of
service-based applications in clouds. The objective is to minimize inter-machine
traffic while satisfying the multi-resource demands of service-based applications.
Our approach involves two key steps: 1) The requested application is partitioned
into several parts while keeping overall traffic between different parts to a
minimum. 2) The parts in the partition are packed into machines with multi-
resource constraints. Typically, the partition can be abstracted as a minimum
k-cut problem; the packing can be abstracted as a multi-dimensional bin
packing problem. However, both are NP-hard problems [65, 146]. To address
these problems, we first propose two partition algorithms: Binary Partition
and K Partition, which are based on a well designed randomized contraction
algorithm [85], for finding a high quality application partition. Then, we
propose a packing algorithm, which adopts an effective packing heuristic with
traffic awareness, for efficiently packing each part of an application partition
into machines. Finally, we combine the partition and packing algorithm
with a resource demand threshold to find an appropriate placement solution.
We implement a prototype scheduler based on our proposed algorithms, and
evaluate it in testbed clusters. The results show that our scheduler outperforms
existing container cluster schedulers and representative heuristics, leading to
much less overall inter-machine traffic.

4.2 Problem Formulation

In this section, we formulate the placement problem of service-based application,
and introduce the objective of this work. The notation used in the work is
presented in Table 4.1.

4.2.1 Model Description

We consider a cloud computer cluster is composed of a set of heterogeneous
machines M = {mq,ma, ..., mps }, where M = |M]| is the number of machines.
We consider R types of resources R = {ry,7a,...,7r} (e.g., CPU, memory, disk,
etc.) in each machine. For machine m;, let V; = (v}, v2, ..., vf?) be the vector of

VR [

95

4. Optimizing Placement for Service-based Applications

Table 4.1: Notation and Description

Notation Description

M Set of heterogeneous machines in the cluster: M =
{mi,ma,....mp}

M Number of the machines: M = | M|

R Set of resource types: R = {r1,r2,...,Tr}

R Number of the resource types: R = |R]

Vi Vector of available resources on machine m;: V; =
(v}, 02, ..., vF)

v] Amount of resource r; available on machine m;

S A service-based application which is composed by a
set of services: S = {s1,52,..., SN}

N Number of services in the application: N = |S|

D; Vector of resource demands of service s;: D; =
(2, ..., dR)

d! Amount of resource r; that service s; demands

T Matrix of communication traffic between services:
T = [tijlnxn

tij Traffic rate from service s; to service s;

X A placement solution: X = [z;;]nxa, where z;; =1
if service s; is to be placed on machine m;, otherwise
Tij = 0

its available resources, where the element v{ denotes the amount of resource r;
available on machine m;.

We consider a service-based application is composed of a set of services
S = {s1, 82, ..., 8N} that are to be deployed on the cluster, and N = |§] is the
number of services. For service s;, let D; = (d,d?, ...,d) be the vector of its
resource demands, where the element df denotes the amount of resource r; that
the service s; demands. Let matrix T = [¢;;]nxn denote the traffic between
services, where t;; denotes the traffic rate from service s; to service s;.

We model a placement solution as a 0-1 matrix X = [x;;]nxas. if service s;
is to be deployed on machine my, it is x;; = 1. Otherwise, it is ;; = 0.

4.2.2 Objective

To achieve a desired performance of service-based applications, a scheduler
should not only consider the multi-resource demands of services, but also
the traffic situation between services. As services, especially data-intensive
services, often need to transfer data frequently, the network performance would

56

4.3. Minimum K-Cut Problem

directly influence the overall performance. Considering the network dynamics,
the placement of different services of an application is crucial for maintaining
the overall performance, particularly when unexpected network latency or
congestion occurs in the cluster. Given the traffic situation, the most intuitive
solution is to place the services that have high traffic rate among them on the
same machine, so that the co-located services can leverage the loopback interface
to get a high network performance without consuming actual network resources
of the cluster. However, such services cannot all be co-located on one machine
due to the limited resource capacities. Thus, with the resource constraints, we
try to find a placement solution to minimize the overall traffic between services
that are placed on different machines (inter-machine traffic) while satisfying
multi-resource demands of services, so that the objective of this work can be
formulated as:

M=

N N M
Minimize E E E

tij - Tip - Tjq (4.1)
i=1 j=1p=1q=1
a#p
M
Subject to: Z:cij =1 M e{1,2,..,N}) (4.2)
j=1
N
> wy-df <of (v e{1,2,.,M},Vk € {1,2,..,R}) (4.3)
=1
z;; €{0,1} (Vi€ {1,2,..,N},Vj € {1,2,..., M}) (4.4)

Equation 4.2 guarantees that each service is placed on a machine. Equa-
tion 4.3 guarantees that resource demands on a machine do not exceed its
resource capacities. Equation 4.1 expresses the goal of this work.

4.3 Minimum K-Cut Problem

As a service-based application typically cannot be placed on one machine,
an effective partition of the set of services involved in the application is
necessary during the deployment. After partition, each subset of the services
should be able to be packed into a machine, which means the machine has
sufficient resources to run all the services in the subset. Considering the traffic
rate between different services, the quality of the partition is crucial for the
application performance. To tackle this problem, we first discuss the minimum
k-cut problem to understand the problem complexity.

Let G = (V, E) be an undirected graph, where V' is the node set and E is the
edge set. In the graph, each edge e, , € E has an non-negative weight w, ,. A

57

4. Optimizing Placement for Service-based Applications

R0
o

Figure 4.1: An example of a minimum cut (dash line)

k-cut in graph G is a set of edges, which when removed, partition the graph into
k disjoint nonempty components G' = {G1,Ga,...,G}. The minimum k-cut
problem is to find a k-cut of minimum total weight of edges whose two ends are
in different components, which can be computed as:

Z > wu (4.5)

A minimum cut is a simply minimum k-cut when k = 2. Figure 4.1 shows an
example of a minimum cut of a graph. There are 2 cuts shown in the figure, and
the dash line is a minimum cut of the graph, as the total weight of edges cut by
the dash line is the minimum of all cuts. Given a service-based application, we
can represent it as a graph, where the nodes represent services and the weights
of edges represent the traffic rate. Specifically, the traffic rate from service s;
to service s; and the rate from service s; to service s; are represented as two
edges respectively in the graph. Hence, finding a minimum k-cut of the graph
is equivalent to partitioning the application into k£ parts while keeping overall
traffic between different parts to a minimum. However, for arbitrary k, the
minimum k-cut problem is NP-hard [65].

Figure 4.2: An example process of the contraction algorithm (k=2)

o8

4.4. Placement Algorithm

Different from developing a deterministic algorithm, Karger’s algorithm [85]
provides an efficient randomized approach to find a minimum cut of a graph.
The basic idea of the Karger’s algorithm is to randomly choose an edge e,, ,, from
the graph with probability proportional to the weight of edge e, ,, and merge
the node u and node v into one (called edge contraction). In order to find a
minimum cut, the algorithm iteratively contracts the edge which are randomly
chosen until two nodes remain. The edges that remain at last are then output
by the algorithm. The pseudocode is shown in Algorithm 3.

Algorithm 3: Contraction Algorithm (k=2)

Input: G = (V, E)
Output: A cut of G

1 while |V| > 2 do

2 choose an edge e, , with probability proportional to its weight;

3 G+ Gleyy ; // contract edge e,
4 end

5 return the cut in G;

Figure 4.2 shows an example process of the contraction algorithm (k = 2).
The algorithm iteratively merges two nodes of the chosen edge, and all other
edges are reconnected to the merged node. For a graph G = (V, E) with n = |V/|
nodes and m = |E| edges, Karger [85] argues that the contraction algorithm
returns a minimum cut of the graph with probability Q(1/n?). Therefore, if
we perform the contraction algorithm independently n?logn times, we can
find a minimum cut with high probability, as the probability we do not get a
minimum cut is less than ©(1/n). For minimum k-cut, the contraction algorithm
is basically the same, except that it terminates when k nodes remain (change
[V| > 2to |V]| > k in Algorithm 3), and returns all the edges left in the graph G.
Similarly, the contraction algorithm returns a minimum k-cut of the graph with
probability (1/n2#=2). If we perform the algorithm independently n2*~21logn
times, we can obtain a minimum k-cut with high probability. Regarding the time
complexity, the contraction algorithm can be implemented to run in strongly
polynomial O(mlog®n) time [85].

4.4 Placement Algorithm

In this section, we describe the algorithms we proposed in this work. The
goal of our algorithms is to find a placement solution to minimize inter-
machine traffic while satisfying multi-resource demands. The key design of our
approach includes: 1) application partition based on contraction algorithms, 2)

59

4. Optimizing Placement for Service-based Applications

heuristic packing with traffic awareness, and 3) placement finding with threshold
adjustment.

4.4.1 Application Partition

In order to make the values of different resources comparable to each other and
easy to handle, we first normalize the amount of available resources on machines
and the resources that services demands to be the fraction of the maximum ones.
We define the term vy,q0—; to be the maximum amount of available resource r;
on a machine.

Umaz—j = ie{lrg?.}.{,M} (vf) (4.6)

Then the vector V; of available resources on machine m; and the vector D;
of resource demands of service s; are normalized as:

1 2 R
v; v; v;
‘/i = (* ’ : IR} :) (47)
Umaz—1 VUmaz—2 Umaz—R
d} d? di
D, =(——, L L) (4.8)
Umaz—1 Umaz—2 Umaz—R

After normalization, we start partitioning the service-based application. The
key question we ask first is how many parts the application is partitioned
into. Considering multi-resource demands of different services, we introduce
a threshold « to determine the number of parts when performing partition
algorithms. The threshold o denotes the upper bound of the resource demands
of partitioned parts, which means we perform partition algorithms continuously
until the total resource demands from each part do not exceed « or no part
contains more than one service. With a threshold « € [0,1] (as the resource
demands have been normalized), it assures that each part after partition can be
packed into a machine. Figure 4.3 shows an example of an application partition
with threshold @ = 0.5. In the figure, the total CPU demands and memory
demands from each part do not exceed 0.5. Given a threshold «, we propose
two partition algorithms: binary partition and k partition, which are based on
the contraction algorithm.

Binary Partition

The idea of the binary partition algorithm is to continuously perform binary
partition on the application until the resource demands from each part do not
exceed o or no part contains more than one service. The pseudocode is shown

60

4.4. Placement Algorithm

/ ~
- Part1 \ — T~
I(\:II:LI\jII gi Service 1 / Part 3 AN
\ ' _ CPU: 0.1+0.2+0.2=0.5
CPU: 0.3 \L Service 3 MEM: 0.2+0.1+0.1=0.4
MEM: 0.4
NS / CPU: 0.1
-— MEM: 0.2 Service 5
~. l
/pa,-t 2 \ | CPU: 02
CPU: 0[4 \ Service 4 MEM: 0.1 /
MEM: 0.3 [STVIce 2 _.—I——\c’ CPU: 02
\ |[cpu: 04 JMEM: 0.1 /
MEM: 0.3 ly -
NS N~ —

—

Figure 4.3: An example of an application partition with threshold o = 0.5

Algorithm 4: Binary Partition
Input: service-based application S, threshold «
Output: a partition of the application P = {81, 8Sa,...,Sn/ }, N/ is
number of parts after partition
1 P+ {S};
2 while exists part S; in P that the total resource demands exceed o and
part §; contains more than one service do

3 P+ P—{S};

4 Construct a graph G = (V, E) based on S;;

5 n+ |V

6 szn — Ga

7 t <+ 0;

8 repeat

9 Perform the contraction algorithm (k = 2) to get a cut G';
10 Gurin + min(Gpin, G') ; // Store the smaller cut in Gun
11 t—t+1;

12 until ¢t > n;

13 Get a partition {S;, Sy} of part S; according to Guuin;

14 P+ PU{S;,S,};

15 end
16 return P;

in Algorithm 4. The basic process can be described as follows. The algorithm
continuously checks the resource demands of each part in current application
partition P. The initial partition is P = {S} where the entire application is
treated as one part. If the total resource demands of a part S; in P exceeds
the threshold « and part S; contains more than one service, the part is selected

61

4. Optimizing Placement for Service-based Applications

to be partitioned into 2 parts (binary partition). It first constructs a graph
G = (V, E) based on S;, where the nodes represent services and the weights of
edges represent the traffic rate. As mentioned in section 4.3, if we repeatedly
perform the contraction algorithm many times we can obtain a minimum cut
with high probability. Considering both the partition quality and the partition
speed, we choose to perform the contraction algorithm n times in our algorithm
(In offline manner, it can be set to run n? logn times to get a minimum cut with
high probability). Then, according to the minimum cut G,,;, we get from the
contraction algorithm, it partitions the S; into two parts {S,, S, }. This process
would be repeatedly performed until the resource demands from each part do
not exceed threshold « or no part contains more than one service.

K Partition

Algorithm 5: K Partition
Input: service-based application S, threshold «
Output: a partition of the application P = {81, Sa,...,Sn }, N’ is
number of parts after partition

1 P+ {S};
2 Construct a graph G = (V, E) based on S;
3 n<« |V
4 k+1;
5 while exists part S; in P that the total resource demands exceed o and
part S; contains more than one service do
6 Gmin + G
7 k—k+1;
8 t «+ 0;
9 repeat
10 Perform the contraction algorithm until £ nodes remain to get a
k-cut G’;
11 Goin < min(Gpin, G') ; // Store the smaller k-cut in
Gmin
12 t+—t+1;
13 until t > n;
14 Get a partition {S1,Ss, ..., Sk} of the application S according to
Gmin;
15 P+ {5,8,...,8};
16 end

17 return P;

The idea of the k partition algorithm is to directly partition the application

62

4.4. Placement Algorithm

into k parts. By iteratively increasing k, it terminates when the resource
demands from each part do not exceed a or no part contains more than one
service. The pseudocode is shown in Algorithm 5. The basic process can be
described as follows. The algorithm first constructs a graph G = (V| E) based
on the application S, and then continuously checks the resource demands of
each part in current application partition P where P = {S} initially. If the
total resource demands of a part S; in P exceeds the threshold a and part S;
contains more than one service, it increases k which is the number of partitioned
parts. As mentioned in section 4.3, in order to obtain a minimum k-cut with
high probability, we have to perform the contraction algorithm independently
n?*=2logn times. However, the time complexity increases exponentially with
k, which is prohibitively high. Thus, we make the time complexity consistent
with the binary partition algorithm by sacrificing some probability of finding
a minimum k-cut. It also performs the contraction algorithm n times. Then,
according to the minimum k-cut G,,;, we get from the contraction algorithm,
it partitions the application into k parts P = {S1,Ss,...,Sk}. Similarly, this
process would be repeatedly performed until the resource demands from each
part do not exceed threshold o or no part contains more than one service.

4.4.2 Heuristic Packing

Given a partition of the application, the algorithm here is to pack each part into
the heterogeneous machines. Without considering the traffic rate, the problem
can be formulated as a classical multi-dimensional bin packing problem, which is
known to be NP-hard [146]. When there are a large amount of services involved
in the application, it is infeasible to find the optimal solution in polynomial
time. Considering the time complexity and packing quality, we adopt two
greedy heuristics in our packing algorithm: Traffic Awareness and Most-Loaded
Heuristic. The algorithm is shown in Algorithm 6.

In order to find a best possible machine for part S; , the algorithm calculates
two matching factors: ¢f and ml. For machine m;, the factor ¢f is the sum
of the traffic rate between the services in part S; and the services have been
determined to be packed into machine m; before. The factor ml is a scalar
value of the load situation between the vector of resource demands from part
S, and the vector of available resources on machine m;. Assuming D; is the
resource demand vector of part S; and d’ f is the amount of resource 7 part S;

1k
demands, it is ml = Z§=1 Li,;' . The higher ml is, the more loaded the machine.
j

The idea of this heuristic is improve the resource efficiency by packing the part
to the most loaded machine. As our main goal is to minimize the inter-machine
traffic, the algorithm is designed to first prioritize the machines based on the
factors of tf. If the factors of ¢f are the same, it then prioritizes the machines
based on the factors of ml. Consequently, if all parts in the partition can be

63

4. Optimizing Placement for Service-based Applications

Algorithm 6: Heuristic Packing

Input: partition of the application P = {&,Ss, ..., S+ }, vectors of
available resources on each machine {Vi, Vs, ...,V }
Output: a placement solution X

1 Calculate vectors of resource demands of each part as: {D}, D}, ..., D/ };
2 X [z = 0 nrxs;

sfori<1; i<N'; i+ i+1do

4 tf < 0;ml+0; y<« 0

5 for j«1;, j<M; j<j+1do

6 if part S; can be packed into machine m; then

7 tfj — Z tuv;

/* Calculate the total traffic rates between part §;
and machine m;, for any service s, in S; and any
service s, packed into machine m; before */

8 mly — Y, (f,/: ;
J

/* Calculate the load situation between the vector
of resource demands from part S; and the vector
of available resources on machine m; x/

9 if tf; > tf then

10 ‘ tf < tfj; ml <« ml;; y < J;
11 end

12 else if tf; ==tf and ml; > ml then
13 | tf <« tf;ml <« mij; y < g
14 end

15 end

16 end

17 if y == 0 then

18 ‘ return null;

19 end

20 else

21 Vy <V, —Dj;

22 Tiy < 1;

23 end

24 end

25 return X;

64

4.4. Placement Algorithm

packed into machines, the algorithm returns the placement solution. Otherwise,
it returns null.

443 Placement Finding

Algorithm 7: Placement Finding

Input: service-based application S, vectors of available resources on each
machine {V1, Vs, ..., Var}
Output: a placement solution X
X [z = 0w
a <+ 1.0;
A« 0.1;
while o > 0.0 do
P + Binary Partition(S, a);
/* Or P« K_Partition(S,a); */
X' + Heuristic_Packing(P, {V1, Va,..., Vs });
if X' = null then
Calculate X according to X’ and P;
return X;
10 end
11 a+—a—A;

)

SV VN

© w N o

12 end
13 return null;

As we discussed before, in order to partition the application, the threshold
« is required by the algorithm. However, giving an appropriate deterministic
threshold « is difficult, as it cannot guarantee that the algorithm can find a
placement solution through the randomized partition and the heuristic packing
under a certain threshold «. Intuitively, the higher threshold « results in
less parts in the partition, which leads to less traffic rate between different
parts. Thus, we introduce a simple algorithm to find a better threshold a by
enumerating from large to small. The algorithm is shown in Algorithm 7. At
the beginning, the value of « is 1.0. To adjust the thresholds, we set a step
value A, and the default value is 0.1, which can be customized by users. In
each iteration, with the threshold «, the algorithm first partitions the given
application S based on the binary partition algorithm or k partition algorithm.
Note that the algorithm records the latest partition results to avoid multiple
repeated partition. It then tries to pack all parts in the partition into machines
based on the heuristic packing algorithm to find a placement solution for the
application.

65

4. Optimizing Placement for Service-based Applications

Next, we discuss the time complexity of the algorithm we proposed. We
assume the number of services is n; the number of edges in the service graph
is m (i.e., the number of the traffic rates ¢;; > 0); the number of machines is
M. For a service-based application, it can be partitioned up to n parts. For
each partition, we perform the contraction algorithm n times, and the time
complexity of the contraction algorithm is O(mloan). As we record the latest
partition results to avoid multiple repeated partition, the time complexity of the
overall partition is O(anloan). To the heuristic packing, the time complexity
is O(nM + n?) as the overall time complexity of calculating the factor tf is
O(n?). Let C' = % denote the number of iterations. The overall time complexity

of the proposed algorithm is (n?mlog®n + CnM + Cn?).

4.5 Evaluation

We implement a prototype scheduler using python, which is based on our
proposed algorithms, for deploying service-based applications on container
clusters. In the experiments, we evaluate our scheduler in testbed clusters of
ExoGENT [34] experimental environment.

4.5.1 Experimental Methodology

Cluster. We create two different testbed clusters in ExoGENI for experiments.
For the first cluster, we use 30 homogeneous VMs with 2 CPU cores and 6 GB
RAM. Considering the heterogeneity, we use 10 VMs with 2 CPU cores and
6 GB RAM, and 10 VMs with 4 CPU cores and 12 GB RAM for the second
cluster. The homogeneous cluster has 30 VMs and the heterogeneous cluster
has 20 VMs, but the total resource capacity is the same.

Workloads. In order to evaluate the proposed algorithms in different
scenarios, we use synthetic applications in the experiments. Considering the
scale of the testbed cluster, we yield service-based applications which are
composed by 64, 96, and 128 services. For the size of 64, the CPU demand of
each service is uniformly picked at random from [30,100] where 100 represents 1
CPU core, and the memory demand is picked at random from [100,300] where
100 represents 1 GB RAM. For the size of 96, the CPU demand is picked
at random from [20,67], and the memory demand is picked at random from
[67,200]. For the size of 128, the CPU demand is picked at random from [15,50],
and the memory demand is picked at random from [50,150]. According to these
ranges, the total resource demands of different application sizes are roughly
the same. For each application size, we generate 10,000 instances for testing.
As the work [38] shows that the log-normal distribution produces the best fit
to the data center traffic, we choose to generate the traffic demands between
services with the probability 0.05 (ensure that application graph is connected),

66

4.5. Evaluation

and the traffic rate follows a log-normal distribution (mean = 5 Mbps, standard
deviation = 1 Mbps).

Implementation. We implement all proposed algorithms in our prototype
scheduler, where the contraction algorithm is based on the parallel implementa-
tion [85]. As we proposed two algorithms for application partition, there are two
kinds of configuration. BP-HP is based on binary partition (BP) and heuristic
packing (HP). KP-HP is based on k partition (KP) and heuristic packing.

Baselines. We compare our scheduler with the following schemes:

e Kubernetes Scheduler (KS): the default scheduler in Kubernetes [71]
container cluster tends to distribute containers evenly across the cluster
to balance the overall cluster resource usage. Specifically, we add a soft
affinity (i.e., pod affinity in Kubernetes) to the services that have traffic
between them, as the scheduler would try to place the services which have
affinity between them on the same machine.

e First-Fit Decreasing (FFD): it is a simple and commonly adopted
algorithm for the multi-dimensional bin packing problem [24]. FFD
operates by first sorting the services in decreasing order according to
a certain resource demand, and then packs each service into the first
machine with sufficient resources.

e Random (RAND): it randomly picks a service in the application, and then
packs it into the first machine with sufficient resources.

4.5.2 Comparison with Baselines

Figure 4.4 shows the successful placement ratio of different schemes over two
clusters. The successful placement of a application is that the algorithm can find
a placement solution to place all the involved services, so the ratio is the number
of successfully placed applications to the number of all requested applications.
We observe that RAND performs worst, as it has no heuristic to pack the
services. FFD performs better than KS, because KS mainly focuses on balancing
the resource utilization over the cluster while FFD has been demonstrated as
an effective algorithm for multi-dimensional bin packing problems [128]. BP-
HP performs comparably to KP-HP, and they both slightly outperform other
schemes in this evaluation. This is mainly because the iterative partition
and packing with different thresholds improve the probability of finding a
placement solution. Moreover, the packing algorithm can pack services tightly
due to the most-loaded heuristic. The results of the homogeneous cluster
also show that the successful placement ratio increases when the number of
services increases. As the total resource demands of the applications in different
sizes (different number of services) are roughly the same, the less number of
services results in larger resource demands of each individual service, which

67

4. Optimizing Placement for Service-based Applications

BP-HP KP-HP [KS 88 FFD [RAND

fury
o
o

[ee]
o

2222272222272

» (o))
o o

N
o

Successful placement ratio (%)

A Y
Y
AN
(7277727222722

N\ N\
64 96 128
Number of services in the application

A\

o

(a) Cluster with Homogeneous Machines

BP-HP KP-HP [KS [EEE FFD [EEE RAND
100

80

60

40

20

Successful placement ratio (%)

A AN
2722727227272

Z§
A
A\
A\
A\
A\
A\
i
7\

A Y
777777777777272777772

0 2N AN 7N
64 96 128
Number of services in the application

(b) Cluster with Heterogeneous Machines

Figure 4.4: Comparison of successful placement ratio of different schemes

easily causes the resource fragmentation problem in the placement. Compared
to the homogeneous cluster, the successful placement ratio is much higher in
the heterogeneous cluster. As the machines have larger resource capacity in
the heterogeneous cluster, it is easier to pack services constrained by multiple
resources.

Next, we evaluate the traffic situation of different schemes. In the evaluation,
we only compare the applications whose all services are placed on the cluster
by different algorithms. Figure 4.5 shows the average co-located traffic ratio
of different schemes, and the error bars represent the maximum and minimum
ratio. The co-located traffic is the traffic between the services that are placed
on the same machine, so the ratio is the amount of co-located traffic to the

68

4.5. Evaluation

BP-HP KP-HP [KS 88 FFD [EE RAND

(o2} (o]
o o

H
o
NNNNNY
SN\

Avg. co-located traffic ratio (%)

7772

DA

A\I

64 96 128
Number of services in the application

o

(a) Cluster with Homogeneous Machines

BP-HP KP-HP [KS =S8 FFD [EEE RAND

©
o

(o)}
o

N

NNNN\Y

NN\

MMM

N
o

N
o

Avg. co-located traffic ratio (%)

772727277

7%
727

N
64 96 128
Number of services in the application

N\

o

(b) Cluster with Heterogeneous Machines

Figure 4.5: Comparison of average co-located traffic ratio of different schemes

amount of all traffic. For minimizing inter-machine traffic, the higher the co-
located traffic ratio is, the better the placement solution is. In the figure, we
observe that BP-HP and KP-HP significantly outperform the baselines. For
the cluster with homogeneous machines, BP-HP improves average co-located
traffic ratio by 22% to 42%; KP-HP improves the ratio by 20% to 38%. For
the cluster with heterogeneous machines, BP-HP improves average co-located
traffic ratio by 26% to 50%; KP-HP improves the ratio by 23% to 48%. FFD
and RAND perform worst as they only focus on packing the services, without
considering the traffic rate. As we set the affinity to the services that have traffic
between them in KS, KS tries to put the affinity services on the same machine.
However, KS ignores the concrete traffic rate when making placement decisions.

69

4. Optimizing Placement for Service-based Applications

Regarding BP-HP and KP-HP, we find that BP-HP performs slightly better and
more stable than KP-HP, but KP-HP may find a better solution in some cases
(according to the error bars). In contrast, KP-HP also easily returns a worse
solution. This is mainly because BP-HP performs the contraction algorithm to
find a minimum cut with probability Q(1/n?); KP-HP performs the contraction
algorithm to find a minimum k-cut with probability ©(1/n2%~2) which is much
less than the BP-HP. Thus, the performance of KP-HP varies widely in the
experiments. Nevertheless, benefiting from the partition that strives to co-
locate the large traffic demands and the traffic-aware packing, BP-HP and KP-
HP both can effectively reduce inter-machine traffic for deploying service-based
applications on computer clusters.

4.5.3 Impact of Threshold «

—A— 64-service I} 96-service O~ 128-service

=
o
o

o]
o

N
o

N
o

Successful placement ratio (%)
()]
o

%.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0
Value of the threshold a

Figure 4.6: Successful placement ratio on the homogeneous cluster by using
BP-HP with different values of threshold «

In this section, we discuss the impact of threshold « on the service-based
application placement. To illustrate, we fix the threshold « by using BP-HP
on the cluster with homogeneous machines. Figure 4.6 shows the successful
placement ratio with different values of threshold «. For instance, BP-HP can
find a placement solution for 77% of the applications with 64 services when
a = 0.5. We observe that the successful placement ratio decreases when the
value of threshold « increases in general, and few applications can be successfully
placed when a > 0.7. Higher threshold « leads to less parts and larger average
resource demands of parts in the partition, so it becomes harder to pack them
into machines with multi-resource constraints. To understand the impact on
the network traffic, Figure 4.7 shows the results of average co-located traffic

70

4.5. Evaluation

o]
o

u o
o O O

= N W
o O O

Avg. co-located traffic ratio (%)
Y
o

o

Figure 4.7: Average co-located traffic ratio on the homogeneous cluster by using
BP-HP with different values of threshold «

ratio for each value of threshold «, and the error bars represent the maximum
and minimum ratio. It explicitly demonstrates that the co-located traffic ratio
increases more when « is larger. However, larger threshold a increases the
difficulty of packing the applications. Thus, we try to find an appropriate
threshold « by enumerating from large to small in the proposed algorithms.

454 Overhead Evaluation

3500 BP-HP KP-HP [KS [FFD [RAND
E

o 3000
S 2500 7

s

2000

=
w
o
o

algorithm runtim

1000

500

Avg

64 96 128
Number of services in the application

Figure 4.8: Average algorithm runtime of different schemes for the
heterogeneous cluster

In this section, we evaluate the overhead by measuring the algorithm runtime

71

4. Optimizing Placement for Service-based Applications

of different schemes. In order to fairly compare the algorithm runtime, we also
implement the scheduling algorithm of KS in Python, which is the same with
other schemes. We conduct this experiment on a dedicated server with Intel
Xeon E5-2630 2.4GHz CPU and 64GB memory. Figure 4.8 shows the results of
the average algorithm runtime of different schemes for the heterogeneous cluster
(the homogeneous cluster is similar), and the error bars represent the maximum
and minimum algorithm runtime. FFD and RAND incur little overhead, as
they are simple packing algorithms. Compared with them, KS is a bit complex,
as KS has multiple predicated policies and priorities policies to filter and score
machines, such as handling the affinity between services. BP-HP and KP-HP are
more complicated than the baselines, and have obviously higher overhead. We
also observe that the difference between the maximum and minimum algorithm
runtime is quite large, as the algorithm runtime heavily depends on the value of
threshold «. In the algorithm, higher threshold « results in less iterations, and
lower threshold « causes more iterations. Nevertheless, BP-HP and KP-HP can
respond in seconds for different application sizes. Especially for the application
with less than 100 services, BP-HP and KP-HP can respond in sub-second time,
which is acceptable for online scheduling. Moreover, the most time consuming
part of the proposed algorithms is application partition, which implies there
would be no big difference of the algorithm runtime for large-scale clusters with
the same number of services. We believe that the proposed algorithms could
also effectively handle the placement problem on large-scale clusters.

4.6 Related Work

As the microservice architecture is emerging as a primary architectural style
choice in the service oriented software industry [131], many research efforts have
been devoted to the analysis and modeling of microservice architecture [44,
70, 53]. Leitner et al. [95] proposed a graph-based cost model for deploying
microservice-based applications on a public cloud. Balalaie et al. [33] presented
their experience and lessons on migrating a monolithic software architecture to
microservices. Amaral et al. [28] evaluated the performance of microservices
architectures using containers. However, the performance of service placement
schemes received little attention in these works.

Software as a Service (SaaS) is one of the most important services offered by
cloud providers, and many works have been proposed for optimizing composite
SaaS placement in cloud environments [78]. Yusoh et al. [151] propose a genetic
algorithm for the composite SaaS placement problem, which considers both the
placement of the software components of a SaaS and the placement of data of the
SaaS. It tries to minimize the total execution time of a composite SaaS. Hajji et
al. [69] adopt a new variation of PSO called Particle Swarm Optimization with

72

4.7. Conclusion

Composite Particle (PSO-CP) to solve the composite SaaS placement problem.
It considers not only the total execution time of the composite SaaS, but also
the performance of the underlying machines. Unfortunately, they target at
the placement for a certain set of predefined service components, which has
limitations to handle a large number of different services.

In recent years, a number of research works have been proposed in the area
of VM placement with traffic awareness for cloud data centers [25, 88]. Meng
et al. [104] analyze the impact of data center network architectures and traffic
patterns, and propose a heuristic approach to reduce the aggregate traffic when
placing VM into the data center. Wang et al. [142] formulate the VM placement
problem with dynamic bandwidth demands as a stochastic bin packing problem,
and propose an online packing algorithm to minimize the number of machines
required. However, they only focus on optimizing the network traffic in the
data center, without considering the highly diverse resources requirements of the
virtual machines. Biran et al. [39] proposed a placement scheme to satisfy the
traffic demands of the VMs while meeting the CPU and memory requirements.
Dong et al. [52] introduced a placement solution to improve network resource
utilization in addition to meeting multiple resource constraints. They both rely
on a certain network topology to make placement decisions. Different from
them, our work is agnostic to the network topology, which aims to minimize the
overall inter-machine traffic on the cluster.

4.7 Conclusion

In this chapter, we investigated the placement problem of service-based
applications in clouds. In order to find a high quality partition, we propose
two partition algorithms: Binary Partition and K Partition, which are based
on a well designed randomized contraction algorithm. For efficiently packing
the application, we adopt most-loaded heuristic and traffic awareness in the
packing algorithm. By adjusting the threshold o which denotes the upper bound
of the resource demands, we can find a better placement solution for service-
based applications. We implement a prototype scheduler based on our proposed
algorithms, and evaluate it in testbed clusters. In the evaluation, we show that
our algorithms can improve the ratio of successfully placing applications on the
cluster while significantly increasing the ratio of co-located traffic (i.e., reducing
the inter-machine traffic). In the overhead evaluation, the results show that our
algorithms incur some overhead, but in an acceptable time. We believe that the
proposed algorithms are practical for realistic use cases.

73

Learning Scheduling Policies for DAG
jobs

In this chapter, we investigate how to learn scheduling policies of DAG jobs with
deep reinforcement learning on multi-resource clusters. Efficiently scheduling
DAG jobs on distributed computer clusters requires intricate algorithms, since
the scheduler has to consider all the characteristics of cluster and DAG jobs to
make scheduling decisions. To address this problem, we present GoTask, a deep
reinforcement learning based approach that can learn to well schedule DAG jobs
on multi-resource clusters.

This chapter is based on:

e Hu, Y., de Laat, C. and Zhao, Z. Learning Workflow Scheduling on Multi-
Resource Clusters. In 2019 IEEE International Conference on Networking,
Architecture and Storage (NAS) (Pages 1-8). IEEE.

e Hu, Y., de Laat, C. and Zhao, Z. Learning DAG Scheduling with
Multi-Resource Constraints on Heterogeneous Clusters. Concurrency and
Computation: Practice and Experience. (Under review).

5.1 Introduction

DAG scheduling problems are pervasive in data-parallel clusters. In parallel
frameworks, applications usually can be modeled as a Directed-Acyclic Graph
(DAG), where each vertex represents a task and edges encode precedence
constraints. A task in a DAG relies on the outputs of the precedent tasks and
cannot be started until all its required inputs are in place. Big data processing
frameworks, such as Apache Hadoop [20], Apache Hive [132] and Spark SQL [29],
and distributed scientific application frameworks [47] typically compile user
scripts into DAG jobs. An ideal scheduler for DAG jobs is a scheduler that

(0]

5. Learning Scheduling Policies for DAG jobs

can ensure that independent tasks run in parallel as many as possible, and
no tasks in the waiting queue are blocked if there are available resources. To
achieve this, the scheduler has to consider all the characteristics of cluster and
DAG jobs, such as the cluster resource utilization, task resource demands (e.g.,
CPU, memory, network, etc.), task duration, and inter-task dependencies, which
requires intricate algorithms. Figure 5.1 shows two schedules for a DAG job with
6 tasks. In this example, we only consider the CPU demand of each task, and
try to run the DAG job on a cluster with single machine. We observe that the
critical path schedule which schedules the task in the path with longest duration
first completes in 27 timesteps, while the optimal schedule can complete in 17
timesteps. In order to achieve the optimal schedule, all the aspects of the cluster
and the DAG job have to be taken into account. When the DAG job has multiple
resource requirements and the cluster is composed of a set of heterogeneous
machines, the problem becomes extremely complicated.

CPU: 0.5 CPU: 0.5
Duration: 1 Duration: 1

CPU: 0.6
Duration: 15 CPU: 0.2 CPU: 0.2

Duration: 10

Duration: 10

CPU: 0.6 @
Duration: 1

5 5 T5

2 3 B T

N — E

35] =]

) T1 | T8 |16 o T2 T T6
o o

[} T4 o

Time Time

Critical Path schedule completes in 27 timesteps Optimal schedule completes in 17 timesteps

Figure 5.1: Critical path schedule and optimal schedule for a DAG job

In recent years, DAG scheduling problems have attracted quite a lot
of research attention. As scheduling DAG jobs in a cluster is an NP-
complete problem in general [91], many schedulers strive to provide better
greedy or heuristic algorithms for better application performance or resource
efficiency [32, 66]. For example, Graphene scheduler [68], aiming at jobs that
have a complex dependency structure and heterogeneous resource demands,
schedules troublesome tasks first and then schedule the remaining tasks to
improve job completion time. However, they need to compute a offline schedule
first, which is enforced by online scheduling. As another example, a workflow
scheduler [22] recursively schedules the critical path ending at a recently

76

5.1. Introduction

scheduled node to minimize the cost of workflow execution, but the resource
requirements of the tasks are not considered in the scheduling algorithm.
Moreover, many of the existing works are designed for some specific workloads
or some specific metrics. As the workloads of request or the metrics of interest
changes, researchers have to come up with new heuristics to adapt the new
situation.

With these challenges, we investigate how to apply machine learning
techniques, specifically deep reinforcement learning [129], to handle the DAG
scheduling problem. That is to say how to make the system learn to schedule
DAG jobs on their own. Reinforcement learning is to produce agents that
interact with their environments to learn optimal behaviors. The agents will
improve over time through trials and errors. At the beginning, the agent is not
told which actions to take for a task. Then, the agent tries to interact with
the environments to learn which actions yield the most reward that it receives
based on how well it is doing on the task, which gradually helps the agent to
make better decisions. Due to recent advances in deep learning, applying deep
neural networks in reinforcement learning can make it possible to deal with
more complex problems which have high-dimensional states or actions, such
as playing Atari game [108], mastering the game of Go [126], etc. Thus, the
breakthrough of deep reinforcement learning also provides a promising technique
for dealing with DAG scheduling.

In this chapter, we present GoTask, an approach that can learn to well
schedule DAG jobs with multi-resource constraints on heterogeneous clusters.
GoTask directly learns the scheduling policy from experience through deep
reinforcement learning, and the objective is to minimize the average job
completion time. In order to handle the complexity and scale of the DAG
scheduling problem, we propose a two-stage approach in GoTask, where the
first stage leverages a deep reinforcement learning agent to learn policies for
selecting a pending task of a DAG job, and the second stage leverages another
agent to learn policies for selecting a machine to run the selected task. Moreover,
to facilitate the learning of scheduling policy, we adopt a longest/critical path
based approach for state encoding in task selection stage, and a fitness score
based approach for packing heuristic encoding in machine selection stage. We
implement a GoTask prototype and a simulator for simulation of task execution
on multi-resource clusters. In the evaluation, the experiment results show that
GoTask can effectively learn scheduling policies of DAG jobs from experience
and outperforms commonly adopted scheduling heuristics.

(s

5. Learning Scheduling Policies for DAG jobs

5.2 Problem Formulation

In this section, we present the model of the DAG scheduling problem and the
objective of this work. The notation used in the work is presented in Table 5.1.

Table 5.1: Notation and Description

Notation Description

M Set of heterogeneous machines in the cluster: M =
{my,ma, ..., mu}

M Number of the machines: M = | M|

R Set of resource types: R = {ry,r2,....,Tr}

R Number of the resource types: R = |R|

V; Vector of available resources on machine m;: V; =
(v o3, ... vF)

v{ Amount of resource r; available on machine m;

J A DAG job is composed by a set of tasks J =
{tl, to, ..., tN}

N Number of tasks in the DAG job: N = |J|

D; Vector of resource demands of task t;: D; =
(d},d2,...,dR)

d! Amount of resource r; that task ¢; demands

S; Duration of task t;

P 0-1 Matrix of inter-task dependencies: P = [p;;]nx N,

where p;; = 1 if task t; is a preceding task of task ;.

5.2.1 Model Description

A cluster is typically composed of a set of heterogeneous machines M =
{my,ma,....,mpr}, where M = |[M]| is the number of machines. We consider
R types of resources R = {ry,ra,...,7r} (e.g., CPU, memory, or network
bandwidth) in each machine. For machine m;, let V; = (v},v?,...,vf) be the
vector of its resource capacities where the element vg denotes the total amount
of resource r; available on machine m;.

We model a DAG job as a set of tasks J = {t1,ta,...,tx} that are to be
executed on the cluster, and N = || is the number of tasks. For task ;, let
D; = (d},d?, ..., d) be the vector of its resource demands, where the element d!
denotes the amount of resource r; that the task ¢; demands. We assume that the
tasks’ durations and the inter-task dependencies are known when a job request

arrives, as it is found as the fact that many jobs are recurring and compute

78

5.3. Deep Reinforcement Learning

on similar input data in compute clusters [56]. Therefore, tasks’ durations and
inter-task dependencies from a previous execution of a job can infer a future
run of the same job [68]. Hence, let s; be the duration of task ¢; in our model.
For dependency specification, let 0-1 matrix P = [p;;]nxn denote the inter-task
dependencies. If p;; = 1, it means that the task t; is a preceding task of task t;.
During the execution, a task can only be started when all its preceding tasks
are completed.

5.2.2 Objective

For simplicity, preemption is not allowed in the cluster, which means the
resources must be allocated continuously from the time that the task starts
until it is completed. When the scheduler schedules a task to a machine, it
must make sure that the machine has sufficient resources to execute the task.
The main objective in this work is to minimize the job completion time (JCT)
(the difference between the job arrival time and the completion time of the last
task).

5.3 Deep Reinforcement Learning

In the section, we briefly introduce deep reinforcement learning techniques [83,
129, 30] which we used in this work.

4)

Agent

— policy e —

_ J
‘ Take action
Observe state Receive reward
|
7 N

Environment

| DAG Jobs | |Heterogenous Machinesl
.

Figure 5.2: An example of reinforcement learning

5.3.1 Reinforcement Learning

We consider the standard reinforcement learning setting shown in Figure 5.2
where an agent interacts with an environment over a number of discrete

79

5. Learning Scheduling Policies for DAG jobs

timesteps. At each timestep t, the agent receives a state s; € S through
observation of the environment. The S is the state space which is a set of
states. The agent then selects an action a; € A according to its policy w. The
A is the action space which is a set of possible actions. The 7 is a mapping
from states s to actions a; it denotes the probability of choosing different actions
based on the states. Following the action, the environment transitions to the
next state s;41, and the agent receives a scalar reward r;. The state transitions
and rewards are stochastic, which are assumed to have the Markov property. It
means that the state transition probabilities and rewards depend only on the
current state s; of the environment and the action a; taken by the agent. The
process continues until the agent reaches a terminal state, and then the process
restarts. The return of a policy is the cumulative reward that the agent receives
in every timestep, which is represented as R = Y .-, v'r; with discount factor
v € [0,1]. The goal of the agent is to find an optimal policy 7*, which achieves
the maximum expected return from all states:

7" = argmax E[R|x] (5.1)

5.3.2 Value Functions

The value function V™ (s) is defined as the expected return when starting in
state s and following the policy :

V™ (s) = E[R|s, 7] (5.2)

We represent the optimal policy as 7* and the corresponding value function
as V*(s). The value function of the optimal policy can be defined as:

V*(s) = max V7™(s) (5.3)

If the optimal value function V*(s) is known, the optimal policy 7* can be
easily obtained by picking the action a; (among all actions available at state s;)
that maximizes r; + V*(s441).

In small cases, tabular methods or non-parametric methods [129] can be
used to compute the V*(s). However, there are too many possible states in
most practical problems [109, 125], including the DAG scheduling problem in
this work. It is impossible to store the policy in a tabular form. Hence, the value
function is commonly represented using a function approximator [108], such as
neural networks. In neural networks, there are a certain number of adjustable
parameters 6. Let my(s,a) be the probability of taking action a in the state s
given the parameters 6. Thus, different kinds of policies can be derived from
adjusting the parameters 6 of the neural network. Consequently, we obtain

80

5.3. Deep Reinforcement Learning

deep reinforcement learning methods when we use deep neural networks to
approximate the value function and the policy with different parameters.

5.3.3 Actor-Critic Method

Actor Neural Network

Policy
T 9(5, (1)
| State s
| DAG Jobs | Critic Neural Network
Heterogenous Machines 4 9
Y J\ Value
> VGU (8)
\ J

Figure 5.3: The architecture of actor-critic method

In this work, we focus on policy gradient methods [129], which are widely
adopted in deep reinforcement learning. Specifically, we use the actor-critic
method [89]. This method requires the agent to train two neural networks at the
same time: Actor neural network and Critic neural network. The architecture
is shown in Figure 5.3. Actor neural network is trained to be an estimate of the
optimal policy. Critic neural network is trained to be an estimate of the optimal
value function. As actor-critic method is one of the policy gradient methods,
it is to learn the policy by performing gradient descent on the parameters.
The basic idea of policy gradient methods is to estimate the gradient of the
expected total rewards, which is derived from the trajectories of executions
that are obtained by following a policy. As mentioned earlier, the objective
of reinforcement learning is to maximize the expected cumulative reward. The
gradient of this objective can be computed as [110]:

VoEr, [R] = Ex, [Vologme(s,a)A™ (s,a)] (5.4)

A7 (s,a) is the advantage function. It represents the difference between
the expected total reward when we choose to pick action a in state s and
the expected reward for actions taken according to the policy my. In our
work, the agent samples a trajectory of scheduling decisions and uses the
advantage A(s, a;) which is computed in the executions as an unbiased estimate

81

5. Learning Scheduling Policies for DAG jobs

of A™ (s, ay). Thus, the update of the parameters 6 of the policy neural network
(actor neural network) can be represented as follows, where « is the learning
rate.

0+ 0+« Z Vo logma (s, ar)A(se, at) (5.5)
t

The idea behind this equation can be intuitively explained as follows. The
Vo log mo(st, ar) indicates the direction of the update for the parameters of the
policy neural network. Based on this direction, it can increase mg(s¢, at), which is
the probability of taking action a; at state s;. The advantage function A(s;, a;)
indicates the size of step of the update. Equation 5.5 takes a step of A(s;,a;)
towards the direction of Vg log my(s¢, at). Consequently, it reinforces the actions
drawn from policy my, which leads to better returns.

In order to compute the advantage A(st,a:) during the executions, an
estimate of the value function V™ (s) is needed. The V™ (s) is the expected
total return when starting a process at state s and taking actions by following
the policy my. Hence, we need another neural network, critic neural network.
The goal of the critic neural network is to learn an estimate of V7(s) in
the meantime during the executions. Let 6, be the parameters of the critic
neural network and V%/(s), an estimate of V™(s), be the output of the
critic neural network. Hence, the advantage A(st,a¢) can be estimated as
e +V % (s441) — V% (s;), which can be used for the update of the actor neural
network. It is important to note that the function of the critic neural network
is to help train the actor neural network. After training, only the actor neural
network is required to make scheduling decisions.

5.4 GoTask Approach

In this section, we first present the basic design of our approach GoTask. Next,
we introduce how to encode the state of the DAG scheduling problem and how
to define action space and reward in deep reinforcement learning. Finally, we
describe the training algorithm we used to train the neural networks in GoTask.

5.4.1 Design

The basic design of GoTask is the reinforcement learning agent continuously
observes the state of the system at discrete timesteps, which includes the state of
machines in the cluster and the state of DAG jobs. According to the observation,
the agent performs encoding based on the current state to get a representation,
and feeds the neural network the representation to make a scheduling decision.
The decision can be a schedule action which means the agent is going to schedule
some pending tasks (whose preceding tasks have been completed) to run, or a

82

5.4. GoTask Approach

A DAG job I I A DAG job
® | ®
@é (-, s | [050-030
@ for Task - I @
Ciust I Selection —
uster uster
Machine / ’ I I ‘ Machine / @
Machine 2 @ I I Machine 2 @
Stat .
H I Encéld?ng Machine1 I :
for Machine
(e |

Figure 5.4: An example of GoTask process

void action which means no task is scheduled to run at this timestep. However, if
we adopt the common deep reinforcement learning with a single neural network
to learn scheduling policies, the size of the action space can be as large as
(M +1)N. Tt is because the agent may schedule any subset of the pending tasks
to any subset of the machines which have available resources at a timestep. This
large action space size makes the deep reinforcement learning almost impossible
to learn good scheduling polices [129]. To address this problem, we propose a
two-stage deep reinforcement learning approach, where the first stage leverages
a deep reinforcement learning agent to learn policies for selecting a task from
the pending tasks, and the second stage leverages another agent to learn policies
for selecting a machine for running the selected task.

Figure 5.4 shows an example of GoTask process. Regarding the DAG job,
taskl is completed; task2 is running on machine2; task3 and task4 are pending
tasks which are ready to run. At a scheduling event, GoTask first observes
the system and encodes the state to feed the neural network for task selection.
According to the output of the neural network for task selection in Figure 5.4,
it selects task4 from the pending tasks. Next, GoTask encodes the state with
the profile of task4 for machine selection. It then selects machinel according to
another neural network. With these two selections, the agent schedules task4
to machinel at this timestep. Note that the neural networks in Figure 5.4 are
both actor neural networks that are leveraged to learn scheduling policies. This
process continues until all tasks are completed. GoTask then trains the neural
networks with the rewards received from the executions to empirically improve
its policies. Therefore, the challenges of applying deep reinforcement learning
are how to encode the state for task selection and machine selection, how to
define practical action spaces, and how to define rewards to distinguish the
quality of different scheduling actions.

83

5. Learning Scheduling Policies for DAG jobs

5.4.2 Task Selection with Deep Reinforcement Learning

This subsection presents our approach for learning task selection with deep
reinforcement learning, which includes the definition of state space, action space
and reward.

State Space

To feed the neural network for task selection, we define the input state as
ST = (X,Y) which consists of two parts: vector X represents the state of all
clustered machines, and vector Y represents the state of all pending tasks. To
be more specific, we explain them as follows.

e X = (X1, Xs,...,Xn) encodes the status of all the M machines in the

cluster, where the status of each machine m; is denoted by the vector
X; = (v}, 02, ..., vf ny). v is the amount of resource r; available on the
machine m;, and n; is number of tasks running on machine m; at the
current moment. These two information indicate the resource utilization

and load situation of the machines in the cluster.

Y = (Y1, Y5, ..., Ynr) encodes the profile of all pending tasks, and N’ is the
number of pending tasks at the current moment. The profile of pending
task t; is denoted by Y; = (d}, d?, ...,d", s;,ns;, ne;, le;). dl is the amount
of resource r; that pending task ¢; demands; s; is the duration of pending
task t;; ns; is the number of the total succeeding tasks of pending task t;;
nc; is the number of the tasks in the longest path of pending task t;; lc;
is the duration of the critical path of pending task ¢;. We detail them as
follows.

In order to learn better scheduling policies for DAG jobs, the information
of inter-task dependencies is essential for the scheduling decision making
since a task may be blocked for a long time because of the precedence
constraints. However, if we directly treat the dependency matrix P =
[pij] ~NxnN as a part of the state representation and feed the neural network
the matrix, the neural network is still not able to well learn the knowledge
of the inter-task dependencies. As the dependency matrix only shows the
direct dependencies of a DAG job, the indirect dependencies are hard to
be captured by the neural network. To tackle this problem, we encode the
inter-task dependencies by representing the longest path and the critical
path of each task in the state. The longest path of task ¢; is the path
with the most number of tasks from task ¢; to the end of the DAG job.
The critical path of task ¢; is the path with the longest duration from
task ¢; to the end of the DAG job. Figure 5.5 shows an example of a
DAG job; the number in the circle represents the duration of the task.

84

5.4. GoTask Approach

For taskl, the number of the total succeeding tasks is 5, as the other 5
tasks are all the succeeding tasks of taskl. The number of the tasks in
the longest path is 4, as the longest path of taskl is taskl — task3 —
taskb — task6. The duration of the critical path is 10, as the path
taskl — task2 — task6 has the longest duration for taskl. Accordingly,
if taskl is pending, it is ns; = 5, nc; = 4, and ley = 10. We then
leverage these information to represent the inter-task dependencies of a
DAG job. Although the inter-task dependencies are only partially encoded
in the state, it does have significant impact on the policy learning which is
demonstrated in Section 5.5.3. In our implementation, we perform depth
first search to get these information when a DAG job request arrives, and
the time complexity is O(N?).

Figure 5.5: An example of a DAG job: red bold path is the longest path of
taskl; blue dashed path is the critical path of taskl.

Action Space

At each scheduling event of GoTask, as many tasks can be ready at the same
time, the agent may schedule any subset of the pending tasks to run. It makes
the size of the action space as large as 2Nmas (N/, s the maximum number
of pending tasks), while the deep reinforcement learning is still impossible to
learn a good scheduling policy [125]. To address this problem, we allow the
agent to execute more than one action at one timestep, so that one action only

schedules one pending task. Hence, we can define the action space of task

selection as a set: {0,1,2,...., N/, ...}, and the size of action space is reduced to
(N].oe +1). action = () means a void action that no pending task is selected

to run; action = ¢ means selecting ith task in the vector Y to run. At one
timestep, the agent continuously schedules pending tasks until it chooses the

85

5. Learning Scheduling Policies for DAG jobs

void action or an invalid action (e.g., it selects a machine that does not have
enough resources to run the selected task). With a valid action that a pending
task is scheduled to a machine, the agent would observe the system and perform
the scheduling event again immediately.

Reward

In reinforcement learning, the reward is a signal that the environment tells
the agent how well it is doing on the task. Typically, the reward is a scalar
value. Since the objective of reinforcement learning is to maximize the expected
cumulative reward, the definition of the reward must reflect the goal of the
problem to be solved. In GoTask, we set the reward to —r for all the actions
that are taken during the job execution. 7 is the time difference between the
current action and the last action. If two actions are taken at the same timestep,
the reward 7 is 0 for the latter one. Therefore, if we set the discount factor
as 1, the cumulative reward during the job execution is equal to the negative
job completion time —JCT. Our goal is then consistent with the goal of the
reinforcement learning. The smaller the JCT is, the greater the cumulative
reward is, and vice versa.

5.4.3 Machine Selection with Deep Reinforcement Learning

This subsection presents our approach for learning machine selection for running
the selected task with deep reinforcement learning.

State Space

To feed the neural network for machine selection, we define the input state as
SM = (X,Y;, Z) which consists of three parts: X is the same as the vector in
ST; Y; is the profile vector of the pending task ¢; selected by the above neural
network; Z denotes the fitness scores of several packing heuristics. Efficient
task packing with multi-resource constraints is challenging, which typically
requires complex heuristics [66]. To facilitate policy learning, we introduce
several heuristics to help the agent better select the machine. More specifically,
we explain Z as follows.

o 7 =(Z1,Zs,...,ZK) contains the fitness scores of each heuristic, and K
is the number of the heuristics. To represent the fitness when applying
different heuristics, we leverage a score based approach to encode the state.
For the ith heuristic, the score vector is defined as Z; = (2}, 22, ..., zM),
where zf denotes the score when scheduling the task on machine m;
using the ith heuristic. In our current implementation, we provide three

heuristics, which are described as follows.

86

5.4. GoTask Approach

1) Most loaded: Schedule the task to the most loaded machine. To give
an example, we consider only two type of resources: CPU and memory.

Thus, the score of applying most loaded heuristic of scheduling the task to
cpu mem

machine m; is calculated as %(icw + im—m) (dP* is the amount of CPU
j J

that task ¢; demands, vj" is the amount of available CPU on machine
m;). Accordingly, the higher the score is, the more loaded the machine is.
2) Least loaded: Schedule the task to the least loaded machine. The

1 U‘jpuid;ﬁ!’“ ’L)m'eandmem'

score is calculated as 5 (~—epw— + ~—mem—)-
J J

3) Balanced loaded: Schedule the task to the machine with balanced

. qePw qmem 2
resource usage rate. The score is calculated as 1 — (Jha —
i

prmem
J

Note that the score is calculated only if machine m; has sufficient resources to
run the pending task, otherwise the score is 0. This score based approach can
be easily extended to handle more resource constraints.

Action Space

We define the action space for machine selection as a set: {0,1,2,....,M}.
action = () means a void action that no machine is selected to run the selected
pending task; action = i means machine m; is selected to run the selected
pending task. As mentioned in the previous section, the agent continuously
schedules pending tasks to machines at one timestep until it chooses the void
action or an invalid action.

Reward

The reward for the machine selection is the same as the task selection. We set
the reward to —7 for all the actions that are taken during the job execution. 7
is the time difference between the current action and the last action.

5.4.4 Training Algorithm

After defining state space, action space and reward, we could build the deep
reinforcement learning agents to learn scheduling policies. According to the
actor-critic method, we train two neural networks: actor neural network and
critic neural network, for task selection and machine selection respectively. As
the critic neural network is an estimate of the optimal value function, the output
of the critic network is an estimate of the maximum expected return from a state.
While the actor neural network is an estimate of the optimal policy, the output
of the actor network is a vector whose element represents the probability of a
corresponding action. Algorithm 8 is used to train the two neural networks for

87

5. Learning Scheduling Policies for DAG jobs

Algorithm 8: Actor-critical method in GoTask for task selection

/* Assume the actor neural network with parameters 6, and the

critical neural network with parameters 6, x/
1 while A DAG job arrives do
2 df + 0;
3 df, + 0;
4 t + 0;
5 repeat
6 Observe state sy;
7 Encode the state for task selection;
8 Perform action a; according to policy my;
9 Receive reward r; ;
10 t—t+1;
11 until The job is completed;
12 R+ 0;
13 fori<t—1;1>0; i+ i—1do
14 R+ r,+R;
15 df < df + Vg logmg(si,a;) (R — V% (s;));
16 df, « db, + (R — VO (5;))2/00,;
17 end
18 Perform update of 6 using db;
19 Perform update of 6, using db,;
20 end

task selection in GoTask. The Algorithm for machine selection is similar. The
basic process can be described as follows. When a DAG job request arrives,
the agent starts scheduling the job. According to its current policy (output of
the actor neural network), the agent continuously selects the pending tasks of
the DAG job to run. After the job is completed, the agent first uses the entire
trajectory including all the states, the actions and the rewards, to calculate
the accumulated gradients. Then, the agent updates the parameters of the
two neural networks with the accumulated gradients. This process would be
iteratively repeated many times to empirically learn a better scheduling policy.

5.5 Evaluation

In this section, we evaluate GoTask through simulations. In the evaluation, we
experimentally compare GoTask with commonly adopted scheduling heuristics,
and try to understand the convergence and improvement about GoTask

88

5.5. Evaluation

approach.

5.5.1 Implementation

We implement GoTask as a prototype DAG scheduler using Python. The deep
neural networks implemented in GoTask are based on Tensorflow [21] software
library. If we try to apply GoTask to a computer cluster and train the neural
networks online from scratch, the policies derived from the agent are poor at
the beginning. It is because deep reinforcement learning typically needs a lot of
trials and errors to learn a good policy [126]. Thus, offline training is essential
for the policy learning before scheduling DAG jobs online. In order to train
the neural networks offline, we implement a simulator for simulation of task
execution on multi-resource clusters, which is based on DeepRM [102]. DeepRM
is the first example solution that applies deep reinforcement learning to cluster
scheduling problem. We extend the simulator of DeepRM to support multiple
heterogeneous machines in the cluster, as it originally model the cluster as a
resource pool. During the runtime, the simulator schedules tasks according to
the decision made by the policy neural networks. GoTask then can rapidly
learn the scheduling policies during the interaction with the simulator. In the
evaluation, all experiments are conducted with the simulator.

5.5.2 Experimental Methodology

Cluster. We mimic two different clusters with 10 machines in our experiments.
For the first cluster, we use 10 homogeneous machines with 8 CPU cores and
16 GB RAM. Considering the heterogeneity, we use 4 machines with 4 CPU
cores and 8 GB RAM, 3 machines with 8 CPU cores and 16 GB RAM, and 3
machines with 16 CPU cores and 32 GB RAM for the second cluster.
Workloads. We yield DAG job requests according to the work [46].
Specifically, we use the Layer-by-Layer method to generate DAGs, as data
processing jobs can be commonly divided into many stages (e.g., MapReduce
jobs include map tasks and reduce tasks). The parameters of the Layer-by-
Layer method used in our experiments are defined as: the number of vertices
(i.e., the number of tasks in a job) is picked randomly from 100 to 200; the
number of layers is picked randomly from 4 to 8; the probability of edge
creating between two vertices is 0.1. Considering diversity of DAG jobs, we
also randomly generate the resource demands and duration for each task in the
DAG jobs. We define the length of one timestep as 1¢, and the duration of each
task is uniformly picked at random from [1t,24¢]. The number of CPU cores
demanded by each task is uniformly picked at random from [1,6]. The number
of GB RAM demanded by each task is uniformly picked at random from [1,12].
According to these parameters, we generate 5,000 DAG jobs in total. We use
4,000 DAG jobs of them for training, and other 1,000 DAG jobs for testing.

89

5. Learning Scheduling Policies for DAG jobs

Neural Network Configuration. As neural networks require fixed-size
input, we show up to 16 pending tasks in the state representation. If there
are more than 16 pending tasks at a moment, we prioritize the tasks according
to the duration of tasks critical path. All neural networks in GoTask have
2 fully connected hidden layers with 256 neurons of ReLLU6 nonlinearity. We
update the parameters of the neural networks using the rmsprop [73] algorithm.
The learning rate of the actor and critical neural network are configured to
be 0.0001 and 0.001 respectively. We adopt a state-of-the-art asynchronous
method, A3C [110], to speed up training. We train GoTask on a machine with
a Intel Xeon E5-2630 2.4GHz CPU and a Nvidia GTX TitanX GPU. The neural
networks are trained for 10,000 iterations in our experiments.

Baselines. We compare GoTask with following heuristics:

For task selection:

e Shortest Task First (STF) schedules pending tasks in increasing order of
the task duration.

e Critical Path First (CPF) schedules pending tasks in increasing order of
the duration of critical path [90].

For machine selection:

e Most Loaded (ML) schedules the pending task to the most loaded machine
in the cluster.

e Multi-Resource Packer (PK) schedules pending tasks in increasing order
of alignment between resource demands and resource availability [66].

5.5.3 Experimental Results

Comparison with Baselines

First, we evaluate the scheduling performance of different approaches. In the
experiment, we first train GoTask with the 4,000 DAG jobs. Then, we use other
1,000 DAG jobs to test the trained model and the baselines. Figure 5.6 shows
the average job completion time (JCT), and Figure 5.7 shows the Cumulative
Distribution Function (CDF) of job completion times for different approaches.
We observe that GoTask improves the JCT by 6% to 18% compared to all the
baselines for both the homogeneous and the heterogeneous cluster. Shortest
Task First (STF) heuristic does not perform well as it only considers the
duration of a individual task. Critical Path First (CPF) heuristic performs much
better than STF, but it only focuses on the maximum duration of a DAG job,
without considering the resource demands of tasks. Multi-Resource Packer (PK)
performs slightly better than Most Loaded (ML) heuristic due to more effective
packing heuristic. However, they both try to improve the resource efficiency,

90

5.5. Evaluation

180

—
®
o

170

-
3
o

158.3 160.2

=
o
=]

150.7 1519

—
%
o

138.8 140.6

130.4 1331 1338

w
o

125.3

e

Average JCT (timesteps)
N
o

Average JCT (timesteps)
N :
o o

110

-
=
o

—
o
o
=
o
]

" GoTask CPF+PK CPF+ML STF+PK STF+ML " GoTask CPF+PK CPF+ML STF+PK STF+ML

(a) Homogeneous Cluster (b) Heterogeneous Cluster

Figure 5.6: Comparing average job completion time with different baselines

101 GoTask T 1.0 _ GoTask T
—— CPF+PK —— CPF+PK e
0.8 CPF+ML 0.8 CPF+ML i
- STF+PK wes STE4PK ;g
L 061 - - STF+ML L 06 STF+ML !
a a VA
o) g I
0.4 0.4 E
r
;
0.2 0.2
0.0 0.0 i
80 100 120 140 160 180 200 220 80 100 120 140 160 180 200 220
Job completion time (timesteps) Job completion time (timesteps)
(a) Homogeneous Cluster (b) Heterogeneous Cluster

Figure 5.7: CDF of job completion times for different approaches

but ignore the task characteristics of DAG jobs (i.e., inter-task dependencies).
For GoTask, one interesting observation is that it may withhold a task when
there are machines which have enough resources to run the task. This can make
some room for the tasks that will be pending soon. The machines available now
may be the better choices for these tasks. We observe this happening few times
during the execution. But, the main reason of the improvement is that GoTask
can run more independent tasks in parallel to improve the job completion time.
Based on the policies learned from experience, GoTask can select a suitable
pending task to run on a suitable machine at a time, which improves the overall
throughput of the cluster. All theses achievements is because GoTask takes
cluster resource utilization, task duration, task resource demands and inter-
task dependencies into consideration when making scheduling decisions, and
those information are well encoded in the state representation. To conclude,
with the deep reinforcement learning, GoTask finds a better balance to schedule

91

5. Learning Scheduling Policies for DAG jobs

DAG jobs among different constraints and requirements, which leads to a good
scheduling policy.

Improvement from State Encoding

150

7z
@140
é 131.2 130.8
£1301 1253 127.5
G
2120
()
o
o
o 110
>
<
100 "
;125 oVt oVt ut
GO \N\x‘(\("?ax\’\ \N\:C(\O\ 9ot Win© ccore
e e oneSS
ot (o8 S

Figure 5.8: Comparing different agents on the heterogeneous cluster

Next, we investigate how much gains GoTask can get from the state encod-
ing, as we present a sophisticated way to encode the inter-task dependencies
for task selection, and a fitness score based approach to encode several packing
heuristics for machine selection. In this experiment, we build other three agents
to train the neural networks without longest path, critical path, or fitness score
in the state representation, which are for evaluating how much impact it has
on the scheduling performance. Figure 5.8 shows the average job completion
time on the heterogeneous cluster. According to the results, the scheduling
performance can benefit from all the encoded information. The gain from
critical path is larger than the longest path, as it is more likely to cause longer
job completion time if a task with longer critical path has been blocked for a
longer period of time during the execution. The improvement of the fitness
score is also non-trivial to the scheduling performance. It demonstrates that
learning a good packing policy on multi-resource clusters without knowledge
is quite challenging for the deep reinforcement learning agent. Giving several
packing heuristics to the agent can result in a much better scheduling policy.

Learning Curve

Additionally, in order to understand the convergence, we show the learning
curve along the training in Figure 5.9. In our experiments, we train the neural
networks for 10,000 iterations. At each iteration, we sample 128 DAG jobs from
the 4,000 DAG jobs to train GoTask. During the runtime, GoTask schedules the
DAG jobs according to its policy neural networks and receives the corresponding

92

5.5. Evaluation

=
~
o

—— GoTask

= =
w [e)]
o o

Average JCT (timesteps)
=
o

=
N
o

=
=
o

0 2000 4000 6000 8000 10000
Iterations

Figure 5.9: Learning curve on the heterogeneous cluster

rewards. After the DAG jobs are completed, GoTask uses the trajectories of
executions to calculate the gradients, and then leverages the gradients to update
the neural networks. In this experiment, we use the trained model after each
iteration to schedule the 1,000 DAG jobs which are for testing. Figure 5.9
shows the average job completion time of each iteration on the heterogeneous
cluster. We observe that the average JCT gradually decreases with the number
of training iterations, and GoTask outperforms the baselines after around 2,000
iterations. The learning curve tends to be stable after 8,000 iterations where the
agent may have learned the best possible scheduling policy. In our experiments,
each iteration takes about 3.6 seconds. Hence, it takes around 10 hours to finish
the training.

Configuration of Neural Network

Finally, we evaluate the performance of different configurations of the neural
networks in GoTask. We conduct this experiment on the heterogeneous cluster.
First, in order to understand the impact of different number of neurons in
the hidden layers, we fix the number of hidden layers to 2 and range the
number of neurons from 64 to 512. Each hidden layer has the same number
of neurons, and the configuration of neural networks in task selection stage and
machine selection stage is the same. For each configuration, we train the neural
networks for 10,000 iterations. Figure 5.10(a) shows that GoTask achieves the
best performance when there are 256 neurons in the hidden layers. If there
are fewer neurons, GoTask does not have enough neural network parameters to
approximate the scheduling policy. If there are too many neurons, GoTask may
capture some unnecessary properties, i.e., overfitting, which leads to degraded
performance. Second, we investigate the impact of different number of hidden

93

5. Learning Scheduling Policies for DAG jobs

150 150
§140 136.9 §14o
@ 131.9 @ 132.1
o 130.7 . o
£ £ 128.1 128.8
5130 125.3 £130 125.3
& &
- 120 - 120
o j=J
o o
o v
; 110 z 110

100- 100-

64 128 256 512 1 3 4
Number of neurons Number of hidden layers

(a) (b)

Figure 5.10: Performance of different neural network configurations on the
heterogeneous cluster

layers in GoTask. We fix the number of neurons to 256 and range the number
of hidden layers from 1 to 4. Figure 5.10(b) shows that GoTask achieves the
best performance when there are 2 hidden layers. If there are fewer hidden
layers, GoTask does not have enough neural network parameters to learn a
good scheduling policy. If there are more hidden layers, GoTask may degrade
the performance because of overfitting.

5.6 Discussion

In our simulation experiments, we demonstrate that GoTask can effectively
learn scheduling policies for DAG jobs from experience. The experimental
results show that GoTask noticeably outperforms the baselines on two different
clusters. Next, we will apply GoTask to the production cluster and evaluate
the performance in realistic scenarios. Specifically, we plan to implement a
pluggable scheduler on Kubernetes [9] for online scheduling and learning. Based
on the simulations results, we believe that our approach is practical even in
realistic scenarios. However, during the design and implementation of GoTask,
we can see there are some limitations that still need to be addressed in the
future. First, as neural networks require fixed-size input, we fix the state
representation to show up to 16 pending tasks. This causes that GoTask can
only observe partial pending tasks at one time, and may fail to select the best
suitable pending task to run. Thus, we intend to investigate more compact
state representation approaches, such as graph convolutional networks [86], to
enhance the scalability. Second, as GoTask is implemented to observe the
system at each timestep, the action sequence during a job execution can be
very long. It is because the sequence may contain many void actions. Long

94

5.7. Related work

action sequences need more exploration during the training and can make the
deep reinforcement learning algorithms extremely slow [129]. Therefore, we plan
to investigate event-driven approaches to build GoTask, which only performs a
scheduling event when a task completes or a task becomes ready. Third, the
training speed is another issue. When the cluster or the workloads change,
we need to retrain the neural networks to adapt to the new scenario, which
takes another long time to converge. Thus, we will investigate machine learning
techniques, such as transfer learning [135], to speed up the retraining process.

5.7 Related work

The problem investigated in this chapter - Learning DAG Scheduling on Multi-
Resource Clusters - is related to a variety of research topics as follows.

DAG Scheduling Many DAG schedulers have been proposed for different
purposes [121, 37, 148]. Graphene [68] DAG scheduler schedules jobs that have
a complex dependency structure and heterogeneous resource demands. It first
schedules troublesome tasks and then schedules the remaining tasks without
violating dependencies to improve job completion time. Zhu et al. [162] proposed
a multi-objective solution based on evolutionary algorithms to handle workflow
scheduling problem in cloud, which optimizes both makespan and cost. Yao
et al. [150] presented a fault-tolerant workflow scheduling approach to meet
the soft deadline requirements. Different from them, we apply reinforcement
learning to learn DAG scheduling policies directly from the experience.

Deep Reinforcement Learning Recently, deep reinforcement learning
has made great success in many areas [50, 92]. Mnih et al. [108] presented
the first deep learning model to successfully learn control policies directly from
high-dimensional sensory input using reinforcement learning. And they have
successfully applied their approach to the computer video games. Silver et
al. [125] proposed AlphaGo to master the game of Go with deep neural networks
and tree search. They introduced a new search algorithm that combines Monte
Carlo simulation with value and policy networks, and successfully applied in
the game of Go. Inspired by these works, we investigate how to apply the deep
reinforcement learning to the DAG scheduling problem.

Scheduling with Reinforcement Learning Li et al. [96] developed
a model-free approach for distributed stream data processing using deep
reinforcement learning. They also demonstrated that the actor-critic method
can produce better scheduling solutions than Deep Q Network based method in
distributed stream data processing. DeepRM [102] is the first example solution
that applies deep reinforcement learning to cluster scheduling problem. It
translates the problem of packing tasks with multiple resource demands into
a learning problem. DeepRM is designed to handle job scheduling in an online

95

5. Learning Scheduling Policies for DAG jobs

manner, and represents the state of the system as images which include the
resource profiles of jobs and the current allocation of cluster resources. However,
they cannot handle DAG jobs due to the limitation of their job model, and they
simply model the cluster as a resource pool. To the DAG scheduling, Wu
et al. [147] proposed an adaptive DAG tasks scheduling algorithm using deep
reinforcement learning. Orhean et al. [111] presented a scheduling approach
using reinforcement learning for heterogeneous distributed systems. However,
they both ignore the multi-resource requirements of the DAG jobs, and mainly
focus on computational power and capacity to make scheduling decisions. Unlike
previous researches, we investigate an approach that can effectively learn DAG
scheduling with multi-resource constraints on heterogeneous clusters.

5.8 Conclusion

In this chapter, we present GoTask, an approach that can learn to well schedule
DAG jobs on heterogeneous clusters. GoTask directly learns scheduling policies
from experience through deep reinforcement learning. In order to handle the
complexity and scale of the DAG scheduling problem, we propose a two-stage
approach in GoTask, where the first stage leverages a deep reinforcement
learning agent to learn policies for selecting a pending task of a DAG job,
and the second stage leverages another agent to learn policies for selecting a
machine to run the selected task. We implement a GoTask prototype and a
simulator for simulation of task execution on multi-resource clusters. In the
evaluation, the experimental results showed that GoTask can noticeably benefit
from the proposed state encoding approaches, and outperforms commonly
adopted scheduling heuristics, which improves job completion time by 6% to
18%.

96

Conclusion and Future Work

Cloud computing is becoming increasingly popular and widely used in almost
every aspect of today’s business. By encapsulating the runtime context of a
software system, container technologies can significantly simplify the deploy-
ment and maintenance of cloud applications. Meanwhile, the performance of
cloud applications is getting more and more attention as many applications
can only deliver the expected business value when their quality of services and
user experiences are guaranteed. To achieve the desired performance, efficient
cloud resource scheduling is crucial. Although many research efforts have been
devoted to cloud resource scheduling problems, there are still many challenges
in this area. With respect to application type and scale, when the scale of
applications grows, particularly when the number of distributed data sources or
sensors increases, a large number of concurrent application requests will have to
be supported by the cloud system simultaneously. As distributed applications
often have diverse resource requirements, it imposes stringent challenges to
support such applications on a cloud infrastructure. In terms of applications
types, service-based applications and batch jobs coexist in cloud computing.
To maintain the performance required by the applications, the application-
specific properties (e.g., inter-task dependencies) have to be handled together
with the resources constraints by the cloud application schedulers. With
respect to quality-critical requirements, the application performance
can be dramatically influenced by the resources provided by the underlying
infrastructure (e.g., CPU capacity, memory size, and network bandwidth).
The resource selection on cloud infrastructure is thus crucial for satisfying
the specific runtime requirements of applications (e.g., the timely response of
service-based applications and the short processing time of batch jobs). With
respect to infrastructure heterogeneity and scale, a distributed cloud
infrastructure, particularly virtual infrastructure, is often across multiple data
centers or providers, which can consist of virtual machines with highly diverse
configurations. The scale of modern cloud computer cluster can contain several
thousand, or even more, machines for a large number of applications to run

97

6. Conclusion and Future Work

simultaneously. The business value of such large scale infrastructure heavily
relies on the quality of scheduling for different application requirements.

In this thesis, we investigated resource scheduling problem for quality-critical
applications on cloud infrastructure. We started from the simple scenario
where applications are deployed on a dedicated cloud infrastructure. We have
proposed a deadline-aware deployment system for time critical applications
to meet deployment deadlines in Chapter 2. And then, we focused on
a common scenario where multiple applications share the heterogeneous
infrastructure. We have proposed an enhanced container scheduler for
concurrent container requests to meet multi-resource requirements in
Chapter 3. Finally, we investigated application-centric scheduling approaches
for two types of cloud applications. For service-based applications, we have
proposed a service placement solution to optimize inter-machine traffic in
Chapter 4. For DAG jobs, we have tackled the complexity of DAG scheduling
with multi-resource requirements by using deep reinforcement learning
based approach in Chapter 5.

In this chapter, we first summarize the contributions of this thesis in
Section 6.1. Then, we propose several directions for future research in
Section 6.2.

6.1 Conclusion

We list the main contributions of the thesis as follows:

¢ RQ1 How can we effectively deploy distributed applications with
critical time constraints in clouds?

To answer this question, we have analyzed the time cost in the procedure
of cloud application deployment and observed that the difference of
deployment is mainly caused by the transmission time of container
images over network. To optimize the usage of the network bandwidth,
we have proposed a Deadline-aware Deployment System (DDS) for
deploying time-critical applications in clouds. We employed Earliest
Deadline First (EDF) method to prioritize the requests with the deadline
constraints in DDS. We designed a bandwidth-aware algorithm to achieve
parallel transmission without causing network bandwidth contention. In
the experiments, we have demonstrated that DDS leverages network
bandwidth sufficiently, and significantly reduces the number of missed
deadlines during deployment.

¢ RQ2 How can we efficiently handle concurrent container re-
quests with multi-resource constraints on heterogeneous clus-
ters?

98

6.1. Conclusion

To answer this question, we first analyzed the characteristics of existing
cluster schedulers, and then proposed a graph-based scheduler called
Enhanced Container Scheduler (ECSched). We formulated the container
scheduling problem as a minimum cost flow problem (MCFP) and
represented the container requirements using a specific graph data
structure (i.e., flow network). In the flow network, we proposed two
strategies to encode the multi-resource demands of requested containers,
and two adjustments of the flow network to handle container affinity
and machine affinity requirements. We implemented ECSched with a
container manager and an appropriate variant of MCFP algorithms. In
the experiments, we have shown that ECSched outperforms state-of-the-
art container schedulers, which can lower the average container completion
time by up to 1.3x and noticeably improve the resource utilization. For
the scheduling overhead, the large-scale simulations showed that ECSched
introduces a small overhead, but it is acceptable in practice.

RQ3 How can we optimize the placement of service-based
applications in clouds?

To answer this question, we have proposed a new approach to optimize
the placement of service-based applications in clouds. The approach
first partitions the application into several parts while keeping overall
traffic between different parts to a minimum, and then packs the different
parts into machines based on their resource requirements. Based on
a well designed randomized contraction algorithm, we proposed two
algorithms: Binary Partition and K Partition, to find a high-quality
partition for service-based applications. And we proposed a packing
algorithm based on a packing heuristic with traffic awareness. We
combined the algorithms of partitioning and packing with a resource
demand threshold to optimize placement solutions. @~ We conducted
extensive experiments to demonstrate the proposed algorithms. The
results showed that our approach outperforms existing container cluster
schedulers and representative heuristics, leading to much less overall inter-
machine traffic.

RQ4 How can we learn scheduling policies of DAG jobs with
deep reinforcement learning on multi-resource clusters?

To answer this question, we have proposed a deep reinforcement learning
based approach called GoTask. In order to tackle the complexity of the
DAG scheduling problem, we have proposed a two-stage learning approach
in GoTask, for learning policies for selecting a pending task of a DAG
job, and for selecting a machine to run the selected task respectively.
In the task selection stage, we adopted an approach based on longest

99

6. Conclusion and Future Work

path and critical path to encode inter-task dependencies. In the machine
selection stage, we represented fitness scores of several packing heuristics
in the state to facilitate the learning of scheduling policy. At runtime,
GoTask continuously observes the state of machines in the cluster and the
state of the DAG job. According to the observation, GoTask performs
encoding based on the current state to get a representation, and feeds
the neural network the representation to make a scheduling decision. We
evaluated the performance of GoTask via simulations. The experimental
results showed that GoTask outperforms commonly adopted scheduling
heuristics, which improves job completion time by 6% to 18%.

The work presented in the thesis is conducted in the context of a number
of EU projects. The proposed algorithms have been implemented in the
software system Dynamic Real-time Infrastructure Planner (DRIP) in the EU
SWITCH project!, and have been further exploited in the followup project EU
ARITCONF project?. The DRIP has been used as part of the infrastructure
optimization solution in the EU ENVRIPLUS project® and EU ENVRI-FAIR
project? for supporting big data management services in environmental and
earth sciences. It has also been used in a number of use cases, e.g., life event
broadcast [160] and disaster early warning systems [161].

6.2 Future Work

There are a few future directions that need exploration:

o Handling dynamics of cloud resources. The algorithms and approaches
proposed in this thesis are based on the fixed and static resource model.
However, the dynamics of cloud resources (e.g., resources may join or exit
at any time) would have much impact on the application performance.
Thus, it is worth to investigate how to model the resource dynamics and
how to incorporate the resource dynamics into resource scheduling. This
will provide a more resilient and robust scheduling mechanism for cloud
applications.

e Understanding runtime properties of cloud applications. In this thesis,
the basic application requirements and constraints are provided by users.
However, there are some essential runtime properties which are unknown
in advance, such as the actual resource consumption and the interference
between difference applications. These runtime properties are crucial for

IEU H2020 SWITCH: https://www.switchproject.eu

2EU H2020 ARTICONF: https://www.articonf.eu

3EU H2020 ENVRIPLUS: https://www.envriplus.eu

4EU H2020 ENVRI-FAIR: https://www.envri.eu/envri-fair

100

6.2. Future Work

achieving a stable application performance, which also need to be handled
very well when running applications in clouds. To tackle this problem, we
plan to use machine learning based technologies to learn and understand
the runtime properties of different applications.

FEztending to fog and edge computing. With the fast growth of Internet of
Things (IoT) and rapid development of 5G technology, we can expect
that hundreds of billions of devices will be connected to the internet
to bring promising new applications in the future. To handle such
massive numbers of devices and corresponding data, fog computing and
edge computing are emerging as the main paradigm to mitigate the gap
between IoT devices and cloud computing. Integrating cloud, fog and
edge computing and scheduling diverse resources together could have great
benefits for handling IoT applications. Thus, we plan to extend our work
to incorporate fog and edge resources to cope with more complex and
dynamic environments.

101

[29]

Bibliography

Alibaba cluster trace. https://github.com/alibaba/clusterdata/.

Amazon emr. https://aws.amazon.com/emr/.

Microsoft azure. https://azure.microsoft.com/.

Control groups (cgroups). https://wuw.kernel.org/doc/Documentation/cgroup-vi/.
Amazon web services. https://aws.amazon.com/.

Google cloud platform. https://cloud.google.com/.

Google container registry. https://cloud.google.com/container-registry/, .
Google cluster trace. https://github.com/google/cluster-data/, .

Google kubernetes. https://kubernetes.io/.

Kernel-based virtual machine. https://www.linux-kvm.org/.

Mesosphere marathon. https://mesosphere.com/.

Mesos containerizer. http://mesos.apache.org/.

Microservices a definition of this new architectural term. https://martinfowler.com/
articles/microservices/.

Linux namespaces. https://en.wikipedia.org/wiki/Linux_namespaces/.

Openstack cloud software. https://www.openstack.org/.

Coreos rkt. https://coreos.com/rkt/.

Docker swarm. https://docs.docker.com/engine/swarm/.

Vmware esxi hypervisor. https://www.vmware.com/products/esxi-and-esx/.

Docker Hub. URL https://hub.docker.com/.

Apache hadoop. https://hadoop.apache.org/.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
16), pages 265-283, 2016.

S. Abrishami, M. Naghibzadeh, and D. H. Epema. Cost-driven scheduling of grid
workflows using partial critical paths. IEEE Transactions on Parallel and Distributed
Systems, 23(8):1400-1414, 2012.

R. K. Ahuja. Network flows: theory, algorithms, and applications. Pearson Education,
2017.

Y. Ajiro and A. Tanaka. Improving packing algorithms for server consolidation. In Int.
CMG Conference, volume 253, 2007.

M. Alicherry and T. Lakshman. Network aware resource allocation in distributed clouds.
In 2012 Proceedings IEEE INFOCOM, pages 963-971. IEEE, 2012.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker.
pfabric: Minimal near-optimal datacenter transport. 43(4):435-446, 2013.

N. Alshugayran, N. Ali, and R. Evans. A systematic mapping study in microservice
architecture. In 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA), pages 44-51. IEEE, 2016.

M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder. Performance
evaluation of microservices architectures using containers. In 2015 [IEEE 14th
International Symposium on Network Computing and Applications, pages 27-34. IEEE,
2015.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi, et al. Spark sql: Relational data processing in spark. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, pages 1383-1394. ACM, 2015.

K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. A brief survey
of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

U. Awada and A. Barker. Improving resource efficiency of container-instance clusters
on clouds. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and

103

https://github.com/alibaba/clusterdata/
https://aws.amazon.com/emr/
https://azure.microsoft.com/
https://www.kernel.org/doc/Documentation/cgroup-v1/
https://aws.amazon.com/
https://cloud.google.com/
https://cloud.google.com/container-registry/
https://github.com/google/cluster-data/
https://kubernetes.io/
https://www.linux-kvm.org/
https://mesosphere.com/
http://mesos.apache.org/
https://martinfowler.com/articles/microservices/
https://martinfowler.com/articles/microservices/
https://en.wikipedia.org/wiki/Linux_namespaces/
https://www.openstack.org/
https://coreos.com/rkt/
https://docs.docker.com/engine/swarm/
https://www.vmware.com/products/esxi-and-esx/
https://hub.docker.com/
https://hadoop.apache.org/

6. Bibliography

[32]
(33
(34
[35]
[36]
[37]

(38]

(39]

[40]

[41]
42]
(43]

[44]

(45]

[46]

(47]

(48]

[49]

(50]

Grid Computing (CCGRID), pages 929-934. IEEE, 2017.

R. Bajaj and D. P. Agrawal. Improving scheduling of tasks in a heterogeneous
environment. IEEE Transactions on Parallel and Distributed Systems, 15(2):107-118,
2004.

A. Balalaie, A. Heydarnoori, and P. Jamshidi. Migrating to cloud-native architectures
using microservices: an experience report. In European Conference on Service-Oriented
and Cloud Computing, pages 201-215. Springer, 2015.

I. Baldin, J. Chase, Y. Xin, A. Mandal, P. Ruth, C. Castillo, V. Orlikowski,
C. Heermann, and J. Mills. Exogeni: A multi-domain infrastructure-as-a-service
testbed. In The GENI Book, pages 279-315. Springer, 2016.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, 1. Pratt,
and A. Warfield. Xen and the art of virtualization. In ACM SIGOPS operating systems
review, volume 37, pages 164-177. ACM, 2003.

L. A. Barroso. Warehouse-scale computing: Entering the teenage decade. 2011.

S. Baskiyar and R. Abdel-Kader. Energy aware dag scheduling on heterogeneous
systems. Cluster Computing, 13(4):373-383, 2010.

T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data center traffic
characteristics. In Proceedings of the 1st ACM workshop on Research on enterprise
networking, pages 65—-72. ACM, 2009.

O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and E. Silvera. A stable
network-aware vin placement for cloud systems. In 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages 498-506. IEEE,
2012.

E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and L. Zhou. Apollo:
scalable and coordinated scheduling for cloud-scale computing. In 11th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 14), pages
285-300, 2014.

D. Breitgand, A. Marashini, and J. Tordsson. Policy-driven service placement
optimization in federated clouds. IBM Research Division, Tech. Rep, 9:11-15, 2011.
B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. Borg, omega, and
kubernetes. Communications of the ACM, 59(5):50-57, 2016.

E. Casalicchio and L. Silvestri. Mechanisms for SLA provisioning in cloud-based service
providers. Computer Networks, 57(3):795-810, 2013.

T. Cerny, M. J. Donahoo, and M. Trnka. Contextual understanding of microservice
architecture: current and future directions. ACM SIGAPP Applied Computing Review,
17(4):29-45, 2018.

L. Chen, K. Chen, W. Bai, and M. Alizadeh. Scheduling mix-flows in commodity
datacenters with Karuna. In Proceedings of the 2016 conference on ACM SIGCOMM
2016 Conference, pages 174-187. ACM, 2016.

D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and F. Wagner.
Random graph generation for scheduling simulations. In Proceedings of the 3rd
international ICST conference on simulation tools and techniques, page 60. ICST
(Institute for Computer Sciences, Social-Informatics and , 2010.

E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
G. B. Berriman, J. Good, et al. Pegasus: A framework for mapping complex scientific
workflows onto distributed systems. Scientific Programming, 13(3):219-237, 2005.

P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel. Hawk: Hybrid datacenter
scheduling. In 2015 { USENIX} Annual Technical Conference ({USENIX}{ATC} 15),
pages 499-510, 2015.

C. Delimitrou, D. Sanchez, and C. Kozyrakis. Tarcil: reconciling scheduling speed and
quality in large shared clusters. In Proceedings of the Sixth ACM Symposium on Cloud
Computing, pages 97-110. ACM, 2015.

L. Deng, D. Yu, et al. Deep learning: methods and applications. Foundations and

104

51]

(52]

53]

[54]

[55]

(61]

(62]

(63]

[64]

[65]

(67)

(68]

(69]

[70]

Trends@®) in Signal Processing, 7(3-4):197-387, 2014.

E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks with
power estimation. In Soviet Math. Doklady, volume 11, pages 1277-1280, 1970.

J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, and S. Cheng. Energy-saving virtual machine
placement in cloud data centers. In 2018 13th IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing, pages 618-624. IEEE, 2013.

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and
L. Safina. Microservices: yesterday, today, and tomorrow. In Present and ulterior
software engineering, pages 195-216. Springer, 2017.

J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM (JACM), 19(2):248-264, 1972.

M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya. Virtual machine
consolidation in cloud data centers using aco metaheuristic. In European Conference
on Parallel Processing, pages 306—317. Springer, 2014.

A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey: guaranteed
job latency in data parallel clusters. In Proceedings of the 7th ACM european conference
on Computer Systems, pages 99-112. ACM, 2012.

M. Gabay and S. Zaourar. Vector bin packing with heterogeneous bins: application
to the machine reassignment problem. Annals of Operations Research, 242(1):161-194,
2016.

W. Gao, H. Jin, S. Wu, X. Shi, and J. Yuan. Effectively deploying services on
virtualization infrastructure. Frontiers of Computer Science, 6(4):398-408, 2012.

Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu. A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing. Journal of Computer and
System Sciences, 79(8):1230-1242, 2013.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dominant
resource fairness: Fair allocation of multiple resource types. In NSDI, volume 11, pages
24-24, 2011.

I. Gog, M. Schwarzkopf, A. Gleave, R. N. Watson, and S. Hand. Firmament: Fast,
centralized cluster scheduling at scale. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 99-115, 2016.

A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm.
J. Algorithms, 22(1):1-29, 1997.

A. V. Goldberg and M. Kharitonov. On implementing scaling push-relabel algorithms
for the minimum-cost flow problem. In Network Flows and Matching, pages 157—198,
1991.

A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by successive
approximation. Mathematics of Operations Research, 15(3):430-466, 1990.

O. Goldschmidt and D. S. Hochbaum. Polynomial algorithm for the k-cut problem.
In [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science,
pages 444-451. IEEE, 1988.

R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-resource
packing for cluster schedulers. ACM SIGCOMM Computer Communication Review,
44(4):455-466, 2015.

R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. Altruistic scheduling
in multi-resource clusters. In OSDI, pages 65—-80, 2016.

R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni. G: Packing and dependency-
aware scheduling for data-parallel clusters. In Proceedings of OSDI’16: 12th USENIX
Symposium on Operating Systems Design and Implementation, page 81, 2016.

M. A. Hajji and H. Mezni. A composite particle swarm optimization approach for the
composite saas placement in cloud environment. Soft Computing, 22(12):4025-4045,
2018.

W. Hasselbring and G. Steinacker. Microservice architectures for scalability, agility

105

6. Bibliography

[71]

(72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]
(86]
(87]
(88]

(89]

and reliability in e-commerce. In 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), pages 243-246. IEEE, 2017.

K. Hightower, B. Burns, and J. Beda. Kubernetes: Up and Running: Dive Into the
Future of Infrastructure. ” O’Reilly Media, Inc.”, 2017.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing in the
data center. 11(2011):22-22, 2011.

G. Hinton, N. Srivastava, and K. Swersky. Neural networks for machine learning lecture
6a overview of mini-batch gradient descent. Cited on, page 14, 2012.

X. Hou, Y. Lu, and S. Dey. Wireless vr/ar with edge/cloud computing. In 2017 26th
International Conference on Computer Communication and Networks (ICCCN), pages
1-8. IEEE, 2017.

Y. Hu, H. Li, and Y. Peng. NVLAN: A novel VLAN technology for scalable multi-
tenant datacenter networks. In Advanced Cloud and Big Data (CBD), 2014 Second
International Conference on, pages 190-195. IEEE, 2014.

Y. Hu, J. Wang, H. Zhou, P. Martin, A. Taal, C. de Laat, and Z. Zhao. Deadline-aware
deployment for time critical applications in clouds. In Furopean Conference on Parallel
Processing, pages 345-357. Springer, 2017.

Y. Hu, H. Zhou, C. de Laat, and Z. Zhao. Ecsched: Efficient container scheduling on
heterogeneous clusters. In European Conference on Parallel Processing, pages 365-377.
Springer, 2018.

K.-C. Huang and B.-J. Shen. Service deployment strategies for efficient execution of
composite saas applications on cloud platform. Journal of Systems and Software, 107:
127-141, 2015.

C. Inzinger, S. Nastic, S. Sehic, M. Vogler, F. Li, and S. Dustdar. Madcat: A
methodology for architecture and deployment of cloud application topologies. In 201/
IEEE 8th international symposium on service oriented system engineering, pages 13—
22. IEEE, 2014.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg. Quincy:
fair scheduling for distributed computing clusters. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages 261-276. ACM, 2009.

G. Juve and E. Deelman. Automating application deployment in infrastructure clouds.
In 2011 IEEE Third International Conference on Cloud Computing Technology and
Science, pages 658-665. IEEE, 2011.

S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov, J. Yaniv,
R. Mavlyutov, I. Goiri, S. Krishnan, J. Kulkarni, et al. Morpheus: Towards automated
slos for enterprise clusters. In OSDI, pages 117-134, 2016.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237-285, 1996.

K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. M. Fumarola,
S. Heddaya, R. Ramakrishnan, and S. Sakalanaga. Mercury: Hybrid centralized and
distributed scheduling in large shared clusters. In 2015 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 15), pages 485-497, 2015.

D. R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut
algorithm. In SODA, volume 93, pages 21-30, 1993.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

M. Klein. A primal method for minimal cost flows with applications to the assignment
and transportation problems. Management Science, 14(3):205-220, 1967.

D. Kliazovich, P. Bouvry, and S. U. Khan. Dens: data center energy-efficient network-
aware scheduling. Cluster computing, 16(1):65-75, 2013.

V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Advances in neural
information processing systems, pages 1008-1014, 2000.

106

[90]

[95]

[96]

(98]
99]

[100]

[101]

[102]

[103]
[104]

[105]

[106]

[107]

[108]

[109]

[110]

Y.-K. Kwok and I. Ahmad. Dynamic critical-path scheduling: An effective technique for
allocating task graphs to multiprocessors. IEEE transactions on parallel and distributed
systems, 7(5):506-521, 1996.

Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4):406-471, 1999.
B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines
that learn and think like people. Behavioral and Brain Sciences, 40, 2017.

S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Talwar, L. Uyeda, and
U. Wieder. Validating heuristics for virtual machines consolidation. Microsoft Research,
MSR-TR-2011-9, pages 1-14, 2011.

W. Leinberger, G. Karypis, and V. Kumar. Multi-capacity bin packing algorithms with
applications to job scheduling under multiple constraints. In Parallel Processing, 1999.
Proceedings. 1999 International Conference on, pages 404-412. IEEE, 1999.

P. Leitner, J. Cito, and E. Stockli. Modelling and managing deployment costs
of microservice-based cloud applications. In Proceedings of the 9th International
Conference on Utility and Cloud Computing, pages 165-174. ACM, 2016.

T. Li, Z. Xu, J. Tang, and Y. Wang. Model-free control for distributed stream data
processing using deep reinforcement learning. Proceedings of the VLDB Endowment,
11(6):705-718, 2018.

W. Li, P. Svard, J. Tordsson, and E. Elmroth. A general approach to service
deployment in cloud environments. In Cloud and Green Computing (CGC), 2012
Second International Conference on, pages 17-24. IEEE, 2012.

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM (JACM), 20(1):46-61, 1973.

A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional bin packing
problems. Discrete Applied Mathematics, 123(1):379-396, 2002.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed graphlab: a framework for machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment, 5(8):716-727, 2012.

7. A. Mann. Allocation of virtual machines in cloud data centers-a survey of problem
models and optimization algorithms. Acm Computing Surveys (CSUR), 48(1):11, 2015.
H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource management with deep
reinforcement learning. In Proceedings of the 15th ACM Workshop on Hot Topics in
Networks, pages 50-56. ACM, 2016.

P. Mell, T. Grance, et al. The nist definition of cloud computing. 2011.

X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data center networks
with traffic-aware virtual machine placement. In 2010 Proceedings IEEE INFOCOM,
pages 1-9. IEEE, 2010.

D. Merkel. Docker: Lightweight linux containers for consistent development and
deployment. Linuz Journal, 2014(239):2, 2014.

H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan. Online self-reconfiguration with
performance guarantee for energy-efficient large-scale cloud computing data centers. In
Services Computing (SCC), 2010 IEEE International Conference on, pages 514-521.
IEEE, 2010.

tool. IEEE Internet Computing, 15(2):11-14, 2011.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

107

6. Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]
[123]

[124]

[125]

[126]

[127]

[128]

and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pages 1928-1937, 2016.

A. I. Orhean, F. Pop, and I. Raicu. New scheduling approach using reinforcement
learning for heterogeneous distributed systems. Journal of Parallel and Distributed
Computing, 117:292-302, 2018.

J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
research, 41(2):338-350, 1993.

K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: distributed, low
latency scheduling. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 69-84. ACM, 2013.

R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder. Heuristics for vector bin packing.
research. microsoft. com, 2011.

C. Peng, M. Kim, Z. Zhang, and H. Lei. VDN: Virtual machine image distribution
network for cloud data centers. In INFOCOM, 2012 Proceedings IEEE, pages 181-189.
IEEE, 2012.

S. Rampersaud and D. Grosu. Sharing-aware online virtual machine packing in
heterogeneous resource clouds. IEEE Transactions on Parallel and Distributed Systems,
28(7):2046-2059, 2017.

J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and S. Rao. Efficient
queue management for cluster scheduling. In Proceedings of the Eleventh European
Conference on Computer Systems, page 36. ACM, 2016.

K. Razavi and T. Kielmann. Scalable virtual machine deployment using vm
image caches. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, page 65. ACM, 2013.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In Proceedings of the Third
ACM Symposium on Cloud Computing, page 7. ACM, 2012.

B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino. Apache
tez: A unifying framework for modeling and building data processing applications. In
Proceedings of the 2015 ACM SIGMOD international conference on Management of
Data, pages 1357-1369. ACM, 2015.

R. Sakellariou and H. Zhao. A hybrid heuristic for dag scheduling on heterogeneous
systems. In 18th International Parallel and Distributed Processing Symposium, 2004.
Proceedings., page 111. IEEE, 2004.

A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. Legoos: A disseminated, distributed {OS}
for hardware resource disaggregation. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pages 69-87, 2018.

W. Shi and B. Hong. Towards profitable virtual machine placement in the data center.
In 2011 Fourth IEEE International Conference on Utility and Cloud Computing, pages
138-145. IEEE, 2011.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the
game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.
D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.
Nature, 550(7676):354, 2017.

W. Smith, I. Foster, and V. Taylor. Predicting application run times using historical
information. In Workshop on Job Scheduling Strategies for Parallel Processing, pages
122-142. Springer, 1998.

M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova. Resource allocation
algorithms for virtualized service hosting platforms. Journal of Parallel and distributed
Computing, 70(9):962-974, 2010.

108

[129]

[130]

[131]
[132]

[133]

[134]

[135]

[136]
[137)

[138)

[139)

[140)

[141)

[142]

[143]

[144]

[145]
[146]

[147]

[148]

[149]

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

S. Taherizadeh, A. C. Jones, 1. Taylor, Z. Zhao, and V. Stankovski. Monitoring self-
adaptive applications within edge computing frameworks: A state-of-the-art review.
Journal of Systems and Software, 136:19-38, 2018.

J. Thoénes. Microservices. IEEFE software, 32(1):116-116, 2015.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff,
and R. Murthy. Hive: a warehousing solution over a map-reduce framework. Proceedings
of the VLDB Endowment, 2(2):1626-1629, 2009.

A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. Iperf: The TCP/UDP
bandwidth measurement tool. hit p://dast. nlanr. net/Projects, 2005.

J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente. Cloud brokering
mechanisms for optimized placement of virtual machines across multiple providers.
Future generation computer systems, 28(2):358-367, 2012.

L. Torrey and J. Shavlik. Transfer learning. In Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques, pages 242—264.
IGI Global, 2010.

W. Tsai, X. Bai, and Y. Huang. Software-as-a-service (SaaS): perspectives and
challenges. Science China Information Sciences, 57(5):1-15, 2014.

B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware datacenter tcp (D2TCP).
ACM SIGCOMM Computer Communication Review, 42(4):115-126, 2012.

L. M. Vaquero, A. Celorio, F. Cuadrado, and R. Cuevas. Deploying large-scale datasets
on-demand in the cloud: treats and tricks on data distribution. IEEE Transactions on
Cloud Computing, 3(2):132-144, 2015.

A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-
scale cluster management at google with borg. In Proceedings of the Tenth European
Conference on Computer Systems, page 18. ACM, 2015.

J. Wan, S. Tang, H. Yan, D. Li, S. Wang, and A. V. Vasilakos. Cloud robotics: Current
status and open issues. IEEE Access, 4:2797-2807, 2016.

J. Wang, A. Taal, P. Martin, Y. Hu, H. Zhou, J. Pang, C. de Laat, and Z. Zhao.
Planning virtual infrastructures for time critical applications with multiple deadline
constraints. Future Generation Computer Systems, 75:365-375, 2017.

M. Wang, X. Meng, and L. Zhang. Consolidating virtual machines with dynamic
bandwidth demand in data centers. In Infocom, volume 201, pages 71-75, 2011.

W. Wang, B. Li, and B. Liang. Dominant resource fairness in cloud computing systems
with heterogeneous servers. In IEEE INFOCOM 2014-IEEE Conference on Computer
Communications, pages 583-591. IEEE, 2014.

W. Wang, B. Liang, and B. Li. Multi-resource fair allocation in heterogeneous cloud
computing systems. IEEE Transactions on Parallel and Distributed Systems, 26(10):
2822-2835, 2014.

C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than late: Meeting
deadlines in datacenter networks. 41(4):50-61, 2011.

G. J. Woeginger. There is no asymptotic ptas for two-dimensional vector packing.
Information Processing Letters, 64(6):293-297, 1997.

Q. Wu, Z. Wu, Y. Zhuang, and Y. Cheng. Adaptive dag tasks scheduling with deep
reinforcement learning. In International Conference on Algorithms and Architectures
for Parallel Processing, pages 477-490. Springer, 2018.

W. Wu, A. Bouteiller, G. Bosilca, M. Faverge, and J. Dongarra. Hierarchical dag
scheduling for hybrid distributed systems. In 2015 IEEE International Parallel and
Distributed Processing Symposium, pages 156-165. IEEE, 2015.

J. Xu and J. A. Fortes. Multi-objective virtual machine placement in virtualized data
center environments. In Proceedings of the 2010 IEEE/ACM Int’l Conference on Green
Computing and Communications & Int’l Conference on Cyber, Physical and Social

109

6. Bibliography

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

Computing, pages 179-188. IEEE Computer Society, 2010.

G. Yao, Y. Ding, and K. Hao. Using imbalance characteristic for fault-tolerant workflow
scheduling in cloud systems. IEEFE Transactions on Parallel and Distributed Systems,
28(12):3671-3683, 2017.

Z. 1. M. Yusoh and M. Tang. A penalty-based genetic algorithm for the composite
saas placement problem in the cloud. In IEEE Congress on Evolutionary Computation,
pages 1-8. IEEE, 2010.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, et al. Apache spark: a unified engine for big data
processing. Communications of the ACM, 59(11):56-65, 2016.

Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and research
challenges. Journal of internet services and applications, 1(1):7-18, 2010.

Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu. Fuxi: a fault-tolerant resource
management and job scheduling system at internet scale. Proceedings of the VLDB
Endowment, 7(13):1393-1404, 2014.

Z. Zhang, Z. Li, K. Wu, D. Li, H. Li, Y. Peng, and X. Lu. Vmthunder: fast provisioning
of large-scale virtual machine clusters. IEEE Transactions on Parallel and Distributed
Systems, 25(12):3328-3338, 2014.

Z. Zhao, P. Martin, J. Wang, A. Taal, A. Jones, I. Taylor, V. Stankovski, I. G. Vega,
G. Suciu, A. Ulisses, et al. Developing and operating time critical applications in clouds:
the state of the art and the SWITCH approach. Procedia Computer Science, 68:17-28,
2015.

7. Zhao, A. Taal, A. Jones, I. Taylor, V. Stankovski, I. G. Vega, F. J. Hidalgo,
G. Suciu, A. Ulisses, P. Ferreira, et al. A software workbench for interactive, time
critical and highly self-adaptive cloud applications (switch). In Cluster, Cloud and
Grid Computing (CCGrid), 2015 15th IEEE/ACM International Symposium on, pages
1181-1184. IEEE, 2015.

Z. Zhao, P. Martin, C. De Laat, K. Jeffery, A. Jones, I. Taylor, A. Hardisty, M. Atkinson,
A. Zuiderwijk, Y. Yin, and Y. Chen. Time critical requirements and technical
considerations for advanced support environments for data-intensive research. In 2nd
International Workshop on Interoperable infrastructures for interdisciplinary Big Data
sciences (IT4RIs) in the context of IEEE Real-time System Symposium (RTSS), 2016.
H. Zhou, Y. Hu, J. Wang, P. Martin, C. De Laat, and Z. Zhao. Fast and dynamic
resource provisioning for quality critical cloud applications. In Real-Time Distributed
Computing (ISORC), 2016 IEEE 19th International Symposium on, pages 92-99.
IEEE, 2016.

H. Zhou, S. Koulouzis, Y. Hu, J. Wang, C. de Laat, A. Ulisses, and Z. Zhao. Migrating
live streaming applications onto clouds: Challenges and a cloudstorm solution. In 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion
(UCC Companion), pages 321-326. IEEE, 2018.

H. Zhou, A. Taal, S. Koulouzis, J. Wang, Y. Hu, G. Suciu, V. Poenaru, C. de Laat,
and Z. Zhao. Dynamic real-time infrastructure planning and deployment for disaster
early warning systems. In International Conference on Computational Science, pages
644-654. Springer, 2018.

7. Zhu, G. Zhang, M. Li, and X. Liu. Evolutionary multi-objective workflow scheduling
in cloud. IEEE Transactions on parallel and distributed Systems, 27(5):1344-1357,
2015.

110

Summary

Cloud computing can provide virtualized, elastic, and on-demand computer
system resources for supporting complex distributed applications, which has
become the ubiquitous and primary computing paradigm for today’s business.
Meanwhile, the performance of cloud applications is getting more and more
attention, particularly along with quality-critical applications which have
critical requirements for Quality of Service (QoS) or Quality of Experience
(QoE). It is because they can only achieve their expected value and social
impact when the application performance is guaranteed. Typically, cloud
applications involve distributed and parallel components to handle massive and
complex tasks. During runtime, the application components often have diverse
resource requirements, such as a combination of CPU, memory, and disk, which
have to be satisfied by the underlying cloud infrastructure for running the
application properly. Moreover, some application-specific properties, such as
network traffic among collaborative services and dependency of batch tasks,
require careful treatment by cloud resource schedulers for achieving the desired
performance. When the scale of cloud applications and the complexity of cloud
infrastructure increasingly grow, effective cloud resource scheduling mechanisms
become extremely important.

We are thus motivated to investigate how to efficiently schedule resources to
satisfy quality-critical requirements of diverse applications on cloud infrastruc-
ture. The scientific contributions presented in the thesis are as follows:

e We propose a Deadline-aware Deployment System (DDS) for deploying
time critical applications in clouds. Considering the deadline constraints
of deployment requests, we employ Earliest Deadline First (EDF) to
prioritize the requests in DDS. Furthermore, we design a bandwidth-
aware algorithm to achieve parallel transmission without causing network
bandwidth contention. Experimental results show that DDS leverages
network bandwidth sufficiently, and significantly reduces the number of
missed deadlines during deployment.

e We propose an Enhanced Container Scheduler (ECSched) for efficiently
scheduling concurrent container requests with multi-resource constraints
on heterogeneous clusters. To handle concurrent requests, we formulate
the container scheduling problem as a minimum-cost flow problem
(MCFP) and represent the container requirements using a specific graph
data structure (flow network). In the flow network, we propose a novel
approach to encode the multi-resource demands and affinity requirements
of requested containers. Experimental results show that ECSched
can achieve better scheduling quality than state-of-the-art container
schedulers, which can lower the average container completion time by
up to 1.3x and noticeably improve resource utilization.

111

6. Summary

e We propose a new approach to optimize the placement of service-based

applications in clouds. Our approach involves two key steps: 1) The
requested application is partitioned into several parts while keeping overall
traffic between different parts to a minimum. 2) The parts in the partition
are packed into machines with multi-resource constraints. Combining
these two steps, the proposed approach can find an appropriate placement
solution for service-based applications in clouds. Experimental results
show that our approach outperforms existing container cluster schedulers
and representative heuristics, leading to much less overall inter-machine
traffic.

We present GoTask, an approach that can learn to well schedule DAG jobs
on multi-resource clusters. GoTask directly learns scheduling policies from
experience through deep reinforcement learning. In order to handle the
complexity and scale of the DAG scheduling problem, we propose a two-
stage approach in GoTask. The first stage leverages a deep reinforcement
learning agent to learn policies for selecting a pending task of a DAG
job, and the second stage leverages another agent to learn policies for
selecting a machine to run the selected task. Experimental results show
that GoTask outperforms commonly adopted scheduling heuristics, which
improves job completion time by 6% to 18%.

112

Samenvatting

Cloud computing kan gevirtualiseerde, elastische en on-demand computer-
systeembronnen leveren voor het ondersteunen van complexe gedistribueerde
applicaties en is het alomtegenwoordige en primaire computerparadigma voor
het hedendaagse bedrijfsleven geworden. Ondertussen krijgen de prestaties
van cloudapplicaties steeds meer aandacht, vooral samen met kwaliteitskritieke
applicaties die kritische eisen stellen aan de Quality of Service (QoS) of de
Quality of Experience (QoE). Dit komt omdat cloudapplicaties alleen hun
verwachte waarde en sociale impact kunnen bereiken wanneer de prestaties
van de applicatie zijn gegarandeerd. Cloudapplicaties omvatten doorgaans
gedistribueerde en parallelle componenten om massieve en complexe taken uit te
voeren. Tijdens runtime hebben de applicatiecomponenten vaak verschillende
resourcevereisten, zoals een combinatie van CPU, geheugen en schijfruimte,
waaraan moet worden voldaan door de onderliggende cloudinfrastructuur om de
applicatie correct te laten werken. Bovendien vereisen sommige applicatiespec-
ifieke eigenschappen, zoals netwerkverkeer tussen samenwerkingsservices en
de afhankelijkheid van batchtaken, een zorgvuldige behandeling door cloud
resource schedulers om de gewenste prestaties te bereiken. Wanneer de schaal
van cloudapplicaties en de complexiteit van cloudinfrastructuur steeds groter
worden, worden effectieve mechanismen voor cloud resource scheduling uiterst
belangrijk.

We zijn dus gemotiveerd om te onderzoeken hoe we efficiént resources kunnen
plannen om te voldoen aan kwaliteitskritieke vereisten van diverse applicaties
op cloudinfrastructuur. De wetenschappelijke bijdragen in het proefschrift zijn
als volgt:

e We stellen een Deadline-bewust Deployment System (DDS) voor voor
het implementeren van tijdkritische applicaties op clouds. Gezien de
deadline beperkingen van implementatieverzoeken, gebruiken we Earliest
Deadline First (EDF) om de aanvragen in DDS te prioriteren. Verder
ontwerpen we een bandbreedtebewust algoritme om parallelle overdracht
te bereiken zonder contentie met netwerkbandbreedte te veroorzaken.
Experimentele resultaten tonen aan dat DDS voldoende gebruikmaakt
van netwerkbandbreedte en het aantal gemiste deadlines tijdens de
implementatie aanzienlijk vermindert.

e We stellen een Enhanced Container Scheduler (ECSched) voor voor
het efficiént scheduling van gelijktijdige containeraanvragen met multi-
resource beperkingen op heterogene clusters. Om gelijktijdige aanvragen
af te handelen, formuleren we het container scheduling probleem als een
MCFP (Minimum Cost Flow Problem) en vertegenwoordigen we de con-
tainervereisten met behulp van een specifieke grafische gegevensstructuur

113

6. Samenvatting

(stroomnetwerk). In het stroomnetwerk stellen we een nieuwe aanpak
voor om de multi-resource-eisen en affiniteitsvereisten van gevraagde
containers te coderen. Experimentele resultaten tonen aan dat ECSched
een betere scheduling skwaliteit kan bereiken dan geavanceerde container
schedulers, die de gemiddelde doorlooptijd van de container met maximaal
1.3x kunnen verkorten en het gebruik van middelen aanzienlijk kunnen
verbeteren.

We stellen een nieuwe aanpak voor om de plaatsing van op services
gebaseerde applicaties in de cloud te optimaliseren. Onze aanpak
omvat twee belangrijke stappen: 1) De gevraagde toepassing is verdeeld
in verschillende partities terwijl het totale verkeer tussen verschillende
partities tot een minimum wordt beperkt. 2) De onderdelen in de partitie
zijn verpakt in machines met multi-resource beperkingen. Door deze
twee stappen te combineren, kan de voorgestelde aanpak een geschikte
plaatsingsoplossing vinden voor op services gebaseerde applicaties op
clouds. Experimentele resultaten tonen aan dat onze aanpak beter
presteert dan bestaande container cluster schedulers en representatieve
heuristieken, wat leidt tot veel minder algemeen verkeer tussen machines.

We presenteren GoTask, een aanpak die kan leren DAG-taken goed te
plannen op clusters met meerdere bronnen. GoTask leert scheduling
sbeleid rechtstreeks uit ervaring via deep reinforcement learning. Om de
complexiteit en schaal van het DAG scheduling probleem aan te pakken,
stellen we een tweefasenaanpak voor in GoTask. De eerste fase maakt
gebruik van een deep reinforcement learning agent om beleid te leren
voor het selecteren van een taak in behandeling van een DAG-taak, en
de tweede fase maakt gebruik van een andere agent om beleid te leren
voor het selecteren van een machine om de geselecteerde taak uit te
voeren. Experimentele resultaten tonen aan dat GoTask beter presteert
dan algemeen aanvaarde scheduling heuristieken, en de doorlooptijd van
taken met 6% tot 18% verbetert.

114

Publications

Journals

e Hu, Y., Zhou, H., de Laat, C. and Zhao, Z. Concurrent Container
Scheduling on Heterogeneous Clusters with Multi-Resource Constraints.
Future Generation Computer Systems, Volume 102, Pages 562-573. 2020,
Elsevier.

e Hu, Y., de Laat, C. and Zhao, Z. Optimizing Service Placement for
Microservice Architecture in Clouds. Applied Sciences. (Under review)

e Hu, Y., de Laat, C. and Zhao, Z. Learning DAG Scheduling with
Multi-Resource Constraints on Heterogeneous Clusters. Concurrency and
Computation: Practice and Experience. (Under review)

e Zhou, H., Hu, Y., Ouyang, X., Su, J., Koulouzis, S., de Laat, C., Zhao, Z.,
CloudsStorm: A Framework for Seamlessly Programming and Controlling
Virtual Infrastructure Functions during the DevOps Lifecycle of Cloud
Applications. Software: Practice and Experience, Volume 49, Pages 1421-
1447. 2019, Wiley.

e Koulouzis, S., Martin, P., Zhou, H., Hu, Y., Wang, J., Carval,
T., Grenier, B., Heikkinen, J., de Laat, C., Zhao, Z., Time-critical
Data Management in Clouds: Challenges and a Dynamic Real-Time
Infrastructure Planner (DRIP) solution. Concurrency and Computation:
Practice and Experience, €5269. 2019, Wiley. (as co-first author)

e Wang, J., Taal, A., Martin, P., Hu, Y., Zhou, H., Pang, J., de
Laat, Cees., Zhao, Z., Planning Virtual Infrastructures for Time Critical
Applications with Multiple Deadline Constraints. Future Generation
Computer Systems, Volume 75, Pages 365-375. 2017, Elsevier.

Conferences

e Hu, Y., Wang, J., Zhou, H., Martin, P., Taal, A., De Laat, C. and Zhao,
Z. Deadline-aware Deployment for Time Critical Applications in Clouds.
In 2017 European Conference on Parallel Processing (EuroPar) (Pages
345-357). Springer, Cham.

e Hu, Y., Zhou, H., de Laat, C. and Zhao, Z. Ecsched: Efficient Container
Scheduling on Heterogeneous Clusters. In 2018 European Conference on
Parallel Processing (EuroPar) (Pages 365-377). Springer, Cham.

115

6. Publications

Hu, Y., de Laat, C. and Zhao, Z. Multi-objective Container Deployment
on Heterogeneous Clusters. International Workshop on Network-Aware
Big Data Computing, In Proceedings of 2019 IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID) (Pages
592-599). IEEE. (Best paper award)

Hu, Y., de Laat, C. and Zhao, Z. Learning Workflow Scheduling on Multi-
Resource Clusters. In 2019 IEEE International Conference on Networking,
Architecture and Storage (NAS) (Pages 1-8). IEEE.

Zhou, H., Hu, Y., Wang, J., Martin, P., De Laat, C. and Zhao, Z.,
2016, May. Fast and Dynamic Resource Provisioning for Quality Critical
Cloud Applications. In 2016 TEEE International Symposium on Real-
Time Distributed Computing (ISORC) (Pages 92-99). IEEE.

Zhou, H., Wang, J., Hu, Y., Su, J., Martin, P., De Laat, C. and Zhao,
Z. Fast Resource Co-provisioning for Time Critical Applications based
on Networked Infrastructures. In 2016 IEEE International Conference on
Cloud Computing (CLOUD) (Pages 802-805). IEEE.

Wang, J., Zhou, H., Hu, Y., de Laat, C. and Zhao, Z. Deadline-aware
Coflow Scheduling in a DAG. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom) (Pages 341-346).
IEEE.

Elzinga, O., Koulouzis, S., Taal, A., Wang, J., Hu, Y., Zhou, H.,
Martin, P., de Laat, C. and Zhao, Z. Automatic Collector for Dynamic
Cloud Performance Information. In 2017 International Conference on
Networking, Architecture, and Storage (NAS) (Pages 1-6). IEEE.

Zhou, H., Hu, Y., Su, J., de Laat, C. and Zhao, Z. Cloudsstorm:
An Application-driven Framework to Enhance the Programmability and
Controllability of Cloud Virtual Infrastructures. In 2018 International
Conference on Cloud Computing (Pages 265-280). Springer, Cham.

Zhou, H., Taal, A., Koulouzis, S., Wang, J., Hu, Y., Suciu, G.,
Poenaru, V., de Laat, C. and Zhao, Z. Dynamic Real-Time Infrastructure
Planning and Deployment for Disaster Early Warning Systems. In
2018 International Conference on Computational Science (Pages 644-654).
Springer, Cham.

Zhou, H., Koulouzis, S., Hu, Y., Wang, J., de Laat, C., Ulisses, A. and
Zhao, Z. Migrating Live Streaming Applications onto Clouds: Challenges
and a CloudStorm Solution. In 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion) (Pages
321-326). IEEE.

116

e Shi, Z., Zhou, H., Hu, Y., Surbiryala, J., de Laat, C., Zhao, Z.,
Operating Permissioned Blockchain in Clouds: A Performance Study
of Hyperledger Sawtooth, In 2019 IEEE International Symposium On
Parallel And Distributed Computing (ISPDC) (Pages 50-57). IEEE.

Other Publications

e Hu, Y., de Laat, C. and Zhao, Z. ECSched: Efficient Container
Scheduling on Heterogeneous Clusters. Poster in ICT.OPEN2018.

e Hu, Y., de Laat, C. and Zhao, Z. GoDAG: Learning Workflow Scheduling
in Multi-Resource Clusters. Poster in ICT.OPEN2019.

Prototypes

e DDS — Deadline-aware Deployment System.
Code: https://github.com/huyang1022/Deployment-Agent

e ECSched — Enhanced Container Scheduler.
Code: https://github.com/huyangl1022/ECSched

e GoTask — Deep Reinforcement Learning Based Scheduler.
Code: https://github.com/huyang1022/RLSched

117

https://github.com/huyang1022/Deployment-Agent
https://github.com/huyang1022/ECSched
https://github.com/huyang1022/RLSched

Acknowledgements

Four years ago, when I decided to come to the Netherlands to pursue my PhD
degree, I never imagined it was such a challenging journey. Finally, I arrived at
the end of my PhD thesis and gained a precious experience. It is so important
and meaningful not only because of the scientific knowledge I have gained, but
also because I have learned a lot of life lessons that I will carry with me for the
rest of my life. Fortunately, I was not alone in the journey. I am so grateful to
all the people who have inspired and helped me throughout these unforgettable
and unique years. Now, this is the best time I express my gratitude to the
people for their support, encouragements, and friendship.

First of all, I would like to thank my promotor, Prof. Cees de Laat. You
are always happy and patient to listen to my problems and give me enormous
helpful and useful advice. I would like to thank my supervisor, Dr. Zhiming
Zhao. You always show your passion about science and cheer up every member
in your research group. I am pretty grateful for all of this help and tutoring.

I appreciate the supervision and suggestion from Prof. Xicheng Lu, Prof.
Yuxing Peng and Prof. Dongsheng Li in China. You taught me the basic
research skills and gave me the greatest support during my bachelor and master
study. After I came to the Netherlands, you were still concerned about my PhD
progress and always encouraged me.

I would like to express my gratitude to the committee members, Prof.
Alexandru losup, Prof. Radu Prodan, Prof. Dongsheng Li, Prof. Rob V.
van Nieuwpoort, Prof. Pieter Adriaans, and Dr. Adam Belloum for taking the
time to read this thesis.

T would like to thank all my colleagues in the Systems and Networking (SNE)
Lab. It was great to work with you, no matter the scientific problems or other
interesting topics. You were so nice and created a warm atmosphere in the lab.
Thank you very much from my deep heart to Ameneh, Ana, Ana, Andy, Arie,
Benjamin, Catalin, Clemens, Dolly, Fahimeh, Giovanni, Giulio, Jamila, Joseph,
Julius, Lukasz, Marijke, Mikolaj, Misha, Mostafa, Paola, Paul, Pieter, Ralph,
Reggi, Sara, Simon, Spiros, Uraz, Yuri.

Furthermore, I extend sincere gratitude to all my Chinese friends: Biwen
Wang, Hao Zhu, Hongyun Liu, Huan Zhou, Hui Xiong, Jian Lin, Jinglan Wang,
Jun Xiao, Junchao Wang, Lingling Zhang, Long Cheng, Lu Zhang, Lu-Chi Liu,
Peng Wang, Qi Wang, Renjie Lv, Ruyue Xin, ShuaiShuai Wang, Si Wen, Songyu
Yang, Wenyang Wu, Xianya Mi, Xiaofeng Liao, Xiaolong Liu, Xin Zhou, Yifan
Chen, Yiwei Sun, Yumei Wang, Zenlin Shi, Zeshun Shi, Zijian Zhou, Ziming Li.
Thank you all for your company and for the beautiful moment you gave me. It
was my pleasure to meet all of you and best wishes to all of you.

Ludan, it was so lucky to meet you during my PhD. Thank you for bringing
the sunshine into my life and encouraging me during the most difficult time.

119

6. Acknowledgements

Last but not least, I would like to thank my family. Thanks for your
understanding, endless love, and unconditional support. Words are too limited
to express my gratitude to you.

120

	Introduction
	Motivation
	Virtualization and Cloud Computing
	Virtual Machine
	Container

	Container Orchestration System
	Quality-Critical Requirements and Cloud Applications
	Quality-Critical Requirements
	Cloud Applications

	Research Questions
	Contributions and Thesis Outline

	Deadline-aware Deployment for Time Critical Applications
	Introduction
	Problem Statement
	Deadline-aware Deployment System
	Design Principles
	Scheduling Algorithm

	Evaluation
	Repository Evaluation
	Testbed Experiments
	Large-scale Simulations

	Related Work
	Conclusion

	Enhancing Scheduling for Concurrent Container Requests
	Introduction
	Problem Formulation
	Model Description
	Deployment Requirements

	Minimum Cost Flow Problem
	ECSched Approach
	Flow Network Structure
	Encoding Deployment Requirements
	MCFP Algorithms
	Implemention

	Evaluation
	Experimental Setup
	Comparison of Container Performance
	Comparison of Resource Efficiency
	Impact of Concurrent Scheduling
	Overhead Evaluation

	Related Work
	Conclusion

	Optimizing Placement for Service-based Applications
	Introduction
	Problem Formulation
	Model Description
	Objective

	Minimum K-Cut Problem
	Placement Algorithm
	Application Partition
	Heuristic Packing
	Placement Finding

	Evaluation
	Experimental Methodology
	Comparison with Baselines
	Impact of Threshold
	Overhead Evaluation

	Related Work
	Conclusion

	Learning Scheduling Policies for DAG jobs
	Introduction
	Problem Formulation
	Model Description
	Objective

	Deep Reinforcement Learning
	Reinforcement Learning
	Value Functions
	Actor-Critic Method

	GoTask Approach
	Design
	Task Selection with Deep Reinforcement Learning
	Machine Selection with Deep Reinforcement Learning
	Training Algorithm

	Evaluation
	Implementation
	Experimental Methodology
	Experimental Results

	Discussion
	Related work
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Summary
	Samenvatting
	Publications
	Acknowledgements

