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A hundred years ago, companies stopped generating their own
power with steam engines and dynamos and plugged into the newly
built electric grid. The cheap power pumped out by electric utili-
ties didn’t just change how businesses operate. It set o� a chain
reaction of economic and social transformations that brought the
modern world into existence. Today, a similar revolution is under
way. Hooked up to the Internet’s global computing grid, massive
information-processing plants have begun pumping data and soft-
ware code into our homes and businesses. This time, it’s computing
that’s turning into a utility.

Nicholas Carr
The Big Switch: Rewiring the World,

from Edison to Google
2008

But how can we effectively utilise Cloud resources
as a utility?
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1
Introduction

Cloud computing allows developers to operate applications without maintaining phys-
ical infrastructures. The features of elasticity and pay-as-you-go provided by Cloud
computing have sparked the trend to orchestrate applications on Clouds for reducing
cost. During the past years, we have witnessed an explosive growth of Cloud comput-
ing in both industrial and academic fields. Figure 1.1 shows the prosperity of Cloud
computing. It illustrates that the geographical distribution of data centres from well-
known Cloud providers, including Amazon Elastic Compute Cloud (EC2)1, Microsoft
Azure2, Google Compute Engine (GCE)3, Alibaba Cloud4, and ExoGENI Cloud5. The
geolocations of these data centres cover most continents around the world.

Enabled by the Internet and virtualisation techniques, Cloud computing is able
to deliver virtualised computing resources to remote customers over a network as
services. Based on the resource stack being virtualised, those services can be typically
classified as three levels: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),
and Infrastructure-as-a-Service (IaaS). SaaS allows customers to directly use specific
application software via the Internet without knowing the location and platform where
it is actually deployed. PaaS provides customers with an online software platform
to develop and execute application software. IaaS further provides customers with
resource stack at the operating system level, where they can fully customise the high-
level platform and software environment. IaaS leverages the hypervisor [11] to isolate
specific virtual machines (VM) for multiple tenants through hardware virtualisation.
From SaaS to IaaS, users can obtain more programmability and controllability of the
infrastructure, which is crucial for software development and industrial innovation.
Gartner6 predicts that worldwide public Cloud service revenue will grow exponentially
through 2022. The fastest-growing market segment will be IaaS, which is predicted
to grow 27.5% in 2019 to reach $38.9 billion, up from $30.5 billion in 2018. It
demonstrates ever more applications and services require to be migrated onto Clouds,
especially with the IaaS Cloud service model.

1https://aws.amazon.com/ec2/
2https://azure.microsoft.com/
3https://cloud.google.com/compute/
4https://www.alibabacloud.com/
5http://www.exogeni.net/
6https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-

cloud-revenue-to-g
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1. Introduction

Figure 1.1: Geographical distribution of data centres from different well-known Clouds

The software Development and Operations (DevOps) lifecycle for Cloud applica-
tions is significantly different from the one for traditional systems. In the traditional
model, an IT department is often divided into two teams: one development team re-
sponsible for the coding, unit testing, and debugging in the development phase; and
one operation team responsible for deploying and orchestrating the application on the
infrastructure in the runtime phase [54]. The operational problems met during runtime
will be fed back to the development team to trigger further software development and
delivery. In Cloud environments, however, a cycle of Service Level Agreement (SLA)
enforcement and infrastructure provisioning is needed to connect two traditional cycles
of software development and operations. Since the infrastructure is not physically owned
by application developers, a provisioning step is required to apply the resources from
the data centres, and also the SLA is essential to assure the virtual infrastructure can
meet the quality constraints of the application. In this context, a number of challenges
can be highlighted:

• Cloud customisation and interoperability. The diversity of the Cloud services
types and interfaces makes it difficult for developers to customise the infrastruc-
ture resources from different Clouds and data centres with a unified description.

• Infrastructure control complexity. Most of the current Cloud infrastructures
can only be controlled manually through the web console offered by the Cloud
providers. An application has to provision infrastructure in advance, with limited
capability for programming virtual infrastructures based on its runtime needs.

• Vendor lock-in. Besides the web console, each Cloud also provides its own
Application Programming Interface (API) for the developer to control the infras-
tructure remotely, but different interfaces impede the developer to leverage the
resources of various Clouds and cause the vendor lock-in problem.

• Performance uncertainty. The Cloud resources are shared among all the Cloud
customers. Therefore, the performance uncertainty issue due to the resource
contention hinders the infrastructure from satisfying the application quality re-
quirements. Especially the unpredictable downtime of the data centres further
raises the difficulty of operating applications with high-quality requirements.
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1.1. Research Questions

The above challenges have been tackled from different perspectives. From the Cloud
providers’ side, the research mainly focuses on the efficiency in managing the physical
infrastructure inside a data centre. For instance, Mohammad et al. [3] and Albert et
al. [48] discuss how to build the data centre network to manage the traffic and make
the communication salable. Software-defined Network (SDN) is also proposed as one
of the data centre network solutions. Tao et al. [113] propose the optimised algorithm
for dynamically assigning SDN controllers in the data centre network. Hao et al. [134]
design a network management platform to reduce the data centre energy consumption
based on SDN. There is also plenty of research focusing on the data centre level of job
scheduling [30, 110], VM consolidation [37, 77], and energy efficiency [28, 122]. The
research all above is practical to be applied to the current data centre implementation,
but none of them provides the Cloud customer with the solution to expediently leverage
the Cloud resources. Although some of the research discusses the Cloud application
development, e.g., Dan et al. [93] exploit the high-performance data centre network
to design the distributed systems, it is still based on the assumption that the developer
has the total control of the data centre physical infrastructure, which is not permitted to
general Cloud customers.

On the contrary, recent research taking care of the customer side mainly focuses on
high-level application mapping and modelling. For example, Amelie et al. [129] and
Sreekrishnan et al. [111] map the application components to proper Clouds according
to the geolocation of the data centre. Kai et al. [56] and Alexey et al. [58] investigate
the scaling policies in Cloud environments to satisfy the application Quality of Service
(QoS). Nevertheless, programmatically leveraging these algorithms is still challenging,
especially to orchestrate the applications and manage the infrastructures from different
Clouds. To be specific, during the DevOps lifecycle, the gap between the application
operation and the Cloud virtual infrastructure management still exists.

1.1 Research Questions

To tackle the software challenges in utilising diverse Cloud resources for applications
with high-quality constraints, we thus identify the main Research Question (RQ) as:

RQ. How to seamlessly program and control the Cloud virtual infrastructure in the
application DevOps lifecycle to satisfy the quality-critical constraints of the application?

We analyse this main problem in the context of Cloud application DevOps lifecycle,
and address relevant challenges from different aspects: developing, provisioning, oper-
ating, and SLA assurance. We thus decompose the research question into four detailed
research questions:

• RQ1. How can we customise and program the infrastructure according to different
application quality requirements?

• RQ2. How can we effectively provision a networked infrastructure and enable
topology partitioning across data centres or Cloud providers based on application
QoS constraints?

3



1. Introduction

• RQ3. How can an application efficiently control the virtual infrastructure at runtime,
preferably without vendor lock-in?

• RQ4. How can we effectively handle the SLA with the provider to make the service
quality assurance trustworthy?

The highly distributed Cloud data centres, as shown in Figure 1.1, provide rich
choices for developers to provision virtual infrastructures for their applications, e.g., for
selecting resources close to the data sources, suitable price, and performance. In many
cases, resources from different providers are needed. The current description standard
of Topology and Orchestration Specification for Cloud Applications (TOSCA)7 [18]
focuses more on the Cloud application components description down to the VM level,
without the explicit specification of the Clouds and data centres. Moreover, the opera-
tions, such as scaling and failure recovery, performed on the infrastructure are also not
defined. Especially, these operations cannot be programmatically leveraged to satisfy
the application constraints. We will thus tackle those challenges in the context of RQ1.

In large scale distributed applications, e.g., big data infrastructures in environmental
and earth sciences, data often needs to be collected and processed in different geo-
location to meet (nearly) real-time requirements. The virtual infrastructure often needs
to be across different data centres or providers. It is, therefore, inevitable to partition the
infrastructure and provision them in different data centres. Moreover, such partitioning
should be transparent for the orchestration of applications. We thus formulate those
challenges as the RQ2.

As Cloud applications are often highly dynamic, the virtual infrastructures often
need to be adapted, even though they are properly customised and provisioned at the
development phase. Traditionally, the infrastructure management and the application
operation are supported by separated tools, often from the Cloud providers. It is often
difficult to include infrastructure control logic in the application, in particular, when
across different providers. It is, therefore, essential to enable an application efficiently
control the virtual infrastructure at runtime, preferably without vendor lock-in, as RQ3.

Since the Cloud infrastructure is remotely shared and not physically owned by
application developers, the quality requirements of a Cloud application can hardly be
always satisfied. The SLA is the last guarantee to economically compensate the Cloud
customer, i.e., the application developer in our case. However, always the question
arises who can detect service violation and determine the SLA state; i.e., who are the
witness and the judge. Furthermore, it is also challenging to ensure that the customer is
really able to get compensation from the provider when the violation happens. Thus,
the last subquestion we will tackle is to effectively handle the SLA with the provider to
make the service quality assurance trustworthy, as stated in RQ4.

1.2 Main Contributions
This thesis contributes models, algorithms, and prototypes to the Cloud application
development and operations. For details, we classify the contributions and present them
according to the implemented two prototypes.

7https://www.oasis-open.org/committees/tc home.php?wg abbrev=tosca#overview
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1.2. Main Contributions

CloudsStorm8: a framework for seamless Cloud virtual infrastructure program-
ming and control

• We propose and design three types of infrastructure code to deal with functional
requirements, which describe the infrastructure topology and the operations per-
formed on the infrastructure. These types of infrastructure code are corresponding
to three levels of infrastructure programmability, respectively.

– “Infrastructure Description Code” provides the design-level programma-
bility. It enables the developers to describe the infrastructure computing
capability and topology for hosting their applications, notably including
the specification of Clouds and data centres. Its syntax is defined in the
format of YAML Ain’t Markup Language (YAML), which is clear and
human-readable.

– “Infrastructure Execution Code” provides the infrastructure-level programma-
bility. It empowers the developers with the ability to describe and program
the infrastructure operations. Then the infrastructure can be programmati-
cally provisioned from scratch and controlled afterwards. Specifically, it is
able to describe high-level and parallel operations easily. The syntax of it is
also based on YAML.

– “Infrastructure Embedded Code” provides the application-level programma-
bility. It notably allows the developers to embed the infrastructure operations
into their application logic. The application can, therefore, directly con-
trol the infrastructure. Its syntax is in the form of some general-purpose
language, such as the interfaces implemented in Java9.

• We propose a programming model by abstracting infrastructure operations as
functions. Then we model the basic Cloud Virtual Infrastructure Functions
(VIFs), which are commonly provided by different Clouds. Based on these basic
functions, we then construct high-level infrastructure operation functions, e.g.,
horizontal scaling, vertical scaling, and failure recovery. We demonstrate the
feasibility to construct infrastructure operations from these basic functions and
simplify the expression to identify parallel operations.

• We propose and implement an infrastructure runtime control model with two
types of control modes.

– Passive Mode, in which, the infrastructure is passively controlled according
to the monitoring information. We define the YAML based “Runtime
Control Policy” for developers to address non-functional requirements,
which describes controlling operations with specific predefined conditions.

– Active Mode, in which the infrastructure can be actively controlled by
the application. It is benefit from the “Infrastructure Embedded Code”.
The advantage of it is to adjust the infrastructure before actual influences
happening because of the varying workloads.

8https://github.com/zh9314/CloudsStorm
9https://github.com/zh9314/CloudsStormREST
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1. Introduction

• We design and implement the CloudsStorm framework for developing and orches-
trating applications on Clouds. To be specific, we implement the “Infrastructure
Execution Engine”8 to realise extensible and efficient Cloud virtual infrastructure
control based on our programming model. Besides, the “Control Agent”10 is
implemented to monitor and perform the control operation at runtime. It also
provides users with a web-based user interface for interaction.

• We achieve empirical results of orchestrating quality-critical applications on the
Cloud virtual infrastructure, through performing case studies using CloudsStorm
on real Clouds.

A blockchain based solution11 for trustworthy Cloud SLA enforcement

• We implement a blockchain based solution to automate the SLA lifecycle between
the Cloud provider and the customer. The provider and the customer are, therefore,
ensured to get the corresponding service fee and the compensation fee if a
violation happens.

• We design a witness model for incentivising blockchain participants to perform
the violation detection and enforce the SLA between the Cloud provider and the
customer. The payoff function for rewarding the witness is carefully designed
to drive the witness to tell the truth about the violation. The trustworthiness is
proved through using the Nash Equilibrium principle of game theory.

• We propose an unbiased random sortition algorithm based on the randomness of
the blockchain itself. This algorithm can be leveraged to select several elements
from a set randomly. No single entity can determine the results beforehand. It is
implemented in the smart contract for the witness sortition in our prototype.

• We propose the witness auditing mechanism to analyse the behaviour of the
witnesses. Since all the witnesses’ behaviours are recorded on the blockchain,
we adopt this reputation management mechanism to filter out the irrational or
malicious witnesses from the system. Specifically, we propose three types of
malicious behaviours and quantitative indicators to audit.

1.3 Thesis Overview
Figure 1.2 illustrates the overview of this thesis, which includes the relationship among
the chapters, contributions, and research questions. The thesis contains eight chapters
in total. Chapter 1 is the introduction to the problem scope and research questions of
this thesis. Chapter 2 briefly discusses some background knowledge and challenges
from four aspects: Cloud virtual infrastructure, quality-critical Cloud applications, the
state-of-the-art DevOps of Clouds, and blockchain as well as smart contracts.

Following three chapters address the research questions, RQ1, RQ2, and RQ3,
respectively. Each chapter focuses on a particular phase in the DevOps lifecycle for
developing and operating applications based on Cloud virtual infrastructures.

10https://github.com/zh9314/CloudsStormCA
11https://github.com/zh9314/SmartContract4SLA
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1.3. Thesis Overview

• For the development phase, Chapter 3 focuses on Cloud virtual infrastructure
programmability design with the infrastructure operation programming model
and the syntax of the infrastructure code.

• For the provisioning phase, Chapter 4 investigates the fast provisioning mecha-
nism to provide a networked infrastructure among the federated Cloud virtual
infrastructure.

• For the runtime phase, Chapter 5 depicts the Cloud virtual infrastructure control-
lability implementation and the infrastructure control model with two modes.

All the above three chapters together also present the CloudsStorm framework in
detail, including the framework design and overview in Chapter 3, the overlay network
configuration in Chapter 4, and the framework implementation in Chapter 5.

Chp1: Introduction 

Chp2: Background and Challenges 

Quality-critical 
Applications 

Cloud 
DevOps 

Blockchain and 
Smart Contract 

Chp3: Cloud Virtual 
Infrastructure Programmability 

Design 

Chp4: Cloud Virtual 
Infrastructure Provisioning and 

Connection Mechanisms 

CloudsStorm 
Framework 

Implementation 

Chp7: Improving the Application Quality 
Assurance through the Trustworthy 

Enforcement of Cloud SLA 

Chp6: Case Studies and Evaluations 

Chp8: Conclusions  
and Future Work 

RQ1 

Infrastructure 
Programming Model 

and Code 
CloudsStorm 

Framework Design 

RQ2 RQ3 

RQ4 

Chp5: Cloud Virtual 
Infrastructure Controllability 

Implementation 

Partition-based 
Infrastructure 
Provisioning 

Overlay Network 
Design and 

Implementation 
Infrastructure 
Control Model 

Case Studies of Task-based 
Applications DevOps using 

CloudsStorm 

Blockchain based 
Witness Model 
and Prototype 

Witness Auditing 
Mechanism 

Game Theory  
based Trustworthiness 

Proof 

Case Studies of Service-based 
Applications DevOps using 

CloudsStorm 

Legend 

Thesis chapter 

Research question 

Contribution 

Content 

 
Unbiased Random 
Sortition Algorithm 

Cloud Virtual 
Infrastructure 

Development Phase Provisioning Phase Runtime Phase 

Figure 1.2: The overview of the thesis, including the chapters, the research questions,
and the contributions
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1. Introduction

For demonstration, Chapter 6 conducts several experiments using CloudsStorm on
real Clouds, which are generally classified as two types of case studies: the task-based
application, and the service-based application. The example solutions with CloudsStorm
to consider the quality constraints and the experimental results are presented. All the
first three research questions, i.e., RQ1, RQ2, and RQ3, are somehow demonstrated in
this chapter.

Then, Chapter 7 tackles the research question, RQ4, to further improve the ap-
plication quality assurance. We propose the witness model based on blockchain and
smart contract to better handle the SLA between the Cloud provider and the customer.
The quality constraints of the applications are, therefore, more assured because of the
enhanced SLA enforcement.

Finally, Chapter 8 concludes the thesis and discusses the prospect of future work.

1.4 Publications

All the chapters tackling research questions of this thesis have been published in peer-
reviewed journals and conferences. The complete list of 21 publications is shown at
the end of this thesis as achievements. In this section, we highlight all the publications
which are closely related to this thesis. Then we explain how each chapter is associated
with the highlighted publications.

1. Zhou, H., Hu, Y., Ouyang, X., Su, J., Koulouzis, S., de Laat, C., Zhao, Z.,
“CloudsStorm: A Framework for Seamlessly Programming and Controlling Vir-
tual Infrastructure Functions during the DevOps Lifecycle of Cloud Applications”,
Journal of Software: Practice and Experience. Wiley, 2019.

2. Zhou, H., Ouyang, X., Su, J., de Laat, C., Zhao, Z., “Enforcing Trustworthy
Cloud SLA with Witnesses: A Game Theory based Model using Smart Contracts”,
Journal of Concurrency and Computation: Practice and Experience. e5511.
Wiley, 2019.

3. Koulouzis, S., Martin, P., Zhou, H., Hu, Y., Wang, J., Carval, T., Grenier, B.,
Heikkinen, J., de Laat, C., Zhao, Z., “Time-critical data management in clouds:
Challenges and a Dynamic Real-Time Infrastructure Planner (DRIP) solution”,
Journal of Concurrency and Computation: Practice and Experience, e5269.
Wiley, 2019. (as co-first author)

4. Zhou, H., Ouyang, X., Ren, Z., Su, J., de Laat, C., Zhao, Z., “A Blockchain based
Witness Model for Trustworthy Cloud Service Level Agreement Enforcement” In
IEEE International Conference on Computer Communications (INFOCOM), pp.
1567-1575. IEEE, 2019.

5. Zhou, H., de Laat, C., Zhao, Z., “Trustworthy Cloud Service Level Agreement
Enforcement with Blockchain Based Smart Contract” In IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), workshop
on resource brokering with blockchain (RBChain), pp. 255-260. IEEE, 2018.
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1.4. Publications

6. Zhou, H., Koulouzis, S., Hu, Y., Wang, J., de Laat, C., Ulisses, A., Zhao,
Z., “Migrating Live Streaming Applications onto Clouds: Challenges and a
CloudsStorm Solution”, In 11th IEEE/ACM International Conference on Utility
and Cloud Computing Companion (UCC Companion), workshop on Cloud-Native
Applications Design and Experience (CNAX), pp. 321-326. IEEE, 2018.

7. Zhou, H., Taal, A., Koulouzis, S., Wang, J., Hu, Y., Suciu, G., Poenaru, V., de
Laat, C., Zhao, Z., “Dynamic Real-Time Infrastructure Planning and Deployment
for Disaster Early Warning Systems”, In International Conference on Computa-
tional Science, workshop on Data, Modeling, and Computation in IoT and Smart
Systems, pp. 644-654. Springer, Cham, 2018.

8. Zhou, H., Hu, Y., Su, J., Chi, M., de Laat, C., Zhao, Z., “Empowering Dynamic
Task-Based Applications with Agile Virtual Infrastructure Programmability”,
In IEEE 11th International Conference on Cloud Computing (CLOUD), pp.
484-491. IEEE, 2018.

9. Zhou, H., Hu, Y., Su, J., de Laat, C., Zhao, Z., “CloudsStorm: An application-
driven framework to enhance the programmability and controllability of cloud
virtual infrastructures”, In International Conference on Cloud Computing, pp.
265-280. Springer, Cham, 2018.

10. Zhou, H., Martin, P., Su, J., de Laat, C., Zhao, Z., “A Flexible Inter-locale Virtual
Cloud For Nearly Real-time Big Data Application”, In IEEE Real Time System
Symposium (RTSS), International workshop on Interoperable infrastructures for
interdisciplinary big data sciences (IT4RIs), 2016.

11. Zhou, H., Wang, J., Hu, Y., Su, J., Martin, P., de Laat, C., Zhao, Z., “Fast resource
co-provisioning for time critical applications based on networked infrastructures”,
In IEEE 9th International Conference on Cloud Computing (CLOUD), pp. 802-
805. IEEE, 2016.

12. Zhou, H., Hu, Y., Wang, J., Martin, P., de Laat, C., Zhao, Z., “Fast and dynamic
resource provisioning for quality critical cloud applications”, In IEEE 19th Inter-
national Symposium on Real-Time Distributed Computing (ISORC), pp. 92-99.
IEEE, 2016.

The first author has made significant contributions to the above publications with
designing, implementing, and conducting the experiments. All authors have made
contributions of proofreading and commenting.

Chapter 3 (Cloud virtual infrastructure programmability) and Chapter 5 (Cloud
virtual infrastructure controllability) are based on Publication 1 and Publication 9. Chap-
ter 4 (Cloud virtual infrastructure provisioning and overlay network mechanisms) is
based on Publication 11 and Publication 12. The majority part of Chapter 6 (case
studies of task-based and service-based applications using CloudsStorm) is based on
Publication 8 and Publication 10. Chapter 6 is also partially related to Publication 1, Pub-
lication 3, Publication 6, and Publication 7. Chapter 7 (blockchain enhanced trustworthy
SLA enforcement) is based on Publication 2, Publication 4, and Publication 5.
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2
Background and Challenges

In this chapter, we introduce the concepts and background knowledge within the con-
text of this thesis. We start with an introduction to the Cloud virtual infrastructure
(in Section 2.1), and then discuss quality-critical Cloud applications (in Section 2.2),
specifically on the terminology of quality-critical constraints and Cloud applications.
Afterwards, we review the state of the art of the software Development and Opera-
tions (DevOps) technologies (in Section 2.3), introduce the background knowledge of
blockchain and smart contract technology (in Section 2.4). From those reviews, we
identify the research challenges.

2.1 Cloud Virtual Infrastructure
The infrastructure mentioned in this thesis mainly refers to the virtualised infrastructure
provided by the Cloud IaaS. We shall first introduce the technical basis of Cloud virtual-
isation, then discuss the basic Cloud service models, and compare the programmability
and controllability they offer to Cloud users.

2.1.1 Cloud Virtualisation Stack
From the Cloud providers’ point of view, Cloud computing delivers various levels of
resources from the computing stack (between hardware and high-level software) to the
end user via a service-oriented architecture. By leveraging virtualisation techniques, a
provider allows end users to share the usage of physical resources within data centres in
an isolated way. We shall review three different levels of virtualisation techniques.

Hardware Virtualisation, the lowest level of virtualisation, partitions the hardware
resources, such as CPU and memory, of a single server, exploits partitioned slices as
different virtual machines (VMs). It emulates multiple guest Operating Systems (OS)
with separated kernels on the physical server. The hypervisor [11] is used to manage all
the VMs. There are two types of hypervisor implementations [1]: hardware-based, e.g.,
Xen, and software-based, e.g., Kernel-based Virtual Machine (KVM) [102]. Both types
of the hypervisor are widely used.

The hardware virtualisation has high security and performance isolation, since the
real hardware resources are partitioned and mapped to the VMs; however, it often has
high overhead due to its large size of OS image, and is less portable.
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Operating System Virtualisation facilitates the host OS kernel and isolates the
resources with some user-space instances; a typical implementation is containerisa-
tion [101]. Running in a shared OS as processes, containers are lightweight and portable
compared to VMs, but with less security and performance isolation. Docker [40] is an
efficient tool to containerise software packaged and becomes the trend of orchestrating
services on Clouds.

Application Virtualisation is implemented in the OS user-space and provides an
abstraction layer to separate the application from the actual underlying OS. It enables
the portability of an application across diverse underlying computing environments,
e.g., Java Virtual Machine (JVM). However, the programming language used to develop
the application is also limited. Meanwhile, the abstraction layer hinders the application
to leverage specific hardware drive to utilise their features. This technology is very
effective to deliver high-level software services.

2.1.2 Cloud Service Models

From the customers’ point of view, the remote Cloud resources can be ordered and
consumed as services via specific contracts or agreements. Customers pay the provider
for what they have consumed. Due to the service delivered from different levels of the
computing stack (i.e., application, platform, and infrastructure), the Cloud service model
can be further classified as three models [16]: Software-as-a-Service (SaaS), Platform-
as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS), as we briefly mentioned in
Chapter 1.

The Software-as-a-Service (SaaS) model only delivers software hosted on the Cloud
to customers as a service. A user can utilise functionalities of the software but with
limited ability for re-configuring or customising the software. This model usually
adopts the subscription business model, which requires the customer to pay monthly or
yearly. The typical examples of SaaS include Dropbox1, Google Doc2, and Microsoft
OneDrive3. These software tools can be developed through the application virtualisation
or orchestrated using the OS virtualisation technique.

The Platform-as-a-Service (PaaS) model delivers a software platform to customers
as a service, where the customers can build or execute their own applications on
top of the platform. The consumer can use the platform, often via the Application
Programming Interface (API) from the provider, for developing applications, but cannot
fully control the OS and the hardware under the platform. For example, Google
AppEngine4 is a PaaS whose programming interface is given in Python or Java. Other
examples include Apache Spark5, Mesos6.

The Infrastructure-as-a-Service (IaaS) offers the entire computing stack down to
the hardware virtualisation level, where the customers have access to the resources
of computing, storage, network, and OS, in the form of VMs. Comparing to PaaS,

1https://www.dropbox.com/
2https://www.google.com/docs/
3https://onedrive.live.com/
4https://cloud.google.com/appengine/
5https://spark.apache.org/
6http://mesos.apache.org/
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2.1. Cloud Virtual Infrastructure

IaaS customers gain more programmability and controllability on Cloud resources.
Furthermore, customers can customise the network among VMs based on geolocation
(determined by the data centre), the capacity (determined by the vCPU and memory),
and the network configuration of the VMs. Current well-known IaaS providers include
Amazon Elastic Compute Cloud (EC2)7, Microsoft Azure8, and Google Compute
Engine (GCE)9.

2.1.3 The Programmability and Controllability Comparison
The programmability and controllability provided by the above models are crucial for
the Cloud application developers. To better discuss those issues, we highlight two
aspects for comparison: application and infrastructure perspective.

• The application programmability refers to the ability for a developer to program
the application software, including choosing the programming language.

• The application controllability refers to the ability for the application to control
its components or processes running on a specific part of the infrastructure. This
ability is often pre-programmed by the developer.

• The infrastructure programmability refers to the ability for a developer to 1)
customise the infrastructure, such as the geolocation distribution, the comput-
ing capacity, and network connections, 2) define operations performed on the
infrastructure, such as failure recovery and auto-scaling.

• The infrastructure controllability refers to the ability for the application to dynam-
ically control the infrastructure and adapt the quality constraints of the application
at runtime. This ability should be programmed and empowered by the developer.

As Figure 2.1 indicates, more programmability and controllability are provided
when the provider offers the lower level service in the computing stack.

The SaaS model offers nearly no programmability and controllability at the applica-
tion level. Users can only access the SaaS application via the given interface and they
are not able to control the underlying resources, which are hidden by the provider.

The PaaS model provides limited application programmability via the platform. The
application developers have to use the programming language required by the platform,
e.g., Java for some Hadoop platforms. The application controllability is also restricted
by the platform, since the resource allocation and scheduling are dominated by most
of the platforms. It is impossible for a PaaS customer to customise and adjust the
underlying infrastructure at runtime. For example, Kubernetes10 platform is based on a
predefined and fixed infrastructure, which can be a cluster of VMs. The application on
the platform is running as a container and cannot adjust the underlying VM to adapt the
computing capacity.

7https://aws.amazon.com/ec2/
8https://azure.microsoft.com/
9https://cloud.google.com/compute/

10https://kubernetes.io/
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Figure 2.1: Cloud service models and the comparison of the programmability and
controllability

The IaaS model allows the customer to manipulate the resources at the hardware
virtualisation level, including the entire OS level, which empowers the complete appli-
cation programmability and controllability. On the other hand, the IaaS model allows
a customer to customise the computing capacity (CPU and memory) and the OS of a
VM, from a list of possible data centres. The customer can fully control a given VM,
including the operations of provisioning, terminating, and configuration. Moreover,
the user can also configure different aspects of the VM, such as network configuration,
execution environment configuration, and application deployment.

We thus focus on the hardware virtualisation, i.e., VM, based IaaS Cloud ser-
vice model, for investigating programmability and controllability in our research
questions.

2.2 Quality-critical Cloud Applications
Quality-critical Cloud applications demand a high standard of QoS (Quality of Service,
e.g., tsunami emergency response time) or QoE (Quality of Experience, e.g., smooth
delivery of ultra-high definition audio and video for live events) [126]. It augments the
Cloud application with quality constraints. In general, the quality constraint refers to
the timing requirement for the application to finish a task or request, represented as a
deadline. Meanwhile, the budget and energy consumption can be other constraints on the
infrastructure when operating the application in Cloud environments. The terminology
of quality-critical constraints and Cloud applications is introduced as follows.

2.2.1 The Terminology of Quality-critical Constraints

In EU SWITCH project11, we defined a simple taxonomy for classifying quality-critical
constraints, as shown in Figure 2.2 [71]. The constraints about task finishing time, i.e.,
time-critical constraints, is one of the major concerns for quality-critical applications.
It can be further classified as speed-critical, real-time and near real-time. Here, the
speed-critical constraints need to minimise the completion time (i.e., the sooner, the
better), while the real-time constraints are bounded by limited response time on inputs,

11www.switchproject.eu
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Figure 2.2: The terminology related to the quality-critical constraints

with particular consequences of failures after missing deadlines [90]. Based on those
consequences, real-time constraints are further classified as hard real-time, firm real-
time, and soft real-time. Hard real-time constraints cause immediate failures if any
of its deadlines is missed. Firm real-time constraints can tolerate the scenario that
the deadline can be missed more than once but still result in failures. Soft real-time
constraints refer to ones that missing deadlines merely leads to degradation of user
experience. The near real-time constraints refer to those with an intrinsic yet bounded
delay introduced by data processing or transmission. Note that this does not make all
near real-time constraints ‘soft’, such constraints can still impose hard requirements for
processing within the permitted bounds.

Besides timing related issues, quality-critical constraints also include other factors,
as shown in Figure 2.2, e.g., energy consumption and budget. Energy consumption is
taken into considerations more from the Cloud provider side to increase infrastructure
utilisation. Then the energy consumption of the physical infrastructure can be reduced
within a certain threshold to orchestrate the application. On the contrary, from the
Cloud customer perspective, the budget constraints limit the monetary cost to pay for
the Cloud usage. Meanwhile, this cost can be reduced through reasonably exploiting
and managing the resources.

In this thesis, we mainly focus on the speed-critical, near real-time, and budget
constraints, as the quality-critical constraints.

2.2.2 The Terminology of Cloud Applications
We highlight three types of Cloud applications in this thesis. Figure 2.3 illustrates what
the relationship among these types of applications is.

Task-based Applications refer to applications which mainly running in a short
term [92]. This type of application takes specific inputs and is executed for a specified
period. It can be software testing and performance measurement applications, which
run for a short time and generate measurement results. They can also be scientific
applications, e.g., scientific workflows [12] of computing tasks. Task-based applications
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Figure 2.3: The terminology related to Cloud applications

are typically managed via schedulers over pre-defined infrastructure, e.g., computing
clusters. In Cloud environments, the task-based application can either share infrastruc-
tures with the other users or customise a specialised one to satisfy the application quality
requirements.

Service-based Applications refer to the applications running persistently for a long
term as a service [75] . The lifecycle of the application does not end after being invoked.
It often stays idle and waits for the next invocation. The traditional application of
this type is the web application, which handles the request and feedback with the
content. Meanwhile, big data processing, video streaming, and Internet of Things (IoT)
applications are emerging.

Platform-based Applications rely on a specific platform. For example, HTCondor12

and Pegasus13 are popular scientific workflow execution platform. Hadoop14 [117] is a
well-known distributed platform to perform MapReduce [29] tasks for data processing.
CometCloud [31] is able to support video streaming [120]. Kubernetes10 [53] can be
leveraged to develop and operate IoT applications using flexible containers. Hyperledger
Fabric15 [5] is a permissioned blockchain platform for smart contract execution. These
platforms are usually operated on the top of a private cluster of VMs or provided by
some Cloud providers in the manner of PaaS. The portability of such type of application
is high, since the application is able to run, as long as the required platform is provided.
However, it also requires the infrastructure underneath the platform to be set up in
advance. The underlying infrastructure is often fixed, without the ability to scale at
runtime.

12https://research.cs.wisc.edu/htcondor/
13https://pegasus.isi.edu/
14https://hadoop.apache.org/
15https://www.hyperledger.org/projects/fabric
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It is worth mentioning that this thesis presents case studies with all above three types
of applications, and those applications are abstracted from the use case of EU projects,
e.g., the Euro-Argo16 use case [72] of ENVRIFAIR17 project, the eddy covariance data
processing service18 of ENVRIplus19 and VRE4EIC20 projects, and the disaster early
warning use case [133] of SWITCH11 project.

2.3 DevOps for Cloud Applications and Infrastructures
DevOps [13] puts application development and infrastructure runtime operation together
to deliver good quality and reliable software. It encompasses continuous integration,
test-driven development, build/deployment automation, and continuous delivery [116].
However, traditional software engineering approach for application development and
operation focus on the collaborative work over the pipeline of testing, integrating and
delivery during the application lifecycle. They often treat the underlying infrastructure
for the application as a preset and static cluster. There are separate teams installed for
software development and infrastructure operation, which often have high costs for
maintaining and operating the infrastructure.

In Cloud environments, the OS level virtualisation provides a flexible way to encap-
sulate and deliver applications. It provides high portability for deploying application
components and makes the automation of the DevOps pipeline possible. Most of the
current Clouds do not directly provide virtual infrastructures at the OS virtualisation
level. Thus in most cases, VM based infrastructures still need to be provisioned in
advance to construct a cluster for hosting containers.

Nevertheless, at the hardware virtualisation level, the limited infrastructure pro-
grammability and controllability provided by Clouds make it possible to mitigate the
gap between the application and infrastructure, and further involve the infrastructure
operation into the software DevOps lifecycle.

2.3.1 Related Academic Research
The topic of Cloud infrastructure control and optimisation has attracted lots of research
attention during the past years. For example, Sreekrishnan et al. [111] propose a model
to deploy applications on hybrid Clouds and yield the best-fit hosting combination.
Hassan et al. [136] focus on the algorithm selecting a proper Cloud to run the task
according to the geographical location of the data centre. Min et al. [41] put forward
eight recovery patterns for sporadic operations on public Cloud to maintain the service
quality of the application. Xiaofeng et al. [114] try to optimise the makespan and the
reliability of a workflow application through evaluating the resource reputation. Alexey
et al. [58] conduct evaluations on the scaling policy for the workflow. However, these
works mainly focus on how to adjust the infrastructure instead of providing the actual
ability for the application to control the infrastructure itself.

16https://www.euro-argo.eu/
17https://envri.eu/envri-fair/
18https://wiki.envri.eu/display/EC/IC 13+The+eddy+covariance+fluxes+of+GHGs
19https://www.envriplus.eu/
20https://www.vre4eic.eu/
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There is existing work on enhancing applications to program and control the Cloud
virtual infrastructure. CodeCloud [22] consists of an Infrastructure Manager (IM)
[23]. IM provides some specific REpresentational State Transfer (REST) APIs to
control each individual VM. Based on this, CodeCloud leverages Cloud Job Description
Language (CJDL) to describe the application and the elasticity of the infrastructure.
CloudPick [27] is a system that considers the high-level constraints of the application
on the infrastructure, including deadline and budget. However, these systems work as
centralised services asking users to upload their Cloud credentials, which requires trust
in a third party. mOSAIC [91] is a deployable platform providing model-driven Cloud
application development. CometCloud [31] provides a framework for heterogeneous
Clouds to deploy several programming models, such as master/worker, map/reduce,
and workflow. A video analytics system [120] is a notable application scenario of
CometCloud. However, these tools need infrastructure resources provisioned in advance,
without the controllability on the underlying infrastructure at runtime. Spiros et al. [70]
leverage the adaptability of the network to optimise the data transfer, but the control
on the switch of the data centre is required, which is not practical for public Cloud
environments from the customer perspective.

2.3.2 Related Industrial Tools
From the perspective of industry, there are also many DevOps tools or frameworks
proposed for the Cloud application to manage the infrastructure. Figure 2.4 illustrates
the respective industrial frameworks and tools leveraged in the Cloud DevOps lifecycle
for the application development and the infrastructure management, especially focusing
on the programmability and controllability they provide.

As shown in Figure 2.4, with the IaaS Cloud service model, different Clouds or
tools, such as OpenNebula21 or OpenStack22, provide different virtual infrastructure
functions, i.e., APIs, to access their physical resources through the hardware virtuali-
sation. This basic controllability of provisioning or terminating one VM is leveraged
to afford controllability for the higher-level application. Tools, such as Libcloud23 and
jclouds24, unify provisioning APIs from several Clouds to empower controllability on
the individual VM. However, configuration and management on the entire infrastructure
are still done manually. In order to manage a cluster of VMs, some Clouds provide a
tool to describe several VMs, e.g., CloudFormation25 of Amazon EC27 provides the
programmability to describe the infrastructure only consisting of EC2 VMs. To avoid
the vendor lock-in problem and manage the federated Cloud virtual infrastructure, tools
such as Chef26, Ansible27, and Puppet28, are developed to provide programmability for
describing infrastructure from different Clouds. Among these tools, Chef and Ansible
more focus on application deployment and configuration. They standardise the con-

21https://opennebula.org/
22https://www.openstack.org/
23http://libcloud.apache.org/
24https://jclouds.apache.org/
25https://aws.amazon.com/cloudformation/
26https://www.chef.io/
27https://www.ansible.com/
28https://puppet.com/
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Figure 2.4: The illustration of related industrial tools considering the programmability
and controllability they provide in the DevOps for Cloud applications and infrastructures

figuration commands among different systems to make the code reusable, such as the
cookbook of Chef and playbook of Ansible. This code of unified description and con-
figuration is proposed as “Infrastructure as Code” [83]. Nevertheless, it cannot describe
infrastructure operations. Anyhow, all these three tools more focus on the infrastructure
itself and try to make the operation simple at runtime, instead of narrowing the gap to
make the application aware of the infrastructure. Juju29 takes one step further to realise
an application-defined infrastructure through describing application components and
their hosting VMs, where the components are some typical software modules. The
controllability of the infrastructure, like auto-scaling, can also be leveraged to ensure
the QoS of a particular software component. However, this model-driven approach
can only provide a way to describe the relationship between application components
and the infrastructure. It lacks more fine-grained infrastructure programmability and
controllability to be embedded inside the arbitrary code for a Cloud application. Besides,
Puppet and Chef adopt Ruby [106] as the domain-specific language, which requires the
developer to master the Ruby programming language.

Another aspect of work only focuses on the programmability and controllability
between the container level and the application level. When treating containers as the
infrastructure, containers are more flexible and lightweight to provide the infrastructure
controllability and programmability compared to VMs. In particular, Docker30 provides
a VM-like environment to make the container closer to a lightweight VM. Kubernetes10

and Mesos6 further enhance the programmability to describe dependencies among
several containers and orchestrate them to form a virtual cluster. Besides, Topology
and Orchestration Specification for Cloud Applications (TOSCA)31 [18], of which the

29https://jaas.ai/
30https://www.docker.com/
31https://www.oasis-open.org/committees/tc home.php?wg abbrev=tosca#overview
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syntax is based on YAML Ain’t Markup Language (YAML), is proposed to standardise
the description of dependency among the application components and its underlying
infrastructure, e.g., the OS of the hosting machine. It more concentrates on the ser-
vices from the application perspective; for instance, the connection of infrastructure
is described as the service dependency. It also more focuses on the static topology
description without the ability to define some direct operations on the infrastructure. To
enforce this standard, TosKer [19] implements an engine, which regards Docker as the
infrastructure. Though the Docker can provide a VM-like environment, it is still more
close to software virtualisation, e.g., it shares the kernel of the host machine, which is
the same for containers. Moreover, it usually requires the VM to be the underlying layer
in the Cloud environment, due to the reason for isolation and security. Therefore, VM
is still indispensable. However, these tools at this level are not able to afford further
controllability on the lower-level infrastructure. For example, ECSched [55] can only
provide the container-level scheduling, without the ability to manipulate the VM. The
relation between the VM-level DevOps and container-level DevOps is also illustrated in
Chapter 8 as Figure 8.1.

Other tools or frameworks, such as HTCondor12 and Open MPI32 [43], mainly
focus on how to conduct applications on a fixed distributed system. These tools more
concentrate on the application perspective, empowering the application to run in parallel
and fit the distributed environment. For example, Jonghwan et al. [57] utilise a private
cluster of seven physical machines to orchestrate a VoIP-based multimedia service
with HTCondor. Nevertheless, they are not designed for Cloud environments, and
therefore, lack infrastructure controllability. Another option to mitigate the DevOps
gap between the application and the infrastructure is to build the entire computing stack
from the physical hardware level, which means the infrastructure should be specifically
designed. For example, SAVI (System Architecture Virtual Integration) [63, 64] builds
up a test-bed for IoT. It leverages OpenFlow [80] to consider the network topology of
the virtual infrastructure. Kraken [42] and SWMOA [99] also take the network into
account when provisioning virtual infrastructures over multiple private data centres.
However, all these solutions are applied to private data centres, where the hardware in
the data centre, such as switches and routers, must be fully controlled. Hence, these
solutions are not feasible in the context of public Clouds, which can only afford limited
general controllability on the physical hardware infrastructure.

2.4 Blockchain and Smart Contract
The performance of the resources provided by Cloud computing is often not determinis-
tic, as it is a multi-tenant and shared computing environment. Also considering Cloud
computing is a business model, SLA plays a crucial role in building the contract between
the provider and the customer to ensure the infrastructure performance. However, both
parties in current SLA lack trust with each other and need a mechanism to reduce
the potential risk. The blockchain technology seems a promising solution. Therefore,
we introduce the basic background knowledge of blockchain and smart contract for
Chapter 7.

32https://www.open-mpi.org/
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Figure 2.5: The basic structure of first generation blockchain

Blockchain [128] is an emerging technology to make every participant having trust
in a decentralised ledger through the consensus algorithm, such as Proof of Work (PoW),
Proof of Stake (PoS), and Practical Byzantine Fault Tolerance (PBFT). For the public
blockchain, all the information stored in the ledger is public, verifiable, and immutable.

Figure 2.5 illustrates the basic structure of the first generation blockchain [85]. It
demonstrates that the blockchain is literally a set of blocks chained by some special hash
values. The block contains all the transactions, which identifies how many tokens are
transferred from a specific wallet address to another (from Alice to Bob in the example
of Figure 2.5). Here, the wallet address is derived from the public key, and only the user
who keeps the private key can sign the transaction. The current balance of that wallet can
be calculated from its transaction history. Then every participant in the system is able
to verify the transaction. After collecting enough valid transactions, every participant
has to tune the “Nounce” value in the block to find a particular hash value, which
contains several zeros in the beginning. The finding process is energy-consuming and
time-consuming. As long as the special value is found, the block should be published
to peers immediately in order to be accepted. For the purpose of incentivation, the
one who finds this value can embed a transaction in the block to announce a certain
number of rewarding tokens to itself. In the end, only the longest chain in the system
network would be accepted to solve the consensus issue. This design ensures that the
transaction in the previous blocks cannot be modified. If the attacker would like to
change the transaction value, the hash value of that block would also change, which
causes the chain reaction to change all the hash values of succeeding blocks. However,
the computing power of the attacker is not able to build another longest chain to replace
the current one. Therefore, as long as the system is distributed enough and no one can
compromise more than half of the system’s computing power, all the participants in the
system have trust in the transactions recorded inside the blocks.

The application of this first generation blockchain is Bitcoin33. The first block was
generated in 2009. According to the algorithm, around every 10 minutes, a new block
is calculated and found. Due to the size of the block, there is a maximum number of
transactions that can be included in one block. Hence, the maximum throughput of the

33https://bitcoin.org/
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Figure 2.6: The basic structure of second generation blockchain for smart contract

Bitcoin system is seven transactions per second.
The limitation of the first generation blockchain is that the transaction can only

support token transferring. In order to achieve more complicated functionality, the
second generation blockchain is introduced and makes the smart contract possible.
Figure 2.6 depicts the basic structure of the second generation blockchain. Its key
difference from the first generation is that the wallet address can also be owned by
a smart contract instead of only humans. Then the transaction between two wallet
addresses can represent that someone wants to invoke a particular interface of the smart
contract. For each smart contract, a corresponding byte string is exploited to represent
the VM state for executing the smart contract. As long as the transaction is inserted in
the blocks, the VM state for the smart contract is changed through invoking the interface
specified in the transaction. The current VM state of a specific smart contract can also
be validated and derived from its transaction history, as the transactions contain all
the interfaces having been invoked. To be specific, these transactions are recorded in
the blockchain, where the information is immutable and irreversible. Meanwhile, the
interface is allowed to be programmed with specific conditions to accomplish a complex
task. For instance, the example smart contract in Figure 2.6 is programmed only to
allow Alice’s wallet address to withdraw 2 tokens from the contract when the balance of
the smart contract’s wallet is above 10 tokens. In the example shown in Figure 2.6, all
the conditions are met, and the transaction is valid to be committed on the blockchain.
The transaction then changes the VM state, reducing its balance from 12 to 10 tokens.

Thus, blockchain provides a worldwide computer to execute the smart contract
transparently, immutably, and credibly. Everyone can participate in the blockchain
network and verify the transactions to execute the smart contract. We, therefore, believe
that no one can stop smart contract running or fudge the results. This open and verifiable
mechanism is also where the trust comes.

The typical application of this second generation blockchain is Ethereum34 [21],
starting from 2015. The VM state for the smart contract is termed as Ethereum Virtual
Machine (EVM). Moreover, the PoW consensus algorithm of Ethereum allows generat-
ing a new block around 15 seconds to enhance the smart contract execution efficiency.
The system throughput is, therefore, improved to around 25 transactions per second.

34https://www.ethereum.org/
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However, it is still challengeable when the condition programmed in the interface
of the smart contract relies on the off-chain event result. For instance, if the interface
in Figure 2.6 is programmed as only Alice’s account can withdraw 2 tokens, when the
temperature is above 10 degrees. In this case, the problem is that the smart contract
cannot detect the actual temperature to judge the condition in a trustworthy way, because
the temperature is a real-world event. It is worth mentioning that the extension of our
work in Chapter 7 partially mitigate this gap.

2.5 Challenges
We summarise this chapter as four highlighted challenges corresponding to the above
four sections, respectively.

• Insufficient models for programming and controlling Cloud virtual infrastructures.
Though the IaaS model can provide Cloud customers with possibilities to program

and control the virtual infrastructure at the level of hardware virtualisation, i.e., the VM
level, these abilities are not sufficient at the entire infrastructure level for application
developers to leverage. Moreover, the diverse APIs from different Cloud providers
make it difficult to enable applications across the federated Clouds. Without an effective
infrastructure programming and control model, the application developer and the infras-
tructure operator cannot seamlessly work together by automating the pipeline of Cloud
application testing, integration, provisioning and deployment in the DevOps lifecycle.

• Short of Cloud management support to satisfy the applications’ quality-critical con-
straints.

To operate distributed Cloud applications, such as IoT and live streaming applica-
tions, the factor influencing the application QoS is not only the computing capacity
of the infrastructure but also the network capacity, e.g., the communication latency
and bandwidth. While the Cloud data centres are nowadays continuously growing,
application developers will have more options to select and to provision the infrastruc-
ture. The budget constraints can also be addressed through on-demand managing the
infrastructure since the pay-as-you-go business model of Clouds. Nevertheless, most of
current tools or frameworks cannot support managing different Clouds in an extensible
and efficient manner.

• Lack of a framework to seamlessly program and control the Cloud application during
the DevOps lifecycle.

The current Cloud computing research focuses either on solutions to manage the
physical infrastructure within data centres in the view of the Cloud provider, e.g.,
Software-defined Network (SDN), VM consolidation and migration, or on optimisation
of the Cloud application performance from the Cloud user perspective. Among the
various industrial tools and frameworks, some of them only concentrate on managing
an individual VM, and others focus on particular steps in DevOps lifecycle, such as
provisioning and deployment. These tools are not sufficient to automate the entire
process for addressing the requirements of the application. In essence, there are multiple
phases for operating the application on the Cloud infrastructure.
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• Difficult to convince both the Cloud provider and customer of the SLA violation.
Currently, SLA is enforced manually and lacks trust. The blockchain technique,

specifically the smart contract, provides a potential solution to automate the SLA
enforcement credibly. If implemented, it is crucial to detect the SLA violation and
report it to the SLA smart contract. However, it is impossible for the SLA smart contract
itself to detect this off-chain event, which is still a gap mentioned in Section 2.4 for the
smart contract. In essence, the smart contract is static and requires entities to invoke
with the event results as inputs, e.g., whether the SLA is violated. Hence, the hurdle
is to find entities who can be trusted by both sides of SLA, and keep them performing
unbiased and trustworthy SLA violation detection to trigger the SLA enforcement.
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3
Systematic Cloud Infrastructure
Programming and CloudsStorm

Framework Design
the programming phase

For the background introduction, we have discussed different Cloud service models.
Among them, the emerging Infrastructure-as-a-Service (IaaS) Cloud service model
allows developers to flexibly provision and terminate virtual machines (VMs) with
suitable types and location specifications. However, taking an Internet of Things
(IoT) application as an example, the developer requires: 1) a unified description for
customising the infrastructure from any possible Cloud to be close to the mobile devices;
2) the ability to describe the infrastructure operations, such as provisioning and scaling,
for programmatically adjusting the infrastructure according to the distribution of the
mobile devices; and 3) identifying the non-functional requirements reacting to the fickle
workload because of the mobility of the devices.

In this chapter, we first analyse the programmability requirements for infrastructure
programming and introduce the state of the art. We then propose our design principle
and the Cloud virtual infrastructure programming model. Afterwards, we present our
CloudsStorm1 framework and the programmability design, enabling developers to
customise the infrastructure and program the infrastructure operations into their Cloud
applications. Finally, we show the example code of how the description of high-level
infrastructure operations is achieved.

This chapter is based on:

• Zhou, H., Hu, Y., Su, J., de Laat, C., Zhao, Z., “CloudsStorm: An application-driven frame-
work to enhance the programmability and controllability of cloud virtual infrastructures”, In
International Conference on Cloud Computing, pp. 265-280. Springer, Cham, 2018.

• Zhou, H., Hu, Y., Ouyang, X., Su, J., Koulouzis, S., de Laat, C., Zhao, Z., “CloudsStorm: A
Framework for Seamlessly Programming and Controlling Virtual Infrastructure Functions
during the DevOps Lifecycle of Cloud Applications”, Journal of Software: Practice and
Experience. Wiley, 2019.

1https://github.com/zh9314/CloudsStorm
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3.1 Cloud Infrastructure Programming
Cloud computing provides an elastic approach to provisioning and terminating resources
as the underlying virtual infrastructure for operating applications. However, the elastic-
ity is not commonly used, because most Cloud virtual infrastructures are provisioned
manually in advance and treated as the fixed traditional physical infrastructures. Mean-
while, developers still more focus on the application development only. It is, therefore,
urgent to explore the programmability of describing and controlling the infrastructure
resources, in order to programmatically utilise the resources on demand.

3.1.1 Programmability Requirements Analysis
When developing quality-critical Cloud applications, we should consider satisfying the
application requirements from two aspects: functional requirements and non-functional
requirements. Hence, we analyse the programmability to describe and operate the
infrastructure as follows.

Functional Requirements:

For the functional requirements, the programmability is required to customise the in-
frastructure, such as the resource capacity, the geolocation distribution, and the network
topology. Besides, the programmability is required to describe the operations performed
on the infrastructure, including provisioning, terminating, and scaling. Therefore, we
analyse the programmability from the following three levels.

1. Design level. The design-level programmability is required to describe underlying
infrastructure to specify the computing resources’ (VM) quantity, types, locations,
and network. For instance, a live streaming application requires 2 VMs with the
large type from EC2 and 4 VMs with the medium type from ExoGENI Cloud2 [8].
All of them need to be connected with a customisable private network to transfer
streaming data. It is crucial for the developer to customise this infrastructure
topology with Cloud and data centres.

2. Infrastructure level. The infrastructure-level programmability is required to
automate the process of provisioning the VMs, configuring the network, and
deploying the applications. It also should provide high-level infrastructure op-
erations, such as provisioning, scaling, and failure recovery. Meanwhile, the
parallelism of the operation should be easily specified to achieve efficient con-
trol. Still, with the example of the previous one, the developer should be able to
program how to provision the described infrastructure, such that the 2 VMs from
EC2 can be provisioned first. Also, the scaling operation should be defined to
adjust the infrastructure when the input of streaming data suddenly increases.

3. Application level. The application-level programmability is required to directly
adjust the infrastructure to fit for the application constraints or workload. Because
of the pay-as-you-go business model, the over-provisioned infrastructure results
in an extra monetary cost. Taking the example of running the Hadoop based big

2http://www.exogeni.net/
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data processing application on Clouds, when there is no input data to process, the
extra VM resources waste money since a traditional Hadoop platform is based on
a fixed cluster. That is, the Hadoop application should be able to program and
customise a required number of VM resources, according to the input workload,
e.g., the data size. Then during runtime, in order to reduce the monetary cost,
the Hadoop application can dynamically adjust the infrastructure resources, i.e.,
scaling out or in VMs, according to the input data size.

Non-functional Requirements:

For the non-functional requirements, the programmability of specifying the conditions
that the application should respond to is required for adjusting the infrastructure to keep
satisfying the quality-critical constraints. Therefore, the developer should be able to
define the metrics as thresholds and the infrastructure operations to further respond. The
detailed metrics can be classified as follows.

1. Infrastructure Metrics. This type of metrics is leveraged to define the system
status of the infrastructure, such as availability, network connection, CPU and
memory utilisation. This information is essential for the infrastructure to maintain
system performance through automatic scaling and recovery. For example, a
disaster early warning application requires to recover the infrastructure within a
time constraint if some computing nodes are detected to be unavailable due to the
Cloud failures. It is highly important for this type of quality-critical applications
to keep functioning constantly.

2. Application Metrics. This type of metrics is leveraged for the application to de-
fine more fine-grained metrics, such as average job completion time and through-
put. The specific name of the metric should be customisable for the application
to define the condition in their own metrics. For instance, a Hadoop application
needs to define the average job completion time as a threshold for scaling the
infrastructure. If the measured data in this metric downgrades, probably because
of a sudden intensive workload, the scaling operation then can be performed to
bring the application back to the expected performance.

3.1.2 State of the Art
In this section, we investigate the state of the art corresponding to those aspects.

For the functional requirements, the design-level programmability currently is ad-
dressed by Topology and Orchestration Specification for Cloud Applications (TOSCA)3

standard [18]. It unifies the syntax of describing the application components and the
dependency on the infrastructure resource, e.g., two components should be put in one
VM. However, it is not sufficient to further define the location (i.e., the Cloud and
data centre) and the network topology of the VM cluster. It is because that TOSCA
more focuses on the application components specification, instead of the detailed Cloud
infrastructure description. CloudFormation4 provides a template to describe the required
VMs and resource, but it is a vendor lock-in solution that only applies to EC2 Cloud.

3https://www.oasis-open.org/committees/tc home.php?wg abbrev=tosca#overview
4https://aws.amazon.com/cloudformation/
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The infrastructure-level programmability is partially addressed by some infras-
tructure management tools. For example, jclouds5 provides a unified Application
Programming Interface (API) for different Clouds. However, these API-centric [116]
tools focus on the programmability on each individual VM instead of the entire in-
frastructure topology. In comparison, there are also some environment-centric [116]
tools to help developers orchestrate their applications, which include Puppet6 and Chef7.
These tools more focus on cluster management, i.e., deployment and configuration,
instead of provisioning and scaling automation. Some academic research also proposes
architectures for developing applications on Clouds, e.g., CometCloud [31] and mO-
SAIC [91]. Nevertheless, most of these architectures themselves are platforms, which
require manually to set up the cluster in advance and lack the ability of provisioning
VM resources. Specifically, none of them provides an independent syntax to describe
the infrastructure operations, which does not rely on a specific programming language.

As to the application-level programmability, however, none of the current software
Development and Operations (DevOps) tools supports to embed this type of infrastruc-
ture programming logic directly to the application logic, to the best of our knowledge.

For the non-functional requirements, the monitoring based solution is commonly
adopted by Cloud systems [103]. Most of the tools and academic research can support
specifications of different level of metrics to monitor the Cloud infrastructure. However,
they are not able to program the actions according to the monitoring information. For
instance, Kwon et al. [73] implement a monitoring system for Cloud infrastructures but
only with a dashboard to visualise the monitoring information. The monitoring tool,
Jcatascopia [108], allows the user to define the threshold and an “action” field specifying
the reaction. Nevertheless, the action is simply about whether the user should be notified.
This kind of action is not capable of adjusting the infrastructure as programmed.

3.2 Cloud Virtual Infrastructure Programming Model
Based on the requirement analysis, we discuss our design principles and propose the
Cloud virtual infrastructure programming model based on the basic Cloud Virtual
Infrastructure Function (VIF) in this section.

3.2.1 Design Principles and Programming Model
The design-level programmability can be addressed by a particular domain-specific
language adding descriptions of Clouds and data centres. On the other hand, the
programmability for infrastructure-level, application-level, and non-functional require-
ments all needs to define and program the operations, which are performed on the
infrastructure. Hence, the programmability design should provide the ability to describe
both the infrastructure topology and operation.

In order to be leveraged as a programming approach by developers, the syntax of the
programmability design should be human-readable and easy to learn. Inspired by the

5https://jclouds.apache.org/
6https://puppet.com/
7https://www.chef.io/
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TOSCA standard, we adopt the YAML Ain’t Markup Language (YAML) [14] format
to design the programmability for both of the infrastructure topology and operation.
Besides, for the application-level programmability, we design the operations with some
general-purpose programming languages, which can be more seamlessly embedded into
the original application logic. The detailed syntax is demonstrated in Section 3.3.

Though both of the infrastructure topology and operation can be described, it is still
challenging to program the infrastructure operations on different Clouds, since they
provide different APIs to access their Cloud resources. Especially for the high-level
operations, some Clouds have provided the functionality, and some others have not, e.g.,
EC2 Cloud provides the auto-scaling functionality through allowing the customer to
define a scaling group, and ExoGENI cannot perform auto-scaling. Moreover, since
the Cloud market is booming, we cannot support all the Clouds with their specific
operations. Therefore, the key challenge here is how to enable the unified operation
description extensible to be performed on various Clouds.

On the other side, the operation efficiency should also be considered through
performing the operations in parallel. The complexity of parallel programming is
another hurdle.

Inspired by the programming model of MapReduce [29] and functional program-
ming, we propose our infrastructure programming model based on basic Cloud VIFs.
Using MapReduce programming model, the complex data operation is decoupled into
the user-defined map functions and reduce functions. Then the complicated data pro-
cessing logic, including the parallelism, is handled by the framework. Our idea is to
model the Cloud infrastructure operations into some basic ones, which are commonly
provided by different Clouds. These basic operations for a particular Cloud can be
programmed as functions given by the developer. Then the functions can be plugged into
our framework to be leveraged for interpreting and realising the high-level infrastructure
operations. In addition, the parallelisation is also handled by the framework.

According to the programming model, we need to model the public IaaS Cloud and
the basic Cloud VIF provided by any Cloud. Based on the IssS Cloud service model,
any IaaS Cloud at least provide the functionality of provisioning one VM and terminate
one VM. After a VM is provisioned, the VM must be remotely accessible. Otherwise,
the computing resource cannot be used. Therefore, we model the public Cloud with
three basic Cloud VIFs: VM Provisioning, VM Configuration, and VM Terminating.
These are minimal functions, which can be provided by any public IaaS Cloud.

Based on these minimal functions given by the developer, how the high-level
infrastructure operations can be constructed is demonstrated in Section 3.4. Hence, the
complex operations performed on the infrastructure are extensible to different Clouds.
Besides, Section 5.3.1 presents how these functions are leveraged in parallel based on
the implementation, which addresses the efficiency issue of the operations.

3.2.2 Basic Cloud Virtual Infrastructure Functions
Figure 3.1 illustrates the basic Cloud VIF of provisioning a single VM. According to
the IaaS model, the customer should be able to remotely negotiate with the controller of
a particular data centre from some Cloud. In the negotiation, the customer first needs to
authenticate themselves with the key, KEY

cloud

. This key is the access credential given
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Figure 3.1: Basic Cloud Virtual Infrastructure Function: VM Provisioning

by the Cloud to identify the customer, which is crucial for the Cloud provider to charge
the customer according to the usage. Then the customer needs to request a specific
VM type supported by the Cloud. It is worth mentioning that different VM types are
with various computing capacities, but also result in different prices. In addition, the
customer can specify a key, KEY

ssh

, for accessing the provisioned VM through Secure
Shell (SSH) later on. Afterwards, the controller receives the request and provisions
the corresponding VM from this data centre. Finally, the customer is notified with the
VM

id

, which is an identification string to uniquely refer the VM, and VM
IP

, which
is a public IP for accessing the VM remotely through the Internet. Meanwhile, the
controller starts billing the customer for this VM.

Figure 3.2 illustrates the VM configuring operation after provisioning. The cus-
tomers are able to login the VM with the preconfigured key, KEY

ssh

, through the public
IP address, VM

IP

, using SSH. It is worth mentioning that SSH is a common technology
adopted by all the public IaaS providers to empower customers with the ability to
access their VMs remotely and securely. Moreover, the concrete operations include the
network configuration, application deployment and execution. These operations can be
user-defined and mainly adjust the application execution.

Figure 3.3 illustrates the third basic Cloud VIF of terminating a single VM. This
function is also a remote request from the customers to terminate a VM. KEY

cloud

is
still required for authentication. VM

id

is used to identify the specific VM. Then the
controller is able to terminate the VM and release the resources occupied by the VM.
Meanwhile, the controller would stop billing the customer for this VM. In the thesis,
this operation is also termed as “delete”.
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VM 

conf 

remote control (VMIP ,  KEYssh) 
Customers 

Figure 3.2: Basic Cloud Virtual Infrastructure Function: VM Configuration
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Figure 3.3: Basic Cloud Virtual Infrastructure Function: VM Terminating

Among these basic Cloud VIFs, the functions of VM Provisioning and VM Ter-
minating are provided by the Cloud. These two functions are usually in the form of
REpresentational State Transfer (REST) API to perform the actual remote request.
Specifically, each Cloud provides a different Software Development Kit (SDK) to
programmatically invoke these REST requests. The diversity of these interfaces imple-
mented in different SDKs hinders the developer to perform the infrastructure operations
on federated Clouds. In addition, some Cloud provides extra functions of starting and
stopping a VM. The process is similar to the provisioning and terminating a VM, but
not all Clouds support this. We, therefore, cannot include these functions as basic ones.

On the other hand, the basic function of VM Configuration does not rely on the
Cloud specification. As shown in Figure 3.2, this operation does not need to involve
the controller of the data centre. However, the commands for network configuration
and application deployment are related to different operating systems (OS) of the VM.
Anyhow, the diversity of OS is easier to handle, considering the set of mainstream OS
is much smaller than that of Clouds.

3.3 Cloud Infrastructure Programmability Design

In this section, we introduce four types of infrastructure programming code designed by
us to provide the Cloud infrastructure programmability systematically. The proposed
infrastructure code can be leveraged by Cloud application developers to program the
infrastructure descriptions and operations. Corresponding to the different levels of
programmability based on the requirements analysis in Section 3.1.1, we propose
the design of “Infrastructure Description Code”, “Infrastructure Execution Code”,
“Infrastructure Embedded Code” and “Runtime Control Policy”, respectively.

3.3.1 Infrastructure Description Code
The “Infrastructure Description Code” is proposed to provide the application developer
with the design-level programmability on the infrastructure. In order to describe and
manage the virtual infrastructure provided by different Clouds or data centres, we
propose a partition-based infrastructure management mechanism. This mechanism
adopts a hierarchical description of the infrastructure topology, which is classified into
three levels, i.e., the levels of top-topology, sub-topology, and VM. Figure 3.4 shows
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Figure 3.4: An example of partition-based infrastructure management

an example topology to demonstrate this mechanism, where DC is the acronym of
Data Centre. The lowest level is the VM level. It enables the developer to customise a
specific VM concerning different aspects. The level in the middle is the sub-topology
level. It provides a description of several VMs provisioned in the same data centre. The
top level is the top-topology level. It includes all the sub-topologies and describes the
network connections among all VMs. The reason to differentiate the level is to manage
the infrastructure more flexibly and efficiently. On one aspect, infrastructure operations
are not intended to be applied to the entire infrastructure, i.e., the top-topology. For
instance, we only want to terminate all the VMs from a specific data centre. We need
the ability to specify that part of the infrastructure. On the other aspect, the operation
performed on a sub-topology is applied to all the VMs inside in parallel. Hence, we
only need to terminate the sub-topology from that data centre at the sub-topology level,
instead of terminating the VMs one by one at the VM-level.

Besides, the network among the VMs is defined as a private network. Considering
the fact that the public IP address for each VM in a public Cloud is typically different
after provisioning every time, it is useful for the application to define the topology as
a private network during the design phase: 1) the actual network is made transparent
to the application. Still taking the example of operating the Hadoop application on
Clouds, the configuration file for the Hadoop application to identify the addresses of the
computing nodes can always keep the same with the fixed defined private IP addresses.
The case study of task-based applications in Section 6.1 of Chapter 6 also demonstrates
this benefit; 2) the infrastructure for the application is always reproduceable regardless
of the geographical information, i.e., data centres. In this case, the same network for the
Hadoop cluster is provisioned every time, no matter which data centre the VMs come
from, even come across different data centres; 3) get rid of the provisioning dependency.
For example, we do not have to provision a database VM before a web server VM, in
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Syntax 1 “Infrastructure Description Code” for sub-topology description
VMs:
- name: $Node

[nodeType: $Type]
[CPU: $num1]
[Mem: $num2]
OSType: $OS
script: $Path

- ⇤

order to configure the web server with the public IP address of the database. With the
ability to predefine private IP addresses, these VMs can be provisioned in parallel to
improve efficiency. This is also demonstrated in Section 5.4.2 of Chapter 5.

In addition, the switches placed in Figure 3.4 only illustrate how VMs are connected.
The technique detail to provision such networked infrastructure using overlay network
mechanisms is demonstrated in Chapter 4.

In order to describe the networked infrastructure for the application, we adopt
the YAML format to define the sub-topology and top-topology description, shown as
Syntax 1 and Syntax 2, respectively. In these syntax descriptions, ‘-’ is used to represent
the start of a list, and ‘⇤’ is used to represent repetition of the element above. Symbol,
‘$’, designates that the succeeding string identifies an application-defined variable. In
addition, Symbol, ‘|’, indicates different alternative values, any of which can be used in
the corresponding field. Symbol, ‘[]’, is exploited to represent an optional field. Syntax 1
defines the sub-topology description, which is a list of “VMs”. Every element contains
the VM name, such as “Node0” or “Node1” in Figure 3.4. “nodeType” indicates the

Syntax 2 “Infrastructure Description Code” for top-topology description

userName: $User
publicKeyPath: $Path
topologies:
- topology: $SubTopology

cloudProvider: $Cloud
domain: $DC
status: ‘fresh | running | deleted | failed | stopped’

- ⇤
subnets:
- name: $Subnet

subnet: $subnet
netmask: $netmask
members:
- vmName: $SubTopology.$Node

address: $IP
- ⇤
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computing capacity of the VM, such as “t2.small” or “t2.medium” for the EC2 Cloud,
“XOSmall” or “XOMedium” for the ExoGENI Cloud. However, the value of this field
is heavily dependent on the Cloud and not user-friendly. Thus, it can be omitted, if the
following “CPU” and “Mem” are specified. The framework would automatically find
the corresponding “nodeType”, according to the vCPU number and memory capacity (in
Gigabyte). For instance, the VM with 1 vCPU and 1 GB memory would be interpreted
as the type of “XOSmall” of ExoGENI. “OSType” indicates the specific operating
system required by the application. “script” is the script path, which is leveraged to
install and configure the runtime environment for the application.

The top-topology description is defined as Syntax 2. First, “userName” and “pub-
licKeyPath” indicate whether the application developer wants to have a unified SSH
account, i.e., $User, to access all the VMs, no matter which Clouds the VM comes
from. The access key is always the corresponding private key of the public key defined
by “publicKeyPath”. The top-topology description also contains a list of sub-topologies
defined in “topologies”. “topology” here is the application-defined name of a certain
sub-topology, such as “A”, “B” or “C” shown in Figure 3.4. “cloudProvider” and
“domain” specify the concrete data centre where this sub-topology is hosted. For exam-
ple, there is a $DC = California data centre from $Cloud = EC2. Actually, one
Cloud provider usually has multiple data centres and they are distributed in different
geolocations, e.g., current data centres of EC2 Cloud span 21 geographic regions around
the world8. “status” indicates the status of this sub-topology. They are used for the
resources lifecycle management. Another list in the top-topology definition is “subnets”,
including all the private subnets required by the application in the top-topology. In
each subnet, there is a field “members” to list all VMs in the subnet and their corre-
sponding private IP addresses. “vmName” here is the full name, which consists of its
sub-topology name and the node name itself. For instance, there are two subnets shown
in Figure 3.4, with the “name” of “S10” and “S4”. Taking the example of subnet “S10”,
it has $subnet = 192.168.10.0 with $netmask = 24, and it contains three members
“A.Node0”, “A.Node1”, and “C.Node4” with the corresponding private addresses.

3.3.2 Infrastructure Execution Code

The “Infrastructure Execution Code” is proposed as a means to provide the application
developer with the infrastructure-level programmability. This type of code enables
the application developer to directly perform operations on the infrastructure, such as
provisioning, terminating of particular resources, and executing commands on a specific
VM. It is separated with the application logic and also based on the YAML format.
Comparing to the above static “Infrastructure Description Code”, which is only the
application-defined topology description, the “Infrastructure Execution Code” focuses
on the infrastructure operations, and therefore, is executable. Hence, it is essential for
the application developer to programmatically provision the infrastructure, deploy and
executing their applications on Clouds.

The “Infrastructure Execution Code” is basically a set of operations defined sequen-
tially in a list. In order to combine these basic operations to accomplish a complex task,

8https://aws.amazon.com/about-aws/global-infrastructure/
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Syntax 3 “SEQ” type of “Infrastructure Execution Code”
- CodeType: ‘SEQ’

OpCode:
Operation: ‘provision|delete|execute|put|get|vscale|hscale|recover|start|stop’
[Options:]

[$String
i

: $String
j

]
⇤

[Command: $String]
ObjectType: ‘SubTopology | VM | REQ’
Objects: $Object1 [||$Object2]...

we define two code types. One is “SEQ”, which only contains one operation; a list of
“SEQ” codes are executed one at a time. The other is “LOOP”, which contains several
operations and performs repeatedly for a number of iterations or within a certain period.
The syntax of “SEQ” is shown in Syntax 3. It contains only one operation expressed by
“OpCode”. Current alternative operations are ‘provision’, ‘delete’, ‘execute’, ‘put’, ‘get’,
‘start’, ‘stop’, ‘vscale’, ‘hscale’ and ‘recover’. They are specified in the field “Operation”.
Field “Options” is a list of key-value pairs to specify whether there are some arguments
needed by this operation. When the operation is ‘execute’, the $String of “Command”
is the specific command to be executed on the VM. Both of these two fields are optional.
Field “ObjectType” indicates whether this operation is operated on a ‘SubTopology’ or
on an individual ‘VM’. In addition, ‘REQ’ is used to represent a scaling or recovery
request. The concrete examples are shown in Section 3.4 with high-level infrastructure
operations and in Section 6.2 with case studies. “Objects” then refers to the set of
objects. To define this set, we adopt the symbol ‘||’ from parallel �-calculus [38] to
express parallel operation, such that all “Objects” are operated in parallel, improving
the operation efficiency. In summary, ‘provision’ and ‘delete’ operations are leveraged
to acquire and terminate Cloud resources; ‘start’ and ‘stop’ can be used when the Cloud

Syntax 4 “LOOP” type of “Infrastructure Execution Code”
- CodeType: ‘LOOP’

[Count: $num]
[Duration: $time1]
[Deadline: $time2]
OpCodes:
- Operation: ‘provision|delete|execute|put|get|vscale|hscale|recover|start|stop’

[Options:]
[$String

i

: $String
j

]
⇤

[Command: $String]
ObjectType: ‘SubTopology | VM | REQ’
Objects: $Object1 [||$Object2]...

- ⇤
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Syntax 5 Complete “Infrastructure Execution Code”

[Mode: ‘LOCAL | CTRL’]
InfrasCodes:
- CodeType: ‘SEQ | LOOP’
- ⇤

supports the operation of starting or stopping a VM; ‘put’ and ‘get’ operations are used
to upload or download data to or from a particular VM; the ‘execute’ operation is used
to execute the application; ‘hscale’ is exploited to do horizontal scaling, which is used
to add/remove computing resources to/from current infrastructure; ‘vscale’ is exploited
to do vertical scaling, which is used to increase/decrease a VM capability while keeping
the original network connection; and ‘recover’ is for sub-topology level failure recovery.

In order to finish complex tasks, we provide the “LOOP” type of code as shown
in Syntax 4. It consists of several operations executed in sequence instead of only one
operation. Apart from this, there are three kinds of conditions for exiting a loop. “Count”
is defined as the maximum number of iterations for executing this loop. “Duration” is
defined as the maximum amount of time for executing this loop. “Deadline” is defined
as a specific timing to exit this loop, which is represented as Unix timestamp. Among
these three conditions, at least one must be defined for a “LOOP” type of code. If there
are several defined, then the loop is ended when any one of the conditions is met.

The complete “Infrastructure Execution Code” is, therefore, an ordered combination
of these codes, which is shown as Syntax 5. The optional field, “Mode”, indicates
whether a control agent is required: value “LOCAL” is for executing this infrastructure
code in local machine without a remote control agent; value “CTRL” is for executing
this infrastructure code on a remote control agent, instead of the local machine, and
this agent will manage the infrastructure. This “CTRL” mode is similar to executing an
application in a background mode. The merit and demerit of using a control agent are
discussed in Section 3.5.3. If this field is omitted, the default mode value is “CTRL”.

A case study of a task-based application demonstrating how the “Infrastructure
Execution Code” is programmed is shown in Section 6.1 of Chapter 6.

3.3.3 Infrastructure Embedded Code
The “Infrastructure Embedded Code” is proposed to provide the application developer
with application-level programmability on the virtual infrastructure. These are interfaces
developed in a specific general-purpose programming language (currently Java). Since
it is not a domain-specific language as mentioned above, the “Infrastructure Embedded
Code” can be embedded inside the application logic when adopting interfaces in the
same programming language as the Cloud application. These interfaces mainly provide
functions to query the status of current infrastructure, provision, terminate, and scale
resources of the infrastructure. The request made by the implemented interface is finally
translated as a REST request to a control agent, which should provide specific REST
APIs to be invoked to perform infrastructure runtime management. One advantage
of this design is that the related library for supporting the “Infrastructure Embedded
Code” is relatively lightweight, because the major library required is simply the one
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Pseudocode 1 Pseudocode for “Infrastructure Embedded Code”
1: ... original application logic block 1 ...
2: Initialize the ControlAgent
3: executionID = ControlAgent) infrasOperation(request)
4: ... original application logic block 2 ...
5: if CtrlAgent) waitInfrasOperation(executionID, timeOut) != NULL then
6: ... continue with application logic block 3 ...
7: else
8: Throw an exception of the infrastructure operation

able to make corresponding REST calls. The complicated controlling logic is at the
control agent side. Therefore, each VM in the infrastructure does not need the heavy
libraries for executing “Infrastructure Execution Code” to perform operations. Another
advantage is that operations on the infrastructure can be performed in parallel along with
the application execution, because the actual infrastructure operation is then performed
by the control agent after the application makes the REST request.

Pseudocode 1 shows the general procedure to leverage the “Infrastructure Embedded
Code”. Line 3 in Pseudocode 1 is to make a REST call to invoke the control agent
to perform the infrastructure operation. It is worth mentioning that this function is
non-blocking, which means the “executionID” is immediately returned back from the
control agent. Here, “executionID” is a string value to identify the operation. The
following original application logic block 2 can, therefore, be executed concurrently
during the infrastructure operation. The function in line 5 awaits the accomplishment of
the infrastructure operation, if the application logic block 3 can only be executed after
the infrastructure is adjusted. In addition, this function is a blocking one, which only
returns when the operation with the “executionID” is finished. The input parameter
of “timeOut” is set to ensure the function can always return when the infrastructure
operation cannot be properly executed. The detailed usage of the “Infrastructure
Embedded Code” in Java is demonstrated in the case study of Section 6.2.3 in Chapter 6.

3.3.4 Runtime Control Policy
The “Runtime Control Policy” is harnessed to provide the programmability of

defining thresholds for maintaining non-functional requirements, which is a common
manner to be enforced through the monitoring information [103]. This policy defines
a set of operations, which are performed when a particular condition is met. During
the runtime, this policy should be managed by a control agent, and the infrastructure is,
therefore, passively controlled according to this policy. Syntax 6 shows the syntax of
the “Runtime Control Policy”, which is also based on the YAML format. The syntax
is designed to contain a list of policies, termed as “CTRLPolicies”. Each policy still
contains two basic elements, “ObjectType” and “Objects”, for indicating the objects, to
which this policy is applied. Symbol, ‘||’, is also leveraged to represent that this policy
is applied to all the objects in parallel. Besides, each policy consists of two parts.

One part contains the objects and the “Metrics”, which defines a set of performance
thresholds according to the monitoring information of some infrastructure resources.
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Syntax 6 Runtime Control Policy

BudgetPerHour: $num
CTRLPolicies:
- ObjectType: ‘SubTopology | VM’

Objects: $Object1 [||$Object2]...
Metrics:

CPU | MEM | ALIVE | $String1:
[AboveThreshold: $num1]
[BelowThreshold: $num2]
[TimeUnit: $num3]
[SeqTimes: $num4]
[TotalTimes: $num5]
⇤

OpCodes:
- Operation: ...
- ⇤

- ⇤

The “Metrics” is a set of key-value pairs: 1) the key of the pair defines the metric type to
monitor, such as “CPU” for CPU utilisation, “MEM” for memory utilisation, “ALIVE”
for availability detection, and “$String1” for application-defined metrics. To address
the two levels of non-functional requirements mentioned in Section 3.1.1, the first three
keys are to deal with the infrastructure metrics, and the last key is for the application
metrics; 2) The value of the pair defines how the condition should be met. Among
them, “TimeUnit” defines the monitoring interval in second. “AboveThreshold” or
“BelowThreshold” defines the situation counted when the metric is above or below a
particular threshold. Then the final condition is met when the above situation happens
“SeqTimes” ($num4) times sequentially or “TotalTimes” ($num5) times in total. As
long as the condition defined by one of the key-value pairs is met, following programmed
infrastructure operations will be triggered and performed.

These operations are defined in the other part of the policy, termed as “OpCodes”.
The detailed syntax of “OpCodes” is the same as the definition of that in Syntax 4, and
therefore, is omitted. The performance of this controllability, such as auto-scaling and
failure recovery, is evaluated in Section 5.4 of Chapter 5. Moreover, “BudgetPerHour”
allows the developer to add a monetary constraint for infrastructure management. Its
value is in dollars, and it limits the maximum Cloud resource usage per hour. This field
is essential to address the budget constraint, which is one of the important factors when
operating quality-critical Cloud applications, according to the analysis in Section 2.2.1.

3.4 High-level Infrastructure Operations
In this section, we discuss the programmability design of three types of high-level
infrastructure operations, i.e., horizontal scaling, vertical scaling, and failure recovery.
Furthermore, we demonstrate that these operations can be realised through utilising the
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basic Cloud VIFs above, which is in accordance with our programming model.

3.4.1 Horizontal Scaling

In the context of this thesis, horizontal scaling refers to adapting the computing capability
of the infrastructure by changing the number of VMs. Scaling out means adding more
VMs to the infrastructure to increase its capability. On the contrary, scaling in means
terminating VMs and removing from the infrastructure to decrease the capability.

Code 1 shows how the “Infrastructure Execution Code” can be leveraged to define
the operation of horizontal scaling. For this example, there are two sub-topologies
named “XS” and “YS” in the entire infrastructure. When we want to scale out these two
sub-topologies, Code 1 is the demo code. It is based on the “Infrastructure Execution
Code”, consisting of three code elements. The first element describes the operation to
scale out sub-topology “XS” from the data centre at Washington, which belongs to the
Cloud “ExoGENI”. It specifies that the scaled sub-topology will be named as “scaled 0”
in the infrastructure description. The second element describes the similar operation

Code 1 Example code for sub-topology level horizontal scaling
- CodeType: “SEQ”

OpCode:
Operation: “hscale”
Options:
- ReqID: “hs req 1”

CP: “ExoGENI”
DC: “GWU (Washington DC, USA)”
OutIn: “Out”
ScaledSTName: “scaled 0”

ObjectType: “SubTopology”
Objects: “XS”

- CodeType: “SEQ”
OpCode:

Operation: “hscale”
Options:
- ReqID: “hs req 2”

CP: “ExoGENI”
DC: “BBN/GPO (Boston, MA USA)”
OutIn: “Out”

ObjectType: “SubTopology”
Objects: “YS”

- CodeType: “SEQ”
OpCode:

Operation: “hscale”
ObjectType: “REQ”
Objects: “hs req 1 || hs req 2”
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Code 2 Example code for VM level horizontal scaling
- CodeType: “SEQ”

OpCode:
Operation: “hscale”
Options:
- ReqID: “hs req 1”

CP: “ExoGENI”
DC: “GWU (Washington DC, USA)”

ObjectType: “VM”
Objects: “XS.Node0 || YS.Node1”

- CodeType: “SEQ”
OpCode:

Operation: “hscale”
ObjectType: “REQ”
Objects: “hs req 1”

to scale out sub-topology “YS” from another data centre at Boston of “ExoGENI”.
The name of this scaled sub-topology is not explicitly specified, which will then be
automatically named. Meanwhile, all the scaled sub-topology copies will keep the same
network topology as the original scaling sub-topologies. The network IP addresses
of the scaled VMs are picked from the private addresses pool of the original subnet.
The last element indicates that the above two operations are executed in parallel. It
means that the new scaled sub-topologies of “XS” and “YS” will be provisioned and
configured simultaneously. This element can also be divided into two elements. Each
of them only contains one “Object”. Then, the operation of parallel scaling out changes
to the operation of sequential scaling out.

Compared to other programming tools, our syntax is more straightforward and
human-readable. For example, if adopting jclouds to automate the scaling process, the
developer needs advanced programming skills in Java using the multi-thread technique
to make the operation in parallel.

Above horizontal scaling is performed at the sub-topology level. For more fine-
grained scaling, the “ObjectType” can be set as “VM” to perform VM level horizontal
scaling. Code 2 is the example code. The scaled part is “Node0” from sub-topology
“XS” and “Node1” from sub-topology “YS”.

Moreover, we analyse and derive that the operation of horizontal scaling can be
achieved by using the basic Cloud VIFs as follows. No matter at the sub-topology level
or the VM level, the scaling out operation first requires the basic Cloud VIF of VM
Provisioning to provision the individual VM or all the VMs defined in the sub-topology.
Then, the basic Cloud VIF of VM Configuration can be leveraged to configure the
network to be connected with the predefined addresses. For the scaling in operation,
it first requires the basic Cloud VIF of VM Configuration to detach all the other VMs’
network connections from the target VMs which are going to be scaled in. Afterwards,
the basic Cloud VIF of VM Terminating is leveraged to terminate the target VMs.
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3.4.2 Vertical Scaling

In the context of this thesis, vertical scaling refers to adapting the computing capability
of the infrastructure through directly changing the capacity of a particular VM. For
the networked infrastructure, the network connection must remain the same. Scaling
up means increasing a specific VMs’ capability. On the contrary, scaling down means
decreasing the capability. It is worth mentioning that we only consider scaling the
computing capacity without migrating the tasks in this case. However, it is still useful
for platform based applications to adjust the capacity for following jobs and tasks.

Code 3 is the example that how to perform vertical scaling. In this example, we still
assume there are two sub-topologies “XS” and “YS” from ExoGENI. VM “Node0” is
from “XS”, and VM “Node1” is from “YS”. Both of these two VMs belong the type of
“XOMedium”. According to the node type definition9 of ExoGENI, they both have 1
core of CPU and 3G memory. Similar with horizontal scaling, there are three elements
in this example Code 3. The first two elements are vertical scaling requests. There is no
explicit definition to specify whether this operation is scaling up or down. The actual
scaling direction is determined by the target CPU and memory capacity. In this case,
the first operation in Code 3 is scaling down. The “XOMedium” VM is scaled down to

9https://wiki.exogeni.net/doku.php?id=public:experimenters:resource types:start

Code 3 Example code for VM level vertical scaling
- CodeType: “SEQ”

OpCode:
Operation: “vscale”
Options:
- ReqID: “vs req 1”

CPU: “1”
MEM: “1”

ObjectType: “VM”
Objects: “XS.Node0”

- CodeType: “SEQ”
OpCode:

Operation: “vscale”
Options:
- ReqID: “vs req 2”

CPU: “2”
MEM: “6”

ObjectType: “VM”
Objects: “YS.Node1”

- CodeType: “SEQ”
OpCode:

Operation: “vscale”
ObjectType: “REQ”
Objects: “vs req 1 || vs req 2”
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“XOSmall”. However, the second operation is scaling up, where the “XOMedium” VM
is scaled up to “XOLarge”. The last element still specifies that these two operations are
performed at the same time. Besides, this operation is only at VM level.

Moreover, we analyse and derive that the operation of vertical scaling can be
achieved by using the basic Cloud VIFs as follows. No matter scaling up or down,
the vertical scaling operation first requires the basic Cloud VIF of VM Terminating to
terminate the target VMs which are going to be scaled. Then, the basic Cloud VIF of
VM Configuration is leveraged to configure the network connections of all the VMs
other than the target ones and detach them from the target VMs. Afterwards, the VMs
with the new capacity are provisioned by the basic Cloud VIF of VM Provisioning.
As is done, the target VMs and others should be configured to be connected with the
original private IP addresses using the basic Cloud VIF of VM Configuration. Finally,
the operation is done and the network topology remains the same to the application.

3.4.3 Failure Recovery

In the context of this thesis, the operation of failure recovery is leveraged when a
particular data centre is down and not accessible. Hence, this operation is only at the
sub-topology level.

Code 4 Example code for failure recovery
- CodeType: “SEQ”

OpCode:
Operation: “recover”
Options:
- ReqID: “rc req 1”

CP: “ExoGENI”
DC: “GWU (Washington DC, USA)”

ObjectType: “SubTopology”
Objects: “XS”

- CodeType: “SEQ”
OpCode:

Operation: “recover”
Options:
- ReqID: “rc req 2”

CP: “ExoGENI”
DC: “BBN/GPO (Boston, MA USA)”

ObjectType: “SubTopology”
Objects: “YS”

- CodeType: “SEQ”
OpCode:

Operation: “recover”
ObjectType: “REQ”
Objects: “rc req 1 || rc req 2”
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Example Code 4 demonstrates the scenario that recover sub-topology “XS” from
Washington data centre and “YS” from Boston data centre. In addition, these two
operations are performed concurrently.

Moreover, we also analyse and derive that the operation of failure recovery can be
achieved by using the basic Cloud VIFs as follows. According to the description, the
failure recovery operation first requires the basic Cloud VIF of VM Configuration to
configure the network connections of all the VMs excluding the failed ones for detaching
them from the failed VMs. Then, the basic Cloud VIF of VM Provisioning is needed
to provision the VMs from another specified Cloud or data centre. Finally, the basic
Cloud VIF of VM Configuration is leveraged again to configure the network connections
among the newly provisioned VMs and others, enabling the network topology to remain
the same, even from different data centres.

3.5 CloudsStorm Framework Design and Overview

In previous sections, we have presented our infrastructure programmability design and
the corresponding syntax of how to describe the infrastructure topology and operation.
However, in order to actually execute the code and provision the desired infrastructure,
we need an engine to interpret the corresponding code. Furthermore, a programming
framework is essential to seamlessly mitigate the gap between the application and the
infrastructure in the DevOps lifecycle. Therefore, in this section, we first propose the
infrastructure programming framework, CloudsStorm, and introduce the architecture
overview. Subsequently, we describe its components in detail and demonstrate the steps
of using CloudsStorm through a specific example.

3.5.1 CloudsStorm Overview
Figure 3.5 illustrates the overview of the DevOps framework we propose. With this
framework, Cloud application developers are not only able to develop their own appli-
cations but also able to program the virtual infrastructures. In the development phase,
not only the application logic but also the infrastructure topology and operation can
be programmed. In the runtime phase, the desired infrastructure is provisioned, and
predefined infrastructure operations can be performed on the infrastructure to control
the Cloud resources.

As shown in Figure 3.5, first in the development phase, the application developer
exploits the infrastructure programmability provided by CloudsStorm to program the
Cloud infrastructure according to the application requirements systematically. To be
specific, the four types of infrastructure code introduced above in Section 3.3 are
leveraged to program the infrastructure along with the application. The “Infrastructure
Description Code” and “Infrastructure Execution Code” are two mandatory ones, as
the descriptions of the infrastructure topology and operations are the fundamental
approach to provisioning the the desired infrastructure from scratch. The other two
types of infrastructure code are options more for adjusting the infrastructure to satisfy
the quality-critical requirements of the applications.

Secondly, the programmed “Infrastructure Execution Code” is interpreted by the
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Figure 3.5: Overview of CloudsStorm framework

key engine of CloudsStorm, “Infrastructure Execution Engine”. Still in the local
environment of the developer, the engine would interpret the operations defined in the
“Infrastructure Execution Code” to provision the corresponding infrastructure defined in
the “Infrastructure Description Code”.

Thirdly, with provisioning and executing a set of operations defined in the “Infras-
tructure Execution Code”, it is entering the runtime phase of the application and the
infrastructure. According to the detailed description in Section 3.3.2, there are two
modes to execute the “Infrastructure Execution Code”. For the short-term task-based ap-
plications, they do not need to keep the infrastructure for a long period. In this case, the
results can be attained after finishing the execution of “Infrastructure Execution Code”.
This execution mode is demonstrated detailedly as the short-term scenario in Section 6.1
of Chapter 6. On the other hand, for the long-term task-based and service-based applica-
tions, the local machine of the developer cannot keep executing the infrastructure code
for a long term or be leveraged as a server to control the infrastructure. In this case, the
first operation performed by the “Infrastructure Execution Engine” is to provision a VM
from a particular Cloud as the “Control Agent”. Afterwards, all the programmed four
types of infrastructure code are migrated to the “Control Agent”. Via this, the “Control
Agent” takes over the role to continue executing the “Infrastructure Execution Code” for
provisioning the infrastructure, configuring the network, deploying and executing the
application. This execution mode is demonstrated detailedly as the long-term scenario
in Section 6.1 of Chapter 6.

Finally, during the runtime phase, the “Infrastructure Embedded Code” inside the
application logic can be executed to actively adjust the infrastructure by making requests
to the “Control Agent” using the provided REST APIs. Meanwhile, the infrastructure
can also be passively controlled by the “Control Agent” according to the “Rntime
Control Policy” and the monitoring information. Besides, the state of the VMs and
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the connections defined in the infrastructure can be checked from the Graphical User
Interface (GUI) provided by the “Control Agent”. Especially, all the VMs can be
accessed through a web terminal to show the results after executing the application.
This is demonstrated by the case study in Section 6.2 and shown as Figure 6.7. The
detailed syntax and usage can be checked from the online manual10 of CloudsStorm.

3.5.2 Components Description

Based on the framework overview, we describe the detailed functionality of each
component mentioned in CloudsStorm.

“Infrastructure Description Code”

It provides the design-level programmability of depicting the infrastructure topology.
The syntax is demonstrated in Section 3.3.1. The features are as follows:

• It helps the application developer to describe how many computing resources
are needed, including VM numbers, types, and specifically the customisation of
Clouds and data centres.

• It adopts a partition-based approach to describe the infrastructure, including
three levels of top-topology, sub-topology and VM, in order to clearly describe a
federated Cloud environment.

• It allows the developer to define the network connectivity among the VMs of
the infrastructure as a private network, which is essential to keep the underlying
infrastructure transparent to the application.

“Infrastructure Execution Code”

It provides the infrastructure-level programmability of programming the infrastructure
operations. The syntax is demonstrated in Section 3.3.2. The features are as follows:

• It includes the Cloud VIF of provisioning and terminating at different infrastruc-
ture levels, e.g., provisioning a particular sub-topology first or terminating it to
avoid wasting resources.

• It provides the basic Cloud VIF of “VM Configuration”, which enables the
developer to program executing any command on a specific VM. This feature is
essential for deploying and executing the application.

• It provides the programmability to define the operation of downloading or up-
loading files between the local machine and a specific VM.

• It provides the programmability of high-level infrastructure operations, such as
horizontal/vertical scaling, and failure recovery.

• It adopts the symbol “||” to simplify the representation of parallel operations.

10https://CloudsStorm.github.io/
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“Infrastructure Embedded Code”

It provides a more fine-grained programmability at the application level, embedding
the infrastructure operation logic into the application logic. The example usage is
demonstrated in Section 3.3.3. The features are as follows:

• It consists of a set of APIs written as libraries for a general-purpose programming
language, such as Java, Python, and C. Thus, the developer can adopt the API
in the same language used by the application code. We implement an example
library to invoke the CloudsStorm REST APIs in Java11.

• In essence, these APIs just make particular REST requests to adjust the in-
frastructure according to the APIs provided by the “Control Agent”. The final
infrastructure operation will be performed by the “Control Agent”.

• In this case, infrastructure operations can be actively performed by the application
at runtime.

“Runtime Control Policy”

It provides the programmability for specifying the non-functional requirements. The
syntax is demonstrated in Section 3.3.4. The features are as follows:

• It allows developers to define the policy for how to scale or recover the infrastruc-
ture when the infrastructure resources perform insufficiently or even fail.

• It provides different infrastructure-level metrics, such as availability, CPU and
memory utilisation, for the developer to determine the system status.

• It allows developers to customise their own application-level metrics as the
identifications of how to adjust the infrastructure.

“Infrastructure Execution Engine”

It is the fundamental engine to interpret the four types of infrastructure code above and
perform the actual programmed infrastructure operations. The implementation1 details
are described in Section 5.3.1 of Chapter 5. The features are as follows:

• It is developed using Java language.
• There are two ways to utilise this engine.

– Standalone. It is already packaged and can be downloaded as a Java ARchive
(JAR) file12. Then, it can be invoked through command lines.

– Library. It can be leveraged as a Java library, and the corresponding engines
can be extended to plug in for supporting another Cloud by the developer.
“Control Agent” is an example to utilise the engine with this approach.

• The operations are performed in parallel using the multi-thread technique to
interpret the parallel definition of the infrastructure operations.

11https://github.com/zh9314/CloudsStormREST
12https://github.com/CloudsStorm/Standalone/releases
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“Control Agent”

It is responsible for collecting the monitoring information, interpreting the “Runtime
Control Policy”, and managing the infrastructure at runtime. The implementation13 is
based on the “Infrastructure Execution Engine”. The features are as follows:

• When required, the “Infrastructure Execution Engine” first provisions the VM
to deploy the “Control Agent”. Afterwards, the “Control Agent” takes over the
responsibility to manage the infrastructure.

• It provides REST APIs for the “Infrastructure Embedded Code” to invoke at
runtime.

• It also collects the monitoring information and perform respective operations
according to the “Runtime Control Policy”.

• It utilises the “Infrastructure Execution Engine” as a library to perform the actual
infrastructure operations.

• It provides a browser-based GUI to visualise the status of the infrastructure
according to the managed “Infrastructure Description Code”. Furthermore, the
provisioned VMs can be directly accessed to check the result through the provided
web terminal. An example is shown as Figure 6.7.

3.5.3 Example of Infrastructure Programming using CloudsStorm
To demonstrate the usage of CloudsStorm intuitively, we take the Hadoop application as
an example to show the general process of using CloudsStorm framework. The detailed
demonstration of this example is shown as a case study of service-based applications in
Section 6.2 of Chapter 6. The example usage of CloudsStorm is as follows:

1. For the first step in the development phase, CloudsStorm provides four types
of code for infrastructure programming, which are distinct from the original
application code. The detailed syntax of these codes is defined in Section 3.3.

(a) The developer defines the underlying infrastructure topology through “In-
frastructure Description Code”. In the example case, the developer defines
that there are two VMs from “ExoGENI” Cloud and “UvA” data centre. One
is configured to deploy a Hadoop platform, and the other is configured to em-
ulate the data source for the experiment purpose. Meanwhile, these two VMs
are defined to be connected within the private subnet “192.168.88.0/24”.
The benefit of the capability to define the network with a private IP address
is discussed in Section 3.3.1.

(b) According to the application language, the developer can leverage the corre-
sponding “Infrastructure Embedded Code” to put the infrastructure control
logic into the original application logic. In the example case, the developer
rewrites the Hadoop data processing application that enables scaling out
VMs according to the input data size, which enlarges the computing capacity
of the underlying VM cluster. It is also programmed that the scaled VMs are

13https://github.com/zh9314/CloudsStormCA
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terminated immediately after the application finishes the processing. The
key function of the application is shown as Listing 6.1 of Chapter 6.

(c) The developer programs the “Infrastructure Execution Code” to perform
operations, such as provisioning, deployment, and application execution. In
the example case, the developer programs operations: provisioning the two
VMs, downloading the input data, and executing the processing application
developed in the previous step. These operations are important to build the
infrastructure for the application from scratch.

(d) The developer defines the “Runtime Control Policy” for identifying how to
scale or recover the infrastructure when its resources perform insufficiently
or even fail. In this case, the developer can define that when the VM’s CPU
utilisation is above 50%, it is required to scale out one more VM.

2. CloudsStorm provides an “Infrastructure Execution Engine” to interpret the
“Infrastructure Execution Code” for building the entire infrastructure from scratch.
In this case, the developer invokes the engine through a command line with
specifying the code that has been developed. The detailed method to invoke with
the command line can be checked from the online manual10.

3. The “Infrastructure Execution Engine” first sets up a “Control Agent” from a
particular data centre. Then the agent takes control of the infrastructure construc-
tion including network connections, application deployment, and execution. Via
this manner, all the control operations are performed by the “Control Agent” to
dynamically adjust the infrastructure to satisfy the requirements of the applica-
tion. It is worth mentioning that this step is optional, if the runtime control is not
required, e.g., for the task-based application of short-term scenario in Section 6.1.
Without provisioning the “Control Agent”, the Cloud resource usage can reduce.

4. The “Control Agent” provides a web-based GUI to show the current state of the
infrastructure. In the example case, Figure 6.7 is a runtime snapshot showing that
there are three scaled VMs in the Hadoop cluster to perform the processing task.
Here, the number of scaled VMs is in line with the input data size. Besides, there
are also web terminals provided for directly accessing each VM to check and get
results.

3.6 Conclusion
In this chapter, we propose the framework CloudsStorm, which can be leveraged by
application developers to program the IaaS Cloud virtual infrastructures. We conclude
that there are three levels of programmability, and we design four types of infrastructure
code dealing with functional and non-functional requirements.

Firstly, the design-level programmability, “Infrastructure Description Code”, is
proposed for developers to customise a suitable infrastructure and host their applications
easily. This level of programmability is in the form of static infrastructure topology
description. Secondly, the infrastructure-level programmability, “Infrastructure Execu-
tion Code”, is further designed to depict the operations performed on the infrastructure
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for control. We are inspired by the idea of functional programming and MapReduce
framework in data processing to propose the infrastructure programming model based
on the basic Cloud VIFs. CloudsStorm leverages the basic function commonly provided
by public IaaS Clouds and constructs complex operations to achieve high-level control-
lability on the entire distributed infrastructure. The basic Cloud VIFs are modelled, and
the feasibility of constructing high-level operations based on these basic functions is
demonstrated. However, they are not sufficient for more fine-grained programming. We,
therefore, propose the third level of programmability at the application level, “Infras-
tructure Embedded Code”, based on general-purpose programming languages. This
application-level programmability can be embedded in the application code to describe
the infrastructure operations along with the application logic. The infrastructure can
then be better adjusted according to the application requirements. Finally, to address the
non-functional requirements of the application, “Runtime Control Policy” is proposed,
which allows developers to define the quality-critical constraints of the applications
through identifying specific monitoring metrics. The further operations reacting to the
defined conditions can also be programmed. It is worth mentioning that we design most
of the syntax based on the YAML format, which is human-readable and easy to learn.

In summary, CloudsStorm is an extensible and open framework to support infras-
tructure programming for different IaaS Clouds. The Cloud virtual infrastructure can
be leveraged from federated Clouds and programmed without the vendor lock-in issue.
Moreover, the partition-based infrastructure management and the simplified parallel
expression allow developers to program the parallel operations effectively. Specifically,
the multi-level programmability design provides developers with a more dimensional
and systematic view to program the Cloud virtual infrastructure.
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4
Distributed Cloud Infrastructure

Provisioning and CloudsStorm Overlay
Networks

the provisioning phase

In the previous chapter, we propose the infrastructure programmability design to de-
scribe the infrastructure topology and program the infrastructure operations in the
development phase. Afterwards, in the provisioning phase, the key challenge is how
to provision the customised Cloud virtual infrastructure effectively, especially dealing
with the networked infrastructure across data centres and even Clouds. Taking the
example of live streaming applications, the challenges for provisioning are that: 1) it is
difficult to provision in a short time when the underlying infrastructure is large-scale;
2) the provisioned infrastructure should be resilient to the failures of data centres, i.e.,
the live streaming keeps functioning even failures happen in the infrastructure; and
3) the customised private network should also be provisioned to make the underlying
infrastructure transparent to the application since the infrastructure for running live
streaming applications is normally distributed to connect the cameras and audiences.

In this chapter, we analyse the requirements of the infrastructure provisioning and
the network connections in the provisioning phase. Then, we introduce the related
work of fast provisioning techniques and networked infrastructures. To tackle the
issue, we first clarify the research context and problem. Then we propose two overlay
network mechanisms to connect the distributed infrastructures, and therefore, the entire
infrastructure can be partitioned and provisioned in parallel to increase efficiency.
Finally, we evaluate the connectivity and provisioning overhead of our approaches.

This chapter is based on:

• Zhou, H., Wang, J., Hu, Y., Su, J., Martin, P., de Laat, C., Zhao, Z., “Fast resource co-
provisioning for time critical applications based on networked infrastructures”, In IEEE 9th
International Conference on Cloud Computing (CLOUD), pp. 802-805. IEEE, 2016.

• Zhou, H., Hu, Y., Wang, J., Martin, P., de Laat, C., Zhao, Z., “Fast and dynamic resource
provisioning for quality critical cloud applications”, In IEEE 19th International Symposium
on Real-Time Distributed Computing (ISORC), pp. 92-99. IEEE, 2016.
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4.1 Cloud Infrastructure Provisioning
The provisioning phase is the key to making the Cloud DevOps different from the
traditional DevOps, where the infrastructure is physical and no need to provision. In
this case, the provisioning overhead is crucial to deploy and operate the quality-critical
applications on Clouds, especially in the case of recovery from failures or scaling due
to a burst of inputs. The more efficient of the provisioning operation is, the more
possibility for the application to achieve the quality requirements. Meanwhile, network
connectivity is essential for the application components to communicate running on
a distributed infrastructure in the Cloud environment. First of all, we analyse the
requirements of the provisioning and the network configuration as follows.

4.1.1 Provisioning and Network Requirements Analysis
Many quality-critical applications are migrating to Clouds to get better quality assur-
ance [126]. During the migration, resource provisioning is the key step to provide virtual
infrastructure for deploying applications. Meanwhile, provisioning is also an elementary
step for the infrastructure adaption, including failure recovery and auto-scaling. Hence,
a fast and dynamic provisioning mechanism to maintain the infrastructure is essential
for satisfying the quality requirements of the applications. In fact, many quality-critical
applications are required to be implemented on Clouds, such as disaster early warning
systems [9, 133], video broadcasting [132]. In addition, most of these applications are
network-centric, meaning that the network should be considered when designing the
infrastructure for the application. Therefore, networked virtual infrastructures are im-
portant for optimising dynamic critical constraints of these applications. Besides, most
public Cloud providers have limitations on the number of available virtual machines
(VMs) for each customer, according to the data centre (region or domain) [79]. Hence, it
is also essential to dynamically provision resources from multiple data centre or Clouds.
We conclude that from the perspective of provisioning and network, the requirements
on the infrastructure for migrating quality-critical applications are as follows.

• Efficiency. When dealing with a large scale of infrastructure, which can be a
cluster of hundreds of VMs, an efficient mechanism to operate these VMs are
needed. Especially at the provisioning phase, if the entire infrastructure comes
from one data centre, the congestion to provision such amount of VMs are high
and would cause significant overhead.

• Resiliency. Cloud computing can only provide a remote and uncertain environ-
ment, the availability of which is unpredictable. Therefore, the entire infrastruc-
ture should be resilient to Cloud failures of particular parts. It is obvious that
putting the entire infrastructure in one data centre is highly risky to result in the
situation that the service of the application totally crashes.

• Transparency. With the trend of Internet of Things (IoT) and big data processing
applications, the infrastructure should also be distributed to get close to the devices
and data. So it is essential to keep the network transparent to the application,
even the infrastructure resources are distributed to different geolocations with
different public IP addresses for access. It is helpful to get rid of the dependencies
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among the application components because of the infrastructure distribution.
Then the infrastructure provisioning is able to be independent to the application
communication configuration.

4.1.2 State of the Art
Resource provisioning is a hot topic in Cloud research. There are existing studies
done on fast provisioning to accelerate the process of VM startup. To the best of our
knowledge, most innovations are developed on the side of Cloud providers. They
mainly focus on particular aspects of the problem. FVD [105] modifies the image
format to make the startup process shorter. However, the Cloud provider needs to
modify the hypervisor accordingly, which is complicated to apply. SnowFlock [74] and
Twinkle [135] adopt the method of directly forking from a running VM to get rid of
the startup process. This method can even reduce the time of configuring the execution
environment for the applications, because the new VM is cloned from the original one.
However, it has its own constraints insomuch as that conflicts may arise when multiple
processes within the same VM invoke VM forking concurrently. Moreover, it also
requires special implementations from the Cloud providers’ side to provide this method.
Another way of fast provisioning is to accelerate the downloading process for images.
Romain et al. [115] propose a Peer to Peer (P2P) method for image downloading. Later,
Zhaoning et al. [123, 124] introduce two solutions, VMThunder and VMThunder+,
both of which can provision hundreds of VMs in a remarkably short period. It mainly
achieves further optimisation on previous P2P methods. All these methods are based on
the Cloud provider, who has to adopt these methods explicitly before their benefits can
be realised. They cannot be directly used by the customer.

As for provisioning networked infrastructures, previous related research mainly
includes network embedding and inter-cloud architecture to satisfy the requirements.
Network embedding is mapping the virtual network topology to the actual physical
network infrastructure. Yufeng et al. [119] propose an efficient heuristic algorithm
design for embedding virtual topologies within a Global Environment for Network
Innovations (GENI) control framework. Finally, a server uses Virtual Local Area
Network (VLAN) to connect each part. Hence, it also depends on the Cloud provider.
Ting et al. [112] focus on the problem of how to decide which physical resources to
allocate for a particular virtual network with multiple data centres. The solution is based
on the view of the data centre. The purpose of network embedding is to provide an
efficient virtual network topology that crosses multiple sites from the benefit of the
provider. Inter-cloud or inter-domain provisioning is another research aspect. Nikolay
et al. [49] investigate the inter-cloud architectures. They provide a taxonomy for the
framework and describe how provisioned resources collaborate with each other. Nelson
et al. [89] propose an Inter-cloud Resource Provisioning System (IRPS) to describe
the resource semantically and to provision resources across Clouds. It defines a set of
resource ontologies to work from, due to there being different resource descriptions
and management policies for different Clouds. However, the target of their solutions
is not for network-centric applications with quality-critical constraints. They only
need to provision resources without considering the network. It remains a problem to
address how provisioned resources should communicate with each other if networking

53



4. Distributed Cloud Infrastructure Provisioning

is required.
In conclusion, most of their innovations focus on the Cloud provides’ side. Another

problem is how to preserve the original network topology when dynamically provi-
sioning infrastructure from different domains or Clouds. Therefore, it is a challenging
problem to provision infrastructure transparently both to Cloud providers and customers,
especially considering the networking.

4.2 Research Context and Problem Statement
In this section, we describe problem boundaries to specify the context of the this
research. We use ExoGENI1 Cloud to demonstrate that the provisioning problem really
exists, and then we model the provisioning overhead.

4.2.1 Research Context
In this chapter, we mainly focus on quality-critical Cloud applications. Three typical
examples [126] of these applications are: 1) a collaborative real-time business commu-
nication platform; 2) an elastic disaster early warning system; and 3) a Cloud studio for
directing and broadcasting live events. There are three properties that can be derived
from all these three applications. First, they all need high availability and responsiveness,
especially recovering from sudden failures. Hence, the resources for these applications
should be provisioned as soon as possible to satisfy the quality requirements. Second,
most of them need a large number of VMs. For example, the elastic disaster early
warning system requires a lot of VMs to collect data from sensors deployed in different
regions. Therefore, it must be scalable, requiring the infrastructure to be dynamically
provisioned. Finally, they are network-centric. For instance, the video broadcasting
application should specify the path of data transmission and have particular constraints
on the bandwidth of links among components. These applications require networked
infrastructure to connect the VMs with each other.

As mentioned above, the network connection requirements drive us to consider
Networked Infrastructure-as-a-Service (NIaaS), which was first proposed by GENI
project [15]. NIaaS means that the topology of connections between the VMs can
be predefined explicitly with private network connections. There is more emphasis
put on networking than by conventional Infrastructure-as-a-Service (IaaS). Currently,
most IaaS Clouds just provide VM nodes to customers without specifying how they are
connected. At least, there is no network specification for the inter-datacentre and inter-
cloud infrastructures. However, network-centric applications require a NIaaS platform
to describe network links. Although we choose a new GENI testbed, ExoGENI [8],
as our experimental Cloud, which is a widely distributed NIaaS Cloud computing
platform geared towards experimentation and computational tasks [7], we only use its
basic functions as a public IaaS Cloud. The networked part is what we are going to
build based on it. This is consistent with our goal of dealing with federated Clouds,
instead of specific NIaaS Clouds from the Cloud providers’ view. For experimenting,
we adopt the Infrastructure and Network Description Language (INDL) [45] to describe

1http://www.exogeni.net/
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the infrastructure information and submit the request to ExoGENI, but without using
it for network description. It is worth mentioning that the infrastructure description
in the request is named as one slice in this Chapter. In addition, this functionality
has been integrated into the CloudsStorm framework to support ExoGENI Cloud.
The INDL description submitted to ExoGENI is transferred from the programmed
“Infrastructure Description Code”. In this chapter, the slice description is corresponding
to the topology description of other chapters, i.e., sub-topology or top-topology. The
domain is corresponding to the data centre. The node in one slice refers to the VM.

4.2.2 Problem Statement

In this part, we demonstrate the existence of the resource provisioning problem. Ming
et al. [79] have taken measurements of provisioning time on Amazon Elastic Compute
Cloud (EC2). It takes from 3 to 30 minutes to get a 1GB compressed VM image to start
up. The provisioning on Azure takes even more time than the provisioning on EC2. In
addition, the overhead rises as the number of VMs increases on both platforms.

As for ExoGENI Cloud, the customer needs to use INDL to describe the infrastruc-
ture resources as slices. Every node in the slice description has its own VM type. The
customer then submits the slice as a request to one domain, i.e., data centre, of ExoGENI
to make the resources provisioned. When all nodes are active, i.e., they are accessible
via SSH, the controller of the data centre informs the customer. Hence, we define the
provisioning overhead as the time duration from the moment the customer submits
the request to the moment getting a success notification, from the Cloud customers’
view. Here, we omit the time cost on uploading the slice description and receiving the
success message, because their size cannot be larger than a few hundred kilobytes and

Figure 4.1: Measurements of provisioning overhead on ExoGENI
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can be uploaded in milliseconds in our experimental environment. For the accuracy
of our experiments, we submit slices to one domain and measure their provisioning
overhead with different VM types2 and numbers. For the consistency of comparison,
the Operating System (OS) of all VM images in this chapter is set to “Ubuntu 14.04”.
The experimental results are shown in Figure 4.1.

The horizontal axis demonstrates the number of the VM nodes in one submitted
slice. Different types of points in the figure mean different types of VM nodes created
in one slice. The vertical axis demonstrates the average provisioning overhead of slices
which are submitted to different domains. The lower portion of the figure denotes
the coefficient of variation of this data set. If all the VMs in one slice cannot all be
activated, the average provisioning overhead is not denoted here. For the slice only
with “XOSmall” type of nodes, the maximum number of nodes in one slice that can be
activated is 10. However, the maximum number for the type of “XOXlarge” is just 2.
Actually, ExoGENI is not a commercial Cloud. Its capacity is relatively small, but it
also demonstrates that the capacity of a particular domain, i.e., data centre, is limited.
Besides, if the type of VM nodes is the same, the provisioning overhead depends on
the number of nodes in the slice. A similar conclusion is drawn by Mao [79] based on
measurements of public Clouds.

Based on the observed measurements, we propose a reasonable provisioning over-
head model to approximately describe provisioning overhead. To simplify discussion,
we only consider the situation in which all the nodes are the same type in each slice.

W
total

= W
single

+ ⌘ ⇥W
single

⇥ (n� 1) (4.1)

In Equation 4.1, W
single

represents the provisioning overhead of a single node: n
is the number of nodes in one slice, where n > 0, and W

total

is the total provisioning
overhead of the whole slice. In addition, ⌘ represents the delay between initialising
the provisioning of one node and beginning the provisioning of the next, assuming a
fixed provisioning pipeline. This delay may be caused by fetching the images of the
nodes one by one and booting them sequentially. Thus, the more efficient this pipeline,
the smaller ⌘ is. Previous fast provisioning methods work on the Cloud providers’ side
to reduce ⌘. Thus, ⌘ can be treated as an optimisation degree of the Cloud platform.
However, it cannot be zero, and therefore, the more VM nodes in one slice, the longer
the slice needs to be provisioned. Mao et al. [79] draw a similar conclusion.

4.3 A Fast and Dynamic Provisioning Mechanism
Figure 4.1 shows that the more VM nodes in one slice, the more time the slice has to take
to be provisioned. The basic idea comes from our observations and the overhead model,
i.e., if we cut the slice into multiple smaller slices and dynamically provision them from
different data centres or domains in parallel, the provisioning overhead of every slice
can be reduced, as described in Equation 4.1. In other words, the idea is to partition the
original topology description into different sub-topologies and provision from different
data centres simultaneously. It is crucial, however, not to influence the customer’s

2https://wiki.exogeni.net/doku.php?id=public:experimenters:resource types:start
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original network connection design, which is usually defined as a private network. It is,
therefore, necessary to provide private network connections over the public network,
i.e., the Internet. In order to tackle these issues, our mechanism addresses three aspects
of the problem. These aspects are described in detail in the following three subsections.
It is worth mentioning that the mechanism is described based on ExoGENI Cloud, but
the mechanism is not limited to that Cloud.

4.3.1 Connectivity of Network
In this part, we describe two overlay network mechanisms to settle the problem of
connectivity among partitioned slices. These network connection mechanisms are
crucial for provisioning infrastructure and keeping the original network topology.

First, we need to understand the principles of VM internally connections and how a
VM inside one ExoGENI data centre connects to the outside public network. Figure 4.2
illustrates how ExoGENI manages its IP addresses to form connections internally and
externally, substantiated by real testing. In one data centre, each VM node has at least
one virtual Ethernet interface, called eth0. If the VM node connects to other nodes, it
may have other virtual Ethernet interfaces, such as eth1 and eth2, depending on the
links established with the node. In the same data centre, most Clouds allow the customer
to customise the link, e.g., VM1 and VM2 are connected with rIP1 and rIP2. Here,
rIP is a fixed private IP address, which can be predefined. For external connections, it
is realised through the management Ethernet interface, eth0. It is assigned a private IP
address when provisioned by the controller of the data centre. The eth0 of each node is
then bound to a public address. The source address of outward packets is replaced by
this public address. It is just the opposite for inward packets. The VM is then able to
communicate with the Internet using the corresponding public IP address, uIP .

VM1 

ethx 

… 

rIP1 eth1 eth0 

VM2 

ethx 

… 
eth1 

eth0 

rIP2 

Private 
Address 

Private 
Address 

Data center 
(domain) 

link0 

Management 
Port 

Public 
Address 

Public 
Address Public 

Network 

Management 
Port 

Figure 4.2: The illustration of how the VMs inside one ExoGENI data centre connect
internally and externally to the outside public network
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Besides, Figure 4.2 shows a typical topology which is suitable for our mechanism.
VM1 and VM2 are two nodes in one slice. They are connected to each other with
private IP addresses rIP1 and rIP2. These addresses are assigned by the customer. It
means that the customer needs to deploy some components on VM1 and VM2. They
communicate with each other using the specific private IP addresses rIP1 and rIP2.
They may also connect to other parts of the topology. In this scenario, considering as the
entire top-topology, this slice of two VMs can be divided into two sub-topologies by the
link between VM1 and VM2. However, the customer, who operate applications on this
infrastructure, should not be aware of this partitioning. From the application perspective,
these two nodes should still be connected via this private network link, even though
they need to be provisioned from different data centres. Hence, our solution is to put a
proxy node in each partitioned sub-topology, as shown in Figure 4.3. The whole slice is
divided into sub-topology A and sub-topology B, which are going to be provisioned
from data centre A and B, respectively. Here, VM

a

and VM
b

are proxy nodes in each
sub-topology. The proxy node can be configured with any minimal VM image that
supports “iptables” for using Network Address Translation (NAT) technique. This
technique can change the source and destination addresses of the packets. Especially, it
provides options to change the address before routing or after routing. Therefore, the
packet flow can be controlled with proper configurations.

Figure 4.3 illustrates how one packet travels through the public network between
two sub-topologies. Here, VM

a

in sub-topology A works as a mirror of VM2 in sub-
topology B. VM

b

is similar. Hence, the interface of VM
a

which is connected to VM1

is configured with IP address rIP2. Consequently, packets sent to VM2 are forwarded
to VM

a

instead. Before routing of VM
a

, the destination address is changed from rIP2

to uIP
b

, where uIP
b

is the public address of VM
b

in sub-topology B. VM
a

forwards
the packet from eth0 when routing. Otherwise, the packet is processed by VM

a

. It is
also essential to change the source address rIP1 to rIP

a

, which is the private address
assigned to eth0. The packet can then be sent to the public network with a proper public
IP address uIP

a

. The source address is changed from rIP
a

to uIP
a

. The address
translation here is done by the ExoGENI data centre itself. Hence, the packet can
be normally transferred on the public network with two proper public IP addresses.
Sub-topology B then receives the packets from the Ethernet with public IP address uIP

b

.
Packets are automatically transferred to the eth0 of VM

b

node by ExoGENI, as the
private address rIP

b

is bound to that public address uIP
b

. The configuration on VM
b

is similar. Before routing, the destination address is changed from rIP
b

to the original
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Figure 4.3: Connection mechanism among partitioned sub-topologies through NAT
technique
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Figure 4.4: Connection mechanism among partitioned sub-topologies through tunnelling
technique

private address rIP2. After routing, the source address is changed to rIP1. Hence,
the IP packet is converted back to its original state, as sent from VM1. From the view
of the application running in VM2, it receives the packet directly from VM1 through
the customised private network with addresses of rIP1 and rIP2. In this manner, the
private network packets are able to be forwarded via a public network.

Moreover, we propose another overlay network mechanism to connect these par-
titioned sub-topologies using the tunnelling technique. This mechanism is shown in
Figure 4.4. Each VM in different data centres should be first configured to add a virtual
Ethernet interface with the customised private IP addresses. Then with the IP tunnelling
technique, the original packet with the private network addresses given by the applica-
tion running in the VM can be wrapped in another packet. Via this packet, the original
packet can be delivered through the public network transparently to the customer. As
shown in Figure 4.4, from the view of the application running in VM2, it receives
the packet, of which the source is the originally defined private IP address rIP1, after
stripping the header of the outside packet. Therefore, this mechanism can also achieve
the VMs in different data centres communicating with the predefined private addresses.

Comparing these two mechanisms, they both allow the customer/developer to cus-
tomise the network of the infrastructure with predefined IP addresses. As shown in
both Figure 4.3 and 4.4, rIP1 and rIP2 are private IP addresses set by the customer/de-
veloper to connect VM1 and VM2. However, when these two VMs are not in the
same data centre, they cannot directly communicate using these private IP addresses.
On the other hand, rIP

a

, rIP
b

, uIP
a

and uIP
b

are assigned by the data centre and
cannot be easily customised. These addresses change every time the infrastructure is
provisioned. However, with above two connection mechanisms, these two VMs can
always communicate with rIP1 and rIP2, no matter they are in the same data centre or
not. Therefore, the networked infrastructure is transparent to applications.

The advantage of the tunnel-based mechanism is without bringing in the extra
overhead of establishing proxy VM nodes. Hence, it gives more flexibility to partition
the slice while still adhering to the quality requirements. Nonetheless, if the original
VMs, e.g., VM1 and VM2 in Figure 4.4, are customised to use the OS of “Windows”,
the tunnel-based mechanism cannot directly work because only some versions of
“Linux” support IP tunnelling by default. On the contrary, there is no this kind of
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limitations for NAT-based mechanism. For example, the OS of the proxy VMs, VM
a

and VM
b

in Figure 4.3, can always be customised as “Ubuntu” which is supported by all
Clouds, because the proxy VMs do not need to host applications. In this case, the NAT-
based mechanism is easy to configure using the configuration of Listing 4.1. Another
disadvantage of the tunnel-based mechanism is that we need to make reconfiguration
over the original VMs, where the application is hosted. This configuration makes the
infrastructure not at the same level of transparency to the application as that of the
NAT-based mechanism. We, therefore, discuss how to partition the infrastructure to
accelerate the provisioning process, according to the NAT-based mechanism in the
following sections.

4.3.2 Virtual Infrastructure Partitioning Algorithm
In this part, we describe how to partition the original slice requested by the customer.
Basically, the original slice, i.e., top-topology, can be treated as a graph with nodes,
i.e., VMs, and links, i.e., network connections. Although we investigate specific graph
partition algorithms [10, 20] and tools [52, 76], they are not applicable in our context.
As mentioned above, the basic idea is to partition the entire infrastructure and provision
them in parallel from different data centres to reduce the overhead. However, with the
NAT-based connection mechanism, every link we cut adds another proxy node for each
partitioned slice, i.e., sub-topology. Therefore, we propose an infrastructure partitioning
algorithm that minimises the number of extra nodes required. To be specific, we first
consider partitioning the entire infrastructure into two equal parts.

First of all, we define the weight of the VM nodes in one slice. As mentioned in
Section 4.2.2, the provisioning overhead mainly depends on the number of VMs. The
weight of the VM node denotes the provisioning overhead. It is determined by the type
of VM and its OS image [79]. For standardisation, we define the weight of the node
with the type and image which has least provisioning overhead as unit one. The weight
of other VM nodes can be defined as multiples of unit one based on measurements. In
our experiment, the weight of the node with “XOSmall” and “Ubuntu 14.04” is unit
one. In addition, Figure 4.1 shows that the provisioning overhead of the slice has an
approximately linear relationship with the number of the nodes. Therefore, we define
the weight of one slice as being the weight summation of all the nodes in that slice.

Before partitioning, we abstract the link information, LinkCollections[m][i], from
the infrastructure slice description, which is a two-dimensional array input for Algo-
rithm 1. Each element in the array contains a set of links, LinkCollections[m][i].links,
by which the slice can be totally divided into two parts. The row number plus one
indicates that this row stores all the link collections which can divide the slice by
that amount of links. For example, each element in the first row of the array, i.e.,
LinkCollections[0][i].links, always contains one link, by which the slice can be
totally divided. Each element in the second row, i.e., LinkCollections[1][i].links,
always contains two links, by which the slice can be totally divided. Here, the link
collection, link, is represented as a set of sequence numbers to denote links. Besides
the property of the link collection, each element in the array has another two properties.
One is LinkCollections[m][i].leftweight, i.e., the weight of one part of the slice.
This part is one of the divided sub-slices, i.e., sub-topologies, after the original slice is
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partitioned by this collection of links. Second is LinkCollections[m][i].rightweight
, i.e., the weight of the other sub-slice.

Algorithm 1 then presents the partitioning algorithm to select the best two sub-slices
to minimise the provisioning overhead. There are two inputs: the weight WA of the
original slice A and the array of LinkCollections described above. m in Algorithm 1
denotes how many links we are considering to cut across when dividing the slice. We
start with considering dividing the slice across a single link (m = 1). After dividing
the slice across the links in the element LinkCollections[m� 1][i], the actual weight
of the partitioned part increases a little, because if you partition the slice across just
one link, every partitioned part has to add one more proxy node for communication.
Partitioning the slice from two links brings two more proxy nodes in each part, and
so on. For reducing overhead, the type of the proxy node is set to “XOSmall”, whose
weight is defined as unit one. Therefore, the actual weight of each partitioned part
increases by m. The bigger weight of these two partitioned sub-slices, WeightBC,
determines the actual overhead of simultaneously provisioning these two sub-slices. If
the minimum of WeightBC under the condition of the same m is smaller than WA,
then the slice can be partitioned in this way. Otherwise, we continue to try dividing
the slice across more links. Ideally, the best way to partition the original slice is to
divide it into two equal parts, whose weight is WA/2. If m reaches WA/2, the weight
of each partitioned sub-slice will be at least equal to the weight of the original slice.

Algorithm 1 Infrastructure partitioning algorithm
Input:

WA, the weight of the original Slice, i.e., Top-topology, A with weight WA;
LinkCollections[m][i], an array of link sets, which partition the original slice.

Output:
{Sub-slice, i.e., Sub-topology, B and C} or ?, partitioned infrastructure.

1: m 1

2: while m < WA/2 do
3: minWeight �1
4: minLink  0

5: for i = 0 to LinkCollections[m� 1].length do
6: rW  LinkCollections[m� 1][i].rightweight+m
7: lW  LinkCollections[m� 1][i].leftweight+m
8: WeightBC  max(rW, lW )

9: if minWeight == �1 or WeightBC < minWeight then
10: minWeight WeightBC
11: minLink  i
12: if minWeight 6= �1 and minWeight < WA then
13: {B, C} LinkCollections[m� 1][minLink].links
14: return {B and C}
15: else
16: m m+ 1

17: return ?
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In this case, the partitioned topology cannot reduce the provisioning overhead. Thus,
the algorithm stops at this point and returns an empty set meaning the slice cannot be
divided. Moreover, it is worth mentioning that this algorithm can be leveraged to further
partition the sub-slice, if the original slice requires to be provisioned faster or to be
divided into more than two parts.

4.3.3 Multi-thread Provisioning

With the connection mechanism and partitioning algorithm, we can partition the original
topology of the customer’s application into linked sub-topologies. Basically, there are
three steps to take before submitting the final topology of the customer’s request to a
Cloud provider: 1) create a userkey for authentication; 2) instantiate the client provided
by the specific Cloud provider’s SDK; and 3) call the remote method of this client to
submit the request. This process is actually realised in the CloudsStorm framework as
specific engines for ExoGENI demonstrated in Section 5.3.1 of Chapter 5.

Most Clouds commonly use this process for customers to request the provisioning
of virtual resources, demonstrated as the basic Cloud Virtual Infrastructure Function
(VIF) of provisioning in Section 3.2.2. However, if we submit the sub-slices, i.e., sub-
topologies one by one, through this function, the total provisioning overhead actually
increases because of the extra proxy nodes. In this part, we adopt a multi-thread
technique to provision the sub-topologies of the topology at the same time. The main
process is as shown in Algorithm 2. This type of parallel operations is also implemented
in CloudsStorm described in Chapter 5.

Every thread finally returns the information about the state of the created sub-
topology, which is discussed in Section 5.3.2. If it succeeds, then the returned informa-
tion contains the state of all the VM nodes in the requested slice, especially including
the public addresses, which are key to the later configuration of proxy nodes. This pro-
visioning process is mainly modelled based on that of ExoGENI Cloud. Nevertheless,
the primary part of this provisioning technique is similar for other Cloud providers.

Algorithm 2 Multi-thread provisioning process
Input:

n, the number of the partitioned sub-slices, i.e., sub-topologies, need provisioning;
SliceDes[n], the infrastructure description of the nth sub-slice.

Output:
{IP

pub

}, the set of all the successfully provisioned VM’s public IP.
1: userkey getUserKeyFile(keyPath)
2: xxClient createClient(userkey)
3: for i = 0 to n do
4: Info[i] new Thread(xxClient, SliceDes[i], CREATE SLICE)
5: for i = 0 to n do
6: if Info[i].status == “succeed” then
7: {IP

pub

} Info[i].{IP
pub

}
8: return {IP

pub

}

62



4.4. Implementation and Evaluation

4.4 Implementation and Evaluation
In this section, we discuss some implementation details of the previously proposed
mechanism. Then we take ExoGENI as a testbed and conduct experiments using the
connection mechanism to evaluate the performance. The evaluation mainly focuses on
the connectivity among multiple partitioned sub-topologies and the efficiency of the
provisioning technique. Especially, because of the special features of ExoGENI, we
can test this mechanism with inner domain and inter-domain scenarios. Inner domain
refers to the scenario that sub-topologies are in the same domain, i.e., data centre.
Inter-domain refers to the scenario that sub-topologies are located in different domains.

4.4.1 Prototype Process
Figure 4.5 shows the detailed process of the mechanism we propose. Top-topology
describes the customer’s original request for infrastructure as a single slice. First,
we partition this original slice into different sub-slices, i.e., sub-topologies, with our
partition algorithm if possible. Then we modify every sub-slice to add proxy nodes
for connections. Sub-topology

i

, therefore, becomes Sub-topology0
i

. With the modified
slices, we adopt the multi-thread technique to submit each sub-slice in its own thread

Top-topology 

Sub-topology1 Sub-topology2 … 

Sub-topology`
1 Sub-topology`

2 … 

Thread1 Thread2 Thread… 

Modify 

Partition 

Infrastructure 
Information 

Infrastructure 
Information 

Infrastructure 
Information 

Return 

Provisioned 
Infrastructure 

Configure 

Figure 4.5: The prototype process of topology partitioning, infrastructure provisioning,
and network configuration.
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simultaneously. If each sub-slice is activated successfully, it should return information
about the infrastructure. The key information is the public addresses of the proxy nodes.
With these addresses, we can configure the network through executing shell scripts
remotely on the proxy nodes. The shell scripts configure these proxy nodes to translate
IP packets’ addresses correctly when crossing slices. This mechanism allows VMs
in different sub-slices to communicate with each other. Finally, the entire original
infrastructure is provisioned, and the whole process is transparent to customers and
providers. From the view of the customers’ side, the application can always get the
infrastructure as it requires. From the view of the providers’ side, they do not need to
consider how to accelerate the provisioning process further.

In the following, we detail the configuration of the shell script. For the NAT-based
mechanism, we take the configuration on VM

a

in Figure 4.3 as an example. Here,
VM

a

is customised to be with the “Ubuntu” OS. The configuration details are shown in
Listing 4.1. Line 4 of the script is to get the default Ethernet interface name of the VM,
which is not always ‘eth0’. Then the private address rIP

a

can be retrieved from the
default interface. As mentioned above, rIP1 and rIP2 are determined by the customer.
uIP

a

and uIP
b

are obtained from the returned information after the infrastructure are
provisioned successfully. Therefore, all the IP addresses in the script are available. Line
6 to 9 of the script are to configure the VM for address translation. Here, “iptables” is
a common tool provided by “Linux”. To use this tool is also why we choose “Ubuntu
14.04” as the OS of the proxy node in experiments. Moreover, Line 7 specifies only to
translate the destination address to rIP1, i.e., sending to VM1, if the source address
of the packet is uIP

b

, i.e., the packet comes from VM
b

, because there are also other
packets sending to VM

a

for access and control. The destination address of these packets
should not be changed. Otherwise, the proxy node cannot be accessed anymore.

1 #!/bin/sh
2 echo 1 > /proc/sys/net/ipv4/ip_forward
3 sysctl -p
4 ethName=‘ip r show| grep "default "| cut -d " " -f 5‘
5 rIPa=‘ifconfig $ethName| grep "inet addr"| awk -F’[ :]’ ’{print $13}’‘
6 iptables -t nat -A PREROUTING -d $rIP2 -j DNAT --to-destination $uIPb
7 iptables -t nat -A PREROUTING -s $uIPb -j DNAT --to-destination $rIP1
8 iptables -t nat -A POSTROUTING -d $uIPb -j SNAT --to-source $rIPa
9 iptables -t nat -A POSTROUTING -d $rIP1 -j SNAT --to-source $rIP2

Listing 4.1: Example script for configuring the NAT-based overlay network

For the tunnel-based mechanism, we take the configuration on VM1 in Figure 4.4
as an example. In this example, VM1 requires to be customised as “Ubuntu” OS,
which is also the limitation of this mechanism. But in CloudsStorm framework, we
implement different “V-Engine” corresponding with various operating systems to tackle
this issue. The configuration details are shown in Listing 4.2. Still, all the variables in
this listing is known after provisioning. In the listing, ‘$rIP1’ and ‘$rIP2’ are application-
defined private addresses, corresponding to rIP1 and rIP2 in Figure 4.4. ‘$uIPa’ and
‘$uIPb’ are the corresponding public addresses after provisioning. ‘$linkX’ in Line 5
and 6 can be defined by the customer. ‘$subnet’ and ‘$netmaskStr’ in Line 6 are the
subnet and netmask of the application-defined private network, e.g., “192.168.10.0” and
“255.255.255.0”, which are also provided by the customer.
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1 #!/bin/sh
2 ethName=‘ip r show| grep "default "| cut -d " " -f 5‘
3 rIPa=‘ifconfig $ethName| grep "inet addr"| awk -F’[ :]’ ’{print $13}’‘
4 ip tunnel add $linkX mode ipip remote $uIPb local $rIPa
5 ifconfig $linkX $rIP1 netmask $netmaskStr
6 route del -net $subnet netmask $netmaskStr dev $linkX
7 route add -host $rIP1 dev $linkX

Listing 4.2: Example script for configuring the tunnel-based overlay network

4.4.2 Evaluation of Connectivity
In this part, we design an experiment to evaluate the network performance between
partitioned slices. Here, we only focus on the NAT-based mechanism, as its connection
performance cannot be better than that of tunnel-based mechanism. It is because the
NAT-based mechanism brings in extra links and latency. Thus, we only evaluate the
NAT-based overlay network as a baseline. The basic topology in our experiment is
shown in Figure 4.3. First of all, we need to demonstrate that node VM1 and VM2 are
really connected using our technique. It is essential to prove that the packets sent by
VM1 are forwarded to VM2 instead of just being processed by VM

a

. We adopt the
“ping” and “tcpdump” tools, provided by Linux. We run “tcpdump” on VM2 to collect
all the Internet Control Message Protocol (ICMP) packets heading to VM2. Then we
“ping” VM2 from VM1. The results show that VM2 indeed captures the ICMP packets
from VM1. Therefore, our technique of connection is demonstrated to work properly.

For the network performance, we use the “ping” tool to evaluate the latency and
the “iperf” tool to measure the bandwidth. Figure 4.6 shows the evaluation results on
network performance. As for ExoGENI, it affords the option to choose the domain of
the slice, i.e., the data centre. Hence, we evaluate the performance from three aspects.
One is the evaluation of normal connections in the original slice. One is the evaluation
of communication between inner domain slices, and the other is of communication
between inter-domain slices. In one scenario, we make slice A and slice B both within
the Houston data centre. For the inter-domain scenario, we make slice A within the
Washington data centre and slice B within the Chicago data centre. We also create a
slice located in Houston to evaluate the original connection.

Figure 4.6(a) illustrates the evaluation of network latency. The average latency of a
normal connection in one domain is 1.10 ms. The average latency of an inner domain
connection is 2.87 ms. It is a little higher because of the NAT overhead between proxy
nodes. The average latency of an inter-domain connection is 21.65 ms, which is much
higher. It is caused by transmitting the packets over a long physical distance. However,
even the latency of 21.65 ms is already fast enough for most quality-critical applications.
On the other hand, we can choose to provision the infrastructure with inner domain
connections, if the latency cannot be tolerated. Moreover, the latency volatility of all
these scenarios appears to be small, demonstrating that our connection technique is
stable. Therefore, it should satisfy most latency requirements.

Figure 4.6(b) illustrates the evaluation of network bandwidth using “iperf”. It
measures the bandwidth between VM1 and VM2 every 2 seconds. We do not measure
the bandwidth of a normal connection, because the bandwidth of the link in one slice
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(a) Comparison of latency (b) Comparison of bandwidth

(c) Bandwidth comparison on different types of proxy node

Figure 4.6: Evaluation of application-defined network connection performance

can be set within ExoGENI. We need to measure the bandwidth of the link a public
network, however. In our scenarios, the bandwidth of linkA and linkB in Figure 4.3
should be set as large as possible as they should not be the bottleneck. In our experiment,
they are set as 1 Gbps. The result shows that the bandwidth of inner and inter-domain
connections are close at around 300 Mbps. The large bandwidth of inter-domain
connections may be owed to the connections in place between different domains for use
by ExoGENI. Anyhow, the bandwidth of 300 Mbps is sufficient, and our mechanism
does not have a strong impact on the performance. The connection technique, therefore,
can satisfy the bandwidth requirement of most applications.

We adopt the type of “XOSmall” as the proxy node to reduce the provisioning
overhead in our design. However, we also evaluate the bandwidth with different types of
proxy nodes in order to evaluate their impact. The result is shown in Figure 4.6(c). This
evaluation is just in the scenario of inter-domain connections, because Figure 4.6(b) has
already shown the similarity between inner domain and inter-domain connections in
practice. Figure 4.6(c) shows that the bandwidth varies with the type of proxy nodes. It
demonstrates that a more powerful proxy node can improve the connection bandwidth.
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However, the proxy node with the type of “XOXlarge” cannot further improve the
bandwidth. It is probably because the network has reached its physical limit. Therefore,
there is a trade-off between connection bandwidth and provisioning overhead.

4.4.3 Evaluation of Fast Provisioning

In this section, we evaluate the overhead of our provisioning technique. We design the
experiment using nodes with the type of “XOMedium” as an example. There are three
scenarios: normal provisioning, inner domain and inter-domain provisioning. Among
them, the inner domain and inter-domain provisioning are based on our mechanism.
We assume that the customer requests a topology containing 2n nodes. According
to the theoretic analysis in Section 4.2.2, cutting the slice just into two equal parts
can reduce the provisioning overhead most. Therefore, for inner domain provisioning,
we provision two slices with equal numbers of nodes within the Boston data centre.
Each slice contains n nodes. As for inter-domain provisioning, we provision the same
two slices to the data centres of Boston and Washington. Correspondingly, for normal
provisioning, we measure the overhead of provisioning whole infrastructure in one
slice from Boston. In order to compare with our provisioning mechanism, we measure
two kinds of normal provisioned slices. One is to compare the overhead with each
partitioned slices. It contains n nodes. The other is to compare the overhead with the
whole topology. Then it contains 2n nodes. Here, we ignore the overhead of a proxy
node, because it adopts the VM with the smallest capacity. The overhead can be omitted,
especially when provisioning large-scale infrastructures. Meanwhile, there is no proxy
node to increase the overhead when we adopt the tunnel-based overlay network for
connecting the partitioned infrastructures.

As for the accuracy of results, we measure the provisioning overhead of the same
slices three times for every scenario. In addition, we just measure provisioning overhead
of up to 6 nodes due to the limitations of ExoGENI as an experimental Cloud. The
result is shown in Figure 4.7.

Figure 4.7: Evaluation of fast provisioning.
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The experimental result demonstrates that the overhead of our provisioning tech-
nique is close to that of normal provisioning with half the number of nodes. We can
derive that our provisioning technique is more efficient as the number of nodes increases.
Although the total number of nodes is almost the same for normal provisioning and
our provisioning mechanism, it is faster to provision them across multiple slices with
our provisioning technique. It is obvious for the scenario of inter-domain provisioning,
i.e., multiple smaller slices are provisioned from different data centres concurrently.
However, it is worth mentioning that the overhead of inner domain provisioning is
close to inter-domain provisioning. Although partitioned slices are provisioned within
the same location, they may be provisioned on different racks. Hence, the experiment
demonstrates that our provisioning technique indeed reduces the provisioning overhead.

On the other hand, we can evaluate our mechanism in theory with the provisioning
overhead model, because we cannot test large-scale infrastructures on ExoGENI. Only
considering cutting the slice into two parts, the most overhead we can save is as shown
in Equation 4.2.

�W
save

= W
total

(n)�W
total

(

n

2

) = n⇥ ⌘

2

⇥W
single

(4.2)

Equation 4.2 shows that when n is big enough, �W
save

⇡W
total

(n)/2. It means
that the provisioning overhead can be approximately reduced by half for large-scale
infrastructure. In this case, the extra overhead of proxy nodes can be omitted for
NAT-based mechanism. For the tunnel-based mechanism, there is no extra overhead
for partitioning. And also, we do not consider the situation in which the slice can
be divided into more than two parts. As described in Section 4.2.2, ⌘ represents the
optimisation degree of the platform, and ⌘/2 is shown in Equation 4.2. Hence, it is
equivalent to doubling the provisioning performance of the platform from the Cloud
providers’ viewpoint. Considering the concrete result, we use the method of linear least
squares fit to get the detailed equation for ExoGENI. According to our experiment, we
choose the dataset of “XOMedium” to fit, which contains the 7 points in Figure 4.1.
Then we achieve Equation 4.3.

W
total

= 19.1n+ 67.7 = 86.8 + 0.22⇥ 86.8⇥ (n� 1) (4.3)

Compared to Equation 4.1, W
single

= 86.8 and ⌘ = 0.22. Then, �W
save

= 9.55n.
Therefore, when n = 100, i.e., for the infrastructure of 100 VMs, we can save about
15 minutes with our provisioning mechanism. This is a remarkable optimisation for
quality-critical applications.

Finally, we do not analyse the overhead of the infrastructure partitioning algorithm.
In fact, the complexity of this algorithm is high, especially when preparing the input
of the two-dimensional array, LinkCollections, for link information. However, the
result of the algorithm is reusable, when migrating the application or recovering from
failures. We also do not need to calculate the algorithm again when re-provisioning a
particular part of the infrastructure. Therefore, we do not think that the overhead of the
partitioning process is a critical concern.
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4.5 Conclusion
This chapter presents a fast and dynamic provisioning mechanism to accelerate the
process of provisioning for quality-critical Cloud applications. It mainly contains three
key steps: the infrastructure partitioning algorithm, network connectivity configuration,
and multi-thread provisioning. With the partitioning algorithm, we can divide the
original request for networked infrastructure into multiple smaller infrastructures. Then
we propose two overlay network mechanisms, i.e., the NAT-based mechanism and the
tunnel-based mechanism, to ensure the connectivity among sub-infrastructures. Finally,
multiple infrastructures are dynamically provisioned with multiple threads.

By experimental practice and theoretical analysis, this mechanism confers three ad-
vantages. Firstly, this approach is fast and dynamic. The multiple smaller infrastructures
can be provisioned with less overhead. Overhead is decided by the most significant
single part, not their sum if multi-thread provisioning is applied. Meanwhile, if some
part of the infrastructure crashes, we just need to re-provision the crashed part, not the
whole infrastructure. It is essential for the quality-critical application recovering from
failures. Secondly, there is a capacity improvement. Cloud providers often impose
limitations on the scale of infrastructures. Our mechanism puts forward a way to provi-
sion large-scale infrastructure though using resources from multiple Clouds and data
centres. Thirdly, our mechanism is not only transparent to Cloud providers but also to
the applications operated by customers. The providers just need to afford an interface
to provision resources, which is one of the basic Cloud VIFs. From the customers’
viewpoint, they get the infrastructure as they design it, including IP addresses, making
the application agnostic to the underlying infrastructure and without being aware of
the modification. Therefore, there are no additional constraints or extra configurations
required for customers to run applications on new Clouds or data centres, i.e., even
provisioning the infrastructure from other Clouds or data centres, the network topology
can remain the same. In order to demonstrate the feasibility of the mechanism, we tested
it on ExoGENI. The experimental results in practice and model analysis in theory both
show that our mechanism can potentially dramatically reduce the provisioning overhead,
especially for large-scale infrastructure. The reduced provisioning overhead is crucial
for the application to scale out or recover with particular quality-critical constraints.

It is worth mentioning that the fast provisioning mechanism mentioned in this
chapter has already been integrated into the CloudsStorm framework. The overlay
network mechanism is leveraged to connect the VMs of different sub-topologies with
the application-defined network topology, no matter which data centre the sub-topology
is hosted. Moreover, all the sub-topologies in CloudsStorm are provisioned in parallel
by default, using the multi-thread provisioning technique in this chapter. The detailed
implementation is introduced in the next chapter.
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Seamless Cloud Infrastructure Runtime

Control and CloudsStorm Framework
Implementation
the runtime phase

In previous chapters, we discuss the infrastructure programmability in the development
phase and the fast provisioning technique for the networked infrastructure in the pro-
visioning phase. Still, in the runtime phase, the infrastructure should be controlled to
keep satisfying the quality-critical requirements of the application, due to unexpected
events, such as bursty workloads and even failures. Taking the Hadoop based big data
processing application as an example, the controllability for managing the infrastructure
at runtime requires that: 1) the infrastructure needs to be adjusted after a particular event
happens based on the monitoring feedbacks, e.g., the processing performance decreases
if certain datanodes from one data centre are not accessible, which then requires provi-
sioning datanodes from other data centres for recovery; and 2) the infrastructure needs
to be directly controlled and adapted for a specific event based on prior knowledge, e.g.,
the Hadoop application can measure the workload input and adjust the infrastructure to
a proper capacity through scaling to suit the workload before processing.

In this chapter, after analysing the controllability requirements, we propose a control
model with two modes and describe the detailed implementation of CloudsStorm
framework which empowers the Cloud application with the controllability. Finally, the
experimental study conducted on real Clouds, EC2 and ExoGENI, demonstrates that
the controllability of CloudsStorm is efficient and outperforms other related tools.

This chapter is based on:

• Zhou, H., Hu, Y., Su, J., de Laat, C., Zhao, Z., “CloudsStorm: An application-driven frame-
work to enhance the programmability and controllability of cloud virtual infrastructures”, In
International Conference on Cloud Computing, pp. 265-280. Springer, Cham, 2018.

• Zhou, H., Hu, Y., Ouyang, X., Su, J., Koulouzis, S., de Laat, C., Zhao, Z., “CloudsStorm: A
Framework for Seamlessly Programming and Controlling Virtual Infrastructure Functions
during the DevOps Lifecycle of Cloud Applications”, Journal of Software: Practice and
Experience. Wiley, 2019.
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5.1 Cloud Infrastructure Control
For the traditional software Development and Operations (DevOps), there is no ability
empowered for the infrastructure to adjust the capacity to suit the application at runtime,
as the physical infrastructure is fixed. On the contrary, the elasticity of the Cloud
virtual infrastructure makes it possible to control the infrastructure in the runtime phase
dynamically. Specifically, since the pay-as-you-go business model of Clouds, a seamless
infrastructure control can reduce the monetary cost and satisfy the quality requirements
of the application at the same time. Therefore, we analyse what the requirements are
for controlling the infrastructure to react to the applications quickly and seamlessly.

5.1.1 Controllability Requirements Analysis
Traditionally, the system is adjusted because the influences of a particular event are
detected. It is an essential manner for Cloud infrastructure control. However, this
feedback based control is not in time, and therefore, cannot seamlessly satisfy the
applications’ requirements. In this section, we analyse the controllability requirements
according to the example of orchestrating Hadoop applications on Clouds and conclude
two types of control modes are crucial.

1. Passive mode. The infrastructure should be passively controlled when meeting
certain predefined thresholds after a particular event happens. The thresholds
can either include the infrastructure-level metrics, such as availability, CPU and
memory utilisation, or the application-level metrics, e.g., the system’s throughput.
For instance, once one of the virtual machines (VMs) is crashed for hosting
the Hadoop applications, another VM should be recovered from a particular
predefined data centre and rejoin the cluster to keep satisfying the application’s
quality requirements. It is the same issue to scale the infrastructure according to
the real-time monitoring of CPU utilisation or the data processing rate.

2. Active mode. In order to satisfy the application quality requirements more seam-
lessly and smoothly, applications also need to actively control their infrastructure
before the influences of a particular event. For instance, the Hadoop application
requires to scale out more VMs to be the datanodes when processing a large
amount of data as inputs. Meanwhile, considering the movement of the data
source, the computing resources should also be dynamically controlled to be
close to the data source for reducing transmission cost. This type of control is
ever urgent in the emerging Fog/Edge computing domain, where the applications
even need to control their Cloud resources close to the edge nodes on demand
according to the dynamic distribution of sensors [88].

5.1.2 State of the Art
For the passive control mode analysed above, the feedback based control is the de
facto manner to manage Cloud systems [103]. Mahmoud et al. [2] propose a dynamic
resources provisioning and monitoring system to manage the Cloud provider’s resources
while taking into account the customers’ quality requirements. However, the view of this
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work is to tackle the issue from the providers’ side of monitoring the data centre states
and performing the resource provisioning, which is opposite to the view of this thesis.
Shicong et al. [81] introduce the concept of Monitoring-as-a-Service. They propose
three approaches to analyse the monitoring information to enhance accuracy and also
improve the efficiency of the monitoring service itself. Jcatascopia [108] is implemented
as a tool to exploit probes to monitor the Cloud infrastructure. Nevertheless, neither of
these works touches the ability to enable the infrastructure to be adapted based on the
monitoring information. Cloud4sens [39] is proposed for monitoring the sensors in the
Internet of Things (IoT) environment. The Cloud here is leveraged as the infrastructure
to deploy the monitoring service, instead of the infrastructure to be managed by the
monitoring service. From the view of the customer side to manage the infrastructure,
CloudWatch1 provides the similar functionality of the passive control mode, but it is a
vendor lock-in solution only for Amazon Elastic Compute Cloud (EC2).

On the other hand, there is no systematic manner to sustain the active control mode.
Alexey et al. [58] focus on the scaling policy evaluation but without considering the
functionality to support for scaling operations on the Cloud infrastructure. Tools, such
as Libcloud2 and jclouds3, are just Application Programming Interfaces (APIs) for
programmatically control the infrastructure resources, which is, however, not sufficient
to seamlessly combine it with the application logic.

5.2 Cloud Infrastructure Runtime Management
To realise above two controlling modes, we first describe the execution model of how to
interpret the “Infrastructure Description Code” and “Infrastructure Execution Code”.
Then, we propose the runtime control model with two types of controlling modes, i.e.,
passive and active mode, to specifically demonstrate how the “Infrastructure Embedded
Code” and “Runtime Control Policy” are leveraged.

5.2.1 Execution Model
Figure 5.1 illustrates the execution model of the programmable infrastructure. It demon-
strates how application developers leverage the programmed “Infrastructure Description
Code” and “Infrastructure Execution Code” to automatically run their applications on
Clouds, which is a detailed description of step 2 in Section 3.5.3. After customising the
infrastructure as step 1 in Section 3.5.3, the developed “Infrastructure Execution Code”
is executed by the “Infrastructure Execution Engine” and loads its required virtual
infrastructure description from the “Infrastructure Description Code”, including the
number of VMs, network connections, the Clouds or data centres involved in running
the application. The “Cloud X” information is then updated by querying the “Cloud
Database”. “Cloud X” represents a Cloud defined in the “Infrastructure Description
Code”, where multiple Clouds may be adopted. “Cloud Database” includes all the
relevant data centres’ information for these Clouds, which are required to automatically

1https://docs.aws.amazon.com/cloudwatch
2http://libcloud.apache.org/
3https://jclouds.apache.org/
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Figure 5.1: Sequence diagram for infrastructure code execution model

control the VMs within these Clouds. A “Cloud Credential” provided by the application
developer is leveraged to access the desired Cloud. The credentials can be strings of
access keys or credential files. Both “Cloud Database” and “Cloud Credential” are
application-defined and serve as a library for the “Infrastructure Execution Engine”,
explained in Section 5.3.3. After loading the credential information, the “Infrastructure
Execution Engine” is able to invoke the basic Cloud Virtual Infrastructure Function
(VIF) of the desired Cloud, which contacts with the actual controller of that Cloud.
The request is then performed by the controller to provision certain VMs from that
Cloud. Moreover, CloudsStorm is also responsible for configuring the customised
private network connection to construct the “Cloud Virtual Infrastructure”. Afterwards,
the application is deployed onto the infrastructure depending on the “script” field, which
is defined in the “Infrastructure Description Code”. Meanwhile, the input data can also
be prepared. Via the “Infrastructure Execution Code”, the application developer also
defines when and how to execute the application with the input data. While finishing the
execution of the application, the “Infrastructure Execution Code” can be programmed to
fetch the results from the VMs of remote Clouds. Finally, excess computing resources
can also be programmed to be terminated at that time to reduce costs.

Applications are therefore able to efficiently leverage the computing capability of
Clouds to get results through exploiting CloudsStorm because the computing resources
are provisioned on demand and released immediately after acquiring those results.
According to the pay-as-you-go business model of Clouds, the longer occupying the
Cloud resources, the more need to pay.

5.2.2 Runtime Control Model
This subsection gives a detailed description of step 3 in Section 3.5.3. During the run-
time operation phase of the application, the infrastructure is provisioned, and different
components of the application run on the desired VMs. With the uploaded “Infrastruc-
ture Description Code” and “Runtime Control Policy”, the “Control Agent” then takes
over the responsibility to manage the infrastructure. Here, the “Control Agent” is placed
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Figure 5.2: Sequence diagram for runtime control model with two modes in different
scenarios

in a separate VM of “Cloud Virtual Infrastructure”, and other VMs are informed about
the public IP of the “Control Agent” for communication.

Figure 5.2 illustrates the sequence diagram for the runtime control model. It consists
of two controlling modes, the active and passive mode. The active mode is used for the
programmed code to actively control the underlying infrastructure, which is a missing
part for most current related tools. The control operation in this mode is performed
by two types of code. During the normal infrastructure provisioning scenario, the
“Infrastructure Execution Code” firstly sets up the “Control Agent” as mentioned above.
On the other hand, the “Infrastructure Embedded Code” inside an application can
actively invoke the “Control Agent” with the REpresentational State Transfer (REST)
APIs to adjust its underlying infrastructure according to outside input conditions, e.g.,
the input data size. The “Control Agent” performs the actual operations on the Cloud
infrastructure after checking constraints of the “Runtime Control Policy”, e.g., whether
the budget is enough. Therefore, the application is able to actively customise the
infrastructure to fit its requirements. This is also demonstrated in the case study of
Section 6.2 in Chapter 6.

The other is the passive mode. Figure 5.2 illustrates two scenarios when using pas-
sive control mode, which is auto-scaling and failure recovery. The operations performed
in passive mode are dependent on the “Runtime Control Policy” and monitoring infor-
mation. In the scenario of auto-scaling, the “Control Agent” analyses the performance
information collected from VMs of the infrastructure. If the CPU or memory usage of
certain VMs meets the predefined threshold, the “Control Agent” performs a scaling
operation according to the “Runtime Control Policy”. In the other scenario of failure
recovery, the unavailability of a certain data centre can be known through continuous
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availability detection. Hence, according to the “Runtime Control Policy”, the “Control
Agent” is aware of where to recover that part of the unavailable infrastructure, i.e., from
which backup Cloud and data centre. We assume that there is an automatic failure
recovery mechanism provided by the Cloud provider for each individual VM. Therefore,
we more focus on the failure case, where the data centre is down or the network to
the data centre is not accessible. It is worth mentioning that once the operations are
performed by the “Control Agent” onto the “Cloud Virtual Infrastructure”, the “Infras-
tructure Description Code” managed by the “Control Agent” must be updated to keep
synchronised with the actual status of the virtual infrastructure, e.g., whether the VM is
terminated or not.

5.3 CloudsStorm Framework Implementation
In this section, we present the CloudsStorm controllability implementation in following
aspects: the detailed infrastructure execution engine implementation for achieving
parallel operations and extensibility of federated Clouds; the infrastructure status transfer
for managing infrastructure descriptions among operations; the logging component and
relevant supporting libraries for managing Cloud information and access credentials.

5.3.1 Infrastructure Execution Engine and Control Agent
The “Infrastructure Execution Engine” is implemented based on Java programming
language and is the elementary engine to complete the execution procedure demonstrated
in Figure 5.1. It is responsible for interpreting the “Infrastructure Execution Code”,
provisioning the application-defined virtual infrastructure among Clouds. Especially,
it includes provisioning the corresponding private network. It contains T-Engine, S-
Engine, and V-Engine as illustrated in Figure 5.3.
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Figure 5.3: Implementation details of “Infrastructure Execution Engine”
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A T-Engine is responsible for “Top-topology” management. Hence, T-Engine is
the entry point for the application to access and control its entire infrastructure. It
also manages the connections among sub-topologies. T-Engine takes the interpreted
operations as input requests to provision or delete the corresponding Cloud resource.
According to the execution model in Section 5.2.1, T-Engine first queries the relevant
Clouds information. The information in the Cloud database is provided by our frame-
work and this database component works as a supporting library. T-Engine then sets
up the corresponding S-Engine for a specific Cloud, for example, “S-Engine-EC2” for
Cloud “EC2”. Meanwhile, the T-Engine loads the corresponding Cloud credential to
make the S-Engine able to access the Cloud. This Cloud access credential is provided
by the application developer for authentication and billing. The detailed information
for organising the Cloud profiles and access credentials is discussed in Section 5.3.3,
which also can be provided by CloudsStorm as libraries. The V-Engine is responsible
for operations on each individual VM of the virtual infrastructure. All operations are
transferred from the upper level to this VM level and V-Engine is the final engine used
to complete a particular operation. In CloudsStorm, V-Engine is also responsible for
building up the overlay network on each VM to provision the networked infrastructure
required by the application. Currently, we implement overlay network mechanism
based on the tunnelling technique to connect the VMs from federated Clouds as a
private network. The details for network configuration are described in Chapter 4. After
provisioning, the V-Engine is able to execute the application-defined script to configure
the runtime environment and deploy the application. Here, V-Engine is defined as a
basic class. Different customised V-Engines can be inherited from it depending on
the features of the VM, for example, “V-Engine-ubuntu” for an Ubuntu VM. If the
application has specific operations on some VM, it can customise its own V-Engine.

In addition, a new Cloud can also be supported by deriving its own V-Engine. Our
programmable infrastructure framework can, therefore, be easily extended to support
different Clouds. This pluggable V-Engine implementation is realised according to
the factory design pattern in software engineering. Moreover, all the S-Engines and
V-Engines use the multi-thread technique to run in parallel, allowing the T-Engine to
start several S-Engines at the same time. If sub-topologies managed by these S-Engines
belong to different data centres, there will be no conflict among them, and they can run
totally in parallel. This parallelism is the same for V-Engines: the operations on all the
VMs in one sub-topology can proceed simultaneously. This mechanism is also leveraged
to realise the parallel symbol ‘||’ for multiple “Objects” defined in Section 3.3.2. In
other words, “Infrastructure Execution Engine” can accelerate operations to reduce the
total time needed by an application utilising the Cloud, reducing the application’s total
cost as paid to Cloud providers.

From the implementation perspective, Figure 5.4 shows the class diagram of “In-
frastructure Execution Engine”, which detailedly draws the relationship among the
“T-Engine”, “S-Engine”, “V-Engine”, and specific inheriting engines. In this class
diagram, we mainly show the Cloud VIF of provisioning. So the only method of most
engines is illustrated as “provision”, and other methods are omitted.

At both levels of “S-Engine” and “V-Engine”, the factory design pattern in software
engineering is leveraged to customise an engine from the basic class according to a
specific Cloud and Operating System (OS). Moreover, a Java reflection mechanism
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is exploited to load some user-defined engine class dynamically. This mechanism
is realised through the class of “ClassDB” in the figure. It provides the method of
“getSEngine” and “getVEngine” to provide the corresponding class according to the
Cloud provider name and OS type. Hence, this design is extensible to support different
Clouds. Even the engine for some Cloud is not implemented by the framework, the
developer still can program an entirely new engine for supporting a particular Cloud.

The adapter design pattern is adopted for upper-level engine controlling different
types of engines at the lower level in parallel. For example, in the “provision” method
of “SEngine”, it leverages the class “VEngine provision” to transfer the provisioning
operation from the sub-topology level to the VM level. The class “VEngein provision”
finally invokes different “V-Engines” to perform the operation. Moreover, the adapter
class “VEngineAdapter” empowers the Class “VEngine provision” with the ability to
run in a thread. Hence, this implementation mechanism realises the parallel operation,
which is defined by the symbol ‘||’ in the previous programmability design.

It is also worth mentioning that we separate the core methods of “V-Engine” as
two types of interfaces, “VEngineConfMethod” and “VEngineOpMethod”. They are
corresponding to the basic Cloud VIFs defined in Section 3.2.2. The basic Cloud VIFs,
i.e., VM Provisioning and VM Terminating, align with the methods of “provision” and
“terminate” defined in the interface “VEngineOpMethod”. These functions are Cloud-
specific. On the other hand, the methods defined in the interface “VEngineConfMethod”
all belong to the basic Cloud VIF of VM Configuration but are classified into more
specific operations, which are OS-specific. This separation design allows the developer
to only implement that two methods, “provision” and “terminate”, for a new Cloud.
The OS part functions can be handled by the framework, as the number of different OS
types is limited, but the Cloud types are relatively more.

All these design patterns make the entire framework pluggable and highly efficient.
Just similar to the MapReduce framework, the developer only needs to provide the basic
Cloud VIFs of a new Cloud, i.e., provisioning and terminating one VM. CloudsStorm
then is able to plug in this basic VIF and afford high-level programmability and control-
lability of this new Cloud for the application developer. Currently, CloudsStorm has
already implemented engines to support three Cloud providers, EC2, ExoGENI, and
EGI4 (European Grid Infrastructure).

Besides, even the “Control Agent” is key for the application to control the infrastruc-
ture during runtime, the “Infrastructure Execution Engine” is still the main component
of the “Control Agent”. The other component of the “Control Agent” provides web ser-
vices, which contain a set of REST APIs to receive the infrastructure operation requests
and then invoke the “Infrastructure Execution Engine” to perform. They also provide a
web-based Graphical User Interface (GUI) to show the status of the infrastructure. The
detailed implementation of the “Control Agent” is also open source5.

5.3.2 Infrastructure Status Management and Transfer
In order to control infrastructures, CloudsStorm defines five statuses for the sub-topology
according to the infrastructure description of sub-topology shown as Syntax 2 in Sec-

4https://www.egi.eu/
5https://github.com/zh9314/CloudsStormCA
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Figure 5.5: Status transition of infrastructure lifecycle in CloudsStorm

tion 3.3.1 of Chapter 3. Figure 5.5 is the status transition graph. It begins with the
“Fresh” status, which means the infrastructure is in the design phase and the public IPs
are not assigned. When the “T-Engine” controls the “S-Engine” to do provisioning,
the status of the sub-topology infrastructure can transit into two statuses, “Running”
or “Failed”, depending on whether there are errors during provisioning. If becoming
“Running”, the public IPs of VMs in the running sub-topology must have been assigned.
Afterwards, if the “Control Agent” detects some running sub-topology is not accessible
or failed, the T-Engine marks its status as “Failed” and controls the corresponding
“S-Engine” to identify the failed sub-topology. Meanwhile, all the sub-topologies which
originally are connected with this failed one should be detached. The failed sub-topology
then can be recovered within another data centre according to the recovery requests.
“Stopped” status is circled with the dashed line, as some Clouds do not provide the
function of stopping a VM. If the Cloud does not support this function, there is no
“Stopped” status in its lifecycle. The reason for designing the status “Stopped” in the
lifecycle is that the stopped VM is faster to bring up again than provisioning new
one from “Fresh” when scaling up. Finally, “Deleted” is the terminated status of the
lifecycle after applying the terminating function. All the “Stopped” and “Running”
infrastructures can be terminated to release resources.

5.3.3 Relevant Components of Libraries and Logging
As discussed above, there are two essential “libraries” required for executing infrastruc-
ture code. One of them is the Cloud database. It contains detailed information about
data centres for selected Clouds. This information includes: 1) geographic positioning
of each data centre, which can be leveraged to do locality-aware or data-aware provision-
ing; 2) endpoint information, which describes a URL of a data centre controller needed
for actual provisioning; 3) VM types (CPU, memory) supported in each data centre and
their characteristic data (e.g., price). This information is not application-defined but
can be provided by CloudsStorm. The other library is for Cloud credentials. It defines
key-value pairs that specify the security tokens needed to access a Cloud or the file
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paths for Cloud credential files. For instance, two tokens, “accessKey” and “secretKey”,
are required for accessing EC2 Cloud. Hence, the credentials are given and managed by
the application developers themselves. This way of key management avoids the privacy
issue of sending Cloud credentials to a third proxy broker for provisioning. Both of
these two libraries are organised in the YAML format.

Finally, a logging component is built in CloudsStorm. The log file is also organised
in the YAML format. For each operation defined in the “Infrastructure Execution Code”,
there will be a log element in the log file to record the operation overhead after the
operation is finished. Some extra information is also recorded. For example, the detailed
provisioning overhead, which is the time starting from the sending out of the Cloud
request to the point where the VM is activated and accessible, is also recorded for each
“provision” operation. Moreover, for the “execute” operation, all the standard outputs
of this operation are recorded in the log as well, providing another way to obtain the
output results of the application.

Due to space considerations, the detailed syntax of the above components are not
explained, which can be checked from the online manual of CloudsStorm6.

5.4 Controllability Performance Evaluation
In this section, we first evaluate the controllability performance of CloudsStorm, includ-
ing auto-scaling and failure recovery.

5.4.1 Auto-scaling and Failure Recovery
Auto-scaling and failure recovery are the key controllability of the infrastructure pro-
vided by CloudsStorm. We firstly design an experiment on ExoGENI to test the
auto-scaling performance. In this experiment, there are initially two sub-topologies,
subNI1 containing 1 VM and subNI2 containing 8 “XOMedium” VMs. Each VM in
subNI2 is connected with the VM in subNI1 via a private network link. This topology
is suitable for a typical “Master/Slave” distributed framework. subNI2 is defined as
a scaling group. According to the scaling request, the infrastructure can scale out to
other data centres based on one or multiple copies of subNI2. At the same time, all the
network links between the scaled copies and subNI1 are connected. These connections
are based on private addresses, which can be defined before actual provisioning. Hence,
the “Master” VM in subNI1 can always know where the scaled resources are. Fig-
ure 5.6(a) illustrates that we scale out the 8 VMs of subNI2 accordingly 1, 2, 3, 4, 8 and
16 times of scale. Each scaled subNI2 is provisioned from independent data centres
simultaneously. The time for provisioning each scaled sub-topology can be defined
as T

i

, where 1  i  16 and i 2 N. The flat dashed line represents the ideal scaling
performance in theory. This theoretical performance refers to the entire provisioning
performance with the theoretical assumption that all the data centre has the same provi-
sioning performance and there is no interference in between. It means that the time for
scaling different sub-topologies is the same and a constant value t, i.e., T

i

= T
j

= t, for
8i, j 2 N and 1  i, j  16. It is then obvious to derive that max1i16 Ti

= t. Thus,

6https://CloudsStorm.github.io/
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Figure 5.6: Controllability performance evaluation of CloudsStorm

no matter how many VMs need to be provisioned, as long as all the sub-topologies
(each sub-topology contains 8 VMs) are in different data centres, the entire provisioning
overhead should remain the same. However, the provisioning performances of different
data centres are not the same. This is demonstrated by the varied dashed line, which is
the average value of the maximum provisioning overhead among the scaled subNI2.
Moreover, the end-to-end connections need to be set up. Hence, the more copies of
subNI2 requested, the more connections need to be configured. The solid line in the
figure shows the total cost. For each scale, we conduct 10 repeated experiments. The
error bar denotes the standard deviation. It demonstrates that the scaling overhead does
not grow at the same proportion as the number of VMs being created. Therefore, it is
efficient to achieve large-scale auto-scaling. In addition, most Clouds have limitations
on resource allocation. For instance, ExoGENI usually allows one user to apply a
maximum of 10 VMs from one data centre. The limitation for EC2 is 20. Nevertheless,
with CloudsStorm, we can break through these limits to realise large-scale scaling by
combining resources from different data centres and even Clouds.

Figure 5.6(b) shows the experimental result of failure recovery. In this experiment,
there are still two sub-topologies in the beginning, subNI1 and subNI2. Each of them
contains only one VM, V1 and V2. These two nodes are connected with a private network.
We then assume the case where the data centre of subNI2 is not available. CloudsStorm
recovers the same sub-topology from another data centre or Cloud. Finally, the private
network is reconstituted. Hence, the application is not aware of this infrastructure
modification. We get the detaching overhead from CloudsStorm, which is the time for
subNI1 to disconnect the original link. It is illustrated by the bar covered with dots.
On the other aspect, we continually test the private link from V1 of subNI1 to V2 of
subNI2 and record the time from lost connection to the time that the link is resumed.
This measured time duration is the total recovery overhead. We conduct this experiment
on three Clouds currently supported and pick 6 data centres from them. In order to
compare, V2 always has 2 cores and around 8G memory with “Ubuntu 14.04” installed.
Correspondingly, they are instances of the “t2.large” of EC2, “XOLarge” of ExoGENI
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and “mem medium” of EGI VM configurations. The results show that ExoGENI has
a relatively higher recovery overhead, and some of its data centres are not stable. The
performance of EC2 and EGI are close; however, most data centres of EC2 are more
stable. This kind of information has reference value when deciding where to recover, to
satisfy the application quality requirements, considering the recovery overhead and data
centre geographic information.

5.4.2 Comparison with Related Tools
In this section, we compare CloudsStorm framework with the related tools from the
performance and functionality perspective, respectively.

Performance Comparison

Finally, we conduct a set of experiments to compare CloudsStorm with other DevOps
tools. We pick jclouds from the set of API-centric tools. jclouds is adopted by a lot
of environment-centric tools to be the basic provisioning tool, such as CloudPick [27].
From the set of environment-centric tools, we pick Nimbus [66] team’s cloudinit.d7.
Other tools, e.g., Juju and IM (Infrastructure Manager), provide graphical interfaces,
which make it difficult to measure performance. Both of jclouds and cloudinti.d do
not support networked infrastructure. The ones who support networked infrastructure
can only be applied in private data centres, where CloudsStorm cannot have the access
permission, e.g., SAVI (System Architecture Virtual Integration) [63]. We pick EC2
to conduct these experiments, because this is the most popular Cloud provider and
commonly supported by these tools. First, we compare the scaling performance. The
scaling request is to add 5 more “t2.micro” VMs in the California data centre of EC2.
However, as jclouds and cloudinit.d cannot directly support auto-scaling behaviour, we
use them to provision 5 new VMs in California data centre for the assumption of this
scenario. Each operation, we repeated 10 times. Figure 5.7(a) illustrates the results.
For jclouds, the provisioning process proceeds in sequence; hence, its scaling overhead
is much larger than the other two. If only considering the scaling performance from
“Fresh” (defined in Syntax 2 of Section 3.3.1) state, cloudinit.d and CloudsStorm have
similar performance, demonstrated by the bars covered with slashes. CloudsStorm is
a little bit more stable than cloudinit.d. Moreover, EC2 supports stopping an instance.
CloudsStorm can perform auto-scaling from “Stopped” status. It reduces the overhead,
shown by the bars covered with dots. It is worth mentioning that we do not consider
deployment overhead in this experiment. Scaling from “Stopped” status can even omit
the deployment. Through this way, CloudsStorm outperforms cloudinit.d, reducing the
scaling overhead by more than half, referring to Figure 5.7(b)(c).

The second experiment is to compare the provisioning performance, including
deployments. All three of our chosen systems allow users to define a script to de-
ploy applications immediately after provisioning. In this experiment, we choose the
California data centre to provision 5 “t2.micro” VMs and install Apache Tomcat on
each of them. Each test is repeated 10 times. Figure 5.7(b) shows the results. With
jclouds, the applications are installed one by one, which costs plenty of time. For

7http://www.nimbusproject.org/doc/cloudinitd/latest/
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Figure 5.7: Controllability performance comparison of CloudsStorm and related tools

CloudsStorm, there is a V-Engine responsible for each individual VM to provision
and deploy. Therefore, it achieves the best performance according to the overhead
and stability. The last experiment is based on the second experiment considering the
deployment dependency. In this experiment, 4 out of 5 VMs install Tomcat and the
remaining one installs a MySQL database. In this case, there is a dependency when
using jclouds and cloudinit.d, because they do not provision networked infrastructure
and use public addresses to communicate. Tomcat can only be deployed after provi-
sioning the MySQL VM to know the server address. Hence, jclouds needs to provision
the MySQL VM first in its sequence. cloudinit.d defines different levels to realise the
dependency. In this scenario, the first level is the MySQL VM, and the second level
contains four Tomcat VMs. The difference for CloudsStorm is that it can provision
networked infrastructure. The nodes are connected with application-defined private
network links. The MySQL server address is pre-defined before actual provisioning.
Therefore, all the deployments can proceed simultaneously even with the dependency.
Figure 5.7(c) demonstrates that the deployment dependency has smaller influences on
the performance of CloudsStorm comparing to that on jclouds and cloudinit.d. We
can reason out that if there are more dependencies than the current case, CloudsStorm
would have a more significant advantage over others.

Functionality Comparison

Finally, we pick several tools from related ones. Table 5.1 shows the functionality
comparison among different related tools and frameworks. These functionalities are
related to the three levels of programmability and two types of controlling modes
we propose. Here, “Infrastructure Description” is related with the design-level pro-
grammability. “Federated Clouds” refers to whether multiple Clouds are supported.
“Networked Infrastructure” is used to represent whether the infrastructure can be defined
and provisioned with a private network. “Public Cloud” is to indicate whether the
public Cloud is supported or on its own testbed. “Provision from scratch” is related
with the infrastructure-level programmability. It refers to the ability to execute some
infrastructure operations programmatically. “Automate Configuration”, “Auto-scaling”,
and “Failure Recovery” are the controllability features. “Multi-Mode” indicates whether
both of the controlling modes, i.e., the active mode and the passive mode, are supported,
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which are explained in Section 5.2.2. “Decentralisation” demonstrates the infrastructure
management is in a decentralised way. If it is not, it means all the application developers’
infrastructures are managed by one administration, which requires everyone’s Cloud
credentials. Some more details are explained in the footnote text of the table.

5.5 Conclusion
In this chapter, we propose a control model with two types of control modes. With
the passive mode, the infrastructure is passively controlled through monitoring the
infrastructure status. The developer can define the threshold to adjust the infrastructure
through “Runtime Control Policy”. It is also a typical way to detect the system anomaly
according to the monitoring feedback [32]. However, the monitoring based control
is relatively delayed, because the action has to be taken after witnessing the result of
some event. We, therefore, implement the other controlling mode, active mode. Firstly,
with this mode, CloudsStorm allows the developer to actively provision and terminate
virtual infrastructure resources from scratch: the infrastructure topology is defined
in “Infrastructure Description Code”; the operations are defined by “Infrastructure
Execution Code”. Secondly, with the active mode, CloudsStorm allows the application
to actively adjust the infrastructure in advance according to the outside events, such as
the input workload. This type of controllability is achieved by using “Infrastructure
Embedded Code”. Compared to the passive mode, active control is beneficial to
seamlessly adapt the infrastructure according to prior knowledge before influences
actually occurring due to the varying workloads.

Besides, we describe the CloudsStorm controllability implementation in detail.
Specific software design patterns are leveraged during implementation. They ensure
that the infrastructure programming model based on basic Cloud VIFs proposed in
Chapter 3 can be realised. Thus, the implementation achieves extensibility to support a
new Cloud and efficiency of operations through multi-thread parallelisation. Finally,
the experimental studies performed on the real Clouds demonstrate the infrastructure
controllability implemented by CloudsStorm is efficient and outperforms others, which
is essential to ensure the Quality of Service (QoS) of quality-critical applications.
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6
Quality-critical Cloud Applications
Development and Operation using

CloudsStorm
Case studies and evaluations

In previous chapters, we have introduced the infrastructure programmability design in
the development phase, the partition and network configuration mechanisms in the fast
provisioning phase, and the controllability implementation in the runtime phase. Specif-
ically, we have proposed a framework, CloudsStorm, to seamlessly and systematically
handle the challenge of mitigating the gap between the Cloud infrastructure and the
quality-critical Cloud application. From the Cloud DevOps perspective, CloudsStorm
provides the functionalities for Cloud virtual infrastructure programming, automated
networked infrastructure provisioning, and federated infrastructure runtime control.
Then, the issue is how the applications can benefit from the CloudsStorm framework to
operate on the Cloud virtual infrastructure considering the quality constraints.

In this chapter, we conduct experiments on real Clouds to show the case studies of
using CloudsStorm to orchestrate quality-critical applications. We demonstrate four case
studies from the perspective of task-based and service-based applications, respectively.
For each case study, we present in detail how to leverage CloudsStorm for infrastructure
programming and control. The evaluations of the case studies all show that CloudsStorm
is an efficient framework to manage the distributed Cloud infrastructure for seamlessly
satisfying the application quality requirements, no matter from the aspect of resource
usage, i.e., budget, or from the aspect of infrastructure operation efficiency.

This chapter is mainly based on:

• Zhou, H., Hu, Y., Su, J., Chi, M., de Laat, C., Zhao, Z., “Empowering Dynamic Task-Based
Applications with Agile Virtual Infrastructure Programmability”, In IEEE 11th International
Conference on Cloud Computing (CLOUD), pp. 484-491. IEEE, 2018.

• Zhou, H., Martin, P., Su, J., de Laat, C., Zhao, Z., “A Flexible Inter-locale Virtual Cloud For
Nearly Real-time Big Data Application”, In IEEE Real Time System Symposium (RTSS), In-
ternational workshop on Interoperable infrastructures for interdisciplinary big data sciences
(IT4RIs), 2016.
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This chapter is also partially related with:

• Zhou, H., Koulouzis, S., Hu, Y., Wang, J., de Laat, C., Ulisses, A., Zhao, Z., “Migrating
Live Streaming Applications onto Clouds: Challenges and a CloudsStorm Solution”, In 11th
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC
Companion), workshop on Cloud-Native Applications Design and Experience (CNAX), pp.
321-326. IEEE, 2018.

• Zhou, H., Taal, A., Koulouzis, S., Wang, J., Hu, Y., Suciu, G., Poenaru, V., de Laat, C.,
Zhao, Z., “Dynamic Real-Time Infrastructure Planning and Deployment for Disaster Early
Warning Systems”, In International Conference on Computational Science, workshop on
Data, Modeling, and Computation in IoT and Smart Systems, pp. 644-654. Springer, 2018.

• Koulouzis, S., Martin, P., Zhou, H., Hu, Y., Wang, J., Carval, T., Grenier, B., Heikkinen,
J., de Laat, C., Zhao, Z., “Time-critical data management in clouds: Challenges and a
Dynamic Real-Time Infrastructure Planner (DRIP) solution”, Journal of Concurrency and
Computation: Practice and Experience, e5269. Wiley, 2019. (as co-first author)

• Zhou, H., Hu, Y., Ouyang, X., Su, J., Koulouzis, S., de Laat, C., Zhao, Z., “CloudsStorm: A
Framework for Seamlessly Programming and Controlling Virtual Infrastructure Functions
during the DevOps Lifecycle of Cloud Applications”, Journal of Software: Practice and
Experience. Wiley, 2019.

6.1 Case Study of Task-based Applications

Cloud environments provide elastic and on-demand services for running distributed
applications. Typical Cloud service models include Software-as-a-Service (SaaS),
Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS) [6]. Among those
services, the IaaS model offers applications a rich capability for configuring virtual
machines (VMs), networks, and customising software platforms on top; however,
it also requires application developers to have profound technical knowledge about
planning and configuring underlying virtual infrastructure, in particular when it has to
use resources from different data centres or Clouds. For service-based applications,
such difficulties are not obvious, since the application mainly consists of long-term
services. These applications typically only require a fixed number of VMs provisioned
once. However, it becomes an urgent problem when supporting task-based applications
such as on-demand processing tasks or scientific workflows, which are often highly
distributed and do not run persistently in Cloud, but rather on demand.

6.1.1 Research Context and Related Work
Scientific applications are typical examples of task-based applications [125], such as
earthquake prediction or genome sequence processing. These applications often share
common features: 1) they all have distinct steps during runtime; 2) they do not run
persistently to wait for requests; and 3) they take some data as input and output the
results in the end. In order to run such applications on Cloud using SaaS or PaaS
services, applications may be limited by the capability of configuring the platform’s
required processing components, in particular when they are inherited from legacy
systems. Meanwhile, there might be a trust concern regarding submitting data to
a public computing cluster to process data with privacy or security issues. Thus, an
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application-defined virtual infrastructure is often required by such applications. By using
the Cloud IaaS, application developers need to provision them from particular providers,
configure the required runtime environments, including network, and manipulate them
at runtime. However, most of these operations are done manually.

Some infrastructure provisioning and deployment tools have been developed in past
years, for instance, in supporting the software Development and Operations (DevOps)
approaches of software engineering. For example, Puppet1, Chef2, and Ansible3 are
mainly used to automate the deployment and configuration. JuJu4 is able to automate the
provisioning process from Cloud, but it is insufficient for the application to dynamically
control the underlying virtual infrastructure. Meanwhile, some Cloud providers provide
vendor lock-in solutions, for instance, Amazon Web Service (AWS) CloudFormation5

provided by the Amazon Elastic Compute Cloud (EC2). However, the goal of all the
tools above is mainly to automate deploying service-based applications on Cloud.

There has been some pioneering exploration in academic research to migrate task-
based applications. For instance, Iman et al. [97] and Kee et al. [68] try to model the
Cloud resource performance to mitigate the influence by the performance uncertainty of
the Cloud, as well as to ensure the Quality of Service (QoS) for a scientific application.
Hao et al. [94] leverage Cloud to offload some computing tasks of a scientific workflow
running on a local cluster. However, in these works, the Cloud resources are provisioned
in advance and fixed. Application-defined on-demand infrastructure manipulation is
limited. None of them provides a mechanism to automate the process of running these
task-based applications on Clouds efficiently.

6.1.2 Problem Statement

Our experiments are conducted on real Clouds instead of simulators, and indeed, the
Cloud performance uncertainty issue affects the QoS of scientific applications. Hence,
we have not directly migrated any scientific applications onto Clouds here. In order
to test the functionality and performance of CloudsStorm, we assume a common task-
based application, which is software testing. We assume in this scenario that lots of test
cases need to be repeated many times, beyond our own local computing capability. If
we leverage Cloud resources, we should be able to execute the application and get the
results. These characteristics satisfy the common features of task-based applications
mentioned in Section 6.1.1. Hence, we simulate a performance test on multiple data
centres and Clouds to simulate the application scenario. The task of the application is to
provision one VM in each data centre and leverage “sysbench”6 to test the CPU and
memory performance of each data centre. The provisioning overhead requires to be
recorded as well. The bandwidth performance of each data centre should also be tested.
In this hypothetical application scenario, these tests are required to repeat regularly. In
essence, this is a common scenario for a lot of portfolio work [35, 79, 104].

1https://puppet.com
2https://www.chef.io
3https://www.ansible.com
4https://jujucharms.com
5https://aws.amazon.com/cloudformation
6http://sysbench.sourceforge.net/
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Finally, the goal of this application scenario is to test: 1) whether the application
developer can leverage CloudsStorm to program on the Cloud virtual infrastructure; 2)
whether these task-based applications can run on Clouds effectively and get the results;
and 3) whether Cloud resources can be provisioned on demand and released in time to
reduce the cost as well as to satisfy the quality requirements.

6.1.3 Example Solution and Results
According to the problem statement above, we further consider two types of concrete
scenarios, short-term and long-term scenario. In the short-term scenario, the perfor-
mance test task does not need to be conducted for many times. In this case, we do
not need “Control Agent”, which is shown in Figure 3.5 of CloudsStorm overview. As
for this short-term period of performance test, the “Infrastructure Execution Engine”
running in the local computer is enough to conduct all the test cases without the issue of
the local computer shutting down. It is corresponding to the solution that we set the field
of “Mode” as “LOCAL” according to Syntax 5, when programming the “Infrastructure
Execution Code”. On the contrary, the performance test application requires to be
executed for a long period, e.g., the tests need to be repeated for months. It is obvious
that a regular local computer, e.g., laptop, is not able to perform a such long-term task.
Then the “Control Agent” on Cloud is required. The detailed solutions and test results
for these two specific scenarios are as follows.

Short-term scenario using “LOCAL” mode of CloudsStorm

To conduct experiments, we pick several data centres from two supported Clouds of
CloudsStorm, EC2 and ExoGENI. There are three data centres picked from ExoGENI.
They are the one located at Sydney (AUS for short), the one located at University of
Amsterdam (UvA for short), and the one located at Boston (BBN for short). There
is one data centre picked from EC2, which is the one located at California (CAL for
short). For testing the network performance, we simulate a client from the ExoGENI
UvA data centre to test the bandwidth with the above VMs at different locations. As for
the comparison of different Clouds at the same level, all the VMs have 1 core and 1GB
memory, which are “t2.micro” type for EC2 and “XOSmall” for ExoGENI.

In order to complete the task in this application scenario, we first design our
networked infrastructure topology, according to Section 3.3.1. We define four sub-
topologies with one VM in each sub-topology. All these four VMs are defined in the
same subnet, which is “192.168.10.0/24”. Specifically, the private addresses of the
VMs are defined as follows: UvA: “192.168.10.11”; AUS: “192.168.10.12”; BBN:
“192.168.10.13”; CAL: “192.168.10.14”. In addition, we simulate another VM from
UvA data centre as a client to perform the bandwidth test with other VMs. This VM is
also in the subnet, and its address is “192.168.10.10”. We then program the “Infrastruc-
ture Execution Code” to define the entire process for performing tests on the selected
Clouds. Pseudocode 2 is described as follows. We use the “LOOP” code to repeat the
test tasks. Firstly, we provision the corresponding Cloud resources; then, we define
the operations of the CPU test and memory test simultaneously on all the object VMs.
The parallelism is achieved by the definition of “||” in Section 3.3.2. The public IP
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Pseudocode 2 Solution using “Infrastructure Execution Code” with “LOCAL” mode
Mode: “LOCAL”
for a certain time period or a certain count do

Provision ‘SubTopology’ from AUS||BBN||CAL||UvA
Execute CPU test simultaneously on the ‘VM’ from AUS || BBN || CAL || UvA
Execute memory test concurrently on the ‘VM’ from AUS || BBN || CAL || UvA
Perform bandwidth test to the UvA ‘VM’ (“192.168.10.10”! “192.168.10.11”)
Perform bandwidth test to the AUS ‘VM’ (“192.168.10.10”! “192.168.10.12”)
Perform bandwidth test to the BBN ‘VM’ (“192.168.10.10”! “192.168.10.13”)
Perform bandwidth test to the CAL ‘VM’ (“192.168.10.10”! “192.168.10.14”)
Get the results
Terminate ‘SubTopology’ of AUS||BBN||CAL||UvA
Wait for executing another round of tests

addresses of the other VMs cannot be determined and fixed, as they are assigned by
Clouds dynamically. However, we can still always use the predefined private IP address
to complete the bandwidth test. It is another advantage of provisioning a networked
infrastructure on Clouds with our CloudsStorm. It shows the overlay network can
make the infrastructure transparent to the application, no matter how the infrastructure
is distributed. Finally, we get the results and wait for a while to perform these tests
again. It is worth mentioning that during the interval of the test cases, all four VMs are
programmed to be terminated. Besides, the “Mode” of this “Infrastructure Execution
Code” should be set as “LOCAL”. Due to the space limit, all relevant actual topology
descriptions, codes, and results can be found on the GitHub repository7.

7https://github.com/zh9314/CloudsStorm/tree/master/examples/CloudPerformanceTests

Figure 6.1: Performance test results of task-based applications in the short-term scenario
(19 test cases) using CloudsStorm with the “LOCAL” mode
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In this case, all the test results are recorded in the infrastructure code log, which
is also shown in the repository7. The detailed description of this part is described in
Section 5.3.3. Hence, we do not need explicitly to define an operation to retrieve results
from remote VMs. We instead extract test results from the log, analyse it and present
the results in Figure 6.1. It lists four types of results, including the result generated by
the task of provisioning test, CPU test, memory test, and bandwidth test. The x-axis
is the test case sequence number, as organised by iterations over the total test period.
For this case, we only iterate 19 test cases to simulate the short-term scenario; the time
interval between each test case is about 30 minutes. Hence, the entire running duration
of this performance test application is about 12 hours.

Through analysing these results, we can acquire some valuable insights. For instance,
the provisioning overhead of commercial Cloud EC2 is relatively low compared with
the community Cloud ExoGENI. On the contrary, the memory and CPU resources from
EC2 have not achieved high quality. There might be another workload influencing the
data centre of AUS and BBN from ExoGENI simultaneously, as shown in Figure 6.1(a),
causing the provisioning overhead at both data centres to dramatically increase during
the testing period. For the bandwidth test, the bandwidth to UvA is the highest, because
the simulated client is in the same data centre. All the above demonstrate the feasibility
and functionality of our programmable infrastructure framework.

Long-term scenario using “CTRL” mode of CloudsStorm

To be different from the above short-term scenario, which only performs 19 times test
cases, we assume 1500 times of similar performance tests for a long-term scenario.
According to the previous experiment, finishing 1500 times test cases require at least
one month. Hence, developers’ local computers usually cannot keep running for such a
long period, i.e., it is not feasible to execute the “Infrastructure Execution Code” with
the “LOCAL” mode.

To conduct experiments for this scenario, we pick four data centres only from
ExoGENI Cloud, as ExoGENI is an experimental Cloud and free to use. These data
centres are located in Sydney (in Australia, SYD for short), University of Amsterdam
(in Europe, UvA for short), Boston (in the eastern US, BBN for short), and Oakland
(in the western US, OSF for short). For testing the network performance, we test the
bandwidth from the respective VM in the data centre of OSF, SYD, and BBN, to the VM
in the UvA data centre. In this case study, all the VMs have 1 core and 3GB memory,
which is the capacity of a “XOMedium” for VM in ExoGENI.

The sub-topologies and network design are similar to the solution for the short-term
scenario. All these four VMs are in the same subnet, which is “192.168.10.0/24”. To
be specific, the private addresses of the VMs from different sub-topologies are defined
as follows: UvA, “192.168.10.10”; OSF, “192.168.10.11”; SYD, “192.168.10.12”;
BBN, “192.168.10.13”. We then program the “Infrastructure Execution Code” to define
the entire process for performing tests on the selected Clouds. Pseudocode 3 depicts
the general procedure of how to program these operations on the infrastructure. The
difference is that the mode of the “Infrastructure Execution Code” is set to “CTRL”.
In this case, a “Control Agent” will be first provisioned on a particular Cloud and then
execute this “Infrastructure Execution Code” to control the Cloud resources and perform
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Pseudocode 3 Solution using “Infrastructure Execution Code” with “CTRL” mode
Mode: “CTRL”
for a certain time period or a certain count do

Provision ‘SubTopology’ from OSF||SYD||BBN||UvA
Execute CPU test simultaneously on the ‘VM’ of OSF||SYD||BBN||UvA
Execute memory test simultaneously on the ‘VM’ of OSF||SYD||BBN||UvA
Perform bandwidth test from the ‘VM’ of OSF to the ‘VM’ of UvA

(always test: “192.168.10.11”! “192.168.10.10”)
Perform bandwidth test from the ‘VM’ of SYD to the ‘VM’ of UvA

(always test: “192.168.10.12”! “192.168.10.10”)
Perform bandwidth test from the ‘VM’ of BBN to the ‘VM’ of UvA

(always test: “192.168.10.13”! “192.168.10.10”)
Get the results
Terminate ‘SubTopology’ of OSF||SYD||BBN||UvA
Wait for executing another round of tests

the tests for a long period. For this long-term scenario, the detailed infrastructure
topology descriptions and code can be downloaded via this link8. We are not going to
show the code details, for length and simplicity reasons.

8https://github.com/CloudsStorm/ExampleRepo/releases/download/st/ExoGENISoftwareTests.zip

Figure 6.2: Performance test results of task-based applications in the long-term scenario
(1500 test cases) using CloudsStorm with the “CTRL” mode
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Similar to the short-term scenario, we still directly extract test results from the log,
analyse it and present the results in Figure 6.2. It illustrates four types of results as
a boxplot, including the result generated by the task of provisioning test, CPU test,
memory test, and bandwidth test. The x-axis refers to the four corresponding data
centres. For this case, we have performed 1500 iterations of test cases to obtain the
results. From Figure 6.2, it can be derived from that the resources from different data
centre perform with different qualities. The stability of the performance also varies. To
conclude, such a number of performance tests are useful to characterise the performance
of data centres. Notably, the “CTRL” mode of CloudsStorm plays an obbligato role for
this long-term scenario here.

6.1.4 Evaluation
In this last subsection, we evaluate the efficiency of our framework for orchestrating
quality-critical applications. Here, the efficiency refers to the budget constraints, i.e.,
how much monetary cost we can save through leveraging CloudsStorm to run these task-
based applications. The efficiency comes from two aspects. One is that CloudsStorm can
provision application-defined Cloud resources on demand and release them immediately
after they are no longer needed, through the programmed operations of provisioning
and terminating in the “Infrastructure Execution Code”. The other is that it can perform
some operations in parallel to reduce the entire execution time for the application. Thus,
we first compare our cost with the cost of traditionally setting up Cloud resources
manually. Then we compare our cost with the cost of a specific script for provisioning
the resource and executing the application. Due to the fact that Clouds charge based on
usage time, e.g. EC2 charges in seconds9, the cost of Cloud resources is proportional
to the resource usage time. We can, therefore, measure the cost of Cloud resources as
being directly proportional to the resource total usage time. This information is also
recorded in the infrastructure log of CloudsStorm as operation overhead.

9https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/

Figure 6.3: Cloud resource usage cost comparison
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Table 6.1: Cloud resource usage evaluation among manual configuration, on-demand
script configuration, and using CloudsStorm for the long-term scenario, being varied
with the task iterations

The number of task interactions
10 50 100 250 500 1000 1500

cost(CloudsStorm)
/ cost(MC) 47.4% 44.7% 44.4% 44.5% 44.2% 44.2% 44.1%

cost(CloudsStorm)
/ cost(OC) 41.8% 41.5% 41.4% 41.5% 41.5% 41.4% 41.3%

Firstly, we analyse the result of the short-term scenario. The comparison result is
shown in Figure 6.3. In one case, we set up these VMs manually, and run the application
to perform tests, which is the traditional way to use Clouds. Hence, Cloud resources
need to be kept during the entire application lifespan. Taking the above scenario as
an example, the actual execution time for each test case is about 10 minutes, and the
remaining 20 minutes is waiting. Anyhow, the traditional manual method completely
wastes resources during this waiting period. The left part of Figure 6.3 shows that with
CloudsStorm, the Cloud resources usage time is about 40.4% of the manually-controlled
usage. In another case, we can develop a specific script to automate provisioning and
terminating resources from some specific Cloud to reduce the wasteful waiting time.
However, the script cannot perform some operations in parallel. For example, in the
above scenario, the CPU and memory tests can be performed in parallel among the
VMs. Based on each operation overhead in the log, we calculate and conclude that
CloudsStorm still reduces the total Cloud resource usage by 45.1% compared with using
a specific script as shown in the right part of Figure 6.3.

Secondly, we analyse the result of the long-term scenario, which contains 1500
iterations of test cases. In this scenario, the actual execution time for each test case
is about 5 minutes, and the remaining 10 minutes is waiting. The comparison results
varying with the number of task iterations are shown in Table 6.1, where cost(MC)
and cost(OC) still refer to the Cloud usage cost of manual and on-demand script
configuration, respectively. In the case of MC, we still set up these VMs manually and
keep them occupied during the entire execution of the tests. In the other case of OC, we
still develop a specific script to automate provisioning and terminating resource from
some specific Cloud to reduce the wasteful waiting time, but without parallel executions.
Compared to the on-demand configuration, the cost saved by CloudsStorm depends
on how many operations are in parallel. According to the parameters’ setting in our
case study, Table 6.1 shows that the Cloud resource usage cost using CloudsStorm is
always around 44.5% and 41.5% of the cost using manual and on-demand configuration,
respectively, even when executing a different number of task iterations.

Besides the manual and on-demand script usage of Cloud, the developer can also
leverage the Cloud APIs to make the operations in parallel and achieve similar efficiency
as CloudsStorm. However, compared with CloudsStorm, we argue that the approach
of leveraging Cloud APIs requires advanced programming skills, is not extensible to
support different Clouds, and cannot benefit the networked infrastructure.
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6.2 Case Study of Service-based Application

Comparing to traditional simple service-based applications, such as websites hosting
service and online file storage service, the emerging big data processing applications
and Internet of Things (IoT) applications consist more sophisticated services and quality
constraints. There are mainly two aspects of challenges to satisfy the application
QoS: the latency and location requirements when distributing the infrastructure and
application components; the elasticity to adjust the infrastructure according to the
fickle outside events, e.g., input workload and connecting devices. Still, IaaS Clouds
provide possible solutions, but without enough controllability and programmability to
be leveraged by the developer. In this section, we are going to discuss the ability of
CloudsStorm to tackle these issues.

6.2.1 Research Context and Related Work

Nowadays, service-based applications, like big data applications, not only consider the
amount of data they can process but also consider the processing time. Data needs to
be processed and fed back to users in order to inform decisions and improve runtime
steering of applications. This requirement constitutes the so-called “nearly real-time”
constraint on application feedback and steering. Network transmission time is an essen-
tial factor to influence the processing time. However, data collectors may be distributed
in different locations for specific large-scale big data applications [95]. In some cases,
the physical distance between the data collector and the data user can be significant.
For distributed applications executed over the Internet, the effective processing time is
often mainly determined by the network transmission time. Meanwhile, because of the
emerging IoT applications, the data sources can be distributed over different geoloca-
tions. Furthermore, the fact that these data sources are mobile and need to process data
near the data source [82] requires the underlying infrastructure to be location-aware
and adaptive to fit the applications. Even there are regulations that the data must be
processed in somewhere and is forbidden to export to other countries. For instance,
the General Data Protection Regulation (GDPR)10 is a regulation enforced recently by
European Union (EU) commission to manage all the data, and the personal data should
not be exported outside European Economic Area (EEA) without authorisation. The
location of computing resources to process those data, therefore, should be explicitly
considered according to the requirements.

On the other hand, traditional data management and processing applications require
a platform and infrastructure to be configured in advance. For example, Hive [107],
which is a Hadoop based database, needs to first deploy the distributed file system,
Hadoop Distributed File System (HDFS) [100]. Moreover, HDFS is also deployed on
a fixed infrastructure, which is either a cluster of physical machines or a set of VMs.
To be specific, the entire procedure to set up a data processing service includes: 1)
provision a set of computing resources; 2) configure their network to be a cluster; 3)
deploy the data processing application; and 4) execute the application and provide
data processing service. However, since the input data size of requests is different

10https://eugdpr.org/
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every time, the requirement for the underlying infrastructure also varies. Therefore,
it is inevitable that the fixed infrastructure could be either over provisioned to waste
resources or insufficient to complete the data processing within particular deadlines.

Cloud computing can be a powerful solution for big data processing, as the com-
puting ability of servers is constantly increasing and more data centres are being set
up around the world that can be used to support these applications. It is still a prob-
lem, however, for application developers to access and manage their Cloud resources.
Especially, this kind of big data application is a type of quality-critical application,
which often requires customised virtual infrastructure with tailored SLAs (Service Level
Agreements) when migrated into a Cloud environment [126]. There exist studies which
discuss using Cloud to solve the big data application challenges: Changqing et al. [59]
introduce some popular tools and Cloud platforms to do large-scale big data processing,
while Rajiv [95] proposes a high-level architecture of large-scale data processing service.
The underlying resource layer of the overall architecture is scalable across multiple data
centres or even Clouds, but both of these studies do not mention how to help application
developers manage virtual Cloud resources and achieve better performance. Moreover,
some other Cloud tools, such as Amazon Web Service (AWS) Lambda11, only focus on
SaaS (Software-as-a-Service) platforms to orchestrate services, without revealing the
ability for the developer to take nearly real-time constraints into account.

6.2.2 Problem Statement
Figure 6.4 illustrates a typical architecture and stages of a big data application. The data
are first collected from some devices or data sources in the data acquisition phase. Some
computing resources are required to perform data pre-processing. Finally, the data is
analysed, and the results are stored in a database for data users to query. Traditionally, the
computing resources are physical servers intensively located in some place. However,
this kind of nearly real-time big data application we discuss in this chapter can be
particularly large-scale. The data collectors can be distributed all around the world,
especially when combining the big data application with IoT [25] or sensor networks [4].

Being faced with the two challenges of operating service-based applications on
Clouds mentioned at the beginning of this section, we consider the challenges of
infrastructure management as follows.

1. Networked infrastructure. The applications workflow becomes more complex,
with many components that need to communicate with each other. Separated
instances cannot complete the whole job. For instance, the components in different
stages in Figure 6.4 need to communicate with each other and transfer data. The
virtual infrastructure must, therefore, realise a particular network topology.

2. Nearly real-time constraints. Nearly real-time applications require that most
task deadlines should be met over the lifetime of the application. The network
transmission is a crucial part to satisfy the deadlines. Considering the distribution
of the data collectors, e.g., cameras providing video of a live event, in Figure 6.4,
the centralised processing resources can hardly satisfy the constraints.

11https://aws.amazon.com/lambda/
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3. Auto provisioning and federated Cloud. Since these applications are complex,
we need a way to provision the entire infrastructure and deploy applications
automatically. Currently, some tools can only provision automatically at the VM
level, e.g., jclouds12. On the other hand, we may need more resources from other
Clouds to provision a large-scale infrastructure [124]. And also more Clouds
provide more opportunities to find a better-geolocated server in the data pre-
procssing phase shown in Figure 6.4. However, it is a problem to combine these
resources across multiple locales.

4. Elasticity. Figure 6.4 illustrates a highly flexible environment. In the data
acquisition phases, the data collectors like IoT devices can move around. The
workload of the processing servers would also vary. The computing resource,
i.e., the servers in Figure 6.4 of the infrastructure, should be elastic to the input
conditions to save cost.

Data 
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Server Server 

Data 
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Data 
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Data Pre-processing  

Server Query Database Data Analysis 
And Storage  
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Figure 6.4: Typical architecture of big data, IoT applications

We assume two specific problem scenarios for this case study: 1) The first scenario
is the nearly real-time data processing. It is abstracted from the eddy covariance data
processing service13 of ENVRIplus14 project, which is an example of a typical nearly
real-time big data application. This service measures wind and gas concentration at sites
over different ecosystems. It keeps collecting these data all year round, and it needs
to calculate the net exchange of gases, energy, and temperature between ecosystems
and atmosphere under time constraints. In this scenario, we would like to identify
whether the infrastructure geo-distribution can influence the application QoS and how
CloudsStorm can help; 2) The second scenario is the data-aware processing. To emulate
the scenario, we execute the word count program on a Hadoop cluster with different
resource scales and different workloads as input data. We would like to demonstrate how
CloudsStorm can dynamically adjust the infrastructure according to the input conditions
and what the benefits are.

12https://jclouds.apache.org/
13https://wiki.envri.eu/display/EC/IC 13+The+eddy+covariance+fluxes+of+GHGs
14https://www.envriplus.eu/
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6.2.3 Example Solutions and Evaluations
In this section, we propose solutions using CloudsStorm for the above assumed scenarios
and present evaluation results, respectively.

The scenario of nearly real-time data processing

Following the typical architecture of big data application shown in Figure 6.4, we
propose a solution architecture for those kinds of nearly real-time big data application
using CloudsStorm, specifically for the use case of the eddy covariance data processing
service as formulated within the ENVRIplus project, shown in Figure 6.5. In the EN-
VRIplus project use case, the data collectors are significantly spread out geographically
and often do not have high-quality network access to the Internet. If the data collector is
geographically far from the processing server, then the network performance will be too
low to satisfy real-time requirements, e.g., to transfer a certain amount of data within
a particular time limit. Junchen et al. [61] point out, however, that the emergence of
private back-bones in recent years to connect globally distributed data centres can serve
as a readily available infrastructure for a managed overlay network. Osama et al. [51]
use Cloud-based overlays to afford a packet recovery service. We then adopt this idea
of using the Cloud-based network instead of the pure Internet-based network to try and
satisfy the nearly real-time requirements of the application.

Shown as Figure 6.5, CloudsStorm is a key component of the architecture, acting
as an automatic provisioning agent which provisions not only the virtual computing
resources but also the network connections. With the connection techniques described
in Chapter 4, CloudsStorm is able to integrate resources from different data centres
or Clouds as a single infrastructure. From the application developers’ point of view,
CloudsStorm can set up a virtual Cloud with the application-defined network. They
do not need to consider where the virtual resources come. They can always use their
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Figure 6.5: Solution architecture for nearly real-time big data applications using
CloudsStorm.
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own user account and unified SSH private key, which are defined in the programmed
“Infrastructure Description Code”, to access all the resources on the virtual Cloud. With
this help, developers can focus on developing applications based on the networked
infrastructure with customised private IP addresses. Finally, CloudsStorm can then take
all the programmed infrastructure code as input to provision the distributed networked
infrastructure and run the application automatically.

According to the use case, the data collectors collect data from different ecosystems.
In order to satisfy the nearly real-time constraints, CloudsStorm must provision the
resources from regional data centres close to data collectors. The reduced latency
between the acquisition and pre-processing stages makes data collectors forward data
more efficiently. The network performance between pre-processing and analysis is
better than that of directly sending all data from collectors to the final processing
servers. Besides, the application must keep running all year round. CloudsStorm is also
able to make it recover from failures fast to satisfy another nearly real-time constraint.
Moreover, the scalability across Clouds makes the infrastructure more flexible for
meeting dynamic constraints at runtime, which will be discussed in the next scenario.

For evaluation, we set up experiments to test the feasibility of the solution provided
by CloudsStorm. In order to emulate the real situation, we create four objects in the
experiment. The detailed properties and settings of these objects are listed in Table 6.2.
We use a laptop to act in the role of a data collector and put it in different network
environments. For object 1, the laptop is connected with the home network via WiFi.
This object is designed to simulate the situation where the data collector has a relatively
poor access network connection. Object 2 is deployed within the campus network of
UvA (University of Amsterdam) to emulate the situation where the data collector has a
particularly good network connection. Objects 3 and 4 are two VM nodes provisioned
by CloudsStorm within different locales of data centres of ExoGENI Cloud. They are
connected via private IP addresses far from each other geographically. Object 3 acts in
the role of virtual resources provisioned in the regional data centre in Figure 6.5, while
object 4 acts in the role of remote virtual resources close to the data user. In this section,
we need to compare two main experimental scenes. The first scene is the deployment of
all the components in one data centre without using CloudsStorm, i.e., only leverage
Object 4 to collect the data and perform processing. The second scene is to adopt our
solution, which is to distribute the components on the virtual Cloud provisioned by
CloudsStorm, i.e., leverage Object 3 to collect data and Object 4 to perform processing.

Table 6.2: Properties of objects in the experiment

Number Object Access Network Properties Geography Properties
Mode Upload Download Cloud Location

1� Laptop WiFi1 0.94 Mbps 8.59 Mbps -2 Amsterdam
2� Laptop WiFi3 193 Mbps 305 Mbps - UvA
3� VM Ethernet - - ExoGENI UvA
4� VM Ethernet - - ExoGENI CA, US

1 It is connected with the home network.
2 ’-’ means not applicable.
3 It is connected with eduroam.
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We, therefore, conduct the first experiment to test the latency. The results are shown
in Figure 6.6(a). We start sixty ping requests one by one between different objects of
Table 6.2. The legend in Figure 6.6(a) tells the link between which two objects. Besides,
“S1” preceding the legend indicates that it refers to the first experimental scene, i.e.,
without CloudsStorm, described above, and “S2” is for the second scene, i.e., with
CloudsStorm. The experiments show that the latency is lower when the data collector is
closer to the computing resources. In the first scene without our solution, even though
the data collector has good access network, the average latency is still nearly ten times
higher than those in the second scene. Moreover, both of the latency in scene 1 are not
stable, especially when the access network has low quality, which is common for real
data collectors. It is also worth pointing out that real data collectors are typically not as
powerful as the laptop used in this experiment, and so the real performance may be even
worse. It shows that our solution of distributing the infrastructure can reduce latency.

The second experiment is to test the bandwidth in these two scenes. Figure 6.6(b)
shows the results. We measure the bandwidth continuously over 200 seconds. The
corresponding y-axis of all blue lines in this figure is on the left, measured in “Mbps”.
The corresponding y-axis of the green line is on the right, measured in “Kbps”. This
figure shows that the quality of the Cloud-based network is better than the direct
connection. The link between the two VMs, i.e., Objects 3 and 4, provisioned by
CloudsStorm uses a Cloud-based network which exhibits superior bandwidth. If we
deploy the application without our solution, data collectors are required to connect to the
faraway server directly. Two lines in Figure 6.6(b) with “S1” denotes the performance.
Although Object 2 is in a good access network environment, the average bandwidth
is 26 Mbps less when it is directly connected to the faraway server. Moreover, it also
shows that the bandwidth of the Cloud-based network is more stable than the direct
connection. In addition, the green line shows that when data collectors do not have a
good access network, the bandwidth is much worse.

The transmission time for data collectors can, therefore, be reduced using our
solution. CloudsStorm can set up a virtual Cloud that considers the underlying network
in order to better satisfy the nearly real-time requirements of the application to the
extent that it is possible. This kind of consideration is essential for data collectors to

(a) Comparison of latency. (b) Comparison of bandwidth.

Figure 6.6: Evaluation of application-defined network connection performance
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work more efficiently as part of a distributed system. In this scenario, we mainly test
the static nearly real-time constraints above, which is about the ability to provision the
infrastructure to satisfy the network requirements. For the runtime nearly real-time
constraints, we demonstrate it in the next scenario to show how the infrastructure can
be adaptive to the workloads.

The scenario of data-aware processing

For another scenario, the experimental study we conduct with the CloudsStorm frame-
work is related to data processing applications. In this case study, we base it on the
well-known big data processing platform Hadoop to develop the classic demonstration
application of “Word Count”. Through leveraging the programmability provided by
CloudsStorm, our developed word count application achieves the controllability of its
own infrastructure. Especially, the “Infrastructure Embedded Code” programmed inside
the application logic empowers the application with the ability to dynamically adjust
the underlying infrastructure at runtime according to the input data size. The under-
lying infrastructure can, therefore, provide a proper amount of computing resources
with network connections on demand, without over-provisioning. Via this manner, the
computing resource consumption is reduced.

In order to develop this data-aware processing application, the application devel-
oper would first design the infrastructure topology. For demonstration, there are two
sub-topologies within the entire top-topology in the initial virtual infrastructure design,
termed as “dataSrc1” and “hadoop 1 node” in this example. Each of them contains one
VM and is from a different data centre of ExoGENI. Here, sub-topology, “data src 1”,
is from the “UvA” data centre located in the Netherlands to emulate the data source of
this application. Sub-topology, “hadoop 1 node”, is designed to be from the “UMass”
data centre located in the USA. The VM defined in the sub-topology “data src 1” is
termed as “dataSrc1”, and the one defined in “hadoop 1 node” is termed as “Node0”.
These two VMs are connected within a private subnet. In the beginning, only one VM,
“Node0”, constructs the Hadoop cluster and downloads the input data from “dataSrc1”.
Afterwards, the word count application based on Hadoop is executed. All of these
steps are automatically realised through utilising the “Infrastructure Description Code”
and the “Infrastructure Execution Code”, which are similar with the case studies in
Section 6.1. However, in this case study, we further leverage the “Infrastructure Embed-
ded Code” of CloudsStorm to help the application achieve finer-grained controllability
on the infrastructure. Listing 6.1 below shows how the function of the data-aware
processing part is implemented within the CloudsStorm framework using Java.

In this example function, we first get the data size in gigabytes of the input file,
with the value then rounded up to an integer, e.g., the data size returned for a 4.2 GB
file is 5. Then, the developer can program a request on the infrastructure to scale out
the computing resources according to the data size. In this example, the application is
programmed to scale out a certain number of VMs based on the template of “Node0”
from the “UMass” data centre of ExoGENI. The number here is equal to the data size,
which is also actually up to the developer to decide on how many more VMs are indeed
needed. Meanwhile, the location of the scaled ones can also be programmed. After
sending the request to the “Control Agent”, an “exeID” is immediately returned back. It
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works as a token to identify this operation. Hence, this program does not need to wait
until this operation on the infrastructure completes. It also means that other operations
of the application can also be executed in parallel during the infrastructure operation. In
this application example, we first upload the input data onto the Hadoop Distributed File
System (HDFS) in order to be processed. In this phase, no more computing resources are
needed as long as the storage of the one-node cluster is enough for the input data. When
the operation of uploading the input is finished, the interface “waitInfras” provided by
the “Infrastructure Embedded Code” can be invoked to ensure the scaling operation on
the infrastructure is completed. Then the computing task of “wordCountJob” is started
with a scaled cluster to achieve better computing performance. After executing the task,
the result is stored in the corresponding folder of HDFS. Extra VMs, which offer the
computing resources, therefore, can be released to save cost.

1 public boolean dataAwareProcessing(Job wordCountJob, String inputFilePath){
2 /** Get the data size of the input file in GigaByte.
3 The returned value is applied with a ceiling function on the actual data
4 size, e.g., 4.2G -> 5G. **/
5 int dataSize = getInputDataSize(inputFilePath);
6
7 CtrlAgent ctrlAgent = new CtrlAgent();
8 HScalingRequest hScaleReq = new HScalingRequest();
9 hScaleReq.cloudProvider = "ExoGENI";

10 hScaleReq.dataCentre = "UMass (UMass Amherst, MA, USA) XO Rack";
11 hScaleReq.scalingDirection = "OUT";
12 hScaleReq.targetObjectType = "VM";
13 //The VM defined in the infrastructure description code, which is to be scaled.
14 hScaleReq.targetObjects = "hadoop_1_node.Node0";
15 String exeID = null;
16 //Horisontally scaling out certain number of VMs to be the datanode of Hadoop.
17 //The specific scaling number is programmed according to the input data size.
18 if( (exeID = ctrlAgent.init().addHScalingReq(hScaleReq, dataSize).hscale())
19 == null )
20 return false;
21
22 //At the same time, the raw input files are uploaded to the HDFS.
23 //Because the above function is non-blocking.
24 String hdfsDir = upload2HDFS(inputFilePath);
25
26 //Waiting for the underlying infrastructure to be ready.
27 //Time out is set to dataSize*200 seconds.
28 if( !ctrlAgent.waitInfras(exeID, dataSize*200) )
29 return false;
30
31 //Set the input/output path of the word count job and start data processing.
32 FileInputFormat.addInputPath(wordCountJob, new Path(hdfsDir));
33 FileOutputFormat.setOutputPath(wordCountJob, new Path("/output"));
34 wordCountJob.waitForCompletion(true);
35
36 hScaleReq.scalingDirection = "IN";
37 //Horisontally scaling in to release extra computing resources
38 //and therefore reduce cost.
39 if( (exeID = ctrlAgent.init().addHScalingReq(hScaleReq, dataSize).hscale())
40 == null )
41 return false;
42 if( !ctrlAgent.waitInfras(exeID, 200) )
43 return false;
44 return true;
45 }

Listing 6.1: Infrastructure embedded code example in data-aware processing
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Figure 6.7: Example infrastructure topology from the CloudsStorm GUI

Figure 6.7 is a snapshot to demonstrate the web-based Graphical User Interface
(GUI) offered by the “Control Agent” for this example. In this case, the “Control
Agent” is also dynamically set up in the “UvA” data centre, and its public IP is
“145.100.133.147”. After being aware of this public IP, the developer is able to access
this GUI from the browser. Figure 6.7 shows the networked infrastructure description.
It illustrates how “Node0” constructs the original one-node Hadoop cluster. At the time
of this snapshot, three scaled VM, “Node0S0”, “Node0S1” and “Node0S2”, are also
shown in the GUI. Especially, the network connection is also scaled according to the
original VM “Node0”. In addition, the size of the circle, which represents the VM, is
proportional to its CPU and Memory capacity. The colour of the circle identifies the
sub-topology, to which this VM belongs. The VM type and location, i.e., Cloud and
data centre, information can also be popped up when hovering over the circle. It is
also worth mentioning that a terminal of a specific VM can directly pop up through
double-clicking the corresponding circle, working as a Web terminal. This terminal is
convenient to check the result on a remote VM. The detailed infrastructure topology
descriptions and code can be downloaded via this link15. Due to the space limitations of
the thesis, we are not going to show the code details.

For the evaluation of this solution, we conduct several experiments on this case
study using CloudsStorm. We execute the word count program on a Hadoop cluster
with different scales of computing capacity and feed the program with different amount

15https://github.com/CloudsStorm/ExampleRepo/releases/download/hdp/HadoopDataAwareProcessing.zip
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Figure 6.8: Data-aware processing evaluation using the CloudsStorm framework

of input data. There are two groups of experiments. One is conducted with running
a traditional word count program on a Hadoop cluster of fixed scale. The other one
is conducted with the newly-developed word count program using the data-aware
processing function similar to that shown in Listing 6.1. Each experiment is repeated
five times.

Figure 6.8(a) shows the execution time of different phases of data uploading and
processing, according to different input data sizes and cluster scales. It demonstrates
that the data uploading time is not related to the cluster scale. On the other hand,
the data processing time decreases with the increase of the cluster scale. However,
after a specific cluster scale, the processing time no longer decreases so dramatically.
It is, therefore, essential to customise the infrastructure computing capacity properly
according to the input data size. Through leveraging CloudsStorm, the infrastructure can
be programmed to adjust the input data size dynamically. Compared to the traditional
application case, redundant computing resources can be avoided.

Figure 6.8(b) demonstrates that the Cloud application programmed with CloudsStorm
is more efficient on the Cloud resource consumption. The Cloud resource consumption
is calculated as the summation of resource consumption of each VM. The consumption
of a VM is calculated as the product of that VM’s CPU (vCPU numbers, i.e., cores),
Memory (in GigaBytes), and the corresponding task execution time (in seconds). Hence,
the resource consumption is termed as “CMT”, and it is in proportion to the monetary
cost for using the Cloud. This figure shows that it is always beneficial and saves the
costs when adopting CloudsStorm to develop the application, as the cluster contains
only one VM in the input data uploading phase. Compared to the traditional application
execution case, the cluster needs to be set up and configured in advance, and the extra
computing resource is wasted during the data preparation phase, which is more con-
cerned with I/O and storage resources. Although some Clouds provide a vendor lock-in
solution to define a policy on how to scale, this indicates a lack of programmability and
controllability at the infrastructure level. It means that the solution cannot make the
infrastructure adjusted to the application in a more fine-grained way. For example, in
this case, the infrastructure can only be scaled after the data preparation phase instead
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of making these two operations in parallel. Therefore, this case study demonstrates the
Cloud application developed with CloudsStorm achieves more programmability and
finer-grained controllability on its virtual infrastructure.

6.3 Conclusion
This chapter presents case studies on using CloudsStorm to operate two types of quality-
critical applications, i.e., task-based and service-based applications, on Clouds. Among
them, the platform-based application using the Hadoop platform for data processing is
also demonstrated within the CloudsStorm framework. For different specific scenarios,
we detailedly explain how to leverage the infrastructure code proposed and designed
by CloudsStorm framework to describe the infrastructure topology and the operations
performed on the infrastructure. CloudsStorm also provides the “Infrastructure Exe-
cution Engine” and “Control Agent” to interpret the infrastructure code and perform
the actual operations. With these components, it demonstrates how to build a Cloud
application from scratch, i.e., without infrastructure provisioned in advance. Through
experimental studies conducted on real Clouds and the comparison with other ways of
operating the Cloud applications, CloudsStorm is an efficient framework and able to
operate the Cloud virtual infrastructure to satisfy the application QoS, including the
budget constraints.

To summarise, there are following advantages to adopt CloudsStorm in the Cloud
application DevOps lifecycle: 1) CloudsStorm achieves provisioning of resources
on demand and release of them in time. Thus, CloudsStorm is able to reduce the
resource usage cost compared with other traditional methods. 2) CloudsStorm is able to
define and perform the operation on the infrastructure in parallel to improve efficiency.
3) CloudsStorm is able to provision the customised federated Cloud infrastructure
and the application-defined overlay network, according to the data distribution for
satisfying the network requirements. 4) CloudsStorm allows the application to embed
the infrastructure operation logic to dynamically adjust the virtual infrastructure for
maintaining the application QoS, according to the outside events, e.g., various random
workloads as inputs.
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7
Enhancing the Cloud Application Quality

Assurance through the Trustworthy
Enforcement of Service Level Agreement

In previous chapters, we demonstrate that CloudsStorm framework empowers the Cloud
virtual infrastructure with the programmability and controllability for the developers
to seamlessly operate their applications on Clouds. The virtual infrastructure can,
therefore, be better programmed and controlled to satisfy the quality requirements of
the applications. However, the requirements cannot be absolutely ensured because of
the essence that the Cloud resources are not physically owned by the Cloud customers,
i.e., the application developers in our case. Cloud Service Level Agreement (SLA) is a
general solution for this issue, which defines how the customer can get compensation
from the provider if the violation of the Cloud resources happens. However, traditional
Cloud SLA suffers from lacking a trustworthy platform for automatic enforcement. The
emerging blockchain technique seems to provide a promising solution.

In this chapter, we first analyse the SLA enforcement requirements for quality
assurance and explore the state of the art using blockchain. It is still challenging to
prove that the off-chain SLA violations really happen before being recorded into the
on-chain transactions. To tackle this challenge, we propose a witness model using game
theory and the smart contract technique to enhance the trustworthiness. Specifically, we
have prototyped the system1 based on the smart contracts of Ethereum blockchain.

This chapter is based on:

• Zhou, H., Ouyang, X., Ren, Z., Su, J., de Laat, C., Zhao, Z., “A Blockchain based Witness
Model for Trustworthy Cloud Service Level Agreement Enforcement” In IEEE International
Conference on Computer Communications (INFOCOM), pp. 1567-1575. IEEE, 2019.

• Zhou, H., de Laat, C., Zhao, Z., “Trustworthy Cloud Service Level Agreement Enforce-
ment with Blockchain Based Smart Contract” In IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), workshop on resource brokering with
blockchain (RBChain), pp. 255-260. IEEE, 2018.

• Zhou, H., Ouyang, X., Su, J., de Laat, C., Zhao, Z., “Enforcing Trustworthy Cloud SLA with
Witnesses: A Game Theory based Model using Smart Contracts”, Journal of Concurrency
and Computation: Practice and Experience, e5511. Wiley, 2019.

1https://github.com/zh9314/SmartContract4SLA
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7.1 Application Quality Assurance

Cloud SLA is an approach to driving the Cloud provider to offer the promised Cloud
infrastructure service. It is also the last assurance for the application to satisfy the
expected quality requirements, from an economic perspective. Thus, it is essential to
analyse the challenges of current SLA when empowering the application with quality
assurance. Then, we investigate the related work and state of the art, which adopts the
blockchain based solutions.

7.1.1 Quality Assurance Requirements Analysis

Cloud computing is a popular business model nowadays for sharing physical resources
among multiple tenants. A Cloud customer can rent and use various resources as service,
including computing, storage, and network, from the provider through a network (typi-
cally via the Internet) without maintaining the physical hardware. Although convenience
is conveyed, this causes the challenge of “Cloud Performance Unpredictability” [6]
when migrating time-critical applications onto Clouds [126]. Cloud SLA is, therefore,
proposed to ensure that specific service quality can be met, and in the case of violation,
the customer can get the corresponding compensation from the provider. It compen-
sates the customer’s lost due to the Cloud performance uncertainty from an economic
perspective.

Traditionally, SLA is a business concept which defines the contractual financial
agreements between the roles who are engaging in the business activity [36]. In the
context of Cloud computing, it is an agreement between the Cloud customer and provider
on the quality of the Cloud service. For instance, the Infrastructure-as-a-Service (IaaS)
provider, Amazon Elastic Compute Cloud (EC2), claims that the availability of its data
centre is no less than 99%. If this number is not achieved, it will pay back 30% credits
to its customer as compensation2. However, this agreement is hard to be enforced
in practice. The significant challenges that hinder the conceptual SLA to be feasibly
adopted in the real-life industry are:

• The Manual verification. An automatic mechanism to enforce the agreement is
missing, especially the automatic compensation after SLA violation. The current
process involves a lot of manual work, such as doing the verification through
emails before compensation: the customer needs to submit a claim to the EC2
website for its SLA violation2.

• The fairness between different roles. The provider has more rights in the
current agreement model, as it has the right to verify the violation and decide
whether to compensate the customer. On the contrary, the customer has little
space to negotiate about the price or the amount of compensation. They can only
choose whether to accept the SLA provided by the provider.

• The proof of violation. Currently, the agreement is only between the Cloud
customer and the provider. It is hard for the customer to prove and convince
the provider that the violation has really occurred. For example, EC2 requires

2https://aws.amazon.com/compute/sla/
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the customer to provide detailed logs that record the date and time of each
unavailability incident2.

The blockchain [85] technology brings in new opportunities for tackling these
challenges. The smart contracts in Ethereum [21] provide a feasible way to automate
the service transactions and enforce the SLA via the blockchain. Hiroki et al. [86]
introduce a “Service Performance Monitor” role to detect the violation and notify the
user. However, the proposed solution lacks an analysis of the credibility on the identified
violations and still faces challenges in achieving consensus on an event that happens
outside the blockchain. The bridge between the events that on and outside the chain is
called “oracle”3. One of the solutions is to retrieve data from “oraclize”4, a third trusted
company performing as a trustful data source. Moreover, these solutions are centralised,
which suffer from single-point of failure and are easy to be compromised.

7.1.2 State of the Art

SLA is a well-discussed research topic, specifically in the context of Cloud computing.
It establishes the quality of service agreement between the service provider and the
customer, which ensures the customer’s benefit when the agreement is violated. A
typical SLA lifecycle consists of multiple enforcement phases, including negotiation,
establishment, monitoring, violation report and termination [36]. Most of the research
focuses on three aspects: 1) syntax definition of the SLA terms and parameters, the goal
of which is to standardise the representation so that SLA can be efficiently processed
online by computer systems. A set of domain-specific languages is proposed to solve the
issue, such as SLA* [67], SLAC [109], CSLA [69]; 2) resource allocation techniques
to ensure the SLA. The work in this aspect focuses on the algorithm to optimise
resource allocation, thereby avoiding SLA violation from happening. SLA in this
kind of work is typically considered as constraints, e.g., [24, 60]; and 3) systems or
methods to address issues in specific phases of the SLA lifecycle. According to a
systematic survey [36] on Cloud SLA, among this kind of works, 22% are focusing on
negotiation and establishment phase, 73% are targeting at monitoring and deployment
phase, 3% are interested in SLA violation management while 1% focus on reporting.
For these phases, the goal of negotiation is to maximise either the provider’s or the
customer’s rewards through adopting some negotiation strategy [50]. Monitoring is
mainly about what to monitor and how to automate the process [46]. However, the
most challenging phases, violation management and reporting, are seldom explored.
In industry, Amazon CloudWatch service5 is an example that the provider automates
monitoring and notification. In this case, the customer has no choice but to trust the
provider. Muller et al. [84] develop a platform named SALMonADA to deal with the
SLA violation at runtime. It works as a third trusted party to perform the monitoring
and violation report. All these work assumes that the violation report is trustworthy,
which is, however, the most challenging part in the case of a violation.

3https://blog.ethereum.org/2014/07/22/ethereum-and-oracles/
4http://www.oraclize.it
5https://aws.amazon.com/cloudwatch/
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Smart contract is proposed to digitally facilitate, verify and enforce a contract
through a computer protocol [26]. Some explorations, e.g., Vincenzo et al. [98] com-
bines this concept with Cloud SLA negotiation, focusing on the semantic expression
of smart contract to automate the negotiation phase. However, most of them lack a
trustworthy platform to execute a smart contract. This is actually essential because
the smart contract relies on a strong assumption that no one can tamper its execution.
Town Crier [121] and TLS-N [96] ensure the trustworthy execution and communication
environment from the hardware and transmission protocol level, respectively. However,
they are either centralised or require special hardware support.

Blockchain [85] is a promising technique to be the execution platform since the
interactions on the chain are immutable. Especially, Ethereum [21] first realises to
execute a general-purpose program on its blockchain. They design several programming
languages, which make it possible to implement smart contracts. Hiroki et al. [86]
leverage Ethereum and design a set of web APIs. They attempt to automate the SLA
lifecycle enforcement on the blockchain. A new role called “Service Performance
Monitor” is introduced in their paper, who is responsible for the violation management
and reporting. However, whether the violation reports sent to the blockchain can be
trusted is not discussed. In essence, this is still a gap for blockchain based systems.
That is how to credibly record a random event happening outside of the blockchain onto
the chain. It is called “oracle”3, which is a party performing as a “data-carrier” for the
blockchain. “oraclize”4 is a third trusted company currently offering the service as an
oracle. Nevertheless, a third trusted party can lead to a single-point failure. Relying on
the centralised party also deviates from the decentralisation idea of blockchain. Hence,
ChainLink [34] works on distributed oracles. Only when an agreement is achieved
among the oracles, the result data of the event can be carried onto the chain or trigger a
transaction. However, it has some downsides, such as no incentive for individuals to do
this, requiring individuals being independent and trustworthy, and the consensus issue
among oracles.

7.2 The Witness Model using Smart Contract

The roles involved in the proposed model are introduced in this section, specifically,
the role of the witness. The overall system architecture for SLA enforcement using the
smart contract on blockchain is illustrated afterwards, followed by a detailed description
of the responsibility of the witness: service violation detection and report.

7.2.1 The Witness Role and Assumptions
There are mainly two roles in the traditional Cloud SLA lifecycle. One role is a Cloud
provider, P , which offers Cloud service. The other role is a Cloud customer, C, which
consumes the Cloud service and pay the service fee. To demonstrate the key contribution
of our work, we take a concrete example to formulate our problem as follows.

A Cloud provider, p, is an IaaS provider. It provisions virtual machines (VMs) on
demand with public addresses for customers to use. For instance, according to the
request of a customer c, provider p provisions a VM with a public IP address, IP

pub

.
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During the service time, T
service

, the customer, only the customer c is able to SSH and
login to the VM through the corresponding address IP

pub

. In this case, the SLA can be
that, the provider p claims that during the service time the provisioned VM will always
be accessible. If this is true, the customer c must pay the service fee, F

service

, to the
provider p after the service ends. Otherwise, the customer c can acquire a compensation
fee, F

compensation

. That is the customer c only needs to pay F
service

� F
compensation

to the provider p in the end, where we assume that F
service

> F
compensation

. For the
latter case, if it happens, we define it as a SLA violation event. In addition, it is worth
mentioning that we should exclude the case that the inaccessibility is caused by the
customer’s own network problem, to be a violation event.

With only these two roles in the agreement, it is hard to ensure that the provider can
get paid or the customer can get compensation paid back if the service fee is prepaid.
Hence, we leverage blockchain to play as the trusted party to afford a platform for
these two roles and enforce these monetary transmissions. But it is still especially
difficult to convince both roles whether the violation happens and whether it is caused
by the customer’s own network problem. We, therefore, bring in another new role in
the traditional SLA lifecycle, named as witness role, W . They are also the normal
participants in the blockchain and volunteers to take part in our SLA system to gain
their own rewards through offering monitoring service. In order to solve the trust issue,
a set of N witnesses, {w1, w2, ..., wN

}, is selected to form a committee in a specific
SLA lifecycle. They together report the violation event and may obtain witness fee,
F
witness

, as rewards from both the provider and the customer. Moreover, the wallet
address of a specific role on the blockchain is denoted as a filed value of it, x.address.
For instance, w

k

.address is the wallet address of witness w
k

.
In this paper, we make the basic assumption on the witness role that it is always

selfish and aims at maximising its own rewards.

7.2.2 Overall System Architecture
Figure 7.1 illustrates the system architecture we design for Cloud SLA enforcement.
It consists of two types of smart contracts on the blockchain. One is the witness-pool
smart contract, which is the fundamental smart contract of the system to manage all
the registered witnesses. The other type is the SLA smart contract for a specific SLA
enforcement. The responsibilities of the witness-pool smart contract include witness
management, specific SLA contracts generation, and witness committee construction.
Any user of the blockchain, who has a wallet address, can register its wallet address
into the witness pool to be a member of witnesses. They can keep themselves online
and wait to be selected for some specific SLA contract. The incentive for the witness to
participant in this system is to obtain rewards. Moreover, the more witnesses participant
in the system, the more reliable and trustful the system would be.

The entire SLA lifecycle then becomes as follows. Certain provider p first leverages
the smart contract of witness pool to generate an SLA smart contract for itself. Prior to
setting up SLA, the customer c should negotiate with the provider p about the detailed
SLA terms, including T

service

, F
service

, F
compensation

, etc. Here, one of the most
important terms is to determine N , which is the number of witnesses would be involved
in the enforcement of this SLA. The more witnesses involved in an SLA, the more
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Figure 7.1: System architecture for trustworthy enforcement of Cloud SLA with the
witness role

credible the violation detection results are. On the other hand, however, the more
witness fee would be paid, and both the customer and the provider need to afford this
fee equally. According to this negotiation, the provider can reset these parameters of
the generated SLA contract. Afterwards, a set of N witness members can be selected
to form a witness committee through the sortition algorithm in Section 7.3.1, which
is implemented by the witness pool smart contract on the blockchain. We design the
algorithm to be random and able to convince both, c and p, that most ones in the witness
committee are independent and would not belong to the adverse role. After dynamically
selecting the witness committee member, only the candidate witness can join the specific
SLA contract. Meanwhile, the provider provisions its Cloud service for the customer
to use and is able to publish its service details in the SLA contract. The witnesses
from the committee, therefore, start to monitor the service. In the case of our problem
assumption in Section 7.2.1, the provider p provisions a VM on demand and notify the
public address IP

pub

to all the committee members and customer c through the service
detail field of the SLA contract. Therefore, the customer can use the VM, and each
witness starts to “ping” the address IP

pub

constantly. If the violation happens during the
service time, i.e., the address IP

pub

is not accessible, the witness can report this event
immediately. However, this is a naive example. In real SLAs of more complex scenarios,
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the service monitoring component can be negotiated and provided by the provider and
customer. Besides, this component can be delivered in the form of containers, which is
lightweight and portable. Then, the witness is able to firstly download the container and
query the container to detect service violation. Section 7.2.3 describes how the violation
state can be finally determined through these witnesses’ reports. If the violation event is
approved, then the customer can get back its compensation fee. All the dash lines in
Figure 7.1 mean it may happen according to the actual event. Anyhow, the provider and
witnesses from the committee are able to get corresponding fees.

7.2.3 Service Violation Detection and Reporting
The critical role in our SLA enforcement system is the witness. It takes the responsibility
of monitoring the service and determining whether there is a violation. In this section,
we present our smart contract model in a specific SLA lifecycle to demonstrate crucial
functionalities of a witness: service violation detection and report.

The sequence diagram in Figure 7.2 shows how different roles interact with the
smart contract, especially involving the witness in our model. After witnesses being
selected, the entire lifecycle of a specific SLA begins. The provider p provisions the
Cloud service and deploy the smart contract on the blockchain. In order to set up an
SLA, p must prepay the corresponding fee PF

prepaid

to the smart contract first. The
amount of PF

prepaid

is determined by half of the maximum witness fee. The customer
c is then notified about the service and the content of the smart contract. As all the

Cloud 
Provider 
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wk 

Cloud 
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Cloud 
Customer 

Witness Committee (N) 
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Contract 
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Figure 7.2: Sequential diagram of different roles in the witness model
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smart contract on the blockchain is public, the customer can verify the contract and the
service status to decide whether to accept the SLA in a particular time window. In order
to accept the SLA, the customer also needs to transfer the prepaid fee, CF

prepaid

. It
includes the service fee, F

service

and the other half of the maximum witness fee. As we
assume F

service

> F
compensation

, the compensation fee would be directly deducted
from this part of the prepaid fee, if the violation happens. Afterwards, every witness in
the committee is notified to start monitoring the service continuously.

During the service time, the witness can decide whether to report the event to the
smart contract, if there is an service violation that, for instance, the VM is not accessible.
We design the rule that the witness w

k

also needs to transfer a small amount of fee,
WF

prepaid

, to endorse its report at the same time. The incentive persuading w
k

to report
the event is that it would gain relative more rewards as a witness fee if the violation
event is finally confirmed by the smart contract. On the contrary, if the violation is
not confirmed, w

k

would not get back the prepaid endorsement fee, WF
prepaid

, as a
penalty. This design prevents w

k

from reporting fake violations just for maximising
its rewards. Moreover, the violation is finally confirmed by the smart contract as the
explanation below.

Since the first violation report, the smart contract would start counting a time
window, T

report

. Within this time window, the smart contract accepts reports from
other witnesses. When the time window T

report

is over, the violation is automatically
confirmed, if there are no less than M out of N reports from the witness committee
received by the smart contract. M is also negotiated by p and c. It is then defined
in the smart contract. Of course, M must be bigger than half of N . Furthermore,
the bigger the M is, the more trustworthy the violation is. For example, if there are
N = 3 witnesses in the committee, the service violation can only be confirmed when
at least M = 2 of them report the event. Here, it is worth to mention that the smart
contract is designed to receive the report only from the committee member. Besides, the
second report from the same witness is refused within the same report time window. In
some sense, these N independent witnesses constitute a n-player game, in which each
witness would like to maximise its rewards. We specially design the payoff function,
shown in Section 7.3.2, and leverage the Nash Equilibrium principle of game theory
to prove that the witness has to be an honest player in this game. That is, they have to
report the violation according to the real event.

Finally, the SLA ends in two cases. One case is the service time T
service

is over,
and there is no violation. The other case is that the SLA is violated. According to these
different cases, the three roles can withdraw corresponding fees from the smart contract.
Section 7.3.2 explains more details.

7.3 Key Techniques to Ensure Trustworthiness

In this section, we describe key techniques adopted in our witness model in detail.
This model enables the automatic detection on the service violation, the results of
which can convince both sides: the provider and customer. First, the unbiased random
sortition algorithm is leveraged to guarantee that most of the witnesses selected into the
committee are random and independent. It is also essential to make both sides achieve a
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consensus that most of the selected witnesses would not delegate the opponent’s benefit.
Based on this, we give the payoff function for the witness model in Section 7.2.3.
Also, through the Nash Equilibrium principle, we prove that the “player” from the
witness committee have to behave honestly and tell the truth to maximise its rewards.
Furthermore, we analyse some possible fraudulent behaviours from a malicious witness
and propose quantitative indications to audit them from the action history.

7.3.1 Unbiased Random Sortition
It is crucial in the witness model that the witness sortition for a specific SLA contract
is unbiased, i.e., neither the provider nor the customer can have advantages in the
committee selection. Since Ethereum has already been introduced as a trusted party
in our model, we propose a straightforward random sortition algorithm for committee
selection shown as Algorithm 3, which is also implemented in the witness-pool smart
contract. It is different from another sortition algorithm developed by us, whose
randomness comes from participants [131].

The idea of this sortition process is to exploit the randomness of the blockchain itself.
Figure 7.3 illustrates the procedure with three steps. In essence, the basic smart contract,
termed as the “Witness-Pool Smart Contract”, is to manage the witness pool. It affords
interfaces for any blockchain user to register into the pool. Especially, the registered
witness is able to turn its state to “Online” or “Offline”, in order to indicate whether it
can be selected. The detailed witness state management is shown in Section 7.4.2. The
addresses in the witness pool are managed as a list in the registration order. Moreover,
the sortition algorithm is implemented in the witness-pool smart contract.

As shown in Figure 7.3, there are two interfaces designed in the smart contract
to select N witnesses from the pool. The “request” interface is firstly invoked by a
specific SLA smart contract at block B

b

. It means this transaction is involved in the bth

index of block. The hash value of this block is Bhash
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Figure 7.3: The procedure of invoking the unbiased sortition algorithm implemented in
the witness-pool smart contract to select the witness committee from the witness pool
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Algorithm 3 Unbiased random sortition
Input:

Registered witness set, RW , a list of addresses;
The the size of the list, len(RW );
The number of online witnesses, oc;
Required number, N , of members in a witness committee;
The hash value, Bhash

b

, of the bth block B
b

at request;
The block index, Id, of current block;
Following sequential, K

s

, blocks;
Confirmation, K

c

, blocks;
The address of the provider, p.address;
The address of the customer, c.address

Output:
Selected witness set, SW , to form a committee.

1: assert(Id > b+K
s

+K
c

) && assert(oc >= 10 ⇤N )
2: seed 0

3: for all i = 0 ; i < K
s

; i++ do
4: seed+ = Bhash

b+1+i

5: SW  ;
6: j  0

7: while j < N do
8: index seed%len(RW )

9: if RW [index].state == Online
&& RW [index].reputation > 0

&& RW [index].address! = c.address
&& RW [index].address! = p.address then

10: RW [index].state Candidate
11: oc��
12: Add RW [index]) SW
13: j ++

14: seed hash(seed)
15: return SW

blockchain, another interface “sortition” can be invoked to select N online witnesses as
candidates. The sortition algorithm is shown as Algorithm 3.

It takes the hash values of the former K
s

out of K blocks mentioned above as a
seed. In addition, we need to wait other K

c

blocks to confirm the adopted former ones,
where K

s

+K
c

= K.

• Here, K
s

should be chosen such that the probability of some parties sequentially
generating K

s

blocks is very small.

• K
c

needs to be chosen such that the candidate blocks before are finally involved
in the main chain with a dominant probability.

• These two values depend on the blockchain’s own properties. Considering the
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main net of Ethereum, Efe et al., [44] shows that the top four miners control 61%
of the mining power. Thus, we recommend K

s

= 10 so that with more than 99%
probability that the seed is not manipulable and predictable even if the top four
miners collude. On the other hand, it is commonly believed that K

c

should be 12.

Only the “Online” witness with positive reputation can be selected by the seed from
the list of the witness address pool. Anyhow, a new seed is generated based on the hash
value of the previous seed. This process is repeated until the required N witnesses are
selected. At the beginning of Algorithm 3, there are two assertions. We first check
whether there has already been the expected number of blocks generated after invoking
the “request” interface, to ensure the unbiasedness of the random seed from the hash
values of these blocks. The other assertion is to make sure that there are at least 10 times
of available witnesses than required N . It ensures that the number of online witnesses,
i.e., the potential ones can be selected into the witness committee, is large enough to
achieve the randomness among the committee members and prevent collusion. The
invoker can only wait for the condition to be met if any of the assertions are violated.

It is also worth mentioning that oc is leveraged to keep recording how many wit-
nesses are in the “Online” state currently. Shown as Figure 7.5, when the witness is
selected by the sortition algorithm, and its state turns into “Candidate”, demonstrated
as Line 10 of Algorithm 3. The online witness number, oc, should be counted down in
Line 11.

Considering the difficulty itself of generating a hash value for a block and combining
the sequential K

s

blocks as seed, we can prove that the sortition algorithm is random
and unbiased, i.e., neither the provider nor the customer can take advantage in the
committee with the assumption of trusting the security of Ethereum.

Finally, we analyse the security and trust issues in this design. First, the witness
pool should be Sybil-attack-proof. This protection can be achieved by requesting a
certain amount of deposit to pay to the witness-pool smart contract when the blockchain
participant registers as a witness. Therefore, an entity cannot register a lot of fake
witness accounts because that requires a large amount of deposit in total. Second, there
is no protection against corruption after the committee candidates are determined. The
provider or customer can attack the unwanted candidates to prevent them from joining
the committee or bribe them when they are in. However, we argue that this kind of
attack or collusion among the provider, customer, and committee members is not easy:
1) the address to identify a witness is the blockchain wallet address in Ethereum, which
is just a dynamically user-generated public key. It is not linked to any real identity or
IP address. Therefore, using off-chain methods, it is even difficult for the witness to
convince other committee members that it is also one of the members; 2) any suspicious
behaviour can be audited, because all the interactions on the blockchain are public and
immutable, e.g., the possible bribery. Then, the witness’s reputation value described in
Section 7.4.2 can be influenced through auditing. Hence, the on-chain collusion is easy
to detect and audit; and 3) when the witness pool is big enough, the unbiased sortition
algorithm proposed in this section is able to ensure that most of the committee members
are not known with each other before and the members change every time, since no
one can determine the sortition result. Therefore, the cost for collusion is high, and the
trade-off prompts the witness to perform honestly for rewards.
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7.3.2 Payoff Function and Nash Equilibrium
Game theory targets to mathematically predict and capture behaviour in a strategic situa-
tion, where each player’s rewards depend on the strategies of itself and also others. There
is currently a wide range of applications, including economics, evolutionary biology,
computer science, political science, philosophy [17] and also SLA negotiation [127].

The strategic or matrix form, of a n-player game, is the most common representa-
tion of strategic interactions in game theory. The definition consists of a set of players,
a set of strategy profiles and a design of payoff functions. Based on the basic type of
strategic form game with complete information in game theory, we define our witness
game as follow.

Definition 1. Witness Game: it is a n-player game represented as a triple (SW , ⌃, ⇧),
where

• SW = {w1, w2, ..., wn

} is a set of n players. Each player is a selected witness
and they form the witness committee.

• ⌃ = ⌃1 ⇥⌃2 ⇥ ...⇥⌃

n

is a set of strategy profiles, where ⌃
k

is a set of actions
for the witness w

k

, i.e., w
k

can choose any action �
k

2 ⌃

k

. A strategy profile
is, therefore, a vector, �⇤

= (�⇤
1 ,�

⇤
2 , ...,�

⇤
n

), where �⇤
k

is a specific action of ⌃
k

,
(k = 1, 2, .., n).

• ⇧ = {⇡1,⇡2, ...,⇡n

} is a set of payoff functions, where ⇡
k

: ⌃ ! R is the
payoff function determining the rewards for witness w

k

under a certain strategy,
(k = 1, 2, .., n). R is the corresponding rewards.

In addition, ��k

= {�1,�2, ...,�k�1,�k+1, ...,�n

} is defined as any strategy profile
� without player k’s action. The full strategy can then be written as � = {�

k

,��k

}.
Actually, there are only two actions in our witness game, which is ⌃

k

= {�(r)
k

,�
(s)
k

}.
�
(r)
k

means Report the service violation to the smart contract. �
(s)
k

means do not
report and keep Silence to the smart contract. In this N -witness game, we define the
set of witnesses choosing the action of Report as, W

report

, where 8w
k

2 W
report

,
the �⇤

k

= �
(r)
k

. Respectively, W
silence

is the set of witnesses not reporting, where
8w

k

2 W
silence

, the �⇤
k

= �
(s)
k

. These actions determine the final state of SLA:
SLA

status

= V iolated, there is a service violation; SLA
status

= Completed, service
is completed without violation. We then define the violation confirmation as Definition 2.

Definition 2. Violation Confirmation: based on the result of a strategy profile in a
N -witness game, the service violation is confirmed, only when ||W

report

|| �M , where
1 < N/2 < M < N,N,M 2 N. Otherwise, it is treated as there is no violation
happened.

It is worth mentioning that we define N > 2 and M < N here, in order to achieve
the violation confirmation reliably and fairly. According to our witness model, the
witness is designed to report the violation along with endorsement fee to the SLA
smart contract. Therefore, if the violation is not confirmed, the witness cannot retrieve
back its endorsement fee as a penalty. The detailed payoff function design is shown
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as Definition 3 according to above definitions and analysis. Here, the value of each
function is only leveraged to quantitatively represent the relative relationship among
the fees. Hence, 1 represents one share of profit. 10 is ten times shares of 1. -1 means
losing one share of profit.

Definition 3. Payoff Functions: the values of payoff functions are designed according
to the final SLA status.

• When SLA
status

= V iolated:
8w

k

2W
report

,⇡
k

(�
(r)
k

,��k

) = 10;
8w

k

2W
silence

,⇡
k

(�
(s)
k

,��k

) = 0.

• When SLA
status

= Completed:
8w

k

2W
report

,⇡
k

(�
(r)
k

,��k

) = �1;
8w

k

2W
silence

,⇡
k

(�
(s)
k

,��k

) = 1

In a n-player game, if a player knows the others’ actions, it would choose a strategy
to maximise its payoff. This is referred as its best response. Therefore, the best response
of the witness w

k

can be defined as follows.

Definition 4. Witness w
k

’s best response: in order to maximise its rewards, w
k

’s best
response to a strategy profile �⇤

�k

is a strategy �⇤
k

2 ⌃

k

, such that ⇡
k

(�⇤
k

,�⇤
�k

) �
⇡
k

(�
k

,�⇤
�k

) for 8�
k

2 ⌃

k

(k = 1, 2, ..., n).

A Nash Equilibrium point [87] is, therefore, able to be defined as a stable state,
where no player has an incentive to deviate from current strategy. It is actually a strategy
under which every player adopts its own best response.

Definition 5. Nash Equilibrium point: it is a specific strategy profile �⇤
= (�⇤

k

,�⇤
�k

),
if for every witness w

k

, �⇤
k

is a best response to �⇤
�k

, i.e., 8w
k

2 SW and 8�
k

2
⌃

k

(k = 1, 2, ..., n), ⇡
k

(�⇤
k

,�⇤
�k

) � ⇡
k

(�
k

,�⇤
�k

).

Based on the Nash Equilibrium point definition and payoff functions, we can derive
the theorem below.

Theorem 1. In a witness game, the only two Nash Equilibrium points are following
strategy profiles:

• �⇤
= (�⇤

1 ,�
⇤
2 , ...,�

⇤
n

), of which 8w
k

2 SW , �⇤
k

= �
(r)
k

;

• �⇤
= (�⇤

1 ,�
⇤
2 , ...,�

⇤
n

), of which 8w
k

2 SW , �⇤
k

= �
(s)
k

.

Proof. According to Definition 1 and 2, in a N -witness game, N � 3, N/2 < M 
N � 1 and M � 2, where N,M 2 N.

For the strategy profile of 8w
k

2 SW , �⇤
k

= �
(r)
k

, which means ||W
report

|| = N >
M . The SLA violation status is, therefore, violated, SLA

status

= V . According to
payoff functions design in Definition 3, for 8w

k

, its rewards are ⇡
k

(�
(r)
k

,�⇤
�k

) = 10. If
any w

k

chooses the other action, Silence, instead of Report. The final status of SLA,
however, would not be modified, due to ||W

report

|| = N �1 �M . Then, w
k

’s rewards
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are ⇡
k

(�
(s)
k

,�⇤
�k

) = 0 < 10 = ⇡
k

(�
(r)
k

,�⇤
�k

). According to Definition 5, this strategy
profile is a Nash Equilibrium point.

Analogously, for the strategy profile of 8w
k

2 SW , �⇤
k

= �
(s)
k

, which means
||W

report

|| = 0 < 2  M . The SLA violation status is, therefore, not violated,
SLA

status

= C. According to payoff functions design in Definition 3, for 8w
k

, its
rewards are ⇡

k

(�
(s)
k

,�⇤
�k

) = 1. If any w
k

chooses the other action, Report, instead of
Silence. The final status of SLA, however, would not be modified, due to ||W

report

|| =
1 < 2  M . Then, w

k

’s rewards are ⇡
k

(�
(r)
k

,�⇤
�k

) = �1 < 1 = ⇡
k

(�
(s)
k

,�⇤
�k

).
According to Definition 5, this strategy profile is also a Nash Equilibrium point.

For all the other strategy profiles, they are all a mix of actions, Report and Silence. It
means W

report

6= ; and W
silence

6= ;. When SLA
status

= V , i.e., ||W
report

|| �M ,
there always 9w

k

2 W
silence

, it can change the action to Report. But the SLA
status would not change, because of ||W

report

|| + 1 > M . Hence, w
k

increases its
rewards, from ⇡

k

(�
(s)
k

,�⇤
�k

) = 0 to ⇡
k

(�
(r)
k

,�⇤
�k

) = 10. On the other hand, when
SLA

status

= C, i.e., ||W
report

|| < M , there always 9w
k

2W
report

, it can change the
action to Silence. But the SLA status would not change, because of ||W

report

||�1 < M .
Hence, w

k

increases its rewards, from ⇡
k

(�
(r)
k

,�⇤
�k

) = �1 to ⇡
k

(�
(s)
k

,�⇤
�k

) = 1.
These counterexamples demonstrate all these strategy profiles are not Nash Equilibrium
points.

Therefore, in a witness game, there are two and only two Nash Equilibrium points.
They are �⇤

= (�
(r)
1 ,�

(r)
2 , ...,�

(r)
n

) and �⇤
= (�

(s)
1 ,�

(s)
2 , ...,�

(s)
n

).

We take the basic three-witness game as an example, where N = 3. Therefore,
M can only be equal to 2 based on Definition 2. Table 7.1 shows payoff functions
according to our previous definitions. The value element in Table 7.1 is the vector
of corresponding payoff function values. It is represented as (⇡1,⇡2,⇡3). According
to Theorem 1, Nash Equilibrium points in this game are (10, 10, 10) and (1, 1, 1),
respectively.

Based on above analysis, for a rational and selfish witness, who wants to maximise
its rewards through offering services, would have to behave as follows in this game. If
there is a violation happening, the witness knows that most of other witnesses are more
likely to report this event to gain more rewards. Hence, the higher rewards push the
witness to report this event. On the contrary, if there is no violation, the witness knows
that most of other witnesses are more likely to keep silence. Although the witness
wants to achieve the highest rewards, it has to take a great risk to pay a penalty for its

Table 7.1: Payoff functions for a three-witness game

w1

w3

�

(r)
3 : Report �

(s)
3 : Silence

w2 w2

�

(r)
2 : Report �

(s)
2 : Silence �

(r)
2 : Report �

(s)
2 : Silence

�

(r)
1 : Report (10, 10, 10) (10, 0, 10) (10, 10, 0) (-1, 1, 1)

�

(s)
1 : Silence (0, 10, 10) (1, 1, -1) (1, -1, 1) (1, 1, 1)
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fraudulent behaviour. From the global view, when there is no violation, all the witnesses
prefer to keep silence in order to stay at the Nash Equilibrium point, (�(s)

1 ,�
(s)
2 , ...,�

(s)
n

).
Then the violation acts as a signal to push them achieving another Nash Equilibrium
point, (�(r)

1 ,�
(r)
2 , ...,�

(r)
n

), for much higher rewards. At the same time, they tell the
truth about the service violation.

Therefore, making the witness tell the truth of the event is not because of honesty.
Instead, the reason is that the witness only wants to maximise its rewards.

7.3.3 Witness Audit
The sortition algorithm, Algorithm 3, ensures that the selected witnesses are independent
to a great extent. The payoff function design stimulates the witness telling the truth.
However, an auditing mechanism is still needed to ensure that the malicious or irrational
witness can be detected and kicked out from the witness pool. As all the interactions
with the smart contract, i.e., transactions, are public and permanently stored on the
blockchain, it is possible to audit a witness through its behaviour history. We mainly
exploit the following information in the history to do auditing. It is expressed as
Equation 7.1. It represents a set of events of the witness, w

k

. The witness can adopt
the action of silence �

(s)
k

or the action of report �(r)
k

. �⇤
k

means the SLA event with
any action adopted by w

k

. To be specific, when the action is report, we can also further
know its order among all the witnesses’ reports, first to report or not, and the reporting
time T

r

, relatively from the SLA starting time. In addition, status expresses whether
the SLA is violated or completed. Symbol, “⇤”, means the event with any SLA status is
counted in this set.

Event(w
k

,�
(s)
k

|[�(r)
k

: (order, T
r

)]|�⇤
k

, status : C|V |⇤) (7.1)

Based on the information above, we analyse that there are three types of malicious
witnesses: lazy witness, speculative witness, and sacrificed witness.

Lazy witness refers to the one, who prefers not to report the violation. Since there
is a case that the higher incentive for reporting a violation is not enough to motivate
the lazy ones, they can choose the strategy not to really monitor the service. Then
they always keep silence and never report the violation. With this strategy, they would
not pay the penalty, even if the final status of SLA is actually violated. Considering
violation is not a regular event, the lazy witness is still able to gain some rewards via
multiple “games”. However, this type of lazy witness can be audited through the active
rate, which is defined as follows.

Definition 6. Active rate (⌘
active

(w
k

)): this the metric to measure the activeness of
witness w

k

, when there is a violation.

⌘
active

(w
k

) =

||Event(w
k

,�
(r)
k

, status : V )||
||Event(w

k

,�⇤
k

, status : V )|| (7.2)

⌘
active

(w
k

) = 0 means that the witness w
k

never reports the violation event,
although there actually is one. A threshold, b⌘

active

(w
k

), therefore, can be set to
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determine whether w
k

is a lazy witness, i.e., still ⌘
active

(w
k

) < b⌘
active

(w
k

), when w
k

has already been involved into many SLA events.
Speculative witness refers to the one, who is more likely to report in a speculative

way. Since all the actions are public and transparent on the blockchain, there is a
possible speculative behaviour for the witness, which is only to follow others’ reports.
The witness does not monitor the service. Instead, it monitors transactions on the
blockchain to see whether some other witnesses are reporting the violation. Then, it
immediately follows and reports, trying to gain the maximum rewards. Although we
can set a relatively short report time window in the model design of Section 7.2.3, its
speculative reports might still be counted in the following blocks of the blockchain.
Moreover, this speculative witness also needs to take the risk that the violation may not
be confirmed finally. Anyhow, this type of speculative witness can be audited through
the following rate.

Definition 7. Following rate (⌘
follow

(w
k

)): this the metric to measure the frequency
that the witness w

k

follows the reports of other witnesses.

⌘
follow

(w
k

) =

||Event(w
k

,�
(r)
k

: (NotF irst, T
r

), status : V )||
||Event(w

k

,�
(r)
k

: (order, T
r

), status : V )||
(7.3)

Here, NotF irst means that the transaction containing the report of w
k

is not the
first block in the reporting time window. So ⌘

follow

(w
k

) = 100% means for all violated
SLA events involving the witness w

k

, it is never the first one to report. A threshold,
b⌘
follow

(w
k

), therefore, can be set to determine whether w
k

is a speculative witness
through following, i.e., when ⌘

follow

(w
k

) > b⌘
follow

(w
k

), if w
k

is involved into many
SLA events.

Sacrificed witness refers to the one, who always reports at a specific time stamp.
For instance, w

k

always reports the violation within one minute after the SLA starts.
Though the witness may pay a lot of penalty for its malicious behaviour at the beginning,
it can show other witnesses its behaviour pattern from its history later on. In some
sense, it is able to imply to others that it would report at some time stamp. Then as
long as others have analysed its behaviour pattern and followed, it can most likely gain
the maximum rewards. Hence, it is crucial to audit this type of witness through the
following fixed pattern rate.

Definition 8. Fixed pattern rate (⌘
fix

(w
k

)): this the metric to measure the frequency
that the witness w

k

report the violation at a specific time stamp, bT
r

.

⌘
fix

(w
k

) =

||Event(w
k

,�
(r)
k

: (order, bT
r

), status : ⇤)||
||Event(w

k

,�⇤
k

, status : ⇤)|| (7.4)

Here, ⌘
fix

(w
k

) = 100% means for all of the SLA events, which involves the
witness w

k

, it always reports at time stamp, bT
r

. A threshold, b⌘
fix

(w
k

), therefore, can
be set to determine whether w

k

is a sacrificed witness through following, i.e., when
⌘
fix

(w
k

) > b⌘
fix

(w
k

), even if w
k

is just involved into several SLA events.
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It is worth to mention that these auditing mechanisms can also be implemented in
the smart contract, in order to avoid a third party to dominate the judgement. It can be
combined with the reputation value of the witness, which is further explained as the
witness reputation in the implementation part of Section 7.4.2. Therefore, when the
witness’ reputation decreases to zero, that witness would also be blocked automatically
by the sortition algorithm.

7.4 Prototype Implementation and Experiments
According to the witness model and the payoff function design, we implement a proto-
type system based on the smart contracts of Ethereum. We leverage the programming
language, Solidity6, provided by Ethereum, to program smart contracts. Overall, there
are three roles and two types of smart contracts in our SLA enforcement system. Roles
include the traditional P rovider and Customer, as well as the introduced W itness. The
smart contracts include the witness-pool smart contract and the SLA smart contract. In
this section, we firstly illustrate the state transition in that two types of smart contracts,
respectively. Via this, we describe the detailed functionalities of the interfaces in the
smart contracts and show how they are leveraged to transit the states. Afterwards,
we show some experimental studies on the transaction cost of these interfaces on the
Ethereum test net, “Rinkeby”7.

7.4.1 Overall System Implementation
Overall, there are three roles and two types of smart contracts in our SLA enforcement
system. Roles include the traditional P rovider and Customer, as well as the introduced
W itness. The smart contracts include the witness-pool smart contract and the SLA
smart contract. Figure 7.4 illustrates the relationship among these entities through
different interfaces. These interfaces are named as the text on the arrow. The format
of the text is ‘R

role

! [C
type

::]N
interface

’. It means that only the role R
role

can
invoke the interface, N

interface

, which is defined in the smart contract of C
type

. The
corresponding implementation is achieved by the checking mechanism, which is the
property of the programming language provided by Ethereum. Therefore, the smart
contract restricts that only the specified role can interact with the smart contract in a
certain state. The representation of the R

role

are P for P rovider, C for Customer, SC
for a generated SLA Smart Contract and X for any blockchain user. Also, for C

type

,
WP is for the witness-pool type of smart contract, and SLA is for the generated ones
for SLA enforcement. In addition, this interface definition also applies to Figure 7.5
and Figure 7.6.

The witness-pool smart contract is the basis in order to set up the system. Any
blockchain user can register and become the W itness role through the interface “register”
provided by the witness-pool smart contract. There are also some other interfaces for
the witness to invoke to change its state in the pool in order to be selected. More details
are discussed in Section 7.4.2. For a specific SLA lifecycle, any user X can invoke the

6http://solidity.readthedocs.io
7https://www.rinkeby.io/
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Figure 7.4: Interactions among roles and smart contracts

interface “genSLAContract” provided by the witness-pool smart contract. Afterwards,
a specific SLA smart contract is generated by the witness-pool smart contract, and the
contract address is returned back. This address is also recorded in the witness-pool
smart contract. It ensures the validity of the SLA smart contract to interact with other
roles. Meanwhile, the user X becomes the P rovider role of the generated SLA smart
contract. It can customise the contract, including setting the customer’s address, and
other negotiated contract parameters, such as service duration and witness committee
scale N . It is also responsible for performing the unbiased random sortition algorithm,
explained in Section 7.3.1. As this sortition algorithm is leveraged by the provider
through a specific SLA contract, the online witness can know it is selected by which SLA
smart contract, basically the contract address, from checking its own state. Then it can
make a confirmation to the SLA contract to join the witness committee. Simultaneously,
the SLA smart contract further invokes interfaces of witness-pool smart contract to
acknowledge the witness management. After a proper witness committee is constructed,
the provider can publish its service detail on the chain to initiate the SLA lifecycle.
Details are explained in Section 7.4.3.

7.4.2 Witness-pool Smart Contract Implementation
In this part, we focus on implementation details about the witness-pool smart contract,
especially the witness management. Figure 7.5 illustrates the states of a witness role
defined in the smart contract. It includes four states: “Online”, “Offline”, “Candidate”
and “Busy”. The state transition of the witness is as follows.

After registration in the witness pool, only the witness itself can turn its state into
“Online”. It is then probably selected by a specific SLA smart contract. Hence, the
witness needs to monitor its own state on the blockchain continuously. This operation
is feasible, as the read-only operation does not need any transaction fee. Once it is
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Figure 7.5: State transition diagram of a witness in the witness-pool smart contract

selected by a specific smart contract through performing “sortition” algorithm, its
state turns into “Candidate”. Within a confirmation time window, e.g., 2 minutes,
the witness can look through the SLA smart contract, which selects it, and decide
whether to confirm or reject this sortition. If it rejects, the provider of the SLA smart
contract has to perform another sortition. Otherwise, its state turns into “Busy”, after
it invokes the interface, “witnessConfirm”, of the SLA smart contract. By the end
of each SLA lifecycle iteration, the witness has the right to actively leave the SLA
contract by leveraging the interface “witnessRelease”. On the other hand, it can also be
passively released from the SLA contract if the provider invokes the interface “resetSLA”
to dismiss the witness committee. Finally, the witness can “trunOff” to avoid being
selected before it is not available to the Internet.

In order to prevent some malicious intentions, we bring in a reputation value for
each witness to measure their behaviours. Firstly, each witness has an initial reputation
value of R

init

at registration, which could be a predetermined constant value. Then,
for instance, some witness may not turn its state into “Offline”, when it is not actually
available or does not frequently check its state. Then, it would not be able to confirm the
selection and join the SLA contract within the confirmation time window, if it is chosen.
In this case, the witness would not be chosen again, since its state becomes “Candidate”.
To reverse back to the state “Online”, in which it can be selected, the witness has to
leverage the interface, “reverse”. In this case, its reputation value decreases by 10. If this
value becomes zero or less, it would be permanently blocked by the sortition process
according to Algorithm 3. We also combine the reputation value with the auditing
mechanism mentioned above in some sense. For example, the reputation of the witness,
who does not report, would decrease by 1, when the violation is confirmed. It is the
same with the one, who reports the violation but the violation is not finally confirmed.

It is worth mentioning that in the current implementation, we have not designed the
scenario where the reputation can be heightened. The idea is to make the reputation
decreasing as a soft punishment, not directly losing tokens (money). However, when
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the reputation is too low, the account is blocked, and the witness has to register another
account. Meanwhile, the witness would lose the deposit of the blocked account in this
case. On the other hand, if the witness can heighten its reputation through performing
honestly, even the increasing scale is much smaller than the decreasing scale. This
design would still give witnesses the chance to balance the reputation through perform-
ing different times of honest behaviours and malicious behaviours, e.g., performing
maliciously once and ten times of honest behaviours afterwards.

7.4.3 SLA Smart Contract Implementation
Figure 7.6 shows the SLA state transition to implement a specific SLA smart contract
enforcement. This type of smart contract is generated by the witness-pool smart contract.
All the interfaces annotated in this figure belongs to this type of SLA smart contract.
Hence, we omit the definition scope C

type

::. There are five states: “Fresh”, “Init”,
“Active”, “Violated” and “Completed”, shown as circle in Figure 7.6. The dashed arrows
demonstrate the state transition path when a violation happens. The three squares in
the figure represent the respective roles in this smart contract. At the end of SLA, they
can withdraw the rewards respectively. The dashed line here also refers to the action
adopted under the situation of the violation.

The contract is generated in the state of “Fresh”. In this state, the provider can
customise the SLA parameters according to the negotiated results with the customer.
Furthermore, the service detail can also be published onto the contract through “pub-
lishService”. In our case, the detail is the public IP of the VM. All others are, therefore,
notified. However, this SLA only proceeds when the number of the members in the wit-
ness committee is satisfied. Otherwise, the provider is unable to leverage the interface,
“setupSLA”, to transit into “Init” state. According to the witness model design in Sec-
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Figure 7.6: State transition diagram of SLA lifecycle for a specific SLA smart contract
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tion 7.2.3, the provider needs to prepay some fee, PF
prepaid

, to the smart contract for
hiring witnesses. The actual amount of fee is calculated by the smart contract according
to the scale of committee member and a basic hiring fee. Also, this amount of tokens
is one of the requirements to invoke the interface. It ensures that only that amount of
prepaid fee is transferred into the smart contract. The customer then decides whether
to accept the SLA. If it accepts the SLA, it also needs to prepay the fee, CF

prepaid

,
including the service fee and its part of the hiring fee for witnesses. If not, the provider
can “cancleSLA” and withdraw back its money. When the service is completed, all
corresponding roles can retrieve their rewards through a set of withdrawing interfaces.
After all the money is withdrawn from the contract, the provider can leverage “resetSLA”
or “restartSLA” to rotate back to the previous state. These interfaces are designed for
continuous service delivery instead of a long service duration to trap witnesses. The
difference between these two interfaces is “resetSLA” dismisses the witness committee
and the provider can change some other terms. On the other hand, “restartSLA” would
keep the committee and quickly proceed another round of SLA iteration.

It is also worth to mention that the smart contract on blockchain cannot run itself.
The state transition must be triggered by some interfaces and it takes some cost to
execute. Therefore, we design the interface for the role, who is the greatest beneficiary
in some cases, to modify the state. Because they have the motivation to perform the state
transition. For example, when the service duration ends normally, the provider is the
greatest beneficiary to gain the entire service fee. It must actively leverage the interface,
“providerEndNSLAandWithdraw”, to end the normal SLA and withdraw its own rewards.
Meanwhile, it divides the prepaid money as the payoff function design in Section 7.3.2
to different witnesses. Afterwards, other roles are able to withdraw their part of rewards.
Analogously, when there is a violation, the customer is the most motivated one to gain
the compensation fee. It can leverage, “customerEndVSLAandWithdraw”, to end the
violated SLA and transit the state from “Violated” to “Completed”. It is the same
for “resetWitness”, which is the customer to reset the witnesses’ state and report time
window, when the violation is not confirmed. Otherwise, witnesses cannot report the
violation later on, if there are real ones.

7.4.4 Experimental Study
In order to test all the functionalities of our model and system design, we deploy the
implemented smart contracts on the test net of Ethereum blockchain, “Rinkeby”. It
is a world-wide blockchain test net for developers to debug the smart contract. The
‘Ether’, which is the cryptocurrency of Ethereum, does not represent real value on the
test net and can be applied for debugging. Hence, we generate several accounts on
“Rinkeby” to simulate different roles, i.e., the provider, customer, and witnesses. We
leverage the retrieved ‘Ether’ on each simulated account to execute the interfaces and
prepay different types of fees according to the model. To conduct the experiment, we
first deploy the basic witness-pool smart contract and make all the accounts registered
to the witness pool. The provider then generates an SLA smart contract to start the
SLA lifecycle with the customer. Afterwards, we test all possible scenarios to exploit
and validate the functionality of different interfaces. The results demonstrate that our
system implementation satisfies our model and payoff function design.
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Figure 7.7: The gas consumption of each interface in the smart contracts

The trust part of the system is proved by game theory and ensured by the unbi-
ased sortition algorithm, whose credibility is endorsed by the blockchain technique.
Therefore, we mainly analyse some performance information from our experimental
study. Here, the performance refers to the complexity of each interface in the smart
contract. It determines the transaction fee needed to pay the miner in Ethereum since
the miner needs to execute the program defined in the interface, which consumes the
electricity power of the miner. The more complex of the interface is the more transaction
fee required when it is invoked. The transaction fee is measured as ‘Gas’ defined in
Ethereum, which is a unit that refers to how much work taken by the miner when
executing the transaction. The final fee is the product of gas amount and the gas price
for each unit. Hence, the gas consumption is similar no matter on the test net or main net.
We, therefore, record all the gas consumption for each interface from the transaction
history of the experiment.

Figure 7.7 illustrates the gas consumption of each interface. We show the major
interfaces defined in the two types of smart contracts, which construct the system. Some
simple interfaces, such as the one that sets the SLA parameters, are omitted. Their gas
consumptions are similar to ‘setServiceDuration’ in the figure. Some other interfaces
of the witness-pool smart contract are also omitted, as these are the ones that can only
be invoked by the SLA smart contract. Its consumption is involved in some interface
in the right part of the figure. Besides, the consumption of ‘genSLAContract’ in the
witness-pool smart contract is also not shown in the figure, because it is more than 10
times higher than others, which is around 2,200,958. However, it is acceptable for the
provider to invoke this to generate a new SLA smart contract, especially the SLA smart
contract can be reusable.

From the experimental study, it can be derived that, compared with the customer
and the witness, the provider tends to require more gas in the entire SLA lifecycle. The
interfaces of customer and witness consume less. The consumption of different roles
fits our model design and reality. Because in most cases, the provider earns the most
rewards through offering service. It has the incentive to proceed with the lifecycle. The
lightweight gas consumption for witness role is also able to convince blockchain users
to take part in the system to work as a witness. Moreover, these gas consumption values
are achieved through experiments based on the current implementation. There is still
possible space to optimise the interface implementation further, in order to lower the
gas consumption.
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7.5 Conclusion
In this chapter, a witness model is proposed for Cloud SLA enforcement, and we
specially design the payoff function for each witness. We leverage the game theory to
analyse that the witness has to offer honest monitoring service in order to maximise its
own rewards. Finally, a prototype system is fully implemented using smart contracts of
Ethereum to realise the witness model. Not only the SLA enforcement lifecycle but also
the witness management of the witness pool is implemented with the smart contract.
The experimental study demonstrates the feasibility of our model and shows system
performance. Via this way, the trust problem is transferred to economic issues. It is not
the witnesses themselves would like to be honest, but the economic principles force
them to tell the truth. Here, the blockchain plays as a public and immutable monetary
management platform according to some predefined rules. We also believe the witness
model can be applied in other scenarios with blockchain, where originally only two
roles are involved in a contract.

For future work, there are mainly two directions: on-chain and off-chain. For the
on-chain part of work, we are going to further optimise the interface implementation
to reduce the gas consumption and enrich the functionalities of the smart contract.
In addition, some more scenarios should be considered to apply our model. For the
off-chain part of work, user-friendly tools are going to be developed for each role in the
system to monitor the state on the chain and perform their corresponding interactions.
On the other hand, it can also be combined with CloudsStorm framework to construct
the witness ecosystem. The vision is to ensure the Cloud performance for applications
through automated SLA enforcement.
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8
Conclusions

In this thesis, we have presented the CloudsStorm framework for developers of quality-
critical Cloud applications to seamlessly program and control virtual infrastructure in
the DevOps lifecycle. The case studies and experimental results obtained from real
Clouds demonstrate the feasibility and functionality. The blockchain based witness
model further enhances the application Quality of Service (QoS) assurance through the
trustworthy enforcement of Service Level Agreement (SLA).

To be specific: 1) in Chapter 3, we have designed three levels of infrastructure
programmability to describe the infrastructure topology, including network connections.
Innovatively, the infrastructure operations, such as failure recovery and scaling, are also
defined for programming; 2) in Chapter 4, we have proposed two types of overlay net-
work mechanisms to connect resources from separated data centres. The infrastructure
is, therefore, able to be partitioned and accelerate the provisioning process, meanwhile,
keep transparency to the applications; 3) in Chapter 5, we have proposed two types
of control modes and implemented the “Infrastructure Execution Engine” to interpret
the programmed infrastructure code. The engine empowers CloudsStorm framework
with the ability to request corresponding resources from federated Clouds and control
them at runtime; 4) in Chapter 6, we have assumed sufficient scenarios to leverage
CloudsStorm to satisfy the application QoS, from the perspectives of task-based and
service-based applications; 5) in Chapter 7, we have proposed the blockchain based
witness model to credibly detect the service violation for enhancing the final stage of
application QoS assurance.

In this chapter, we first summarise CloudsStorm with characteristics to highlight its
key innovations, especially demonstrating its features and functional level in the Cloud
application DevOps lifecycle. Then we conclude the thesis by answering the research
questions proposed in Chapter 1. Finally, we discuss future directions.

8.1 Conclusions of Outcomes
This thesis presents CloudsStorm, a framework for seamlessly programming and op-
erating virtual infrastructure function during the DevOps lifecycle of Cloud applica-
tions. We plot the CloudsStorm in the technical landscape of the DevOps tools in
Figure 8.1. CloudsStorm works at the VM level. It provides design-level support for
describing and customising the federated infrastructure, shown as the vertical pink line
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Figure 8.1: The infrastructure programmability and controllability provided by the
CloudsStorm framework for DevOps and comparison with related tools

below CloudsStorm in Figure 8.1. Notably, the “Infrastructure Description Code” of
CloudsStorm enables the ability to describe the networked infrastructure, which makes
the infrastructure transparent to the application. Secondly, the “Infrastructure Execution
Code” is proposed to program operations of the infrastructure-level resources. It corre-
sponds to the vertical purple line below CloudsStorm in Figure 8.1. The infrastructure
description code not only provides a static description but also can be executed. Thirdly,
the “Infrastructure Embedded Code” is proposed to empower the programming on
fine-grained infrastructure operations within the arbitrary code for general purposes,
instead of at the application module level. It corresponds to the vertical blue line below
CloudsStorm in Figure 8.1. In addition, we propose two types of control mode, namely
passive and active mode, for the application to control its infrastructure. The “Runtime
Control Policy” is proposed for this purpose, which refers to the vertical green line
below CloudsStorm in Figure 8.1. In order to implement the framework, we put forward
the network connection method [130] to construct the networked infrastructure and
develop an “Infrastructure Execution Engine”. This engine is designed to be extensible
to easily plug in a new Cloud, which only requires basic functions of how to provision
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and terminate one VM from that Cloud. The dynamically provisioned “Control Agent”
also leverages this engine at runtime to perform infrastructure operations, which are
programmed at the development phase. A dedicated “Control Agent” is deployed for
each application-defined infrastructure. It, therefore, works in a decentralised way to be
more efficient, instead of acting as a centralised infrastructure management framework
for many applications, even for many users. Besides, the GUI provided by the “Control
Agent” affords an intuitive way to check and access Cloud resources. Because of the
straightforward YAML format, the syntax of CloudsStorm is easy to learn and program
with, especially for the definition of parallel operations.

We demonstrate the CloudsStorm framework using two case studies to migrate
task-based applications and service-based applications onto real Clouds. The former
one allows a user to program and control infrastructure-level resources using the “In-
frastructure Execution Code”. The latter one concentrates on the application-level
programmability by leveraging the “Infrastructure Embedded Code” to make the un-
derlying infrastructure being aware of the application-level events for adaption. Both
case studies clearly demonstrate that through using CloudsStorm, Cloud applications
can be efficient concerning Cloud resource usage when compared against traditional
manual or fixed infrastructure configurations. The rich features for programming and
controlling virtual infrastructure enable CloudsStorm to support on-demand and par-
allel infrastructure management. In conclusion, CloudsStorm can enable developers
to effectively program a virtual infrastructure for a quality-critical application at the
development phase and flexibly control the infrastructure for the application at runtime.

8.2 Conclusions on the Research Objectives
As mentioned in Chapter 1, the main research question to answer in this thesis was
identified as:

RQ. How to seamlessly program and control the Cloud virtual infrastructure in the
application DevOps lifecycle to satisfy the quality-critical constraints of the application?

Considering the DevOps lifecycle, we conclude that we proposed and implemented a
framework, CloudsStorm, to enable seamless infrastructure programming and control in
various phases. Therefore, the quality-critical constraints of the application can be better
considered and satisfied because of: 1) a systematic infrastructure programmability
design in the development phase; 2) fast provisioning and overlay network mechanisms
in the provisioning phase; and 3) the seamless controllability implementation in the
runtime phase. Moreover, during the entire lifecycle, we leveraged the blockchain based
smart contract and proposed a witness model to enhance the trustworthiness of the SLA
enforcement. Via this manner, we improved the quality assurance of the application.

To be specific, we conclude this thesis by answering the following detailed research
questions.

RQ1. How can we customise and program the infrastructure according to different
application quality requirements?

We answer this question by designing infrastructure programmability to address
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applications’ functional and non-functional requirements, respectively. Considering
the functional requirements, we proposed and designed three levels of infrastructure
programmability: 1) design-level, i.e., “Infrastructure Description Code”, enabling
the description of infrastructure resources to customise the Clouds and data centres,
2) infrastructure-level, i.e., “Infrastructure Execution Code”, enabling the description
of infrastructure operations to program the operations performed on the infrastructure,
and 3) application-level, i.e., “Infrastructure Embedded Code”, enabling the infrastruc-
ture operations to be embedded directly inside the application to achieve fine-grained
programmability. Thus, the application can directly manage the infrastructure. Specifi-
cally, in order to make the infrastructure operation extensible for different Clouds, we
proposed the infrastructure programming model based on basic Cloud VIFs (Virtual
Infrastructure Functions). The idea is that the developer only needs to provide several
basic Cloud VIFs of a new Cloud to plug into our framework. Then the developer can
benefit the programmability of high-level infrastructure operations performed on the
new Cloud from our framework. Through analysing the common service characteristics
and infrastructure lifecycle of different Clouds, we modelled three basic Cloud VIFs as
VM Provisioning, VM Terminating, and VM Configuration. Furthermore, we demon-
strated the high-level infrastructure operations, such as scaling and failure recovery, can
be constructed by these basic VIFs.

As to non-functional requirements, we designed the “Runtime Control Policy” al-
lowing the developer to define the quality-critical constraints of the application through
identifying specific monitoring metrics. In addition, the developer can define the opera-
tions to adjust the infrastructure if the condition of the monitoring metrics is met. The
adjustment is essential to maintain the application’s QoS. In particular, we allowed the
developer to define the monitoring metrics of the infrastructure system and as well as
the application.

RQ2. How can we effectively provision a networked infrastructure and enable topology
partitioning across data centres or Cloud providers based on application QoS constraints?

We answer this question by presenting a fast and dynamic provisioning mechanism
to accelerate the provisioning process for quality-critical Cloud applications. Before
provisioning, we partitioned the original application-defined infrastructure topology
into multiple sub-topologies and distributed them into different data centres and even
Clouds. Then we proposed two overlay network configuration mechanisms, i.e., tunnel-
based and NAT-based, to connect the partitioned sub-topologies transparently. Finally,
the partitioned sub-topologies were provisioned concurrently. The advantages of this
mechanism are as follows: 1) The automatic overlay network configuration makes
the underlying infrastructure transparent to the application. Even the infrastructure is
distributed in multiple data centres, the computing resources, i.e., the VMs, can still be
connected with the application-defined private network. Then the dependency of the
VM provisioning is decoupled, as the public IP address is not required to configure the
application in this case. Thus, all the VMs can be provisioned in parallel; 2) The scale
of the infrastructure is improved through distributing the resources into various data
centres since Cloud providers often impose limitations on the number of VMs that one
customer can apply from one data centre. Our mechanism makes it possible provision a
large-scale infrastructure across multiple data centres; 3) The provisioning overhead is
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reduced, as the time of concurrently provisioning multiple smaller sub-topologies in
different data centres is less than that of provisioning the entire infrastructure in one data
centre. Specifically, if a particular part of the infrastructure crashes, we only need to re-
provision the crashed part, not the entire infrastructure to reduce the recovery overhead.
Therefore, the application can benefit from the reduced infrastructure provisioning
overhead to satisfy the quality-critical constraints, especially when the application needs
to scale out or recover the infrastructure resources in specific time constraints.

Moreover, the provisioning mechanism and the overlay network design have been
integrated into CloudsStorm framework. To test the efficiency of the mechanism,
we conducted experiments on ExoGENI. The experimental results in practice and
model analysis in theory both showed that our mechanism can reduce the provisioning
overhead, especially for large-scale infrastructure.

RQ3. How can an application efficiently control the virtual infrastructure at runtime,
preferably without vendor lock-in?

We answer this question by proposing a control model with two types of control
modes, i.e., the passive mode and the active mode, for distributed virtual infrastructures,
which are often across data centres and providers. In the passive mode, the infrastructure
is passively controlled and adjusted based on the monitoring information. The threshold
of the monitoring metrics to adjust the infrastructure is defined in “Runtime Control
Policy”. However, this passive mode is not sufficient for the application to achieve
seamless control on the infrastructure. We, therefore, proposed and implemented another
control mode, the active mode. In the active mode, we allows the developer to actively
provision and terminate virtual infrastructure resources from scratch: the infrastructure
topology is defined in “Infrastructure Description Code”; the operations are defined by
“Infrastructure Execution Code”. In addition, the active mode allows the application to
actively adjust the infrastructure in advance before getting the monitoring information of
a particular event, e.g., the bursty input workload. This type of controllability is achieved
by using “Infrastructure Embedded Code”. As the enhancement of the passive mode,
the active mode control is beneficial to adapt the infrastructure seamlessly according to
prior knowledge, before the influences have occurred due to the outside events.

Besides, these two control modes have been implemented in “Infrastructure Execu-
tion Engine” and “Control Agent” of CloudsStorm framework. To tackle the vendor
lock-in issue, we leveraged specific software design patterns to ensure that the infras-
tructure programming model based on basic Cloud VIFs proposed in RQ1 can be
realised. Thus, our controllability implementation achieves extensibility to support any
public IaaS Cloud. Meanwhile, we improved the efficiency of performing infrastructure
operations through multi-thread parallelisation. Compared with other tools, i.e., “jcloud”
and “cloudinit.d”, the scaling and provisioning performance evaluations demonstrate
that CloudsStorm can achieve at least 10% efficiency improvement in our experiment
settings.

RQ4. How can we effectively handle the SLA with the provider to make the service
quality assurance trustworthy?

We answer this question by proposing a witness model using game theory and smart
contract techniques. Based on the existing service model of Cloud SLA, we introduced
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a new role called “Witness” to be responsible for the service violation detection and
report. Witnesses gain rewards as an incentive for performing these duties, and the
payoff function is carefully designed in a way that trustworthiness is guaranteed: in
order to maximise the rewards, the witness has to tell the truth always. This fact that
the witness has to be honest was analysed and proved through game theory using the
Nash Equilibrium principle. In addition, we proposed an unbiased sortition algorithm
to ensure the randomness of the independent witnesses selection from the decentralised
witness pool, to avoid possible unfairness or collusion. Finally, to further reduce the
risk of the model, we introduced an auditing mechanism to detect potential malicious
witnesses. Explicitly, we defined three types of malicious behaviours and proposed
quantitative indicators to audit and detect these behaviours.

Moreover, based on the witness model, we have developed a prototype1 leveraging
the smart contracts of Ethereum blockchain. The experiment was conducted on Rinkeby,
which is a world-wide blockchain test net for developers to debug the developed smart
contracts. Experimental studies demonstrated that the proposed model is feasible, and
indicated that the performance, i.e., transaction fee, of each interface follows the design
expectations.

8.3 Future Work Directions
The framework can be further extended in future along with the directions of the DevOps
using CloudsStorm and the service management using blockchain.

8.3.1 Generalised programming and control models for hetero-
geneous infrastructures

With the exponential growth of the mobile and Internet of Things (IoT) devices, the
emerging 5G technique would eventually boost to realise the situation that everything
connects, which generates a mass of data. In this case, computing resources should be
anywhere to satisfy the network and computing requirements of the large distributed
mobile devices. The current Cloud computing technique is not sufficient due to its
relatively centralised resource management in one big data centre. Fog computing [78]
is, therefore, the trend to push the infrastructure services, traditionally bounded within
big data centres, towards remote nodes or micro-clouds [33] closer to the end devices
and data sources. The diversity and heterogeneity of the infrastructure then become a
huge hurdle to utilise the resources for orchestrating applications. On the basis of Cloud
virtual infrastructure programmability and controllability research in Chapter 3-6 of this
thesis, we point out the future work in following two dimensions.

I. Horizontal dimension: distributed and diverse infrastructure manage-
ment

Considerations on programming the distributed infrastructures, we have empowered
the application developers with the ability to describe the Cloud virtual infrastructure

1https://github.com/zh9314/SmartContract4SLA
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topology, program the operations, and customise the control policies in our CloudsStorm
framework. It is specially worth mentioning we have taken care of the openness and
extensibility of the framework. In the future work, a more comprehensive description
of diverse infrastructure resources should be designed to support programming the
Fog/Edge resources provided by some individuals or micro-clouds. Considering the
common basic Cloud virtual infrastructure functions modelled in Chapter 3, the infras-
tructure operations performed on the Fog/Edge resources should also be programmed.
On the other hand, with the increasing infrastructure provisioning options, including
more small providers and resource geolocations, an algorithm to plan and map the
infrastructure topology from the applications’ high-level quality-critical requirements
should be developed to relieve the developers’ programming work.

II. Vertical dimension: heterogeneous infrastructure control

Considerations on controlling the resources in the computing stack, the work is not done
after mainly focusing on the controllability of the VM level in this thesis. Within the
Fog/Edge environment, the heterogeneity of the infrastructure requires to be considered,
because the resources are provided by different individuals or micro-clouds. Meanwhile,
traditional public Clouds are also providing heterogeneous infrastructure services, such
as Graphics Processing Unit (GPU) and Field Programmable Gate Array (FPGA).
The controllability to handle these specific types of hardware is challenging. Another
direction is to provide further programmability and controllability for the container
level, which is a more lightweight virtualization than the VM. Meanwhile, Container-
as-a-Service [65] is the trend to orchestrate applications and especially in the Fog/Edge
environment.

8.3.2 Blockchain Enhanced Infrastructure Service Management
In Chapter 7, we have investigated the possibility of using the blockchain technique
to achieve the trustworthy service violation detection between the Cloud provider and
customer. But in the IoT environment within the scope of Fog/Edge computing, it
becomes more challenging to build trust in managing diverse devices and computing
resources of a large scale. The future work can be guided in following two directions.

I. On-chain: fine-grained trust management

The on-chain work refers to the smart contract design and implementation to build a
trustworthy system. Based on the witness model proposed in Chapter 7, we are going to
further optimise the interface implementation to reduce the gas consumption and enrich
the functionalities of the smart contract. Besides, in a complex Fog/Edge computing
environment, not only the permissionless blockchain, i.e., the public blockchain, but
also the permissioned blockchain [5, 47] should be considered, due to the practical
performance issue [118]. The application scenario cannot be limited in service violation
detection but other scenarios in DevOps lifecycle, e.g., service publishing and discovery.
Furthermore, it is a challenge to harmonise different types of blockchain and balance
their advantages and disadvantages [62].
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II. Off-chain: open Cloud ecosystem

The off-chain work refers to the user-friendly tool development for users easily inter-
acting with the blockchain. This tool is required by all the blockchain participants for
submitting transactions to smart contracts deployed no matter on the permissionless
blockchain or the permissioned blockchain. With more comprehensive interacting
support through mobile devices, Apps, and browsers, more roles, not only the witness
role in Chapter 7, can be introduced to the complicated environment, containing edge
devices, fog nodes or micro-cloud providers. Combining the CloudsStorm framework
we developed, the blockchain technology needs to be really embedded and exploited in
the infrastructure resource management among multiple stakeholders. It is, therefore, a
big vision to build a blockchain enhanced open Cloud ecosystem allowing resources
freely join and leave, which finally turns the computing into a utility.
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[116] J. Wettinger, U. Breitenbücher, O. Kopp, and F. Leymann. Streamlining devops automation for cloud
applications using tosca as standardized metamodel. FGCS, 56:317–332, 2016. (Cited on pages 17
and 28.)

[117] T. White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012. (Cited on page 16.)
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Summary

By providing elastic infrastructure capacity and flexible pay-as-you-go business model,
Cloud environments can significantly reduce the operational cost for resource-intensive
applications like big data, deep learning, and the Internet of Things (IoT). In the
application lifecycle, Clouds can not only automate the provisioning of application
infrastructure, the deployment of the software components, but also provide advanced
features, e.g., dynamic migration, scaling, and programmable virtual networking, for
adapting the complex application to be continuously operational. However, these
advanced Cloud features are so far only used at runtime phase of the application
and have not yet been effectively included in the application programming model,
which makes the Cloud application optimisation difficult across the entire software
development and operation (DevOps) lifecycle. For applications with high-quality
constraints, e.g., when processing IoT data queries within a given time window, or
transmitting the data from the source to the computing resource within required latency,
only runtime adaption will not be sufficient if infrastructures are not correctly designed.

We thus identify our key research question as: how to seamlessly program and
control the virtual infrastructure in the Cloud application DevOps lifecycle? To tackle
the problem, we investigated how to leverage “Infrastructure as Code” to represent
infrastructure specifications and to model infrastructure operations, e.g., scaling and
failure recovery. By decoupling the infrastructure abstraction from the application
development and operation, we studied effective Cloud programming models and
control mechanisms. Overlay network mechanisms were further explored to provision a
networked infrastructure. Finally, we investigated blockchain to improve Cloud Service
Level Agreement (SLA) for enhancing the infrastructure service quality assurance from
the provider at runtime.

In this thesis, we tackle the main research question by dividing into the following
four detailed research questions, according to different aspects of Cloud DevOps,
including developing, provisioning, operating, and SLA assurance:

• How can we program and customise the infrastructure according to different applica-
tion quality requirements?

We analysed the common service characteristics and infrastructure lifecycle of differ-
ent Clouds, modelled the basic Cloud virtual infrastructure functions, i.e., provisioning
and terminating one VM. Then we empower Cloud applications with the infrastruc-
ture programmability at levels of resource customisation, operation description, and
application logic to enable fine-grained topology and operation description.

• How can we effectively provision a networked infrastructure and enable topology par-
titioning across data centres or Cloud providers based on application QoS constraints?

We developed overlay network mechanisms for transparently configuring network
among virtual infrastructures, in particular when they are provisioned across data centres.
Thus, we can partition the infrastructure to be distributed. Combining the Cloud perfor-
mance study, we can improve the efficiency of provisioning and adapting distributed
virtual infrastructure through independently controlling partitioned infrastructures.

• How can an application efficiently control the virtual infrastructure at runtime, prefer-
ably without vendor lock-in?
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8. Summary

We proposed a control model for distributed virtual infrastructures (often across data
centres and providers) with two control modes as i) a passive mode based on monitoring
and predefined conditions, and ii) an active mode by providing programming interfaces
to be included in the application logic. We implemented those control in an open
framework, called CloudsStorm, which provides distributed control engines to execute
the infrastructure operations.

To validate our solutions to all the above questions, we demonstrated the usage of
CloudsStorm in managing dynamic task-based applications and in supporting service-
based applications on Clouds. The experimental studies demonstrated that CloudsStorm
can improve the application QoS and reduce the monetary cost of the Cloud resource
usage at the same time.

• How can we effectively handle the SLA with provider to make the service quality
assurance trustworthy?

We developed a blockchain based witness model. In the model, a new role, “Wit-
ness”, was introduced for detecting service violation. Witnesses can gain rewards when
taking the responsibility. An incentive model was carefully designed to guarantee their
trustworthiness: witnesses have to always tell the truth, in order to maximise their
rewards. This conclusion was analysed and proved by game theory. Furthermore, we
have implemented the prototype system leveraging the smart contracts of Ethereum
blockchain and performed experiments.
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Samenvatting

Door het aanbieden van elastische infrastructuurcapaciteit en flexibel pay-as-you-
go bedrijfsmodel, kunnen cloudomgevingen de operationele kosten voor resource-
intensieve applicaties zoals big data, deep learning en het Internet of Things (IoT)
aanzienlijk verlagen. In de toepassingslevenscyclus kan Cloud or kunnen Clouds niet
alleen de levering van toepassingsinfrastructuur en de implementatie van de software-
componenten automatiseren, maar ook geavanceerde functies bieden, zoals dynamische
migratie, schaling en programmeerbare virtuele netwerken, voor het aanpassen van de
complexe toepassing zodat deze continu operationeel is. Deze geavanceerde Cloud-
functies worden tot nu toe echter alleen gebruikt in de runtime-fase van de applicatie en
zijn nog niet effectief opgenomen in het programmeermodel van de applicatie, waardoor
de optimalisatie van de Cloud-applicatie moeilijk is gedurende de gehele levenscy-
clus van softwareontwikkeling en -bediening (DevOps) moeilijk is. Voor toepassingen
met van hoge kwaliteitseisen, bijvoorbeeld bij het verwerken van IoT-gegevensquery’s
binnen een bepaald tijdvenster of het verzenden van de gegevens van de bron naar
de computerresource binnen de beperkte tijd, is alleen een runtime-aanpassing niet
voldoende als de infrastructuur niet correct is ontworpen.

Onze belangrijkste onderzoeksvraag is dus: hoe kunnen we de virtuele infrastruc-
tuur in de DevOps-levenscyclus van de Cloud-applicatie naadloos programmeren en
besturen? Om het probleem aan te pakken, hebben we onderzocht hoe we “ Infrastruc-
ture as Code ” kunnen gebruiken om infrastructuurspecificaties weer te geven en infras-
tructuuractiviteiten te modelleren, bijvoorbeeld voor schaalvergroting en herstel van
storingen. Door de abstractie van de infrastructuur los te koppelen van de ontwikkeling
en werking van de applicatie, hebben we effectieve cloud-programmeermodellen en bes-
turingsmechanismen bestudeerd. Ook hebben wij overlay-netwerkmechanismen verder
onderzocht om een netwerkinfrastructuur te bieden. Tot slot hebben we blockchain
onderzocht om de Cloud Service Level Agreement (SLA) te verbeteren om de kwaliteit
van de infrastructuur tijdens runtime beter te kunnen waarborgen.

In dit proefschrift behandelen we de belangrijkste onderzoeksvraag door het op
te delen in de volgende vier gedetailleerde onderzoeksvragen, aan de hand van de
verschillende aspecten van Cloud DevOps, waaronder ontwikkeling, levering, uitvoering
en SLA assurance:

• Hoe kunnen we de infrastructuur programmeren en aanpassen aan de hand van
verschillende vereisten voor de kwaliteit van applicaties?

We hebben de gemeenschappelijke servicekenmerken en infrastructuurlevenscy-
clus van verschillende Clouds geanalyseerd geanalyseerd en de. de basisfuncties van
de virtuele cloudinfrastructuur gemodelleerd, d.w.z. het inrichten en beindigen van
n VM. Vervolgens ondersteunen we cloud-applicaties met de programmeerbaarheid
van de infrastructuur op het niveau van resource-aanpassing, operatiebeschrijving en
applicatielogica om verfijnde topologie en operatiebeschrijving mogelijk te maken.

• Hoe kunnen we een netwerkinfrastructuur effectief inrichten en topologiepartitioner-
ing in datacenters of cloudproviders mogelijk maken op basis van QoS-beperkingen
voor toepassingen?
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8. Samenvatting

We hebben overlay-netwerkmechanismen ontwikkeld voor het transparant config-
ureren van het netwerk tussen virtuele infrastructuren, met name wanneer ze worden
aangeboden in datacenters. Zo kunnen we de te distribueren infrastructuur partitioneren.
Door het Cloud-prestatieonderzoek te combineren, kunnen we de efficintie van het
bevoorraden en aanpassen van gedistribueerde virtuele infrastructuur verbeteren door
door de gepartitioneerde infrastructuren onafhankelijk te beheren.

• Hoe kan een applicatie de virtuele infrastructuur tijdens runtime efficint beheren, bij
voorkeur zonder lock-in van leveranciers?

We stelden een besturingsmodel voor gedistribueerde virtuele infrastructuren (vaak
over datacenters en providers) voor met twee besturingsmodi, zoals i) een passieve
modus op basis van monitoring en vooraf gedefinieerde omstandigheden, en ii) een
actieve modus door programmeerinterfaces te bieden die in de applicatielogica moeten
worden opgenomen. We hebben die besturing gemplementeerd in een open framework,
CloudsStorm genaamd, dat gedistribueerde besturingsengines biedt om de infrastructuu-
ractiviteiten uit te voeren.

Om onze oplossingen voor alle bovenstaande vragen te valideren, hebben wij
CloudsStorm gebruikt voor het beheren van dynamische taakgebaseerde toepassingen
en bij het ondersteunen van op service gebaseerde toepassingen op Clouds. Uit de
experimentele onderzoeken is gebleken dat CloudsStorm de Servicekwaliteit van de
applicatie kan verbeteren en tegelijkertijd de monetaire kosten van het gebruik van
cloudresources kan verlagen.

• Hoe kunnen we effectief omgaan met de SLA met de provider om de kwaliteitsborging
betrouwbaar te maken?

We hebben een op blockchain gebaseerd getuigenmodel ontwikkeld. In het model
werd een nieuwe rol gentroduceerd, “Getuige”, die overtredingen van de SLA kan
detecteren. Getuigen kunnen beloningen ontvangen wanneer ze de verantwoordelijkheid
nemen. Een stimuleringsmodel werd zorgvuldig ontworpen om hun betrouwbaarheid
te garanderen: getuigen moeten altijd de waarheid vertellen om hun beloningen te
maximaliseren. Deze conclusie werd geanalyseerd en bewezen door speltheorie. Verder
hebben we het prototypesysteem gemplementeerd met behulp van de slimme contracten
van Ethereum blockchain en experimenten uitgevoerd.
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