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1I N T R O D U C T I O N

1.1 evolution of computing machinery

The computing machinery is ever-present in today’s modern society.
The digitisation of our daily routines has been in progression full steam
ahead. From personal computers to the Internet, online shopping to
virtual meetings, smart phones to smart watches, one can list countless
examples of the trend. Take the example of handheld cellular mobile
phones for instance. These pocket-sized devices have come a long
way in their usage and ubiquity since their commercial introduction
back in the year 1984. Almost 37 years later, when compared to early
versions, handheld cellular mobile phones have been improving in
every aspect, as can be seen in Figure 1.1. One can think of aspects
such as weight, size, battery life, but perhaps the most prominent of
all, computerisation. Mobile phones are no longer just digital handheld
devices, but computing platforms not that far from personal computers.

Figure 1.1: The evolution of mobile phones from their commercial release until
the year 2014 is shown. (Image source Wikimedia, public)

1



2 introduction

Evolving any digital system, whether a handheld device, a consumer
appliance, or a commercial machine, into a computing platform, will
have two immediate outcomes. Computing platforms are capable of
running software and software is not a static entity. By the virtue
of expandability and the ability to add novel functionality through
software, systems can perform an ever-increasing set of tasks. We have
witnessed such characteristics in modern mobile phones, i.e., smart
phones, where each new application, a.k.a., “app”, adds a new set of
capabilities to the hosting platform.

From personal to organisational activities, we not only rely on com-
puting machinery, but we depend on them. This dependence is espe-
cially prevalent in the industry and manufacturing sector. The very
aforementioned trend with respect to the role of software is also the
case for industrial machinery. Current industrial evolution has brought
forth the emergence of Cyber-Physical Systems (CPS) in industrial ap-
plications. Today, ubiquitous deployment of CPS in production and
machinery, means that our economy and lifestyle is heavily reliant on
the proper functioning of these industrial CPS [53]. The risk carried
along with anomalies in industrial CPS is an economic one and in cer-
tain critical deployments, even life-threatening. Any form of deviation
from the behaviour intended in the design of the system, or simply
put, any form of malfunction for CPS, leading to undesirable results, is
considered as an anomaly. For a couple of examples from day-to-day
systems, think of the case of unintended acceleration for cars, or think
of a coffee machine, pouring more than expected, overflowing a cup.
Accordingly, the goal of this thesis is to provide methods to predict
anomalies before they happen, based on the available information from
the system at hand.

As industrial CPS evolve, control subsystems are computerised more
than ever. Consequently, the role of software is ever-increasing in these
systems. The continuous rise in the steering role of software alongside
the heterogeneous, distributed and multi-node design of industrial
CPS, has created a sharp rise in industrial CPS complexity. Although
model-based design practices [39] have boosted design capabilities,
CPS complexity remains hard to tackle. Not every aspect of system’s
operation and not every corner case is covered at design time [17].
A complete exploration of the behavioural space has simply become
too expensive. There is a need for behavioural tracking of industrial
CPS during their operation, while their sheer complexity means that
following a single observable is not revealing enough.

Take the example of flight software for space missions. As it is argued
in [18], most of the mission issues in the recent years are related to
software. Both manned and unmanned missions have shown steady
exponential growth in source lines of code for major missions from
1968 to 2005. We can observe this trend in Figure 1.2. Similar trends are
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present for military aircraft embedded software, taking over a bigger
portion of the total available functionality [18]. The software controlling
a modern commercial airliner has 7 million lines of code.
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Figure 1.2: Plotting the progression of software size in terms of non-comment
source code lines per every major space mission. Note that how
human missions have larger codebase compared to robotic missions,
pointing out the increase in software size when dealing with life-
threatening scenarios. This plot is generated based on the data
from [18, 34]. The plot also shows the amount of code in modern
cars to provide a perspective on how fast CPS software is growing.

Another defining angle in the motivation of this thesis is the risks
involved with large software development processes. A large software
body goes hand in hand with the elevation of risks such as bugs, or un-
wanted behaviour, spawning from aspects such as concurrency, correct
order of tasks, or resource management. Again, not every operational
corner case can be covered at design time. The time and budget require-
ments applicable to space programs however, are seldom justifiable for
earthly industrial applications. Such pragmatic realities leave us with an
alternative choice, i.e., online methods to support scrutiny, analysis and
decision-making at runtime, enabling resilience and self-healing capa-
bilities. By the virtue of the methodology and the techniques presented
in this thesis, we strive to facilitate the realisation of this endeavour.

Focusing on industrial CPS, we observe a few exploitable character-
istics. Accordingly, the foundation for the following discourse in this
thesis is the inherent repetitiveness and inherent data-richness of modern
industrial CPS. As such, from whichever perspective they are looked at,
industrial CPS operation and the information related to industrial CPS
operation can be compartmentalised. This view will pave the way to
the notion of execution phases, explained in Section 2.2. What brings
such characteristics about is the unique construction of these systems.



4 introduction

CPS are an amalgamation of machinery, sensors, embedded computing
and communication subsystems. The types of CPS incorporated in the
industry, industrial CPS, have all of the above pieces tuned towards a
specific task, making them purpose-built, with a contained domain of
tasks and operational duties. That is what makes them repetitive. Espe-
cially, a plethora of sensors are incorporated in today’s industrial CPS.
These sensors include both hardware and software varieties and more
importantly, what they have in common is large amounts of generated
data. Though it is no trivial task to manage this data and make sense
of it, if done with tact, it is an almost unlimited source to reveal many
of the behavioural secrets of a system. As such, it is only logical to take
advantage of this data-rich ecosystem and move towards data-centric
solutions, which will in turn allow employment of techniques based on
artificial intelligence.

1.2 data-centric solutions

The large amount of data generated by production machinery sensors,
has implications that are twofold. On the one hand, such a characteristic
results in a need towards treating these systems with data-centric
methodologies. Ergo, data-centricity is a virtue that could enrich the
analytical capabilities over such systems. On the other hand, the data-
centric approach has to be performed in a cautious manner, as it
is rather easy to end up in a slippery slope, where there is either
too much data to process in a timely fashion, or there is too much
data dependence, or the data collection itself becomes too much of a
resource-consuming overhead for the system. In extreme cases such
as the Tesla case [71], excessive data collection results in hardware
failure and ultimately, bricking of the whole car. In other words, we
should optimise the amount of data needed to achieve results, while
at the same time, the solution should not require extremely detailed
data collections. As will be shown, both risks can be circumvented by
considering:

• Communication-centric monitoring and modelling of the system
and

• Breaking up the operations into reoccurring units of execution
during the runtime of an industrial CPS.

When dealing with production grade systems, the same reality re-
garding the amount of available data, presents itself in a different
manner. It is often rather challenging to come up with data collections
that include what is needed, or rather what is desired, for the intended
analysis. For instance, having design-specific knowledge is a big con-
tribution to the analysis, facilitating the selection of ideal break points
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and the ideal data collection points. The very same design-specific
knowledge could very well be in the domain of trade secrets of the
subject system. Thus, and we would like to emphasise this point, it is
very important to have an optimal and flexible data collection strategy.
At the same time, the solution has to make due with the available
amount of data and achieve the best result possible. In Section 3.3, we
will discuss different information positions and later on in Chapter 4
we show in our experimental implementations, how we can deal with
poor information positions by adopting alternative solution workflows.

As mentioned with respect to repetitiveness, the discussions and
the methodology provided in this thesis are fundamentally based on
the characteristic that industrial CPS are inherently repetitive. Having
considered repetitiveness and from a data-centric perspective, we show
how the system’s execution timeline can be compartmentalised into
distinct execution phases and how the data contained in each phase
can lead to the generation of a representative construct, a behavioural
signature, which for certain reference executions is considered to be
a behavioural passport. Here, a reference execution, a.k.a., a golden
execution, is an execution in which the system’s behaviour is considered
to be normal. The data collected during such executions is the source to
build behavioural passports from. The same exact procedure is the case
for behavioural signatures, except that we do not know if the execution
can be considered as normal or anomalous. Furthermore, we describe
how Extra-Functional Behaviour (EFB) and different metrics reflecting
EFB can be captured. EFB reveal beyond the functional specifics of a
system, especially beyond the behaviour encoded within its software
code. EFB can be captured by collecting metrics such as CPU time,
or electrical power, amongst many others. Such metric data is the
source when generating behavioural signatures and passports. The
consideration of metrics revealing the EFB of industrial CPS is especially
important as industrial CPS portray non-deterministic behaviour. This
is mainly due to their continuous interaction with the physical domain.
As such, just looking at the functional behaviour falls short.

The high-level view of our anomaly detection and identification
approach is depicted in Figure 1.3. We strive to detect and identify
performance anomalies for industrial CPS in an online fashion. We
also strive to facilitate acting upon these detections and deployment
of actuations on the industrial CPS at hand, with the aim of thwarting
performance anomalies, or reducing their detrimental effects. Without
going into too much detail at this point, one major role for presence
of a digital twin is exploration and validation of actuation policies.
Actuation policies are formulae intended to alter the behaviour of the
system, which are applicable through collections of activations on the
system. To make sure that the behaviour-altering effects of a policy are
what we have aimed for, we can first efficiently validate it on the digital
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twin instance, representing the actual system. Although we provide
the foreseen methodology and part of the workflow for the actuation
step, i.e., a digital twin, however, the actuations and their deployment
will be outside the scope of this thesis.

Online 
monitoring Detection Identification

Actuation

Analysis

Digital twin

Figure 1.3: Depicted is the high-level view towards performance anomaly de-
tection, identification and the envisioned countering of their effects.
The focus of this thesis is highlighted in yellow, with a partial high-
light on the topic of digital twin, for its implications on actuation is
out of the scope of this thesis.

1.3 role of artificial intelligence

We would not stand an earthly if we ignore Artificial Intelligence
(AI) as the culmination of data-centric solutions. We have witnessed
the emergence of solutions based on traditional Machine Learning (ML)
and more advanced models, i.e., Deep Learning (DL), for a plethora of
problems for quite some time now. These methods have become an
integral part of any data-centric method of choice. The industry in
particular, reaps the benefits of such solutions in production systems.

DL models come in many forms. Considering the fact that the bulk
of the monitoring data from industrial CPS is represented as time se-
ries, our attention is especially drawn to Convolutional Neural Networks
(CNN) alongside traditional ML models. As the traditional ML and DL
together provide more than just one way to solve a given problem, it is
of utmost importance to pick the right solution and employ the right
supporting workflow. For industrial systems in general and industrial
CPS in particular, the extent of resource consumption and timely oper-
ation could very well mean the difference between success and failure,
depending on the relevant requirements. In other words, it is not just
about the accuracy of answers to problems, but also how fast and how
efficiently they can be found.
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Within this thesis, we do explore the balance between these factors for
our methodology, addressing the challenge of anomaly detection and
identification in industrial CPS. In this context, we will be comparing
two ML-based solutions, namely, Classic ML and Advanced DL work-
flows, developed as alternative approaches. The Classic ML workflow
incorporates regression modelling and traditional classification algo-
rithms, e.g., decision tree and random forest, whereas, the Advanced
DL workflow incorporates limited data preprocessing steps, taking
advantage of CNNs. We will see how the Advanced DL workflow is
different in its requirements for the amount of domain specific knowl-
edge, expertise and understanding of the system that is necessary for
the Classic ML workflow. Our Advanced DL method is a truly black
box approach, requiring no insight into the data or the internals of the
system, but at the same time, has its own limitations.

1.4 cyber-physical system complexity spectrum

Industrial CPS come in different sizes and with different levels of com-
plexity. Examples can be systems as complex as factory production lines,
radars, or a semiconductor photolithography machine (Figure 1.4), or
something as simple and contained as an embedded platform, and
everything in between, interacting with the surrounding environment.
With the goal of covering this vast spectrum, we have opted for cases
from the extremities. Our first demonstrator is a semiconductor pho-
tolithography machine from ASML, for which the main computing
node has been studied. The opposite case, is an embedded platform,
used for detection of cars in images taken with the system’s camera.
Although for both cases we follow the same methodology, the exact
workflows and data manipulations along the way are, to a limited
extent, platform-specific.

As a definitive example showcasing industrial CPS, let us take a
closer look into a semiconductor photolithography machine and its
major tasks to understand the types of inherent repetitiveness present
in these systems. More specifically, let us look at the wafer processing
flow in these machines.

A semiconductor photolithography machine applies Integrated Circuit
(IC) design patterns to silicon wafers through the photolithography
process. A silicon wafer, a.k.a., silicon substrate, is a circular slice of
single crystalline silicon. The main purpose of the photolithography
process is to reflect the IC design from a reference pattern, a reticle, onto
numerous dies on a wafer. Each die will be developed into an exact
copy of the same IC design residing on the reticle. The process involves
high-energy light beams going through the reticle and chemically
interacting with sensitive material applied to wafers. In other words,
wafers become exposed and will be taken for further processing steps
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Figure 1.4: A state-of-the-art semiconductor photolithography machine is
shown as an example complex industrial CPS, running numerous
computing nodes with heterogeneous architectures and interacting
with the physical domain. (Image courtesy of ASML Nederlands
B.V.)

outside the photolithography machine, such as chemical etching, very
much like developing a photograph. Without going into too much
detail, the main order of tasks during the wafer processing workflow
can be elaborated as follows:

1. Initially, a desired IC design pattern, a reticle, is selected and
loaded.

2. The machine is also loaded with preprocessed wafers and one is
fetched for exposure.

3. The loaded wafer is scanned, mainly for metrology, i.e., position-
ing purposes, as well as structural fault detection.

4. The wafer is exposed in consecutive steps inside a stepper unit,
with each step exposing a single die on the wafer, until the whole
wafer is exposed.

5. The wafer is released and moves to further processing and testing
stages outside the photolithography machine.

Considering the order of tasks, there are different levels of repetition
present. Item four involving die exposure is a repetitive task within the
stepper unit and the number of repetitions depends on the number of
dies to be exposed on the wafer. Another level of repetition is items
two to five, which are repeated for every new wafer. Wafers are most
often exposed in batches as these machines are intended for mass
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production. There is yet another level of repetition present, covering all
of the aforementioned tasks and it starts with selection of a new reticle.
The wafer processing workflow and the main repetition cycles present
in it are depicted in Figure 1.5.

1.5 synopsis

The research project we have embarked on, is aimed at the need to
address unpredicted anomalies in industrial CPS. The project was
conceived around a semiconductor photolithography machine. In this
context and for the specific example of a photolithography machine,
missing an internal deadline at any of the data processing, wafer
scanning, or wafer exposure stages, is considered a typical anomaly.
Such an anomaly, in most cases will result in a rejected wafer, or
reduced machine yield. We can also consider more granular anomalies,
for instance, a software component anomaly for missing a deadline
during a data processing step. Such sensitivities relevant to timeliness
are valid for most industrial CPS.

It is highly advantageous to detect when the system behaviour leaves
the normal state and steps into the anomalous domain. It is also highly
advantageous to predict the type of anomaly that the system is going
to experience by identifying the anomalous trend. Being privy to such
information in a timely fashion, it is conceivable that certain anomalies
could be circumvented, or their deprival could be diminished, either
automatically or with human intervention. Though it may be perceived
as trivial at first, however, the actual challenge to tackle lies in the
efficiency and accuracy of predictions, while relying on a constrained
amount of data. This is both a limitation and a necessity, for we will not
have the liberty of arbitrary data collection, because of a multitude of
reasons. At the same time, processing vast amounts of data is equally
detrimental to a timely solution.

1.6 research questions

Considering what we have introduced so far, the challenges ahead can
be expressed in the form of research questions to ponder over. Given
that modern industrial CPS are data-rich ecosystems, we would like to
delve into the matter by answering the following:

research question 1
How can we follow behavioural diversity in industrial CPS through the
variations embedded within sensory data, in an efficient manner?



10 introduction

Select reticle

Release wafer
Expose die

Step into position
Scan wafer

Fetch new wafer

Exposed die

Die to be exposed

Die under exposure
Repeat

Repeat

Repeat

Figure
1.5:D

epicted
is

a
briefview

ofthe
order

oftasks
included

in
a

w
afer

processing
w

orkflow
,executed

by
a

sem
iconductor

photolithography
m

achine.D
ifferentlevels

ofrepetition
oftasks

are
observable,i.e.,atthe

die
exposure

level,w
here

the
w

afer
is

stepped
through

and
exposed

one
die

ata
tim

e
inside

the
stepper

unit(blue
repetition

area),atthe
w

afer
batch

processing
level,w

here
a

num
ber

ofw
afers

are
exposed

using
the

sam
e

reticle
(green

repetition
area),and

atthe
reticle

exchange
level,w

here
a

new
reticle

is
selected

for
the

processing
ofan

upcom
ing

batch
ofw

afers.



1.7 outcomes of the research 11

research question 2
How can we demystify such embedded variations by only taking a partial,
but yet, a descriptive view of the sensory data, to detect, identify and predict
anomalous behaviour?

research question 3
What are the different approaches towards the identification of such anoma-
lous behaviour? What are the implications for production systems imple-
menting such approaches?

1.7 outcomes of the research

The following is a compact listing of the outcomes of the research
activity, leading to the conception of this thesis. Accordingly, we present
the following novelties:

• A data-centric methodology towards performance and physical
anomaly detection, identification and prediction during the oper-
ation of industrial CPS, which has been elaborated in Chapter 3;

• A communication-centric monitoring and modelling approach
to dramatically limit the collection of EFB data and to facilitate
composition of a digital twin, which has been elaborated in Sec-
tions 3.4, 3.5, 4.1.1 and 4.1.2;

• Purposeful compartmentalisation of industrial CPS runtime activ-
ity into executional units of operation, playing a fundamental role
in both analysis and generation of behavioural representations
for repetitive systems, which has been elaborated in Section 2.2
with its implications affecting concepts of anomalies, behavioural
passports and communication-centric modelling;

• Approaches towards composing executional unit representations,
i.e., behavioural signatures and behavioural passports, as the
constructs reflecting the behaviour of a system in a compact
and definitive fashion, which has been elaborated in Sections 2.4
and 4.2.1, as well as Figure 4.10;

• The demonstration of our data-centric workflow with proof-of-
concept set-ups for two use-cases from the industry, covering
the full spectrum of industrial CPS from complex to embedded,
addressing both performance and hardware-oriented anomalies,
with per use-case elaborations provided in Sections 4.1 to 4.3;

• And the comparison of two different machine learning approaches
in the final phase of our methodology, along with data-centric
workflows supporting each, revealing advantages and disadvan-
tages of their usage, elaborated in Sections 4.4 and 5.3.
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We also include elaborations and implementations on the following
techniques:

• Software-based and hardware-based, internal and external prob-
ing techniques, relevant to the collection of EFB metrics;

• And the use of representative constructs in feature extraction and
identification of behaviour, resulting in anomaly detection and
prediction with high accuracies.

1.8 author’s publications and thesis structure

The author of this thesis, has based it on the following closely related
publications, with him as either the first or the second author. Here we
provide only the titles, alongside the role the author has played during
the composition of every publication. For complete bibliographic de-
tails, citation links can be followed. The list is provided in chronological
order.

1. “Work-in-Progress: Communication-Centric Analysis of Complex
Embedded Computing Systems” [56] (P1)

2. “On the Effectiveness of Communication-Centric Modelling of
Complex Embedded Systems” [50] (P2)

3. “Software Passports for Automated Performance Anomaly Detec-
tion of Cyber-Physical Systems” [55] (P3)

4. “An Analytics-Based Method for Performance Anomaly Classifi-
cation in Cyber-Physical Systems” [49] (P4)

5. “Power Passports for Fault Tolerance: Anomaly Detection in In-
dustrial CPS Using Electrical EFB” [58] (P5)

6. “The Choice of AI Matters: Alternative Machine Learning Ap-
proaches for CPS Anomalies” [59] (P6)

7. “Improving the Robustness of Industrial Cyber-Physical Systems
Using Behavioural Signatures, Behavioural Passports and AI” [57]
(P7)

Following the above enumeration, as the first author in publications
P1, P3, P5, P6 and P7, the author of this thesis has been involved
in all aspects, including data curation, formal analysis, investigation,
methodology, software, validation and writing of the original draft.
With regards to publications P2 and P4, the author of this thesis had a
less prominent role in software, validation and writing of the original
draft, but he was equally involved in the rest of the activities.
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This introduction is followed by the fundamental concepts that are
needed throughout this thesis, given in Chapter 2. This will pave the
way for our methodology, introduced in Chapter 3. The realisation
of our methodology comes next, as Chapter 4 elaborates our experi-
mental implementations for both use-cases covered in this thesis. As
our methodology ultimately leads to classification of behaviour, Chap-
ter 5 covers the classification results from our use-cases, in great detail.
This chapter also includes our discussions. Hereafter, we provide the
related work in Chapter 6, going through the body of knowledge in
close relation with the concepts and the techniques we have considered
in this thesis. Ultimately, conclusive remarks are presented in Chap-
ter 7, which also revisits our research questions listed in the current
introductory chapter.

Accordingly, a visual diagram of the covered subjects within this
thesis and their supporting relations is provided in Figure 1.6. The
diagram indicates publications directly relevant to each chapter, as well
as subject-wise listing of the contents of each and every chapter. Aside
from this structure, related publications are listed at the beginning of
every chapter, except this introductory chapter and the Conclusion.
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2F U N D A M E N TA L C O N C E P T S

The following includes fundamental concepts that are constantly
referred to and mentioned throughout this thesis. Comprehen-
sion of the chapters to come, does require a priori knowledge of
these concepts.

The contents of this chapter are mainly based on, but not limited
to, the previously published conference and/or journal publi-
cations of the author. The publications of interest for Chapter 2
are:

• “Software Passports for Automated Performance Anomaly
Detection of Cyber-Physical Systems” [55] (P3)

• “An Analytics-Based Method for Performance Anomaly
Classification in Cyber-Physical Systems” [49] (P4)

• “Power Passports for Fault Tolerance: Anomaly Detection
in Industrial CPS Using Electrical EFB” [58] (P5)

• “The Choice of AI Matters: Alternative Machine Learning
Approaches for CPS Anomalies” [59] (P6)

• “Improving the Robustness of Industrial Cyber-Physical
Systems Using Behavioural Signatures, Behavioural Pass-
ports and AI” [57] (P7)

Looking at the relevant body of knowledge, it must be pointed out
that the fundamental concepts and techniques employed in this thesis,
are not novel when considered as stand-alone instruments. We do go
over the related work covering the use of similar or the same techniques,
such as, classifiers based on traditional machine learning, classifiers
based on deep learning, regression modelling, system modelling and
simulation methods, and the use of side-channel metrics, in Chap-
ter 6. Although many of our references relate to the general theme of
anomaly detection and identification, the novelty of our methodology
and implementations lies in the use of these pieces within a unique
combination. We have specifically focused on the exploitable angles,
inherently present in the design of industrial CPS.

15
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2.1 extra-functional behaviour

Extra-Functional Behaviour (EFB) convey a computing system’s be-
haviour and as the name suggests, EFB are not directly derived from
functional aspects of the system. Examples are, execution time, different
latencies, throughput, power and energy consumption, amongst others.
Metrics reflecting EFB are not only dependent on functional behaviour,
but also on environmental circumstances, such as the platform itself,
the input to the system and operational conditions. Environmental
circumstances, being important variables for CPS, necessitate the role
of EFB metrics in their monitoring and analysis.

Looking at EFB from a different perspective, one can observe that they
reflect the effects of environmental circumstances, the platform and the
input, which may be in physical form depending on the application, all
directly related to physical aspects of a CPS. As such, we can consider
EFB and the information provided by EFB as an interface, binding the
digital and physical realms within the operational domain of a CPS,
together.

2.2 execution phases

Execution phases are basically repeated units of execution, which are es-
pecially noticeable in industrial CPS operations. Repeated tasks can be
broken down to their subtasks and higher granularity can be achieved
to describe repeated units of execution. We call the smallest of these
units an atomic execution phase. There may be (usually are) combined
atomic phases that are also repetitive. Such repetitions involving two
or more consecutive atomic phases are called combo execution phases.
Figure 2.1 depicts these concepts under normal and anomalous execu-
tion conditions. For any particular system, analysis will reveal the best
choice(s) from available atomic and combo phases.

Formally, an arbitrary phase p is denoted as a tuple of its start,
ts, and end, te, times within the execution timeline, i.e., p = (ts, te).
Each execution phase category, atomic and combo, is considered as a
partially ordered set, where the generic ordering condition is tek < tsk+1 ,
making the ordering strict. This means that phases within one category
should not overlap. As such, we can describe atomic and combo phases
as

Patomic = {pi : p 2 Tatomic, i  n, i 2 N⇤} and
Pcombo = {pj : p 2 Tcombo, j  m, j 2 N⇤},

respectively. Here, T is the set of available phase types, n is the number
of atomic phases and m is the number of combo phases. Considering
the simple example from Figure 2.1, we have Tatomic = {A, B} and
Tcombo = {AB}.
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As a tangible example, looking back at the wafer processing workflow
introduced in Section 1.4 and depicted in Figure 1.5, one can consider
the exposure of a single wafer as an atomic phase and accordingly, the
processing of a batch of wafers as a combo phase. This means that all
the operations involved in the exposure of a wafer, i.e., “stepping into
position” and “expose die”, for all dies, fall under this atomic phase’s
umbrella. As a more granular alternative choice, a single die exposure
can be considered an atomic phase, making a single wafer’s exposure
activities a repeating combo phase.

2.3 anomalies and faults

Anomalies in general can manifest themselves as unreliable or subpar
performance behaviour. The manifestation might also be in other forms
of unexpected and harmful system behaviour and not necessarily
performance-related. The two important terms to consider here are
performance anomaly and fault [55]. A performance anomaly is any
readily detectable deviation in the system’s performance behaviour.
For instance, if a computational job takes significantly longer than it
should to be fulfilled, a performance anomaly has occurred. Detecting
the actual fault causing the performance anomaly however, requires
insight and analysis of the internal interactions of the system. As such,
a performance anomaly is the result of a fault, but at the same time,
not all faults will necessarily lead to a performance anomaly. Following
the notation of execution phases and considering ts and te as expected
start and end times vs t0s and t0e as realised ones, we can expect to
have the following anomalous situations:

tek < t0ek < tsk+1 and t0sk+1 = tsk+1 (2.1)
tek < tsk+1  t0ek and t0sk+1 = tsk+1 (2.2)
tek < tsk+1  t0ek < t0sk+1 (2.3)

Considering the relation between t0ek and tsk+1 , we see that Equa-
tions (2.2) and (2.3) break the ordering condition, i.e., t0ek � tsk+1 .
These instances will be further discussed below.

transient anomalies A transient or localised anomaly is visible
for a short period of time, or occurs only a few times. In such cases,
either the fault is a short-lived one, or its impact to the overall execution
is rather contained. For instance, with regards to timeliness, transient
anomalies could be seen as delayed tasks in a contained part of the
execution timeline. We can also think of tasks without any dependency
that do overlap and end up sharing available resources, as visualised
in Figure 2.1 for the localised anomaly with independent consecutive
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Phase As. In this context, Equations (2.1) and (2.2) point to localised
and overtaking delays, respectively.

persistent anomalies In contrast to transient anomalies, a per-
sistent or repeating anomaly is of the type that either will keep reoccur-
ring, or will create cascading delays for all subsequent tasks. This could
be the result of, for instance, dependencies between tasks, or excessive
amount of delay. Another factor is the placement (time) of anomaly.
There will be no room for compensation for an anomaly occurring
towards the end of a phase. The overall cost to the execution timeline is
higher for such anomalies, as depicted in Figure 2.1 for cascading and
repeating anomalies. The cascading effect is the result of Phase B being
dependent on Phase A, as well as each Phase AB being dependent on
its predecessor. Both situations result in a shifting effect, as formalised
in Equation (2.3).

2.4 behavioural signatures and passports

Signatures and passports [55] are data-centric representations of EFB,
for they are composed using the time-series data, collected during the
execution timeline of a software running a system, or any executed ap-
plication for that matter. A behavioural signature is the representation
of an execution phase, modelling the trend of EFB metrics collected
during that phase. Our modelling technique of choice for phase data
is regression modelling. A behavioural passport is a reference signature,
collected under normal and reference execution conditions, which is
used in comparisons. As such, collected values for a metric of choice
during an execution phase, for instance CPU time, will be transformed
into cumulative data points in time, resulting in a time series collection.
Using regression modelling, the closest function interpolating these
data points will be generated and is used as the representation for that
particular execution phase. The motivation behind opting for cumu-
lative representation is to generate a regression, interpolating the set
of data points as closely as possible. As depicted in Figure 2.2 using
dummy data for demonstration, cumulative representation softens the
fluctuations of data and creates a monotonically increasing time series,
which in turn results in a monotonically increasing regression function.

Note that after the cumulative transformation, we practically end up
with a different set of points and in turn, a different regression function.
The comparison of R2 values is intended as the comparison of the fit
quality, hence goodness-of-fit. A close fit for the non-cumulative points
is also achievable, but with a much higher degree for the regression
function. We are also aware that a cumulative transformation will also
cumulate the amounts of errors, i.e., unobservable error, per data point.
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(a) Cumulative data points

(b) Non-cumulative data points

Figure 2.2: The comparison of the quality of fit between (a) cumulative and
(b) non-cumulative representations of data is depicted here, us-
ing quadratic regression functions and dummy data. A perfect fit
means that R2 = 1 and as it can be seen from the values of R2,
the cumulative case results in a much closer fit when limited to
quadratic functions. Note how fluctuations in collected data points
are softened when the data is transformed to the cumulative repre-
sentation.
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Since we only have a sample and not the total population, this amount
will be non-zero. However, regression modelling already introduces
residuals, i.e., fitting deviations, per data point. As we would like to
limit the degree of the regression function modelling the data, the
amounts of unobservable errors are minute in comparison to residuals.
Throughout this thesis, quadratic regressions prove to have sufficient
fingerprinting accuracy for our data.

Regression-based fingerprinting of behavioural trends allows us to
make use of statistical goodness-of-fit measures. As our measures of
interest, the coefficient of determination (R2), as well as the Root-Mean-
Square Deviation (RMSD) or Root-Mean-Square Error (RMSE) provide
quantified measures of deviation. These measurements can be utilised
in two manners. The first use is to evaluate how close the generated
regression function is interpolating the considered data points. In fact,
such measurements motivate our choice of cumulative data representa-
tions, as well as the sufficiency of quadratic regressions throughout this
thesis. The second use is to evaluate how well a behavioural passport
fits the data points of a behavioural signature, or in other words, how
much the collected points deviate from the passport. One can consider
R2 and RMSD outputs as is, or base the evaluation on the percentage
of deviation for R2 and RMSD. Here, we provide the formulas for
R2 and RMSD as a reminder, in Equations (2.4) and (2.5) respectively,
such that

R2 = 1 � Ân
i=1(yi � ŷi)

2

Ân
i=1(yi � ȳ)2 and (2.4)

RMSD =

s
Ân

i=1(yi � ŷi)2

n � (k + 1)
. (2.5)

In these equations, ŷi represents the estimated response for the ith ob-
servation, ȳ represents the sample mean, yi represents the observed re-
sponse and n the number of data points. Regarding RMSD, n � (k + 1)
is the degrees of freedom, with k being the degree of the polynomial
regression and we have to consider the intercept as well, hence, k + 1.
As such, n � 3 is the degrees of freedom for a quadratic regression
function [36, 60]. When it comes to deviation, if we consider the com-
parison between behavioural passports and behavioural signatures, yi
represents the data points collected for generation of the deviating (sup-
posedly) behavioural signature, while ŷi will be the values estimated
by the behavioural passport.

Note that signatures are calculated per metric and per phase. For
applications with multiple processes, different phases will potentially
include activity data from multiple processes. This means that there
will be signatures not only per metric and per phase, but also per
process. Process identifiers can be used as an indicator to differentiate
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between signatures based on the same metric and within the same
phase.

Considering the use-cases included in this thesis, we have opted for
both internal metrics, e.g., CPU time, reads count, writes count, and
external metrics, e.g., electrical current, resulting in our selection of
software signatures, software passports and power signatures, power passports,
as our naming scheme of choice, respectively.

2.5 time series data classification algorithms

As we are following a data-centric approach in our methodology, we
are employing machine learning and classification algorithms [49, 58].
When it comes to classification of time series data, both deep learning al-
gorithms, i.e., neural networks, and traditional classification algorithms,
e.g., decision tree, are viable options. We are especially interested in
explainable results and the ability to backtrack achievements, mak-
ing connections to the original data. This level of understanding is
necessary when developing a methodology. Traditional classification
algorithms are much more suitable for this goal, but on the other hand,
they do require feature engineering. Accordingly, we have experimented
with Decision Tree (DT) [69], Random Forest (RF) [7], Gaussian Naïve
Bayes (GaussianNB) [23], k-Nearest Neighbours (k-NN) [16], Linear
Support Vector Classification (LinearSVC) [4] and Kernel Support Vec-
tor Machine (KernelSVM) [15] classifiers for our demonstrators.

As mentioned, classification algorithms are not limited to traditional
machine learning. When it comes to time-series data, especially fore-
casting use-cases, Long Short-Term Memory (LSTM) networks are
effective [29]. Although our observations come in the form of time-
series data, they consist of individually isolated batches. This makes
CNN-based solutions relevant for our purposes. We will be exploring
the viability of CNNs as an alternative to traditional algorithms in
addressing our questions and we will be comparing them to what is
on the offer from traditional machine learning.
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The following includes descriptions of our general approach
towards the questions at hand. This general approach involves
definition of methods towards achieving experimental solutions,
as well as the depth of access a particular solution may require.

The contents of this chapter are mainly based on, but not limited
to, the previously published conference and/or journal publi-
cations of the author. The publications of interest for Chapter 3
are:

• “On the Effectiveness of Communication-Centric Mod-
elling of Complex Embedded Systems” [50] (P2)

• “Software Passports for Automated Performance Anomaly
Detection of Cyber-Physical Systems” [55] (P3)

• “An Analytics-Based Method for Performance Anomaly
Classification in Cyber-Physical Systems” [49] (P4)

• “Power Passports for Fault Tolerance: Anomaly Detection
in Industrial CPS Using Electrical EFB” [58] (P5)

• “The Choice of AI Matters: Alternative Machine Learning
Approaches for CPS Anomalies” [59] (P6)

• “Improving the Robustness of Industrial Cyber-Physical
Systems Using Behavioural Signatures, Behavioural Pass-
ports and AI” [57] (P7)

Considering the high-level view of our performance anomaly de-
tection and actuation approach given in Figure 1.3, let us present an
elaborated version here. The focus has been to take advantage of the
current data-rich industrial CPS ecosystem.

3.1 performance anomaly identification

Our methodology can be divided in two main workflows, the first of
which addresses the requirement for performance anomaly detection
and identification. Depicted in Figure 3.1, this anomaly detection and
identification workflow is completely covered in this chapter.

23
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Online
monitoring

Feature 
engineering

Feature 
extraction Detection Known 

behaviour?

Anomaly 
identification

Analysis
If composing new
features is needed

If the available feature
choices are sufficient

Yes

CPS

CPU CPU CPU

No

Figure 3.1: The high-level approach towards anomaly detection and identifica-
tion is depicted. The imagined feature engineering is expected to
involve more than a single step and will form the preprocessing of
data, when implemented as a workflow.

There are numerous sources of data collection in a modern industrial
CPS. These include hardware-based sensors, as well as metric collection
tools within the software running the system. Additional low overhead
software probes and serial hardware sensors can also be introduced, as
it is the case in both of our demonstrators. Considering the approach
given in Figure 3.1, this online monitoring, happening during the
operation of the system, will produce large amounts of data. The
feature engineering that follows, involves different data manipulation
steps. Examples are parsing, extraction of important pieces of data
and especially fundamental for us, compartmentalisation. The latter
is where we divide the data according to execution phases. Following
feature extraction, this data set will transform into a feature set. Some
features are readily taken from the data set, while others are to be
calculated, e.g., through generation of signatures and passports.

Detection is the step where deviation of the behaviour at hand
from the reference behaviour is considered. In practice, there is a
close relation between “Detection”, “Known behaviour” and “Anomaly
identification” blocks. We leave implementation details for sections
ahead. Upon suspicion of new and unseen anomalous behaviour, the
“Analysis” block comes into play. At this point, such an analysis is
considered to be a manual effort, but we do foresee that certain analyses
could be performed automatically. The goal is to update the feature set
and retrain the employed classifier, allowing it for automatic detection
of this newly introduced behaviour. Depending on the maturity of the
feature set for this specific behaviour, there may or may not be a need
to compose new features from the data set.
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3.2 behaviour improvements

Detection and identification of anomalous behaviour will be followed
with another workflow aimed at countering the anomaly itself, or its
effects, keeping the industrial CPS fulfilling its purpose. This workflow,
given in Figure 3.2, is the subject of our ongoing research. However,
certain pieces of the puzzle are already in place, namely, a digital twin.
Not every anomaly can be countered though.

Actuation 
policy 

dispatcher
Improved 

behaviour?

Digital twin

Actuation
policy DB

Yes

If the policy is novel, 
add to known policies

No

Choose a different policy 

Physical twin

CPU CPU CPU

CPS

CPU CPU CPU

Activation

Base design 
improvement

Analysis

Figure 3.2: The high-level approach towards countering the effects of detected
and identified anomalies, involving actuation policies, the validation
of their positive effect through a digital twin and their dispatch by
means of known activations on the industrial CPS, are visualised.
We also imagine that there will be a database of known and effective
policies for previously encountered anomalies in place.

We envision well-defined actuation policies for the anomalies that
can be acted upon. The actuation policy chosen on the basis of the
identified anomaly will first be applied to a twin of the system. For
the most part, the anomaly detection and identification workflow from
Figure 3.1 is also applicable to the twin. We would like to evaluate if the
behaviour of the twin will be identified as normal, or if the deviation
from normal is being reduced, in comparison to the anomaly itself.
Upon an acceptable improvement, the actuation policy will be activated
on the anomalous industrial CPS. The “Actuation policy dispatcher”
may also come up with novel actuations, beyond what is previously
known and available. Such policies, if resulted in improvements, will
be added to the database. Whether an actuation policy results in an
improvement or not, it could contribute to the base design of the
system and fundamentally eliminate the anomaly from happening. For
instance, when a software bug is discovered, or a corner case related
to the order of calls in different processes is revealed, the base design
can be improved. Although, analysis has to be performed to discover
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such causes behind a policy’s failure, correlate these causes with the
design and develop rectifications for them. Similar to the anomaly
detection and identification workflow, we expect the analysis following
an unsuccessful actuation policy to be a manual one.

3.3 information position

Our methodology clearly relies on monitoring data collected during
the operation of an industrial CPS and this collected data goes through
quite a few transformations and preprocessing steps, until the anomaly
identification is achieved, hence data-centricity. The proper application
of these steps also relies on accurate metadata collection. For instance,
considering our definition of execution phases from Section 2.2, a phase
is defined by its start and end timestamps, p = (ts, te), making the
collection of these timestamps an important part of our workflows.
Phase boundaries do not necessarily have to be precise, but a relatively
close vicinity is needed. The amount of inaccuracy we could get away
with is use-case dependent. Accordingly, from a general perspective, we
imagine three information positions to describe the amount of internal
information we are privy to. These three positions from the highest
amount of information to the least are white box position, grey box position
and black box position.

As part of this thesis, we have experimented from a white box infor-
mation position, a grey box information position, as well as a black box
information position. For our first use-case we have adopted a white-
box position with access to internals of the systems and availability of
metadata. Further details on the use-case and our implementation tech-
niques are given in Section 4.1. Our second use-case has been subjected
to approaches from both a grey box position and a black box position.
Details are provided in Sections 4.2 and 4.4, respectively.

3.3.1 White box position

A white box information position refers to a set-up in which there
is almost unrestricted access to the internals of the system, e.g., via
invasive probing from within the software. Note that by unrestricted
access to the internals, what we mean is both literal access to the code
and functional elements within the system, as well as access to the
knowledge and operational details of it. In other words, a white box
approach means that there is interaction with the software running
the industrial CPS to collect behavioural metrics during its runtime.
From a practical point of view, whether the interaction is with the
Operating System (OS), through standard/custom tooling, or through
probing of the workload handling application on top of the OS, it will
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render the monitoring approach as white box. In such an approach, the
application is analysed to discover its internal operations, e.g., I/O and
computation operations. For a multi-process application, the analysis
is performed on a per process basis. Note that these internal operations
may or may not match the execution phases. There could very well
be multiple processes that are active throughout different phases and
different sets of operations belonging to these processes are involved
in each phase.

Invasive probing is a powerful technique for gathering precise in-
formation. By implementing probes collecting system-specific and
application-specific EFB metrics at the beginning and end of each
operation, we will be able to collect the footprint of these metrics for
that specific operation. For instance, as shown in Pseudocode 1, by
collecting the amount of CPU time consumed by a process at the be-
ginning and at the end of a computation operation, we will be able to
calculate the amount of CPU time consumed by that operation for that
computation.

Pseudocode 1: Description of software probes, with CPU time
collection for a function performing computational work as an
example to showcase the invasive probing technique, is provided.
CPU time is given as an example metric and the approach can
be applied to any metric, collectable from within the software.

Function main():

initialisations;
do some work...;
compute(input, other arguments);
do some other work...;

Function compute(input, other arguments):

probe and save used CPU...;
collect_trace(processID, event, timestamp_start, CPU_used);
computation occurs...;
collect_trace(processID, event, timestamp_end, CPU_used);
return

One major consideration for this type of probing is the amount of
effort required. Upon dealing with a complex industrial CPS with a vast
software footprint, as it is the case nowadays, it would be a tough task to
add probes in every process and every function within each process. Too
many probes will also invoke the unintended computational burden as
a side effect, affecting the actual behaviour of the system. After all, these
probes do consume a minute amount of available resources. We will
explain how one can relatively efficiently utilise invasive probing for
industrial CPS through communication-centric monitoring and modelling.
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3.3.2 Grey box position

Looking at an industrial CPS from a grey box information position sets
more restrictions in place. Most notably, no internal probing, invasive
or otherwise, will be possible. This level of restricted access could be
due to various reasons, such as lack of access to the OS, the software
component, the required operational knowledge, or strict controls over
monitoring overhead. EFB metrics of choice for such cases are to be
chosen from external ones, i.e., where the collection of EFB metrics
would not interfere with the operation of the platform under scrutiny.
These metrics are usually collected in a passive fashion and through
hardware probes added to the system. Such collected metrics can in
fact be considered as a form of side-channel information source. This
information position is considered as grey box, for there will still be
reliance on metadata information, in addition to the collected EFB
metric readings. For instance, there will be a need for collection of
execution phase boundaries.

The lack of interaction with cases that are being treated as grey
box brings forth another limitation. Behaviour improvement is harder
to achieve when following a grey box approach. We will show the
example implementation of this information position, using electrical
EFB metrics, while dealing with our image analysis platform use-
case. When it comes to electrical metrics, one can use external power
meters and power data loggers. Nowadays, more advanced embedded
platforms have electrical metric collecting probes included in their
design, reducing the need for additional hardware.

3.3.3 Black box position

To achieve a solution from a black box information position, the only
acceptable source of data is collections by means of external monitoring,
i.e., without interfering with the systems operation, which was also the
case for the grey box information position. Additionally, for a black box
position, no supporting metadata information from the internal state
or operational details has to be in play. Such a black box information
perspective has been applied to our image analysis platform use-case
by considering a solution based on deep learning algorithms. Further
details regarding the implementation of this solution can be found in
Section 4.4.

Considering what we described for the three possible information
positions, it is always desirable to work with less data and to work with
less structural information for the data, if results can be achieved with
similar quality. Here, quality refers to the accuracy of identification for
anomalies, plus how quickly the identification can be performed. This
also encompasses both design effort perspective and implementation ef-
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fort perspective. A more advanced knowledge of the structural specifics
for a given platform and the data relevant to that platform means that
the analyst has to consider them in the feature engineering effort. Such
knowledge and data access should be taken advantage of by producing
clever manipulations of the data to construct revealing features within
the data set, except if the solution can inherently discover interesting
features on its own. We will perform a comparison between solutions
using grey box and black box information positions in Section 5.3.

3.4 communication-centric monitoring , modelling and
simulation

As already mentioned in the description of the white box informa-
tion position, for complex industrial CPS with an extensive software
footprint, it is vital to limit the data collection effort, while keeping
it effective. As such, we strive for effective condition monitoring, pro-
viding a partial view of the system that is representative enough for
behavioural trend monitoring and identification purposes.

One of the main advantages of looking at an execution timeline
from the perspective of phases, i.e., compartmentalisation into repeated
execution units, is that we can focus on the most useful units of the
execution timeline. Looking back at what we depicted in Figure 2.1, the
considered phases out of all available ones in the execution timeline,
e.g., just Phase A, are not required to be continuous. In other words,
gaps are allowed in condition monitoring data. Such a selection of most
useful phases results in elimination of others and in turn, elimination
of software processes or functions associated with them. In this fashion,
we are already reducing the behavioural surface we are to monitor.

Most multi-node and multi-process, i.e., distributed, industrial CPS
include a message passing subsystem, predominantly in the form of
a message broker based on the publish-subscribe software architecture
pattern. To reduce the observed behavioural surface in a complex
CPS, one can limit the observation to this message passing subsystem
and specifically, to the message broker process. Although the observed
behaviour will be a subset of the full system behaviour, it will be a valid
representation, sufficiently reflecting the trend and changes [50, 56]. In
such a communication-centric monitoring, this is achieved by collecting
traces from purposefully planted probes in the code of the target
communication subsystem. Such an invasive probing provides us with
enough data to support modelling and simulation efforts. Collected
information consist of EFB metrics that are read and processed. In its
final form, the tracing data consist of communication, read and write,
and computation events. Communication events contain information
such as, senders, receivers, message sizes, and timing information.
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Computation events contain information such as, CPU utilisation, CPU
waiting times, process IDs and timing information.

We employ high-level modelling and trace-driven simulation of the
CPS with the purpose of reasoning about the system behaviour. Accord-
ingly, we have a detailed view of how different resources in the system
are being used at different stages of the execution of a workload, e.g.,
CPU status and buffer utilisation. Moreover, the usage of high-level
simulation models allows us to explore the effects of possible actuation
mechanisms or countermeasures against performance anomalies in a
safe environment, before applying these actuations to the real system.

High-level modelling and simulation are rather intertwined notions,
as a simulation is the execution of a calibrated model. This is done
through replaying of the previously collected traces by the simulator,
while considering the high-level model’s specifics, such as interconnec-
tions and high-level behaviour of different elements. In Sections 4.1.1
and 4.1.2, we describe how trace data is used to automatically syn-
thesise and calibrate our high-level model. The model is a simplified,
but descriptive enough representation of the studied system, hence
high-level. Having the knowledge of involved actor types, i.e., data
producers (writers), data consumers (readers), and data brokers (com-
munication libraries), complimented with interconnection information,
i.e., topology, is sufficient to construct the high-level model. Calibrating
this model for simulation is done by considering metric recordings,
collected during the system’s operation. The aforementioned tracing
format, i.e., read, write and compute events, is especially suitable for a
discrete-event simulation.

3.5 digital twins and their usage

Collecting traces under anomalous behaviour might not be a straightfor-
ward task when it comes to real production-grade industrial CPS. The
causes behind such a limitation can be numerous, but regardless, there
will be a need for synthetically generated anomalous traces. To be able
to resemble anomalous behaviour and generate synthetic anomalous
traces, the role of a digital twin is a crucial one. This digital twin, which
in our case is based on a simulation of our communication-centric
model, should sufficiently replicate the behaviour of its physical exem-
plar. Additionally, using a digital twin will dictate the application of a
harmonisation procedure on the data coming from the real system. The
argument here is that since both types of traces, normal and anomalous,
are going to be the basis for comparisons, they have to be harmonious,
i.e., collected from the same platform, which in this case, is the digital
twin. The effects of synthetically introduced anomalies will not be local
and there is great potential for cascading effects. As a naive example,
delaying a process that should send a message to another, will certainly
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delay the reception at the latter, affecting its behaviour. We can achieve
the conduction of such effects by using the very same digital twin as a
reference platform. As such, all traces will be harmonised by passing
through the digital twin. More details on this process will be given in
Section 4.1.

Another important purpose of having a digital twin is its role in
the actuation workflow. As seen in Figure 3.2, any chosen actuation
policy will first be applied to a digital twin, in order to evaluate its
effects on the representative twin’s behaviour. Only if there was an
improvement in a desirable direction, the policy will be activated in
the real system. It is not a strict requirement for the twin to be a
digital one. As discussed earlier, for platforms approached in a black
box fashion with a smaller footprint, a physical twin can be a fair and
even more suitable option. A physical twin is especially advantageous
when interacting with an industrial CPS in the form of a distributed
embedded system, composed of numerous identical nodes. In such
set-ups, a single physical twin can verify actuations aimed at any of
the anomalous nodes, i.e., anomalies and actuations localised per node.

3.5.1 Digital twin for a communication subsystem

Considering a white box information position and deployment of
communication-centric monitoring and modelling, a digital-twin in the
form of a trace-driven simulation is conceivable. The discrete-event
simulation environment including real processes, simulated processes,
interaction between simulated processes and the resource manager
model, as well as the topology of the communication subsystem model
is depicted in Figure 3.3.

Note that only processes that are using the communication module
are being traced, e.g., Real process i, will not have a contribution in the
collected behavioural metrics. The outcome of tracing to be used for
the modelling and simulation, contains information such as, event ID,
process ID, event initiation timestamp, event end timestamp, event type,
CPU utilisation, and for communication events only, message size and
destination process ID. For our trace-driven discrete-event simulation,
we use the OMNEST simulation framework [77].

hardware resource management In the current version of our
implementation in the OMNEST simulation framework, the resource
manager model, i.e., hardware architecture, is modelled as a module
receiving requests from different simulated processes and storing the
requests in a ready queue. CPU resource management is performed
using a First Come, First Served (FCFS), or a Round Robin scheduling
policy. CPU time is distributed as tokens that are given to the simulated
processes and returned when the processing is finished. The number of
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Figure 3.3: A diagram showing the discrete-event simulation environment as
the digital twin of the semiconductor photolithography machine
node is given. The diagram is considering the topology from the
publish-subscribe broker’s perspective and parsed traces that are
converted into write, read and compute events.

tokens depends on the number of CPU cores included in the simulated
system.

trace-driven virtual processes Trace-driven virtual processes
are generic simulated processes, automatically generated based on the
number of executed application processes in the real system, i.e., ob-
served processes using communication-centric monitoring. Simulated
processes are trace-driven and the simulation engine executes one event
at a time. Process models are automatically inferred from the monitor-
ing traces, avoiding the need to manually derive these models, which
is typically very complex, or even infeasible to do for industrial CPS.
Traces are parsed and converted to three types of events, namely, write,
read and compute. These events are consumed by simulated processes
and resource requests are created depending on the content of the trace,
e.g., used CPU, type of event and timestamps. For instance, a process
requiring a certain number of CPU cycles to perform the operation
specified in the event, will create a CPU request. This request will arrive
at the ready queue of the simulated CPU and will be served according
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to the CPU scheduling policy implemented in the resource manager
model.

event scheduling policies On the side of the software applica-
tion model, an event scheduling policy is present. The simulated processes
read the trace events in order and one at a time, scheduling the next
event according to a number of factors considered in the event schedul-
ing policy. These factors are, current simulation clock, tsim, the initiation
timestamps of events encoded in the trace, tini, gaps between events in
the trace, Dt, CPU utilisation and the idleness of events. Describing our
event scheduling policy alternatives in Figure 3.4, real timestamps are
given under the “Real trace” timeline, while simulated timestamps are
provided under “Simulation” timelines.

Real trace

Simulation
(faster)

Simulation
(slower)

Simulation
(overtaking)

A B
1 3

1

75 t

A B
2 75

BA

BA
1

1

4 5 7

86

t

t

t

(a) Event scheduling policy 1

Real trace

Simulation
(faster)

Simulation, corrected
(ideal CPU access)

Simulation, corrected
(delayed CPU access)

A B
1 3

1

9 11

B
3 75

B

B
1

1

7 9 11

128 10

�t = 2

7

CPU = 2, idle = 4

3

42

Simulation, corrected
(delayed CPU access)

B
1 12 14104 6

delay

t
�t = 2

�t = 2

�t = 2
idleCPU = 2

idleCPU = 2

CPU = 2

idleCPU = 2delay

t

t

t

t

�t = 2

(b) Event scheduling policy 2

Figure 3.4: Different event scheduling policies applicable during a simulation
are shown, with (a) Policy 1, for close synchronisation of events
based on initialisation times within the trace and (b) Policy 2, which
considers the idleness part of computations when scheduling events.
Policy 2 is especially interesting for observing the changes resulting
from tweaking of the original behaviour, through actuation.
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Figure 3.4a depicts our closely synchronised Policy 1, i.e., replay, with
the first line showing two consecutive events from a real execution,
running on the same processor. When simulating events A and B, sim-
ulated event time1 could take longer or shorter to complete. Whether
event A finishes earlier or later compared to its real version, the next
event’s starting time will be its own tini from the real trace, resulting in
a close synchronisation with the real trace. The only exception is when
A takes long enough to overtake B’s tini. As such, B will start as soon
as A ends, i.e.,

tiniB = tendA .

Note that for such an overtaking to happen, both tasks A and B should
run on the same processor, already as mentioned.

Figure 3.4b shows how gaps between events, Dt, and process idleness
during an event are accounted for, especially when scheduling compu-
tation events. First off, Policy 2 does not initiate events strictly based
on their real tini, but instead, it prioritised the gaps between events,
regardless of faster or slower completion of the preceding one. As such,

tiniB = tendA + Dt.

Another consideration is the duration of an event and its associated
CPU time. In most cases, an event includes process idleness, which is
always added to the simulated event in the form of a wait. This idle
duration is added after the event’s computation is over and the CPU
token is released. However, CPU availability might not occur at the
very start of the event, resulting in the addition of another delay to the
event, right before the computation. Considering such a delayed CPU
access, the next event will start at

tiniB = tiniA + Adelay + Acompute + Aidle + Dt.

This second event scheduling policy focuses on increasing flexibility
and less rigid follow-up of the real trace when releasing events to
the simulation engine. Here, the policy avoids the use of initialisation
timestamps specified in traces. While Policy 1 focuses on strict replay
of the original observations, Policy 2 tries to maintain a more fluid
behavioural accuracy, as closely as possible to the real execution, by
not forcing the events to be scheduled at timestamps mimicking the
real trace. Accordingly, Policy 1 is suitable for close replications of the
original behaviour, whereas Policy 2 is a better choice to explore the
impact of different changes to the system, e.g., as a result of actuation
mechanisms.

1 Not the simulation itself
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3.5.2 Hiccup injection

As one of the uses mentioned in Section 3.5 for a digital twin, we are
considering synthetically generated anomalous traces, through injec-
tion of faults in the original traces. Our fault injection implementation
focuses on affecting the duration of events by modifying the end-time
of events [55], i.e., adding small hiccups. Our software allows us to
completely configure the percentage of processes to be affected, the per-
centage of events to be affected, the type of event, i.e., communication
or computation, the type of performance anomaly to be introduced,
i.e., transient or persistent, as well as the overlap between the pro-
cesses selected to be modified while introducing transient or persistent
anomalies.

The three aforementioned types of events involve process idleness
and CPU access delay. Duration of an event, tE, which is the elapsed
time from its initialisation, tini, till its end, tend, is made up of CPU
access delay, Edelay, CPU time, Ecompute, and idleness, Eidle, such that

tE = tend � tini = Edelay + Ecompute + Eidle.

We are considering additional synthetic delays, dsynth, as increases
to the original duration of the event, tE, which means that we are
increasing the combined duration of CPU access delay, Edelay, and
idleness, Eidle, resulting in an increased event duration, tEsynth , such
that

tEsynth = Ecompute + (Edelay + Eidle + dsynth).

Note that CPU access delay and idleness result from different con-
ditions and we are not able to distinguish between them using the
deployed tracing mechanism. While CPU access delay is simply a wait
before CPU availability, idleness could be a result of I/O waits, or
functional and data dependencies to other processes. Nevertheless, our
synthetic manipulation of traces does not depend on the distinction
between the two, since we will be adding to the overall delay of an
event, i.e., anything other than Ecompute.

3.6 one challenge , two approaches

Different flavours of Artificial Intelligence (AI), whether traditional
Machine Learning (ML) or more sophisticated Deep Learning (DL)
algorithms and models, are good fits when dealing with large amounts
of data. Given that modern industrial CPS provide this large amount of
monitoring data generation capability through software and hardware
probes, the use of ML is not a preference, but a necessity. Depending on
the type of ML algorithm, certain amount of preprocessing is needed
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to transform the data into consumable forms. We have considered two
alternative realisations of our methodology from Figure 3.1, namely,
Classic ML and Advanced DL. As it will be shown in Chapter 4, major
parts of this preprocessing will be implemented rather differently,
resulting in alternative characteristics and performance.

3.7 use-cases and workloads

Following the discussion on industrial CPS complexity spectrum from
Section 1.4, we apply our methodology to, and illustrate the results
of this application, for two distinct use-cases. Both of these use-cases
that we have developed demonstrators for, portray diverse levels of
complexity, covering far ends of the industrial CPS complexity spec-
trum. Both use-cases have been taken directly from the industry. As
our first use-case, the semiconductor photolithography machine, we
have adopted a white box information position, in which we are able to
add probes within the software to collect EFB metrics. We are also able
to collect or estimate metadata information, such as execution phase
boundaries within the execution timeline. Accordingly, the resulting
representations for this use-case are named as software signatures and
software passports.

For our second use-case, an image analysis platform, the system has
been treated from both grey box and black box information positions, in
separate demonstrations. We have applied our methodology from the
grey box information positions while behaviour is monitored through
electrical metrics, collected via external probing. Alongside metric data,
we are also collecting phase-related metadata. The resulting behavioural
representations for this use-case are named as power signatures and
power passports. Though there are subtle differences between different
cases within the early data manipulation steps, generated constructs
for both have been treated with the same classifiers. With the black
box information position, we have opted for our approach based on
DL with Convolutional Neural Networks (CNN). This choice heavily
reduces the need for the presence of metadata, while eliminating the
need for behavioural signatures and behavioural passports.

The behaviour of industrial CPS is dependent on three factors.
These are, the platform, including the hardware and the software
running it, environmental specifics and the workload. For both use-
cases, aside from the platform and environmental specifics, which are
static throughout our experiments, the workload is the most defining
source of variation. We have done our utmost by considering diverse
workloads, both as solitary batches of jobs and queues of batches to
be processed in order by these platforms. For the case of the semi-
conductor photolithography machine, we have considered batches of
2, 5 and 10 wafers, as well as a queue of 2, 5 and 10-wafer batches
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bundled together. For instance, one of the differences when considering
a queue of batches is that the platform will perform preprocessing
of the 5-wafer batch while the exposure for the 2-wafer batch is in
progress. For the case of the image analysis platform, which is less
complex, we consider solitary 30-image batches, as well as queues of
10 such batches to push the system with heavier workloads.





4E X P E R I M E N TA L I M P L E M E N TAT I O N

The following includes experimental and applied implementa-
tions based on previously devised methodology and real-world
data collections from industrial use-cases. The full extent of
implementation details specific to our use-cases are presented.

The contents of this chapter are mainly based on, but not limited
to, the previously published conference and/or journal publi-
cations of the author. The publications of interest for Chapter 4
are:

• “Work-in-Progress: Communication-Centric Analysis of
Complex Embedded Computing Systems” [56] (P1)

• “On the Effectiveness of Communication-Centric Mod-
elling of Complex Embedded Systems” [50] (P2)

• “Software Passports for Automated Performance Anomaly
Detection of Cyber-Physical Systems” [55] (P3)

• “An Analytics-Based Method for Performance Anomaly
Classification in Cyber-Physical Systems” [49] (P4)

• “Power Passports for Fault Tolerance: Anomaly Detection
in Industrial CPS Using Electrical EFB” [58] (P5)

• “The Choice of AI Matters: Alternative Machine Learning
Approaches for CPS Anomalies” [59] (P6)

• “Improving the Robustness of Industrial Cyber-Physical
Systems Using Behavioural Signatures, Behavioural Pass-
ports and AI” [57] (P7)

Although the implementations of behavioural signatures and their
generation in both of our proofs-of-concept follow the previously elab-
orated methodology, differences remain. We will describe each case
separately. The software passport workflow and the power passport work-
flow refer to the implementations of our methodology for the semi-
conductor photolithography machine and the image analysis platform,
respectively.

39
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4.1 software passports workflow

As noted in Chapter 3, our software passport workflow has been ap-
plied to ASML’s semiconductor photolithography machines, as one of
the real-world demonstrators for this thesis. The workflow is depicted
in Figure 4.1 and follows a white box approach. This complex industrial
CPS includes communication subsystems based on the publish-subscribe
architectural pattern. The subsystem connects application processes from
different software components, which in turn run on distributed com-
puting nodes. The depicted software pipeline has been created to
extract per process, per metric and per execution phase information
from the simulated traces. Regression modelling techniques are used
to transform the extracted data into regression functions that are most
accurately approximating the performance of processes over time.

For this use-case, we are working with the main computing node in
the photolithography machine, which is in charge of the wafer process-
ing and wafer exposure tasks. Considering our definition of execution
phases from Section 2.2 and the description of the wafer processing
workflow from Section 1.4, we have taken a single wafer’s exposure
operations, wafer op., as the phase of choice for our methodology to be
applied over. The selected phase, wafer op., is considered to be a combo
phase for full processing and exposure of a single wafer. We consider
this operation as combo, since it can be broken down to different sub-
operations, which will be more fine-grained and could be considered as
atomic phases. Nevertheless, the fact that it is a combo phase does not
make a difference for our implementation, as our data-centric method
is agnostic towards such abstractions. The understanding coming along
with the analysis of different phase granularities does however help
the researcher or engineer to have a basis, in case the chosen phase was
not the best option.

4.1.1 Effective sensing

Considering the “Trace data” block from Figure 4.1, we strive to capture
a partial view of the system’s behavioural trend, small enough for moni-
toring and data manipulation, but also complete enough to have a semi-
accurate view of the behaviour. The sensory data required for this goal
is gathered online, through invasive probing, i.e., by adding probes in
the code, in a communication-centric fashion. Communication-centric
monitoring allows us to limit the introduced overhead, as the software
probes are implemented at the system communication module, i.e.,
message broker. When communication takes place, involved processes
are traced indirectly from within the broker calls. The overhead is much
less, compared to a fully invasive tracing of each and every software
process, at the cost of a reduction in the amount of information cap-
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tured. More precisely, we will miss the information on processes that
are not using the communication module. The current information
captured by our tracing tool includes per process data such as, event
start and end timestamps, CPU utilisation, message sizes, message ids,
messages sources and destinations, and memory utilisation. Following
the description of software probes for a white box approach given in
Chapter 3, Pseudocode 2 elaborates our probing for communication
and computation events.

Pseudocode 2: A high-level description of software probes is
given, specifically for collection of communication and com-
putation events at the publish-subscribe broker. Using such
techniques, we can collect metrics for all callers of the broker
functions, from within the communication subsystem.

Function main():

trace_comp_start(processID, event, timestamp_start);
do some work...;
communicate(payload, other arguments);
do some other work...;
communicate(payload, other arguments);
...

Function communicate(payload, other arguments):

probe and save used CPU...;
trace_comp_end(processID, event, timestamp_end, CPU_used);
trace_comm_start(processID, event, timestamp_start,
size(payload));

communication occurs...;
probe and save used CPU...;
trace_comm_end(processID, event, timestamp_end, CPU_used));
trace_comp_start(processID, event, timestamp_start,
CPU_used);

return

When a process starts its execution, a trace_comp_start call saves
the id of the process, the type of event and the start timestamp. No-
tice that this is the initial reference point, ergo the CPU time is not
recorded. The process continues its normal execution until it calls the
communication library, containing the probing code, i.e., communicate.
When entering the communication library, the trace_comp_end event
saves the timestamp (timestamp_end) and the amount of resources that
were used by the application until that point, while the communication
event is traced using trace_comm_start and trace_comm_end. Then,
collected traces are processed to calculate time spent in communication
and computation related tasks. Computation events may contain not
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only CPU usage information, but also idle time, I/O time, etc., while
communication events can also involve some CPU utilisation.

One of the tools available for invasive probing of metrics such as CPU
time or memory usage, is the getrusage system-call. One might also
opt for other tools or techniques, depending on what is available for
the metric of interest and the platform. In our case, we are specifically
focusing on CPU time, as well as read and write counts.

We have mentioned in Section 2.4 that behavioural passports and
signatures are collected per metric, per phase, and if multiple pro-
cesses are present, per process. This may seem like too many passports
to keep track of. However, when passports are combined with the
communication-centric monitoring strategy, from the perspective of a
broker, an unexpected advantage is revealed. When dealing with data
producers and data consumers and by considering read event counts
and write event counts during a phase as metrics of interest, we are
actually considering mutually exclusive metrics. In fact, the absolute
majority of such processes are either strictly data producers, or strictly
data consumers. In other words, the publish-subscribe software archi-
tecture enforces an inherent limit over the available metrics per process,
reducing the number of passports to be maintained. Note that this is
the case for passports based on univariate regression.

4.1.2 Digital twin and behavioural coverage

As mentioned in Section 3.5, there is a need for a digital twin when
generation of anomalous traces is not straightforward. This is observ-
able under “Classic ML: Signature generation” segment in Figure 4.1 as
the “Hiccup injection” arrow. For our semiconductor photolithography
machine use-case, we have to rely on a digital twin to generate anoma-
lous traces. Accordingly, a digital twin in the form of a trace-driven
discrete-event simulation, implemented using the OMNEST simulation
framework [77], which is suitable for this purpose, comes into play.
We have assessed our aforementioned methodology from Section 3.5
using this simulation. The three main metrics that we have considered
to evaluate the quality of our proposed methodology are:

1. the behavioural coverage of our communication-centric monitor-
ing and modelling,

2. the accuracy of simulations regarding CPU utilisation and

3. the accuracy of simulations considering process lifetimes.

In order to perform the simulations, traces from a fully functional
ASML photolithography machine, having the same software compo-
nents as a production machine, and thus the same behaviour, minus all
the moving robotic parts, were used. This machine is used by ASML
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to perform machine throughput qualification as a regular basis. Traces
were collected by introducing probes in one of the main communication
libraries, following the publish-subscribe architectural pattern. These
traces were post-processed, and in turn, used as input for the simula-
tion model developed in OMNEST. The collected traces correspond to
four different workload scenarios1 using a single recipe (pattern). In
real operation, recipes are optically projected onto a silicon wafer cov-
ered with a film of light-sensitive material. The load scenarios consist
of:

1. applying the recipe to expose 2 wafers, workload 2w,

2. applying the recipe to expose 10 wafers, workload 10w,

3. sequentially applying the recipe to expose a combination of 2-
wafer and 10-wafer batches, workload 2+10w and

4. sequentially applying the recipe to expose a combination of 2-
wafer, 5-wafer and 10-wafer batches, workload 2+5+10w.

The difference when processing diverse batches of wafers lies in the
fact that different application processes are triggered depending on the
number of wafers to be processed, as well as the number of the queued
batches.

Figure 4.2 shows how the CPU utilisation trend of the total system
is closely matched with the combined CPU utilisation of the observed
processes, i.e., the ones using the communication subsystem. We have
compared both accumulated utilisation values captured via the UNIX
top command and from our tracing events, collected via resource
usage system-call, getrusage, with total system utilisation values from
top. The absolute difference between CPU utilisation of the processes
involved with the communication subsystem and total CPU utilisation
of the full system represents the amount of undetected behaviour.
The figure depicts the undetected behaviour with small amounts of
dispersion, of which 0.7% to 8.7% are outliers, indicating a matching
behaviour throughout the execution time. Note that the behaviour
captured, i.e., monitored, from the communication subsystem involves
only 1/6th of all application processes. The blue box plot is based on a
graph resulting from the absolute difference between full system CPU
utilisation and observed CPU utilisation for every point in time, all
from system parameters collected using top. It shows median values
of 10.10%, 11.35%, 11.35% and 11.30%. The red box plot is generated
similarly, with the only difference that the observed CPU utilisations
are based on recorded communication events’ data using getrusage
and shows median values of 10.50%, 11.94%, 12.01% and 11.91%.

1 These workloads do not represent all possible workloads for photolithography machines.
Nevertheless, these are sufficiently diverse for our experiments.
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Figure 4.2: Plotting the behavioural coverage evaluation, using CPU utilisation
differences for multiple workloads, i.e., by comparing total system
vs the communication-centric view. Considering that we are moni-
toring 1/6th of the total application processes, we can see that the
amount of observation loss is consistent for different workloads,
while at the same time, the observation loss is rather close for both
top and getrusage.

Now that we have evidence supporting the consistent behavioural
view of our communication-centric monitoring, let us consider sim-
ulations based on these traces. Figure 4.3 shows the absolute CPU
utilisation difference obtained considering the two different simula-
tion policies explained in Section 3.5.1. Median values for Policy 1
are 0.0149%, 1.6439%, 1.0684% and 1.0697%, while for Policy 2, these
values are 0.0146%, 1.6119%, 1.0232% and 1.0108%. These results are
achieved considering load scenarios 2w, 10w, 2+10w and 2+5+10w,
respectively. For both simulation policies, the absolute CPU utilisation
difference ranges between 0.5% and 2.3%, showing that the simulated
CPU utilisation closely tracks the monitored CPU utilisation. Actual
CPU utilisation trends are kept confidential at the request of ASML
and graphs depicting them cannot be presented.

As our third metric, aforementioned in the beginning of this section,
Figure 4.4 depicts per-workload lifetime difference when simulating
processes with the two previously covered event scheduling policies.
The y-axis represents process lifetime difference for different workloads.
The lifetime difference is calculated by subtracting the lifetime of an
observed process from the input traces, with a simulated process from
the output traces. Here, the output trace refers to the exact same way
of collecting metrics, but from the execution performed on the digital
twin. Ideally, the lifetime difference should be as small as possible, indi-
cating low deviation. Separate box plots are drawn for our workloads
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Figure 4.3: Plotting CPU utilisation differences for multiple workloads, ob-
served vs simulated results, considering that the observed view is
from our communication-centric monitoring using getrusage. We
can observe that when it comes to CPU utilisation, simulations are
rather close to what is collected via our partial monitoring view.
Note the rather small scale of the y-axis.

in Figure 4.4. There are very few specific processes where the lifetime
difference can be considerable, such as the 221% lifetime difference
observed in one of the processes, when using Policy 2 for the 2-wafer
workload experiment. These major differences are present when pro-
cesses have very short lifetime or contain one small set of events to
simulate, in some cases only one event. Policy 2 presents, in most cases,
a higher process lifetime difference, due to the fact that events are
not scheduled according to initialisation timestamps recorded in the
traces, and only idleness of computation events is taken into account,
as shown in Figure 3.4b. For the case of Policy 1, some differences are
higher because the last scheduled event can be a computation event,
where the idleness is not considered. This may considerably increase
the process lifetime difference.

Even taking into account that some events have a high lifetime
difference, the average total execution time difference, considering the
two presented policies, ranges between -0.0007%2 and 0. Simulating
between 63 thousand and 480 thousand events, captured during 10 to
15 minutes of real machine execution, takes about 10 to 15 seconds.
This achieved simulation performance is from a single core of an Intel®

Xeon® Gold 6146, running at 3.20 GHz.

2 A negative value indicates underestimation.
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Figure 4.4: Plotting process lifetime differences for simulations of different
workloads, considering both Policy 1 and Policy 2.

4.1.3 Feature set and classification

Having regression functions as representations of reference units of
execution (phases) allows us to compare new sets of sample data against
these functions using goodness-of-fit tests, depicted as the “Goodness-
of-fit values” block under “Classic ML: Data set generation” segment
in Figure 4.1. In our case, coefficient of determination (R2) and Root-
Mean-Square-Deviation (RMSD) are taken to quantify and compare the
amount of deviation. The comparison considers the collected sample
related to a specific input against the reference passport.

The classification algorithms we have are Decision Tree (DT), Random
Forest (RF), Gaussian Naïve Bayes (GaussianNB), k-Nearest Neighbours
(k-NN), Linear Support Vector Classification (LinearSVC) and Kernel
Support Vector Machine (KernelSVM)3, with the first two having the
best results. The feature set involved in the classification and brief
descriptions of these features are as follows:

• Operation: Considered phase, i.e., wafer op.

• Metric: Considered metric, i.e., CPU time, cumulative reads (reads
count) and cumulative writes (writes count) in our experiments
for this use-case.

• Dpid, phase, event(R2): Percentage difference between the R2 value
and the R2 value of the reference passport per process, i.e., PID,

3 The hyperparameters used with Scikit-learn library for each classifier besides the default
values are as follows: criterion = entropy for DT; n_estimators = 100 for RF; n_jobs = �1
for k-NN; max_iter = 50000 for LinearSVC; kernel = poly and degree = 5 for KernelSVM.
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and per event, e.g., for a single wafer op. phase, we will have
pid_event columns such as, 23_compute, 23_read and 23_write for
PID 23, corresponding to deviations of computation, read and
write behaviour, respectively.

• Dpid, phase, event(RMSD): Percentage difference between the RMSD
value and the RMSD value of the reference passport per PID and
per event, e.g., for a single wafer op. phase, we will have pid_event
columns such as, 23_compute, 23_read and 23_write for PID 23,
corresponding to deviations of computation, read and write be-
haviour, respectively. Note that if a PID is strictly a producer of
data, it will not have a read column, or for the case of a strict
consumer, a write column will not be present.

• Label: Normal, Anomaly 1, Anomaly 2, etc. (Persistent Benign,
Persistent Harmful, Transient Benign and Transient Harmful for
this use-case, as will be discussed in Section 4.3.1)

A total of 66 different processes (PIDs) are involved in this use-case’s
phase data. We are running the classification with different metric
choices to compare which individual metric proves to train a more
accurate classifier. We also do this for the combination of all three
metrics. Though we have tried the percentage difference amounts for
both R2 and RMSD, the results included in this thesis for this use-case,
are based on the percentage difference for RMSD values.The results
for different classifications are provided in Chapter 5. We do clean up
the data set columns by removing all zero columns, which proves to
result in slightly better classifications. We also split the data into 70%
training and 30% test data. Our data analysis pipeline has been written
in Python 3.7 and for our regression and classification needs, we rely
on Scikit-learn 0.23.1 machine learning library [63].

4.2 power passports workflow

Our set-up for a proof-of-concept, specific to the image analysis use-
case, alongside the preprocessing, the feature extraction, labelled dataset
generation and the classification pipelines are given in Figures 4.5
and 4.6, respectively. This set-up consists of an ODROID-XU4 comput-
ing device, implementing the ARM big.LITTLE computing architecture.
We are running a stripped-down Linux distribution and the main run-
ning application is a neural network-based image analysis software,
detecting if cars are present in images. The platform is capable of receiv-
ing images from either a camera, or a storage device and in our case,
images are provided via a storage device. Note that for this use-case,
the combination of the proof-of-concept set-up and the data processing
pipeline has less complexity, mainly due to the absence of a digital twin,
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i.e., a simulator. Here, there is no need for such a twin, for we are able
to include real anomalous conditions, eliminating the requirement for
synthesising anomalous traces. There will still be a need for a digital or
a physical twin when it comes to evaluating actuation policies though.

For our electrical EFB data collection, we rely on the Otii Arc power
data logger unit [65]. The data logger collects electric potential in Volts
and electric current in Amps with the sampling rates of 1 kHz and
4 kHz, respectively. Timestamps for each data collection is also recorded
alongside these metric values. As shown in Figure 4.5, data collection
is followed by its compartmentalisation (cutting) and application of
regression modelling next, resulting in power signatures/passports.
The goodness-of-fit values are acquired by comparing a signature to a
passport.

Given that we have electrical potential, electrical current and time
readings, we consider the three metrics, current in Amps, power in Watts
and energy in Milliwatt-hours, for generation of signatures. The image
analysis running on the target platform has two main operations, i.e.,
reading images from a storage and applying a neural network detection
algorithm on them. Thus, we have considered the following atomic and
combo phases for current, power and energy readings:

• Image op.: An atomic phase for the image loading operation,

• Neural op.: An atomic phase for the neural network operation,

• Cycle op.: A combo phase for a full image cycle, including image
loading and neural network operations.

As depicted in Figure 4.7, we compartmentalise the processing of
an image into execution units, based on the mentioned phases. The
parsing is followed by a cutting step, breaking the parsed data per
phase.

4.2.1 Mean passports

In addition to individual power passports, we are also generating
mean power passports as a unified representation for many reference
executions with different input data. Mean passports are generated per
metric and per phase type. When it comes to mean power passports,
their generation is not a straightforward task, as there needs to be
matching timestamps. Basically, we are calculating the mean of many
regression functions, which can be written as,

ymean(x) =
f (x) + g(x) + h(x) + ...

n
,

with x being the independent variable, time, and n the number of
functions.
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Figure 4.6: This diagram visualises the anomaly identification flow for the
Classic ML approach, using much smaller trace batches with a
previously trained classifier.

Either we have to do listwise deletion and remove independent
variable readings which do not exist in all phases, or we have to
perform data imputation. The latter is much more preferable, for there
are executions that take slightly longer and we do not wish to disregard
valid data collection points residing at the end of longer executions. In
principle, this applies to other unmatched points as well, regardless
of their location within the execution time frame. We have already
generated regression models for data collections as their representations
and as such, we can perform regression-based imputation by predicting
the dependent variable values (metric) for missing independent variable
values. This arrangement is especially convenient, since we already
have generated and we use these very same regression models in
comparisons and goodness-of-fit tests. There will be no extra bias other
than what already exists as part of regression models. Figure 4.8 depicts
this process.

Two example mean passports generated for the Image op. atomic
phase and the Neural op. atomic phase are plotted in Figures 4.9a
and 4.9b, respectively. These examples are based on the electrical cur-
rent data as the EFB metric.

4.2.2 Feature set and classification

Similar to the previous use-case, coefficient of determination (R2) and
Root-Mean-Square-Deviation (RMSD) are taken to quantify and com-
pare the amount of deviation. The comparison considers the collected
sample related to a specific input against the universal mean passport.
Obviously the metric and the phase should be the same. Therefore,
there is no need for special considerations on the mean passport leg of
the comparison, as there is only one per metric and per phase.

Same classification algorithms as the previous use-case are used,
namely, DT, RF, GaussianNB, k-NN, LinearSVC and KernelSVM4, with
the first two classifiers, DT and RF, showing the best results. These

4 Same hyperparameters as the previous use-case were considered.
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Processing of a single image

Image op. Neural op.

Cycle op.

Passports generated from
the image op. atomic phase

Passports generated from
the neural op. atomic phase

Passports generated from
the cycle op. combo phase

time

metric (current/power/energy)

Figure 4.7: Different execution phases for an image processing task are drawn,
i.e., the atomic image operation for loading of an image, the atomic
neural operation for running the image through a neural network
algorithm and the combo cycle operation, encompassing the first two
atomic phases.

classification results are detailed in Chapter 5. The feature set involved
in the classification and brief descriptions of these features are as
follows:

• Operation: Considered phase out of image op., neural op. and
cycle op.

• Core type: Utilised CPU core, big or little

• Metric: Considered metric out of current, power and energy con-
sumption

• Execution time: Execution time for the phase (this is the one piece
of information, turning the view into grey box, instead of black
box, since we have the boundaries of phases in time)

• Coefficient 2: Coefficient for the second degree term, x2, of the
regression function

• Coefficient 1: Coefficient for the first degree term, x, of the regres-
sion function

• Intercept: Intercept value of the regression function



4.3 experimental set-up 53

Full set of
x values

Full set of
per passport

y values

Full set of
per passport

y values

Full set of
per passport

y values

ymean values

Mean passport
per metric

ymean = m2x
2 +m1x+m0

Figure 4.8: The diagram elaborating the mean passport generation flow is given.
We are using the full set of x values (independent variable) from all
available passports for the same metric and generating equal size
sets of y values (dependent variable), by means of regression-based
imputation.

• R2: Goodness-of-fit value for sample points from one image
against the reference mean passport

• Di(R2): Absolute difference between the R2 value and the R2

value of the reference mean passport

• RMSD: Goodness-of-fit value for sample points from one image
against the reference mean passport

• Di(RMSD): Absolute difference between the RMSD value and
the RMSD value of the reference mean passport

• Label: Normal, Anomaly 1, Anomaly 2, etc. (NoFan and Under-
Volt for this use-case, as will be discussed in Section 4.3.2)

Here, we also split the data into 70% training and 30% test data. Note
that the Operation, Core type and Metric columns are not actively used
in classification, but are present to break the data set into subsets based
on them. The results of trainings based on these subsets are provided
in Chapter 5.

4.3 experimental set-up

Let us go through the actual experiments performed for each use-case.
Considering that we are following a data-centric approach, the main
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(a) Mean passport for the Image op. atomic phase

(b) Mean passport for the Neural op. atomic phase

Figure 4.9: Example mean passport plots are provided for (a) Image operation
atomic phase and for (b) Neural operation atomic phase. Grey
curves indicate the passports that the mean passport in blue is
based on. While the procedure is the same for functions with any
degree, all regression functions in these examples are quadratic.
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goal is to come up with multiple scenarios and relevant data sets to
have enough variation for training and testing in our AI-based solution.

4.3.1 Semiconductor photolithography machine: Synthesising anomalies

In the set of experiments conducted with the ASML semiconductor
photolithography machine, we have considered one execution phase
corresponding to a repetitive task performed by the machine, wafer
processing operation. Photolithography machines are always used for
exposing batches of wafers with the same chip design, hence repetitive
task. The simulation’s output traces corresponding to the baseline
execution were used to generate software passports for each process
involved in the phase. In this fashion, the simulator, i.e., the digital twin
of the system, is being considered as a reference platform. An example
is provided in Figure 4.10. Here, Figure 4.10a depicts the cumulative
CPU usage of one process during one phase (dots in red), alongside
the polynomial regression that approximates its trend, i.e., the software
passport. Similarly, Figure 4.10b provides a software signature, resulting
from a synthesised anomaly.

In order to generate a proper data set containing different types of
performance anomalies, we have composed several hiccup injection
scenarios. The hiccup injection protocol, resulting in these scenarios is
elaborated in the following steps:

1. From the total number of available processes, 15%, 30% and 45%
of them were selected randomly to introduce modifications in
their traces.

2. From the processes selected in the previous step, two main per-
formance anomaly groups, persistent and transient, were created.
Software processes in the traces were randomly assigned to each
group, while a 10% overlap between the two groups was ensured.
For example, if we have the option to inject hiccups in twenty
processes and we have to generate two groups with 10% overlap,
the resulting groups could look like,

Persistent group = {0, 1, 2, 5, 7, 8, 10, 11, 12, 13} and
Transient group = {0, 3, 4, 6, 9, 14, 15, 16, 17, 18}.

The overlap percentage is configurable and its purpose is to
create a more realistic scenario, where there is no clear separation
between the set of processes that could cause persistent anomalies
and the ones that could cause transient anomalies.

3. Computation, read, write, or all types of events are selected from
the designated group of processes in the previous step. For each
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Figure 4.10: An example plotting (a) the quadratic regression modelling result
for a reference software passport, using cumulative CPU time as
the EFB metric of choice, and (b) the corresponding violation after
synthesising an anomaly. Aside from the quantifiable goodness-of-
fit test results, here we can visually observe the deviation.

of the event types selected, either 10%, 15%, 30%, or 45% of them
are modified, adding some overhead to the event’s elapsed time.

4. The overhead applied to each event is either of 5%, 15%, 30%, or
45% of their total event elapsed time.

5. Lastly, the above steps were repeated five times to create sufficient
data for different categories.

Using the protocol described above, we created 1920 different scenar-
ios, where each scenario contains traces corresponding to the monitored
software processes. These modified traces were simulated, using the
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digital twin environment described in Section 4.1.2, to determine the
impact on the phase execution time. Since our potentially anomalous
execution scenarios and the relevant data are synthetically generated,
we need an indicator to detect if the injected hiccup has turned the
execution into an anomalous one. This indicator is the execution time
of the phase. While considering the original phase execution time as the
baseline, for the 0-2%, 2-4% and above 4% amounts of increase in the
phase execution time, we consider the behaviour to be Normal, Benign
and Harmful, respectively. Combined with the groups of processes
that are used for hiccup injection, we will end up with the categories,
normal, persistent benign, persistent harmful, transient benign and transient
harmful.

4.3.2 Image analysis platform: Diversifying scenarios

The input data for the image analysis application are provided on a
storage device. We have considered two different sets of images, first
one being proper images with meaningful scenery. This batch includes
images with and without a car depicted in them. The second batch
includes images that do not depict any particular shape and have
purely randomised pixels, introducing variation in the input. In this
fashion, we could evaluate if the composition of an image is a factor
for our workflow. Each batch is used in two different executions, one
involving a single round of image analysis and the second, involving
ten rounds of image analysis, meaning the same batch is processed ten
times, sequentially. We have chosen the number of rounds arbitrarily
and with the aim to have a long enough execution, reflecting the effects
of anomalies. Each batch includes 30 images, making the workload
for ten rounds of processing as 300 images. We have also executed
every combination of conditions twice, by assigning the application to
either a big, or a little core on the platform. The list of performed data
collections are as follows:

• Case 1: 1 round of execution, regular images, little core (30 total
images)

• Case 2: 10 rounds of execution, regular images, little core (300
total images)

• Case 3: 1 round of execution, regular images, big core (30 total
images)

• Case 4: 10 rounds of execution, regular images, big core (300 total
images)

• Case 5: 1 round of execution, randomised images, little core (30
total images)
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• Case 6: 10 rounds of execution, randomised images, little core
(300 total images)

• Case 7: 1 round of execution, randomised images, big core (30
total images)

• Case 8: 10 rounds of execution, randomised images, big core (300
total images)

The structuring of our workloads for the aforementioned data collec-
tion cases, fits the principle of repetitive task execution for industrial
CPS rather well. Keep in mind that although these tasks are repetitive,
but the underlying non-determinism is still present, as the behaviour
of the system has subtle variations per execution, even with the same
exact input. This could for instance result from environmental condi-
tions, as these systems are installed on site and most often outdoors.
Now that different cases are defined, we have considered two different
anomalies, affecting the performance and the reliability of the system.

malfunction of the cooling system For this anomaly, hence-
forth called NoFan, we have disabled the cooling fan of the platform’s
CPU block. Keep in mind that in our set-up, the fan has a separate
supply of power to begin with and will not directly affect electrical EFB
metric readings of the platform, as depicted in Figure 4.5.

unstable power delivery For this scenario, henceforth called
UnderVolt, we have reduced the voltage supply to a level below the re-
quired amount for the platform, but still keeping the device functional.
This was a reduction from 5.0 Volts to 4.7 Volts. We have also made
sure that the voltage supply is at a sufficient level and it will not result
in glitches during the execution of tasks.

As it was the arrangement for data collection under normal cir-
cumstances, reflecting the normal behaviour, we have considered the
exact same cases with different batches of images, different numbers of
processing rounds and different cores. Accordingly, our experiments
resulted in eight cases for each scenario, representing Normal, NoFan
and UnderVolt situations. It must be mentioned that having equal num-
ber of cases and basically equal number of data fields for all scenarios is
advantageous as it will result in a balanced data set for classifiers. Hav-
ing a balanced data set will eliminate the need for imbalance countering
techniques, e.g., undersampling and oversampling.

4.4 alternative identification approach

So far we have elaborated our implementations for different use-cases,
taking advantage of the Classic ML approach. Taking what we have
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achieved into account, let us focus on the Advanced DL workflow
and its elements, which was applied to the image analysis platform
use-case.

Our Advanced DL flows for data set generation and anomaly classi-
fication are depicted in Figures 4.11a and 4.11b, respectively. For both
flows, whether the learning leading to the labelled data set, or the
classification, the amount of data preparation is minimal. This prepa-
ration includes parsing of the raw metric logs, cutting of the parsed
traces per image and running a sliding window algorithm to generate
two-channel slices of fixed size. These two channels include the time
data (timestamps) and the metric data (metric readings). It is necessary
to consider the time data as a separate channel, since the metric data
collection happens at high frequency. With non-deterministic system
behaviour present, high frequency readings result in timestamps that
do not exactly match for different experiments. This is an expected
effect as industrial CPS are inherently non-deterministic. We have only
considered the metric resulting in the highest accuracy for the Clas-
sic ML flow as it was seen in [58] and elaborated in Section 5.2, i.e.,
electrical current. Note that in this approach, there is no need for an
intimate understanding of the data to reveal atomic phases within the
processing of an image and the trace data related to each image is
considered as a whole.

When it comes to time-series data, especially forecasting use-cases,
Long Short-Term Memory (LSTM) networks are effective [29]. Although
our observations come in the form of time-series data, they are indi-
vidually isolated. Accordingly we have devised our Advanced DL
workflow with CNN as its deep learning model architecture.

As we will see in Section 5.2, the Classic ML flow has a rather high
accuracy [58]. To push the classification accuracy of our Advanced DL
flow to similar levels, we have performed a grid search for hyperpa-
rameter optimisation. The three groups of considered hyperparameters
are data preparation, learning and CNN model parameters, further
elaborated in Section 4.4.2.

4.4.1 Data set

Our data set is generated from the same raw electrical metric readings
used for the power passports workflow with the Classic ML approach,
collected via an external power data logger unit, Otii Arc [65], connected
to an ODROID-XU4 computing device. These traces are in the form
of time-series and every data point has a timestamp and a metric
value. The data set for the Classic ML flow has many columns, such as
execution time, regression function coefficients and intercept, goodness-
of-fit test values and labels [58]. The Advanced DL data set on the other
hand is rather simple, only including two separate time and metric
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data channels and corresponding labels. For both workflows, we are
considering three labels, i.e., Normal, NoFan and UnderVolt. The two
considered anomalies were described in Section 4.3.2.

The methodology can be implemented with any number of labels.
Our demonstrator involves these labels corresponding to, normal cir-
cumstances for reference executions, faulty cooling fan for the system-
on-chip, and unstable power supply, respectively. Both data sets are
balanced as we have performed equal number of experiments for all
scenarios (labels). For Advanced DL, as a common transformation,
the data is being normalised at preprocessing. The normalisation is
performed according to the formula

xnormalised =
x � µ

s
,

where x and xnormalised represent original the normalised values, while
µ and s denote mean and standard deviation of the population. Train-
ing set and test set ratios to the whole data set are 80% and 20% for the
Advanced DL trainings, respectively and 70% and 30% for the Classic
ML trainings, respectively.

4.4.2 Convolutional neural network structure and search space

The goal of our optimisation is to find the most accurate classifier.
To arrive at an acceptable neural network model design, we have
performed a grid search for the hyperparameter variations listed in
Table 4.1. Hyperparameters belonging to three different categories are
considered. The Data preparation category includes variations in slice
sizes and the amount of shifting between slices, which are parameters
for the sliding window algorithm during the data set generation process.
The Learning category covers parameters related to the learning loop of
the training algorithm and includes Learning Rate (LR) at the beginning
of the training, number of epochs, batch sizes, presence of LR decay
and if present, different decay periods. LR decay, if present, has a
multiplicative factor of 0.1. The CNN model is the third category of
parameters. Considered models are CNN models with two, four, or six
convolutional layers and one Fully Connected (FC) layer.

Our model training implementation keeps track of training loss
and training accuracy at the end of each epoch and saves the most
accurate model. The best model is not necessarily the one trained at
the last epoch. The most optimised model we arrived at consists of six
convolutional layers with sizes 64, 64, 128, 128, 256, 256, a FC layer of
size 4096, with all kernel sizes being 5⇥1, with Rectifier Linear Unit
(ReLU) activation for each convolutional layer and the FC layer, and
with MaxPool layers after even convolutional layers, as visualised in
Figure 4.12.
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Table 4.1: Three categories of hyperparameters considered during the grid
search to find the most accurate CNN model, alongside their consid-
ered variations during the search are provided.

Parameter type Parameter Variations

Data preparation Slice sizes 50, 100
Slice shifts 10, 20

Learning

LR at start 0.01, 0.001, 0.0001, 0.00005
Epochs 10, 20, 30, 40, 45, 50, 60
Batch sizes 10, 20, 50, 100
LR decay present (mul. factor 0.1), absent
Decay periods 8, 10, 20

CNN model

Conv. layers 2, 4, 6
Conv. layer size 8, 16, 32, 64, 128
Kernel size 3, 5
FC layer size 512, 1024, 2048, 4096
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+
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Convolution
+

ReLU Convolution
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Figure 4.12: The composition of the CNN model with the highest achieved ac-
curacy through our grid search is depicted. The depth, i.e., number
of channels per input, different layers and output are given in blue
colour.
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Our data analysis pipelines have been written in Python 3.8 and we
use the Scikit-learn 0.23.2 package for regression and the Classical ML
classification, as well as the PyTorch 1.6.0 package for CNN implemen-
tations and training. The hardware infrastructure for our experiments
is a machine with a 2.20 GHz Intel® Xeon® E5-2650 v4 CPU, 64 GB of
RAM and a GeForce RTX 2080 Ti graphics card, with CUDA release
10.0, v10.0.130.





5C L A S S I F I C AT I O N R E S U LT S

The following includes our classification results, i.e., anomaly
identification, alongside efforts leading up to model improve-
ments. Discussions on the achieved results, comparisons and
the implications deduced from the results are also included.

The contents of this chapter are mainly based on, but not limited
to, the previously published conference and/or journal publi-
cations of the author. The publications of interest for Chapter 5
are:

• “An Analytics-Based Method for Performance Anomaly
Classification in Cyber-Physical Systems” [49] (P4)

• “Power Passports for Fault Tolerance: Anomaly Detection
in Industrial CPS Using Electrical EFB” [58] (P5)

• “The Choice of AI Matters: Alternative Machine Learning
Approaches for CPS Anomalies” [59] (P6)

• “Improving the Robustness of Industrial Cyber-Physical
Systems Using Behavioural Signatures, Behavioural Pass-
ports and AI” [57] (P7)

Our results mostly focus on performance and physical anomaly
prediction accuracies of various classification algorithms, depending
on the use-case. We provide these separately for our two industrial use-
cases. Accurate classification, as the ultimate goal of the workflow from
Figure 3.1, can be achieved with the right choice of metric, execution
phase and a suitable classification algorithm.

As described back in Chapter 4, we are collecting EFB metric traces
while applying predefined workloads to our platforms to collect and
process this data and build training data sets for supervised learning
of our classifiers. For our first use-case, i.e., the semiconductor pho-
tolithography machine, we take traces related to a wafer’s processing
operation (wafer op.) as our reference, which in turn leads to synthetic
anomalous trace generation through the platform’s digital twin imple-
mentation. For this first use-case, the considered anomalies, defined
based on the amount of invoked drift for the total phase execution time,
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are persistent benign, persistent harmful, transient benign and transient
harmful.

With the second use-case, the image analysis platform, all traces,
normal and anomalous, come from real processing of different batches
of images as workloads, in combination with different platform settings.
Here, there are two anomalies present, NoFan and UnderVolt, which are
applied directly to the platform. We have also considered three different
phases, image op., neural op. and cycle op., as well as the combination of
the first two.

5.1 semiconductor photolithography machine

We have tried Decision Tree (DT), Random Forest (RF), Gaussian Naïve
Bayes (GaussianNB), k-Nearest Neighbours (k-NN), Linear Support
Vector Classification (LinearSVC) and Kernel Support Vector Machine
(KernelSVM) classifiers with the data set representing a single wafer’s
processing, alongside CPU time, reads count and writes count, as our
metrics of choice, as well as the combination of all three. As such,
Table 5.1 presents overall prediction accuracies for different classifiers.

The overall prediction accuracy of DT, RF, GaussianNB, k-NN, Lin-
earSVC and KernelSVM classifiers, while using the data generated from
single wafer processing phases together with the combination of all three
metrics, are 97.56%, 95.83%, 76.38%, 91.66%, 90.97% and 66.49%, respec-
tively. The confusion matrices for all classifiers with this combination
are depicted in Figure 5.1, showing the higher prediction performance
for DT and RF. Confusion matrices are efficient visualisations to demon-
strate the capability of classifiers in prediction of labels from the rest of
the data. In these matrices, predicted labels, generated by the classifier
from feature columns are compared against true labels from the data set,
on a per case basis. An ideal classifier with 100% prediction accuracy
will result in a confusion matrix, showing 1 on all diagonal cells, i.e.,
every single label’s prediction will 100% match the initially designated
label from the data set.

As a result of randomness in our synthetic delay injection and sce-
nario generation, the data set has considerable imbalance in favour of
normal cases, leading to different accuracies for different label predic-
tions. With an increased number of scenarios representing less frequent
labels, relevant accuracies will improve. This is demonstrated in the
image analysis use-case.

Considering the results from different classifiers, what stands out
is the poor accuracy of KernelSVM. This is partly a result of poor
hyperparameter tuning, as we mostly consider default settings out of
the box for these classifiers. Any classifier will achieve its best with
the right set of hyperparameters, which also depend on the data set
and the problem. The major reason though behind different per label
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prediction accuracies, which is most apparent for the Kernel SVM, is
fuelled by the data set’s imbalance. Since there are more cases present
for the normal label present, the KernelSVM classifier is mistakenly
predicting many cases belonging to all other labels as normal. Focusing
on DT and RF, given that the predictions are rather accurate despite
the imbalance, we did not pursue improvement techniques for the data
set any further.

5.2 image analysis platform

For this use-case, we have also tried DT, RF, GaussianNB, k-NN, Lin-
earSVC and KernelSVM classifiers with different subsets of our data
set. We observe that the choice of phase and metric as sources of data
has a considerable effect on the prediction accuracy of the classification.
We have tried classifications using data from all three metrics at the
same time, as well as every metric individually. For these trials, we
have considered either atomic image op., atomic neural op., combo
cycle op., or the combination of the data from both atomic image and
atomic neural operations. Table 5.2 presents these choices alongside
their resulting overall prediction accuracies.

The overall prediction accuracy of DT, RF, GaussianNB, k-NN, Lin-
earSVC and KernelSVM classifiers, while using the data generated from
combo cycle op. phases together with the electrical current metric, are
99.15%, 99.23%, 90.09%, 98.22%, 86.45% and 89.92%, respectively. Here,
DT and RF show the highest accuracies out of all combinations. The
confusion matrices for all classifiers with this combination are depicted
in Figure 5.2, again showing the higher prediction performance for DT
and RF classifiers. High prediction accuracy is also observable across
the board for all labels in all classifiers, as a result of having a balanced
data set.

5.3 classic ml vs advanced dl

Considering the hyperparameters listed in Table 4.1, Figure 5.3 displays
an overview of our grid search for paths achieving higher accuracies.
Here, different paths are composed of different sets of choices for
available hyperparameters. For instance, we can see that in the absence
of LR decay, i.e.,

Decay step = 0,

changing other hyperparameters can only take us so far, with accura-
cies staying below 93%. We can also observe that the improvements
on the lower end of the accuracy spectrum are larger compared to
the upper end, meaning that as the model improves, new additional
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improvements are harder to achieve. We have not plotted the paths
with poor results to keep the plot clean and legible. It is observable that
we realised a decay step of 10 to be the most optimal, which is why it
is part of so many paths. The top results for the most part include a
decay step of 10.

5.3.1 Quantitative comparison

To be able to quantitatively compare the two workflows, we con-
sider elapsed time values for different operations, collected with the
time.perf_counter() call, providing a high-accuracy monotonic clock.
Timing results are given in Table 5.3. We are considering the elapsed
times for preprocessing, i.e., flows in Figures 4.5 and 4.11a, model train-
ing and model validation. Model training has to be considered for our
industrial use-cases, since upon the introduction of a new anomaly, i.e.,
a new label, retraining will be necessary.

Table 5.3: Elapsed times in seconds during different stages of the Classic ML
and the Advanced DL workflows are compared. We can observe how
the Classic ML workflow is rather fast when it comes to training and
validation. On the other hand, the much faster preprocessing and
the availability of GPU acceleration for the Advanced DL workflow
stands out.

Workflow Preprocessing Training Validation

Classic ML-DT (CPU) 204 648 (⇠57h) 0.02 0.001
Classic ML-RF (CPU) 204 648 (⇠57h) 0.32 0.021
Advanced DL (CPU) 2576 239 976 (⇠67h) 125
Advanced DL (GPU) 2576 18 535 (⇠5h) 25.5

We have timed the Classic ML model training and model validation
for both DT and RF classifiers, while with regards to the Advanced
DL, we have considered CPU and GPU implementations. An important
limitation to point out about the Classic ML preprocessing from Fig-
ure 4.5 is the dependence of data set generation on the calculation of
mean passports. Although this preprocessing is highly parallelised, the
aforementioned dependency means that the top reference flow from
the figure has to succeed first.

Beyond what we can accurately measure, two rather time-consuming
titles are missing from Table 5.3, which are:

• Feature engineering effort: The human effort behind the Classic
ML workflow design involving the extensive study and analysis
of the operational specifics of the system under scrutiny.
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• CNN model optimisation effort: The human effort behind the
semi-automated search for effective hyperparameter combination
discovery, or design of a fully automatic search, which is necessary
for the Advanced DL workflow.

5.3.2 Qualitative comparison

It is evident from our observations during the CNN training that there
is a limit to the Advanced DL workflow’s achievable accuracy. This is
considering the fact that minimal amount of preprocessing has been
applied for this particular workflow on purpose. We also see that this
achievable accuracy is an effective one, up to 94.85%, depending on
hyperparameters. The accuracies for our Classic ML workflow using
DT and RF classifiers are 99.15% and 99.23%, respectively. However,
the high accuracy provided by the Classic ML workflow comes at a
cost and arguably, a high one. The amount of analysis, design effort,
experimentation and in short, feature engineering effort required for the
Classic ML workflow is rather vast. Accordingly, there is much need
for domain specific knowledge and understanding of the internals
of the system under scrutiny. The workflow designer has to know
beforehand, or explore, to understand which phases best reflect the
overall behaviour of the system for the specific set of anomalies.

One of the capabilities missing in our Advanced DL workflow is the
possibility to detect unknown behaviour, i.e., unseen anomalies. Though
the CNN model itself can be retrained upon the addition of a new
anomaly, the workflow does not include steps facilitating new anomaly
discoveries. The reference methodology from Figure 3.1 provisions
this possibility, for we can use goodness-of-fit tests and detect unseen
levels of deviation from a passport. Following this detection, further
analysis will result in a new class of anomaly, which can be added and
considered for feature engineering in future data sets. This addition of
unknown anomalies is achievable in the Classic ML workflow. However,
it does require the designer to go through the whole process again, as
the new anomaly may or may not be easily detectable using the same
phase data.

We would like to emphasise the fact that our Advanced DL workflow
is a truly black box approach, requiring no insight into the data or the
system internals. In this fashion, the Advanced DL flow cuts through
the data processing complexities of the Classical ML flow. Though
optimising hyperparameters is a time-consuming process, it does not
depend on the internals of the system and is reusable in the future for
more anomalies. We just have to retrain the network. On top of that,
neural network frameworks are highly optimised for GPU acceleration,
requiring minimal changes to the implementation code.
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Stability and maturity of frameworks, in the sense that how much
code transformation is enforced from one version to the next is another
aspect. In our experience, the change is rapid and substantial with deep
learning frameworks, as the field is constantly changing and evolving.
This could very well be a factor in a business environment striving for
long-term deployment.

Last but not least, with Classic ML workflow, we are able to explain
why the classification has resulted in a certain label. Models such as
decision trees can be traversed and every processing block in the Classic
ML flow can be backtracked to initial trace values, directly connecting
the outcome to the input. For instance, the data resulting in a specific
regression, or the sample data compared to a specific passport, is
known to us. The analytical capability provided by this backtracking is
quite powerful and will allow us to improve the method. It will allow
us, for example, to fine-tune our data set and detect few incorrectly
classified corner cases. We will explain this further in Section 5.4.1.

5.4 discussion

On the one hand, with the Classic ML workflow, our methodology’s
outcome is based on feature engineering and traditional classification
algorithms. While the methodology itself is applicable to any industrial
CPS, implementations are use-case specific. Accordingly, it is important
to fine-tune the workflow based on the platform at hand and its char-
acteristics. Such a fine-tuning is necessary to maximise classification
accuracy and bring out the full potential of the method. Fine-tuning
in this context is the process of selecting the best combination of EFB
metrics, execution phases and classification algorithms. While EFB met-
rics and execution phases of choice are highly use-case dependent, we
can see that DT and RF classifiers are the best performing ones for the
Classic ML workflow. In the case of DT classifier, a simple but powerful
analysis is to visualise the DT graph. The graph can guide us to choose
the right execution phase, for the more compact and contained the
graph, the easier it is for the classifier to distinguish between labels. For
our use-cases, we see that the choice of three combined metrics (CPU
time, reads count and writes count) and the wafer processing phase,
as well as the choice of electrical current as the metric and the cycle
operation phase, lead to rather compact DT graphs. As can be deduced,
there is no pattern with regards to the number of metrics to be consid-
ered. The combination of these steps are the most time-consuming task
when putting together a Classic ML workflow. These graphs are shown
in Figures 5.4 and 5.5 for the semiconductor photolithography machine
and image analysis platform use-cases, respectively.

On the other hand, with the Advanced DL workflow, there is a
sharp decrease in such tasks. As the workflow bypasses the need for
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signatures and passports, an analysis towards the selection of the best
performing phase data will not be required. The DL algorithm will
take care of that for us. Even with the effort attached to finding the
best CNN model, it is more of a computational effort than engineering.
There are rather mature software frameworks available that are capable
of parallelised training of different model variations. While we have
not taken advantage of it, the process of hyperparameter tuning could
also be automated.

One might argue that anomaly specific monitoring is also capable of
detection, especially for metrics external to the system, e.g., voltage sup-
ply. While this is a perfectly valid proposition to detect voltage supply
instabilities, such detection lacks versatility, as it is single anomaly spe-
cific and assumes prior knowledge of the anomaly type. In comparison,
our methodology can detect and differentiate between multiple anoma-
lies. This versatility is a direct result of data-centricity and comparisons
based on behavioural signatures. Our methodology also foresees de-
tection of unknown anomalies through described comparison tools,
namely, goodness-of-fit values.

Yet another interesting observation is the required amount of data. It
is known that deep learning algorithms perform beyond the traditional
ML algorithms do as the amount of data grows and vice versa [10]. We
mentioned that in our semiconductor photolithography machine use-
case, the trace data is representative of 66 processes. We also showed
in Table 5.1 the different choices of metrics and the resulting impact
on classifier accuracies, which arguably was not so big. However, what
is important to mention is that pruning the data set based on single
metric choices, dramatically reduces its size. For instance, not every
process is a producer of data (invoking write events) or a consumer of
data (invoking read events). As a result, the number of feature columns
we end up with per metric are 29, 8, 22 and 59, for CPU time, reads
count, writes count and all three combined, respectively. Considering
that feature columns are also per process designations, their count
indicates the number of processes providing the data for the selected
metric. Although for the reads count metric we end up with just 8
feature columns, but the classifier accuracy does not diminish that
much.

Accordingly, there are two points to mention here. First, it is inter-
esting to see that the choice of right metric, e.g., reads count, could
dramatically reduce the size of the relevant data set, without imposing
a big impact on the prediction accuracy. This could be considered as
a measure that makes our data collection and retention procedures
more efficient. In this case, it is also not entirely surprising, as data
generated by the producers, eventually end up with the consumers.
The behavioural changes from anomalies are either directly imposed on
consumers, or indirectly reflected on them, as changes in the behaviour
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of producers will eventually have an impact on consumers too. The
second point is that these results should be interpreted with caution,
as our experiments for the first use-case are based on a mock-up, i.e.,
the digital twin. The anomalies are also synthetically generated. such
limitations in our experiments prevent us from drawing generalised
conclusions for this use-case. Further studies in this direction can be
considered as future work.

Thinking about this from an information position perspective, being
able to differentiate between behavioural patterns based on minimum
amount of information, i.e., from a poor information position, is good
news. However, the very choosing of the correct source metric that
is definitive in differentiation, but also leads to a compact data set,
in itself, is the result of a white box analytical process. We should
not consider such a dilemma as a hindrance though, for we have DL
algorithms such as CNN, to pick the right features for us and with the
Advanced DL workflow we have demonstrated how this would work.

5.4.1 Explainable output

While treating the system under scrutiny as a black box can be advan-
tageous and a requirement in certain use-cases, having a black box
solution, i.e., methodology, might not be so favourable. It is important
to be able to figure out which changes at every different step of the
methodology will lead to a certain result. Since our methodology, as
mentioned in Sections 2.5 and 3.1, is based on the combination of
extensive feature engineering and traditional classification algorithms,
we can reap the benefits of explainable output. More precisely, we can
backtrack our choices at different data manipulating steps and high-
light the accuracy-increasing ones. While such a capability can help
with optimising the workflow itself, e.g., by choosing better metrics
and phases as the sources of data, it could also help in narrowing down
the root causes of anomalies. For instance, the specific PIDs responsible
for deviations in a phase with multiple active PIDs can be detected, as
signatures and passports are generated per PID. As an example, if we
look at the graph from Figure 5.4 and traverse the tree from its root as,

1. True, False, False, and

2. False, True, False,

both paths lead to transient harmful anomaly classification. For the
enumeration 1, we see that software signatures from processes 44, 34
and 41 in combination with metrics writes count, CPU time and reads
count, respectively, are definitive for the classifier. This knowledge
provides a considerable reduction for the scope of desired analyses.
Now we know which signatures and in turn, which parts of the raw
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traces for a phase have resulted in a transient harmful anomaly. For the
enumeration 2, we observe that the decision is based on the software
signatures from processes 41 and 54, in combination with the metric
reads count for process 41, twice, and the metric CPU time for process
54. Note that there are more leafs with this label present.

Besides root cause detection, other design-improving intelligence is
available too. For instance, the methodology can show if a specific batch
of inputs to the system results in unexpected anomalous behaviour,
revealing design deficiencies in handling specific categories of inputs.

5.4.2 Limitations of the study

We have had a few limitations when dealing with our use-cases. Some
of these were imposed by the industrial platform under scrutiny, such
as the absence of real anomalous scenarios in the case of the semi-
conductor photolithography machine, leading us towards synthesising
our own anomalous traces using the real trace and a mock-up plat-
form, i.e., our implemented digital twin. Records of real anomalous
executions belong to end users and are strictly confidential. Even the
manufacturer, ASML, does not have access to such data. Others were
self-imposed with the goal of having better control over experimenta-
tion and development of the methodology. For instance, in the case of
the image analysis platform, we have opted for a single-threaded and
single process application. For this use-case, the choice is still in line
with real-world conditions as such set-ups are the preferred choice in
low-power use-cases with sequential workflows, belonging to the lower
end of the CPS complexity spectrum.

5.4.3 Implications for industrial deployment

As both our Classic ML and Advanced DL workflows involve su-
pervised training of classifiers and at the same time, the Classic ML
workflow requires generation and presence of behavioural passports as
reference constructs, the most common question from the industry is
that

how often such reference behavioural passport constructs, i.e., the baseline,
have to be re-established?

In other words, especially with regards to our Classic ML workflow, the
validity of the behavioural passport construct is one of the key require-
ments for effective and confident anomaly detection and identification.

As we know, software is not a static entity and continuous devel-
opment of new or improved functionality is the common practice of
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choice. This creates a challenge in the sense that after each update to
the software running an industrial CPS, some behavioural drifting from
the original reference is expected, depending on the substantiality of
the update. Presence of considerable drifting could render anomaly
identification ineffective or erroneous, which in turn, necessitates the
regeneration of reference behavioural passport constructs. To minimise
such overhead, we can consider the new behaviour as unknown, i.e.,
newly generated post-update passports will be considered as signatures.
Using original passports from the previous version as the reference
point, the anomaly identification can be employed to check if the new
behaviour is still identified as normal, as depicted in Figure 5.6.

CPS 1.0

CPU CPU CPU

CPS 1.2

CPU CPU CPU

Service pack or update

Original passports Post-update passports

Anomaly identification workflow

Compare deviations

Identify new
behaviour

Figure 5.6: The high-level procedure view to check the validity of post-update
behavioural passports, before releasing a new service pack or soft-
ware update is provided. By considering the pre-update passports
as reference and the post-update passports as signatures for com-
parison, the workflow can be used as is to evaluate these signatures.

As explained before in Section 2.4, behavioural passports can be
generated per metric, per phase and per process, allowing us to pin-
point which part of the system’s behaviour has drifted. This means
that we only have to update the drifted passports out of the complete
collection. For instance, if the collection of passports considered as
reference includes the two metrics of CPU time and memory usage
and the new update increases memory usage, but leaves the computa-
tional behaviour mostly unchanged, we can simply update passports
related to memory usage. If need be, deviation measurements based
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on goodness-of-fit tests can also be analysed to have a more granular
form of evaluation.

To be able to take advantage of the benefits of our methodology,
such a testing process can be part of the overall test and integration
strategy for any given industrial CPS. As it is the case for most test and
integration tasks in the industry, tests based on our methodology can
also be automated.

When dealing with complex industrial CPS in production, yet another
scepticism to ponder about is that

can we consider a single baseline as the reference for the whole operational
timeline of an industrial CPS?

While the behaviour of the system shows slight natural deviations
during distinct executions, even if the conditions and the workload
is identical, most often the behaviour at cold start deviates further
away from the behaviour after system warm-up. Accordingly, for larger
and more complex systems, it is advisable to have multiple sets of be-
havioural passports, addressing the referential needs per each execution
period.

Jobs executed by industrial CPS are predominantly in the form of
sequences of batches, e.g., the wafer processing workflow given in
Section 1.4. Every time a new sequence starts, there will be all kinds
of calibrations and adjustments occurring as the initial preparatory
period. The first task of the first batch1, immediately following these
calibrations, is to be considered as a cold start task. Thus, the relevant
behaviour has to be compared to the cold start reference. From the
second task2 onwards, the relevant behaviour is to be compared to
the warmed-up reference. It may very well be the case that the cold
start reference’s deviation is not so significantly different, in which
case, both references are to be considered during the generation of
mean passports. The decision will depend on the initial analysis of the
use-case at hand. Figure 5.7 showcases different expected executional
periods that a complex industrial CPS goes through.

As an example, in a semiconductor photolithography machine, lots,
i.e., batches of wafers, are queued for processing. Each lot has a reticle,
i.e., the integrated circuit design to be applied on dies, assigned to
it. Whenever the defined reticle changes, the machine’s robotics will
replace the currently installed reticle, invoking a natural delay and
subsequent calibration effort. Therefore, for the case of a semiconductor
photolithography machine, a reticle change can be considered as an
indication for a comparison with the cold start reference. Assuming
a single wafer’s processing behaviour as our executional phase, the

1 Or the first batch entirely, depending on the granularity of behavioural analysis
2 Or the second batch
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Operational timeline

Start-up
period

Calibration
period

Shut-down
period

Workload processing
period

Cold start Warmed-up

Passports generated for
the start-up period

Passports generated for
the workload processing period,

warmed-up part

Passports generated for
the calibration period

Passports generated for
the shut-down period

Passports generated for
the workload processing period,

cold start part

Figure 5.7: Depicted are typical executional periods, i.e., large scale phases,
present in large and complex industrial CPS. It would be highly
advantageous to detect and identify anomalies in every period as
each has their own set of potential anomalies. Since passports for
one period are not applicable to the rest, each period needs its own
application of our methodology.

behaviour associated with the processing of the very first wafer after
the reticle change will be compared to the cold start reference.

One recognisable consideration relevant to this discussion is that
the higher the need to distinguish between such execution periods,
the more our data requirements will be pushed towards a grey box
or a white box information position, as we will need to have a more
intimate understanding of the operational timeline. As we mentioned,
such a need is fuelled by the complexity level of the system at hand.





6R E L AT E D W O R K

The following includes our collected related work, organised
based on major topics relevant to the content of our methodol-
ogy and techniques of choice.

The contents of this chapter are mainly based on, but not limited
to, the previously published conference and/or journal publi-
cations of the author. The publications of interest for Chapter 6
are:

• “On the Effectiveness of Communication-Centric Mod-
elling of Complex Embedded Systems” [50] (P2)

• “Software Passports for Automated Performance Anomaly
Detection of Cyber-Physical Systems” [55] (P3)

• “An Analytics-Based Method for Performance Anomaly
Classification in Cyber-Physical Systems” [49] (P4)

• “Power Passports for Fault Tolerance: Anomaly Detection
in Industrial CPS Using Electrical EFB” [58] (P5)

• “The Choice of AI Matters: Alternative Machine Learning
Approaches for CPS Anomalies” [59] (P6)

• “Improving the Robustness of Industrial Cyber-Physical
Systems Using Behavioural Signatures, Behavioural Pass-
ports and AI” [57] (P7)

Anomaly detection and identification have been on the agenda of the
research community for a long time. The relevant body of knowledge
is fairly large, with papers focusing on different aspects of anomaly
detection and identification. Let us go over some of the more important
trends in publications we have considered as our references.

Both Chandola et al. [11] and Ibidunmoye et al. [32] list collections
of papers, covering the different strategies utilised by researchers for
anomaly detection. In particular, they mention statistical detection, i.e.,
statistical techniques to detect trend drifts, observation detection, i.e.,
observation “through direct experimentation”, and knowledge-based
detection, i.e., detection based on historic patterns and known bottle-
neck definitions [32]. Compared to these strategies, we could say that

85
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our methodology and workflows combine parts of each in one flow. For
instance, we do use statistical techniques with our goodness-of-fit tests
to quantify deviations. However this is not done for a trend, but for
compartmentalised phases. We also follow the observation detection
strategy, as we have test benches and observations are done during
experimentations. When it comes to knowledge-based detection, we
prefer the term data-centric, as the knowledge is not a priori available.
Neither known bottlenecks to rely on, nor models representing the sys-
tem (for simulation or otherwise), are available beforehand. Baselines
will be composed from normal executions and models will be auto-
matically synthesised from traces. More recent publications follow the
same course in terms of data reliance, in the sense that they are moving
towards solutions that are more data-centric, i.e., give better results in
the presence of large amounts of data. Deep learning is gaining more
momentum as a result of this, for deep learning models give better
results as the amount of available data grows.

The challenging nature of decision support, leading to actuations and
better designs for industrial systems, is also attested by the grand chal-
lenges presented by Fowler [22]. Most of the body of work given in [32]
focus on performance anomalies in distributed systems [28], cloud en-
vironments [24] and web applications [14], whereas our methodology
is specifically tailored towards industrial CPS. We are of the opinion
that our approach helps in simplifying the task for repetitive systems
by considering execution phases, regression-based representations and
more importantly, white box, grey box, or black box information po-
sitions for industrial CPS, where it fits. We have also made use of a
digital twin for our first use-case, which is in line with the ever-growing
importance of such virtual representations for complex CPS [67].

It is worth repeating that our focus for data collection is on EFB,
which is arguably rather similar to the notion of Key Performance
Indicators (KPI) used in other works.

6.1 classification algorithms

Any identification workflow ends with a classification algorithm and
our workflows are no exception. As we have shown through our Classic
ML workflows in Sections 4.1 and 4.2 and Advanced DL workflow
in Section 4.4, the classification step could be based on traditional
Machine Learning (ML) algorithms, or more advanced Deep Learning
(DL) algorithms. Focusing on traditional algorithms here, i.e., Classic
ML, we have specifically considered DT [69], RF [7], GaussianNB [23],
k-NN [16], LinearSVC [4] and KernelSVM [15], as traditional classifiers
in our implementations and result reporting. The extensive survey
by Chandola et al. [11] covers publications on the topic of anomaly
detection and provides a complete list of techniques utilised by different
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authors. There are numerous publications taking advantage of neural
networks, as well as publications choosing to work with traditional
ML techniques, such as, Nearest Neighbour, Support Vector Machines,
amongst others. These algorithms are applicable to repetitive data such
as ours, just like how we use them.

On the other hand, the complexity of modern CPS has driven re-
searchers towards DL techniques more than ever. In particular, more
recent publications [27, 47, 68, 72] demonstrate this tendency, which
we will expand in the following section. The recent survey by Chalap-
athy and Chawla [10], as well as the paper by Ratasich et al. [68], do
point out the differences between traditional ML and sophisticated DL
techniques by mentioning the black box nature of DL models. One ad-
vantage of our Classic ML workflow, which is based on traditional ML,
is the ability to traverse the resulting models and backtrack the data
pipeline, as mentioned in Section 5.4.1. When dealing with anomalies
and looking for potential corrections, root-cause analysis is arguably
an integral requirement. Traditional ML in general and our method in
particular is rather capable in this aspect.

6.2 interest in deep learning

The popularity of Artificial Intelligence (AI) is growing rapidly and
its applications in almost any subfield in computer science is clearly
observable. We also have recognised that the interest in solutions based
on Deep Learning (DL) is an apparent one and for a good reason. DL
is rather capable in cutting through the need for metadata and intimate
familiarity of system internals, as we have also taken advantage of DL
in our Advanced DL workflows. The prominence of DL is evident from
further inclusion of DL models in publications, which is resulting from
the desire to produce advanced solutions that reduce the complexity of
implementation, by researchers. To further clarify, we are talking about
the complexity of implementation for the code handling the training
and the initialisation of models. DL models themselves are obviously
much more complex compared to traditional ML models.

In the last few years, the complexity of CPS has led to elusive and
indiscernible faults. Anomaly detection methods based on traditional
machine learning are increasingly substituted with state-of-the-art deep
learning techniques [10]. Moreover, CNNs have proven to be well
suited for analysis of power signals and other similar time-series data
for fault detection and classification [35]. Albasir et al. [2] proposed a
CNN-based approach to detect malware activity, utilising the power
consumption behaviour of smartphones. Canizo et al. [8] deployed
CNN together with recurrent cells to detect anomalies in time-series
data from multiple sensors. Deep learning models employing CNNs
along with times series data have also shown promise in detection
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of physical faults in components. Rotor bar fault detection based on
raw stator current signals [33], refrigerant charge fault detection using
sensor data from heat pumps [19] and status deduction based on power
signals for health systems [45], are a few examples.

Being relevant to our topic, the recent publication from Luo et al. [47]
specifically focuses on the use of DL for anomaly detection in Cyber-
Physical Systems (CPS) and provides a handy listing of surveys on
anomaly detection. Out of the given list, surveys by Giraldo et al. [26],
Mitchell et al. [51], Lun et al. [81] and the survey by Luo et al. [47]
itself, specifically focus on anomaly detection for CPS. There are also
four surveys covering the DL-based solutions [10, 47, 52, 78]. The in-
tersection of these publications is not that large, i.e., survey focusing
on DL and anomaly detection and CPS are not too many, although
individual publications are numerous. This suggests that there are chal-
lenges yet to be solved through DL in the realm of CPS. Interestingly
enough, a considerable portion of these surveys focus on anomalies
to address security and basically on attack detection. This has been
a growing trend in recent years, to see anomalies as consequences of
security incidents, which is a valid motivation. Industrial CPS such
as photolithography machines on the other hand, are totally isolated
and there is more added value in tackling performance anomalies to
improve the machine yield, which our work tries to address.

6.3 electrical metrics

Electrical metrics, especially electrical power analysis, have a profound
role in cybersecurity research. The famous and now classic paper by
Kocher et al. [42] is a great example. What such publications have
in common is their view towards electrical metrics in general and
electrical power in particular, which is seen as a source of side-channel
information. In principle, our view is rather similar and we see such
metrics, external to the system, as reflections of its functional behaviour,
which is the definition of Extra-Functional Behaviour (EFB).

Power signals can be very effective in detecting anomalies in an
embedded system without the explicit requirement of adding extra
hardware or software probes. Kim et al. [41] were among the first to
highlight that power consumption can be used for anomaly detection,
which are otherwise difficult to detect through the static characteristics
of devices or the applications running on them. Their prototype works
by leveraging power signatures based on the power consumed by the
device while running an application. Caviglione et al. [9] detected at-
tacks related to covert channels using the power consumption of the
running processes. Covert channels occur when malicious applications
exploit different assigned permissions and are able to exchange infor-
mation. Liu et al. [46] developed a strategy using power side-channel
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data to detect anomalous behaviour in control flow execution applied
to IoT microcontrollers. Similarly, Xu et al. [80] used power channel to
detect attacks on the Distribution Terminal Unit, a critical part of the
power grid. Basically, we share a common view with these publications
by considering electrical metrics as trend-revealing. The difference is in
the application, behavioural fingerprinting as opposed to side-channel
attacks.

6.4 power of regression modelling

Considering our behavioural signature and behavioural passport gen-
eration technique, regression modelling is an important part of the
Classic ML realisation of our methodology. The common use of regres-
sion models as a statistical tool for data estimation and inference is well
argued in literature by Jain [36] and Chatfield [12]. This is especially
true for different performance parameters of application processes
as Lee and Brooks suggest [43]. Lee et al. also employ the notion of
piecewise polynomial regression [44]. We have conducted a comparable
strategy by dividing a timeline into meaningful phases, based on dras-
tic changes in the values of EFB metrics, e.g., CPU utilisation. Though,
our division criteria aims at having meaningful and repeatable phases.
We are not using all points from an execution, i.e., certain unsuitable
parts are being omitted.

Regression modelling has also been taken advantage of by Joseph et
al. [38] and Barnes et al., [3] for correlating micro-architectural param-
eters with processor performance and exploring parallel programme
scalability, respectively. Regression modelling has been the choice of
Torr and Murray [61], as well as Chen et al. [13], within the domain of
image processing.

6.5 modelling and simulation

Modelling and simulation based analysis of distributed industrial sys-
tems is a well known notion and its challenges have been on the agenda
of the scientific community [17, 22]. Accordingly, our high-level work-
flow involves elements of the list given by Fowler, i.e., the “design,
collect information/data, build, execute, and analyse” problem solv-
ing cycle [22]. Under our workflow, modelling and simulation steps
are utilised towards building a digital twin. As a starting step in un-
derstanding of embedded system behaviour and complex computing
systems involving them, efforts in modelling and design-space explo-
ration resulted in efficient offline methodologies and tools, such as
the well-known Y-chart approach [40], amongst others [20, 64]. These
methodologies and tools are highly effective for CPS as well.
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High-level modelling and discrete-event simulation are widely used
techniques in the domain of embedded systems. Most existing system-
level embedded system modelling and simulation research [17, 20, 25,
40, 64] has focused on:

1. manually building (engineering) system models and

2. typically addressing the design of the embedded systems, not the
online analysis of existing, i.e., already engineered, systems.

Instrumenting software components of the system can be an effective
way of collecting accurate and real-time information about system
behaviour, as shown in [31].

The vast majority of embedded modelling and simulation studies
focus on relatively simple use-cases, such a multi-media systems [5,
6, 21, 30, 48, 54, 66, 73, 75]. Our demonstrator, as a production-grade
complex industrial CPS, involves challenges beyond the ones mentioned
in [22]. We also take advantage of the architectural pattern of the
communication subsystem, allowing us to synthesise models in an
automated fashion, making it suitable for online application. Previous
research has also looked at complex systems as a black box [62], or
examples such as [70] have considered process mining techniques [1,
76, 79]. These approaches use readily available offline information. In
contrast, our work aims at techniques suitable for an online solution,
involving modelling and simulation at runtime. Applications of data-
driven model generation in other fields, such as hydroinformatics [74]
and signal-transduction networks [37] also worth mentioning.
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Arguably, one of the main requirements in achieving robust indus-
trial CPS is having available, reliable and robust software, amongst
others. In this thesis, we elaborated and demonstrated our efforts to-
wards achieving robust software operation. We have shown that a
well-devised data-centric solution, as we have presented, is capable
of anomaly detection and identification for industrial CPS, with high
accuracy. Such a data-centric solution is much more flexible compared
to self-adaptivity relying on traditional control mechanisms, as it is de-
signed for consumption of monitoring data from a multitude of sources.
This type of solution can deal with numerous anomalies at once, it will
be expandable with new anomalies and it provides analytical capabili-
ties towards root cause analysis. As mentioned in our motivation from
Chapter 1, with the level of complexity at hand for modern industrial
CPS, it is not possible to account for every potential anomaly and every
corner case upfront. Accordingly, comprehensive mathematical rela-
tions between inputs and outputs of the system, cannot be confidently
and comprehensively generated. A data-centric approach in general
and our method in particular, allows for the addition of new anomalies
that are yet to be seen. Resulting from this flexibility and as opposed
to process variable and set point, which are considered by a controller,
behavioural signatures and behavioural passports are the data-centric
alternatives.

More precisely, we have shown a behaviour classification method-
ology composed of Extra-Functional Behaviour (EFB) monitoring at
runtime, compartmentalisation of execution timeline into repetitive
execution phases, generation of representative behavioural signatures
and passports, deviation quantification based on goodness-of-fit tests,
and traditional classification algorithms.

It must also be mentioned that though we have embarked on this
path with tackling performance anomalies resulting from root causes
within software in mind, our method is not limited to such anomalies.
We have shown that anomalies resulting from physical hardware and
electrical subsystems can also be taken on, which is another witness
to flexibility of our method. We can generalise that it is, foremost, the
choice of monitoring and EFB data collection points that lead to the
extent of anomaly identification abilities.

Regarding the Classic ML workflow, our behavioural signature con-
struct is an especially convenient tool, accommodating a variety of
metrics as input and representing arbitrary lengths of execution time-
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line of a system in a compact fashion. This compactness results in easy
to store representations of reference behaviour, i.e., passports, as well
as efficient to compare representations of ongoing behaviour, i.e., sig-
natures. Using signatures, behaviour can be represented per execution
phase, per metric and per process, if the application consists of multiple
processes. We have also shown that the resulting comparison data as a
feature set, is most suitable for decision tree and random forest classifiers,
achieving accuracies as high as 99% in certain set-ups. The feature set
is complete enough to facilitate classification of anomalies early on. In
most anomalous cases it will take a while before visible deviations are
present, e.g., under NoFan conditions.

With the Advanced ML workflow and deploying Convolutional Neu-
ral Networks (CNN), we have developed an alternative AI workflow,
showing high classification accuracy of 94.85%. While achieving the
high accuracy of the Classic ML required extensive design, feature engi-
neering effort and costly computations, the Advanced DL also required
extensive optimisation effort to come up with an accurate CNN model.
We have discussed different qualitative aspects of both workflows, such
as dependence on the intimate knowledge of the system and the data,
stability of libraries and frameworks, efficient GPU implementation
possibilities and root cause analysis through explainable output. There
is no clear winner between these workflows. Critical applications and
use-cases can benefit from highest accuracies and analytical capabilities
provided by the Classic ML workflow, allowing the study of root causes
behind anomalies, while ease of extension with different anomalies
is best served by the Advanced DL workflow. It is totally use-case
dependent.

In view of our proof-of-concept solutions based on given use-cases,
we have demonstrated that our methodology is valid throughout the in-
dustrial CPS complexity spectrum. We have implemented our method-
ology for a semiconductor photolithography machine as a large and
complex industrial CPS, as well as an image analysis platform as a
low-power and less complex industrial CPS. We have also described
different monitoring techniques. Techniques using system-level metrics
in a white box, invasive and communication-centric approach, and
techniques using external metrics in a black box, passive and side-
channel-oriented approach. We have presented the role of a digital
twin for industrial CPS and elaborated its creation using high-level
communication-centric modelling and event-based simulation of traces
captured with communication-centric monitoring. Our experiments
indicate that the communication-centric analysis of industrial CPS,
relying on communication subsystems is effective. Following such a
perspective facilitates monitoring of the system at hand, resulting in a
reduced collection of data, without an excessive loss in accuracy. The
difference between captured and total CPU utilisation in our experi-
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ments is around 10 percentage points, while the difference between
simulated, i.e., estimated, and captured CPU utilisation is between 0 to
2 percentage points.

7.1 looking back at research questions

Let us briefly look back at our research questions given in Section 1.6
and review how our methodology and results are addressing them.

research question 1
How can we follow behavioural diversity in industrial CPS through the
variations embedded within sensory data, in an efficient manner?

We have addressed the two key points from this question, i.e., fol-
lowing behavioural diversity and the efficiency of such a following. The
choice of a data-centric approach using EFB sourced data is the key in
tracking non-deterministic behaviour, taking our observations beyond
the functionalities of the system. When it comes to efficiency, the major
role is played by executional phases and the communication-centric
monitoring and modelling. Execution phases are relevant for both white
box and grey box information positions, where only interesting and
useful phases are taken into account. For a fully black box information
position, techniques such as Change Point Detection (CPD) can replace
the notion of execution phases. CPD however, is out of the scope of this
thesis.

Communication-centric monitoring and modelling on the other hand,
is effective when looking from a white box information position and in
presence of communication subsystems. Rest assured, multi-node in-
dustrial CPS depend on such middleware for internode communication
and their presence is rather common.

research question 2
How can we demystify such embedded variations by only taking a partial,
but yet, a descriptive view of the sensory data, to detect, identify and predict
anomalous behaviour?

Demystification of embedded variations are done through our work-
flows with behavioural signatures and behavioural passports, as con-
structs representing the behaviour within a phase, at their core. These
constructs provide the means to quantify deviation and create data sets,
training traditional ML classifiers. Note that our alternative workflow
using deep learning classifiers does not require signatures or passports.

research question 3
What are the different approaches towards the identification of such anoma-
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lous behaviour? What are the implications for production systems imple-
menting such approaches?

When it comes to different approaches, we have demonstrated our
Classic ML and Advanced DL classifiers, alongside the data pipelines
supporting them. We have also discussed the differences between
these two approaches in terms of training and classification speed,
data preprocessing requirements and qualities, such as the ability to
backtrack from an identified anomaly to raw monitoring data. Initially
unforeseen implications of our solution, based on the interests of the
industry has also been considered and discussed in Section 5.4.3.

7.2 future extensions

Considering that the contents of this thesis involve topics from diverse
subfields, the presented research can be extended in numerous direc-
tions. The first potential direction is an obvious one. Upon detection
and identification of anomalous behaviour, corrective actions on the
system to steer its behaviour back to normal or a manageable state,
are highly sought after. Although, such actions may not be available
for all anomalies, which brings up the importance of automated root
cause analysis. As it is foreseen in our methodology from Figure 3.2,
the digital twin plays a decisive role with regards to corrections. From
the same figure, actuation policies addressing the anomalous behaviour
at hand have to be validated through their application on the digital
twin. This could perhaps involve considering a diverse set of event
scheduling policies within the simulation. It is also foreseeable that
there may very well be multiple actuation policies on the offer for a
given anomaly. The advantage of a digital twin in such a scenario is
that it allows for parallelisation of the validation effort by means of
multiple instances.

Following the root cause analysis direction, we did touch upon the
ability to backtrack from an identified anomaly (output) to source traces
triggering such an identification (input) for our Classic ML workflow in
Section 5.4.1. The real advantage though, is achieved if such an analysis
could be performed in an automated fashion. That is no trivial task, for
different identification results are based on different combinations of
available features. We can observe this in a decision tree for instance.
Clearly, the paths leading to different labels are not the same and there
are even multiple paths present, leading to the same label.

Another direction to consider is to treat time series traces as signals.
Such an approach will enable various possibilities from the signal pro-
cessing discipline, e.g., CPD, which is likely to reduce our dependence
on metadata information from the system internals. The less metadata
we need, the closer to a grey box information position we will be,
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which is a desirable effect for white box positions. Aside from auto-
mated phase boundary detection, finding the right phase granularity
could also be facilitated. Currently, our methodology relies on expert
knowledge and experimentation for the choice of the best phase.

Lastly, we make use of different flavours of classifiers in our work-
flows, both from traditional machine learning and more advanced
deep learning domains. Since the behaviour of a system is an evolv-
ing characteristic, ultimately, there will be a point at which it would
change beyond the tolerances of the reference behavioural passports.
This change, will also trigger consequences for anomalous behavioural
signatures and accordingly, for trained classification models. The lazy
and perhaps relatively acceptable way of addressing such a setback
is to run our workflows from scratch. However, we expect that there
can be partial retraining strategies that are quicker to pull off and that
are less resource-intensive. Negotiating such a challenge will require
further research. An overview of the described potential extensions to
the work presented in this thesis is depicted in Figure 7.1.

7.3 final thoughts

Ultimately, one might ask, what would be the gist of anomaly identify-
ing solutions for industrial cyber-physical systems? How does it benefit
the society from a grand perspective? We know that from an economic
perspective, such solutions improve the yield of production systems
and manufacturing machinery. This in turn, reduces costs and thus
the price, which is advantageous for customers. However, is it really
beneficial for a society to increase the accessibility of products and by
implication, promote consumption culture? Perhaps not, or at least it
depends on the product and its uses. At the very least, it is complicated.
There are so many digital products and appliances in the market that
do not serve a real need. Others, do have numerous benefits, but also
come packed with non-useful and sometimes addictive features.

On the other hand, cyber-physical systems have a big presence
in safety-critical and infrastructure applications [47]. Although our
method is fine-tuned for repetitive systems, a characteristic that may
not be readily present in safety-critical systems, but at the end of the
day, the domain of tasks and behaviour related to these tasks is lim-
ited for all purpose-built CPS. We can indeed argue that with clever
considerations, the concept of execution phases are applicable to these
systems, at a more diverse scale. Bottom line, we could say that what
we are doing does provide a clear positive impact for the society and
solutions incentivised by economical requirements could culminate
into improvements for what really matters.

Keep in mind that most of the research fuelling scientific advances
in this field, or in any field for that matter, are supported by public
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funding, meaning that taxpayers are spending money to be able to
spend more money on products. Take these questions and thoughts
with a grain of salt though, as these are multifaceted topics that require
all sorts of different considerations. In short, in this author’s humble
opinion, it would be far more valuable to focus on the fact that these so-
lutions improve safety-critical systems and as we all know, no virtuous
recipe comes without at least a slight hint of mischief.
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S U M M A RY

In this thesis, we take a strictly data-centric approach to tackle the
challenge of anomaly detection and identification in industrial Cyber-
Physical Systems (CPS). This work is specifically considering anomalies
as deviations from the normal behaviour of a CPS, affecting its through-
put, or disrupting its stable state, e.g., issues with timeliness. CPS in
general, are complex systems interacting with the physical realm, inte-
grating multiple computing nodes with heterogeneous architectures
that are networked and distributed. The natural progression of CPS
can be seen as a steady computerisation trend. Accordingly, these sys-
tems have evolved into software-intensive designs with a plethora of
available hardware sensors and software probes, turning them into
data-rich ecosystems. To that extent, data-rich ecosystems can best be
interacted with, through data-centric methods.

Though the described evolution is valid for all CPS, we further focus
on a specific breed, industrial CPS. These systems do share the same
characteristics as other CPS, but more importantly, they are purpose-
built to address industrial and manufacturing tasks relevant to their
intended use-case. As a result, they demonstrate highly repetitive op-
erational patterns. We analyse such patterns by considering repeated
units of execution, i.e., execution phases as we call them, to define the
aimed compartmentalisation of the executional timeline of the system
under scrutiny. The sensory data collected within the boundaries of
a phase in time, is further processed, resulting in the generation of
unique behavioural signatures. The sensory data comes from continuous
data collections, or purposefully planted software probes, recording
metric readings that reflect Extra-Functional Behaviour (EFB) of the sys-
tem. Examples are metrics revealing system’s performance behaviour,
e.g., CPU time or memory consumption, or metrics revealing system’s
power/energy consumption behaviour, e.g., electrical current. Accord-
ingly, behavioural signatures are generated per phase, per metric and
if applicable, per process. Behavioural signatures generated from refer-
ence executions, a.k.a., golden executions, of the system that are known
to be anomaly-free, are considered as behavioural passports.

Our technique of choice when it comes to generating efficient and
capable representations for behavioural signatures and passports is
regression modelling. Regression modelling results in an efficient out-
put, as it reduces any number of collected data points to their closest
mathematical function by means of interpolation. Regression models
are also capable constructs for the purpose of deviation quantification,
when combined with goodness-of-fit statistical tests. These tests are
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used to quantify the amount of deviation between a given behavioural
signature and its corresponding behavioural passport.

We are taking advantage of Artificial Intelligence (AI) in our solution
through the application of classifiers, identifying different anomaly
types. Deviation results from comparisons and other values, e.g., co-
efficients from regression functions, are considered as the feature set.
Ultimately, we train different classifiers, e.g., decision tree and random
forest, with the resulting data set, in a supervised fashion.

We have demonstrated the effectiveness of our data-centric method-
ology with two proofs-of-concept from the industry, to represent the
two ends of the industrial CPS complexity spectrum, with one being a
large semiconductor photolithography machine, while the other is an
image analysis platform. Each use-case comes with its own characteris-
tics and limitations, confirming the flexibility of our methodology and
the relevance of its integral steps in the approach towards the initial
analysis and data transformations. We have shown the overall high
accuracy of our anomaly identification methodology. By considering
the right choice of phase and metric combination, we were able to
achieve anomaly identification accuracies above 99%.

Considering our second use-case, the image analysis platform, we
compare the pros and cons of two different approaches when compos-
ing our AI solution. We demonstrate how our Classic ML workflow,
based on traditional Machine Learning (ML) classifiers, differs from our
Advanced DL workflow, based on more sophisticated Deep Learning
(DL) with Convolutional Neural Networks (CNN) models. Though both
workflows prove to result in highly accurate classification of anomalies,
Classic ML is superior in this regard, with 99.23% accuracy against
94.85% from Advanced DL. This comes at a cost, as Classic ML requires
total insight and expertise regarding the system under scrutiny and
heavy amounts of feature engineering, while Advanced DL treats the
data as a black box, minimising the amount of preprocessing. At the
same time, we show that finding the best performing CNN model
design for our Advanced DL workflow is not trivial. We present a
quantitative comparison of both workflows in terms of elapsed times
for training, validation and preprocessing, alongside discussions on
qualitative aspects.
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S A M E N VAT T I N G

In dit proefschrift hanteren we een strikt datacentrische benadering om
de uitdaging van anomaliedetectie en identificatie in industriële Cyber-
Fysieke Systemen (CFS) aan te pakken. Dit werk beschouwt anomalieën
specifiek als afwijkingen van het normale gedrag van een CFS, die de
doorvoer beïnvloeden of de stabiele toestand verstoren, bijvoorbeeld
problemen met tijdigheid. CFS in het algemeen zijn complexe systemen
die interageren met het fysieke domein, waarbij meerdere computer-
knooppunten worden geïntegreerd met heterogene architecturen die
zijn genetwerkt en gedistribueerd. Het natuurlijke verloop van CFS kan
worden gezien als een gestage automatiseringstrend. Zodoende zijn
deze systemen geëvolueerd naar software-intensieve ontwerpen met
een overvloed aan beschikbare hardwaresensoren en softwaresondes,
waardoor ze in gegevensrijke ecosystemen zijn veranderd. In die mate
kan met datarijke ecosystemen het beste worden gecommuniceerd via
datacentrische methoden.

Hoewel de beschreven evolutie geldt voor alle CFS, richten we ons
verder op een specifiek soort, de industriële CFS. Deze systemen heb-
ben dezelfde kenmerken als andere CFS, maar wat belangrijker is, ze
zijn speciaal gebouwd om industriële taken en productietaken aan te
pakken die relevant zijn voor het beoogde gebruik. Als gevolg hier-
van vertonen ze zeer repetitieve operationele patronen. We analyseren
dergelijke patronen door herhaalde uitvoeringseenheden te beschou-
wen, d.w.z. zogenoemde uitvoeringsfasen, om de beoogde comparti-
mentering van de uitvoeringstijdlijn van het onderzochte systeem te
definiëren. De sensorische data die binnen de grenzen van een fase in
de tijd worden verzameld, worden verder verwerkt, wat resulteert in
het genereren van unieke gedragssignaturen. De sensorische gegevens
zijn afkomstig van continue gegevensverzamelingen, of doelbewust
geplante softwaresondes, die metrische aflezingen registreren die het
Extra-Functioneel Gedrag (EFG) van het systeem weerspiegelen. Voor-
beelden zijn meetwaarden die het prestatiegedrag van het systeem
onthullen, bijv. CPU tijd of geheugenverbruik, of meetwaarden die het
stroom/energieverbruik van het systeem onthullen, bijv. elektrische
stroom. Zodoende worden gedragssignaturen gegenereerd per fase,
per metriek en indien van toepassing per proces. Gedragshandteke-
ningen die zijn gegenereerd op basis van referentie executies, ook wel
gouden executies genoemd, van het systeem waarvan bekend is dat
het afwijkingsvrij is, worden beschouwd als gedragspaspoorten.

Onze gekozen techniek als het gaat om het genereren van efficiënte en
bekwame representaties voor gedragshandtekeningen en paspoorten is
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regressiemodellering. Regressiemodellering resulteert in een efficiënte
output, aangezien het een willekeurig aantal verzamelde datapunten
reduceert tot hun dichtstbijzijnde wiskundige functie door middel van
interpolatie. Regressiemodellen zijn ook bekwame constructies voor
het kwantificeren van afwijkingen, in combinatie met goodness-of-
fit statistische tests. Deze tests worden gebruikt om de hoeveelheid
afwijking tussen een bepaalde gedragssignatuur en het bijbehorende
gedragspaspoort te kwantificeren.

We maken gebruik van Kunstmatige Intelligentie (KI) in onze op-
lossing door classificaties toe te passen, waarmee verschillende typen
anomalie worden geïdentificeerd. Afwijkingsresultaten van vergelij-
kingen en andere waarden, bijv. coëfficiënten van regressiefuncties,
worden beschouwd als de feature set. Uiteindelijk trainen we verschil-
lende classifiers, zoals een decision tree en een random forest, met de
resulterende data set, met supervised learning.

We hebben de effectiviteit van onze datacentrische methodologie
aangetoond met twee soorten industriële proof-of-concept, om de twee
uiteinden van het industriële CFS-complexiteitsspectrum te vertegen-
woordigen, waarbij de ene een grote halfgeleider fotolithografiemachine
is en de andere een platform voor beeldanalyse. Elke use-case heeft zijn
eigen kenmerken en beperkingen, wat de flexibiliteit van onze metho-
dologie en de relevantie van de integrale stappen in de benadering van
de initiële analyse en datatransformaties bevestigt. We hebben de alge-
mene hoge nauwkeurigheid van onze anomalie identificatiemethode
aangetoond. Door de juiste keuze van fase en metrische combinatie te
overwegen, waren we in staat om anomalie identificatienauwkeurighe-
den van meer dan 99% te bereiken.

Gezien onze tweede use-case, het beeldanalyseplatform, vergelijken
we de voor en nadelen van twee verschillende benaderingen bij het
samenstellen van onze KI oplossing. We laten zien hoe onze Classic
ML workflow, gebaseerd op traditionele Machine Learning (ML) classi-
fiers, verschilt van onze Advanced DL-workflow, gebaseerd op meer
geavanceerde Deep Learning (DL) met Convolutional Neural Network
(CNN) modellen. Hoewel beide workflows blijken te resulteren in zeer
nauwkeurige classificatie van afwijkingen, is Classic ML superieur in
dit opzicht, met een nauwkeurigheid van 99,23% tegen 94,85% van
Advanced DL. Dit brengt kosten met zich mee, aangezien Classic ML
volledig inzicht en expertise vereist met betrekking tot het systeem dat
onder de loep wordt genomen en daarbij grote hoeveelheden feature
engineering vereist, terwijl Advanced DL de gegevens behandelt als
een black box, waardoor de hoeveelheid preprocessing wordt gemi-
nimaliseerd. Tegelijkertijd laten we zien dat het vinden van het best
presterende CNN modelontwerp voor onze Advanced DL workflow
niet triviaal is. We presenteren een kwantitatieve vergelijking van beide
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workflows in termen van verstreken tijd voor training, validatie en
preprocessing, naast discussies over kwalitatieve aspecten.
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