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1
I N T R O D U C T I O N

In recent times, the brain-inspired neural networks are at the forefront of Ar-
tificial Intelligence (AI) based research and development. Neural networks
often demonstrate excellent proficiency in performing complex and chal-
lenging problems such as image classification, speech recognition and natu-
ral language processing [1, 2]. When a neural network contains many layers,
it is known as a deep neural network or a deep learning algorithm. They
are able to learn patterns and correlations from available data to predict
behavior of the unseen information, and are extremely useful in situations
where the relationship between input and output is complex, non-linear
and dynamic in nature.

Fast growing research and engineering endeavors are being pursued by
both academia and industry, to realize various deep learning based solu-
tions. As reported in AI index report 2021 [3], global corporate investment in
AI in 2020 was ⇡67.9 billion USD, which is more than five times higher than
in 2015, clearly indicating the importance of AI based solutions in various
industries. Concurrently, the number of research publications in the area of
deep learning have grown exponentially in the last decade, as illustrated in
Figure 1.1 for Arxiv publications, stipulating the expanding research initia-
tives in the domain of neural networks.

In the last few years, several different flavors of deep learning models
have been investigated for a wide ranging set of applications, for example,
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNN). CNNs, such as Alexnet [4] and Resnet [5], are a special case of deep
learning algorithms, where matrix multiplications include convolutional fil-
ter operations designed for image and video analysis. There are other types
of deep neural networks designed for a variety of tasks; an overview of dif-
ferent types of deep learning models can be found in [6]. This thesis focuses
on Convolutional Neural Networks (CNNs), and more details on CNNs are
provided in Chapter 2.

1
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Figure 1.1: Number of deep learning publications on Arxiv, 2010-20 [3]

Furthermore, there are many design choices to construct a CNN, some-
times called hyperparameters. In addition to the structure related parameters,
the term hyperparameters is also used to capture other details pertaining to
the training of the CNN from available data. In this thesis, to avoid confu-
sion, we use the terms neural architecture, model architecture or simply archi-
tecture to refer to the structure of the neural network.

A distinct advantage neural networks have over some other models is
their ability to consume and analyse large amounts of data, with little to no
pre-processing required. This thesis only looks into supervised learning [7],
where the deep learning models learn from available data and the only
pre-requisite is the presence of output labels for every intended input.

A neural network trains on data in the format of input-output pairs,
and stores the information (about the data) in the form of weights or co-
efficients of mathematical operations. The sophisticated training process is
performed via a back-propagation algorithm [8], briefly described in Chap-
ter 2. A trained neural network can be deployed to predict the output labels
on previously unseen data. This prediction process is also referred to as in-
ference.

The model architecture and coefficients together form the core and essence
of any neural network. Essentially, a neural network is a numerical model,
based on several matrix multiplications, which are connected in a pattern
specified through its architecture. The numerical model in turn implies that
some computations can be done in parallel (or distributed) manner, depend-
ing on available hardware resources and scheduling techniques.
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To summarize, typically a neural network can be characterized by:

• the ability to learn a complex and non-linear function, given sufficient
data;

• encapsulation of information from input data into the model coeffi-
cients, through training;

• little dependence on data pre-processing;

• computationally intensive;

• high degree of the task- and data-level parallelism.

1.1 deep learning at the edge

In the age of the Internet of Things (IoT), where we have a complex net-
work of connected devices, sensors and computing units, there is a large
amount of data churning up every minute. As predicted by [9], the num-
ber of devices connected to IP networks will be more than three times the
global population by 2022. Simultaneously, as these IoT devices may gen-
erate a lot of data, global Machine to Machine (M2M) IP traffic will grow
more than seven-fold in 5 years, from 3.7EB per month in 2017 to more
than 25EB by 2022. These enormous amounts of data generated cannot be
filtered and analyzed by humans, therefore, the need for artificial intelli-
gence models such as neural networks to be utilized to convert raw data,
from these devices, into meaningful knowledge. This conversion is majorly
performed on a central server or knowledge creator node with high com-
putation capabilities. However, it is becoming highly desirable to have data
processing closer to the source.

Usually an embedded system, which is a small micro-processor based
computer hardware with limited capabilities, is deployed closer to the data
sensors or consumers, to perform a dedicated task. It is also referred to as
an edge device, which may act independently or as a special part of a larger,
typically cloud-based, system. In this thesis, an edge, an edge device and
an embedded system are interchangeably used, unless stated specifically.

Autonomous data processing at edge devices may increase privacy and
security of the system in general, since there is less data to send to the
cloud/rest of the IoT network. This also leads to faster response times and
low dependence on the internet for decision making. The system may have
high availability with increased reliability, since power outages and other
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Figure 1.2: Video surveillance : an IoT network

network disruptions have less impact on the operation. Moreover, there can
be a significant environmental impact along with cost savings, since less
energy is spent on transporting, managing and securing data.

Figure 1.2 illustrates an example of an IoT network, a video surveillance
system, with connected cameras and intrusion detection system. A camera
is a data generator with some computing resources i.e., an edge device, to
perform simple processing. It is advantageous to have a CNN running on
each camera/edge node to provide an intelligent surveillance application.
All nodes can be connected to a powerful (central) server to perform com-
pute intensive tasks, which in turn may also operate as an activator for
reactions, based on surveillance decisions.

As much as the deployment of neural networks on the edge is desirable,
it is not without its challenges. Oftentimes, the edge devices are cheap, able
to fit in small spaces, and run on an internal battery. Generally, edge devices
have limited resources available locally to them. If they have a GPU, it has
fewer capabilities than a typical high-end server GPU, which is required
for a fast CNN execution. Additionally, the memory can be limited on the
edge owing to small surface area and if they operate on batteries, they may
also have strict energy consumption restrictions.

Since training of a neural network, using a typical back-propagation al-
gorithm (as will be briefly described in Chapter 2), is an extremely resource
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intensive algorithm, it is generally accepted that the training is best done
on a high-end hardware or a server machine in the cloud. Some re-training
or small modifications to the CNN are possible on the edge, though these
operations are limited due to the underlying resource constraints. There-
fore, an edge device is often utilized to perform inference with an already
trained neural network and only in a few cases, may perform small updates
to the deep learning model. Even so, it is noteworthy that not all neural net-
works are suitable to be deployed at the edge for inference either, owing to
the resource constraints.

1.2 neural architecture search

In a traditional system design process, the neural architecture is manually
designed, adhering to the resource constraints of the target hardware to
a feasible extent. However manual design is time consuming, and heavily
dependent on human expertise in both the task domain and neural architec-
ture optimization. Moreover, the awareness of target hardware’s character-
istics and constraints at design time can be limited, leading to unnecessary
iterations between architecture design and its inefficient mapping to the
designated hardware.

The research in automation of neural network design, called Neural Ar-
chitecture Search (NAS), has led to many novel methodologies being pro-
posed over the last few years. These methodologies diligently search for an
efficient neural network architecture for the specific task, while demanding
low human expertise and interference. The NAS algorithms that have been
proposed over the last few years, cover a wide range of domains and search
techniques. They vary in their definition of the search space, search strat-
egy, or performance estimation technique. Popular NAS methodologies use
evolutionary algorithms, Reinforcement Learning (RL) and one-shot search
techniques. We will discuss these more in detail in Chapter 3 and Chap-
ter 5. Most of these techniques consider the search as an optimization prob-
lem, where the objective is mainly to achieve a high accuracy.

The attentiveness towards only high accuracy is reasonable when resource
consumption by a neural network is not a limiting factor for their smooth
operation. This thesis, as evident from its title, is focused on deep learn-
ing for embedded systems, specifically on efficient neural architectures for
resource constrained edge devices. Thus, the first question this thesis at-
tempts to answer is centered on searching for neural architectures that are
suitable to be deployed on an edge device.
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For edge devices, it is critical that additional non-functional objectives
are satisfied during the search for an efficient neural network. This is to en-
sure that a deep learning model can smoothly operate within the available
resources. These additional objectives can be generic such as low arithmetic
operation count or they can be specific for the target hardware such as
low energy cost, low memory usage, low latency etc. Therefore, the NAS
methodologies for an embedded system imperatively need to include mul-
tiple objectives as their search criteria.

In a multi-objective scenario, both RL and One-Shot NAS methodologies
are limited in their flexibility to incorporate additional objectives. The func-
tioning of a RL algorithm is based on a reward function, which directs
the architecture search by rewarding good architectures. In multi-objective
RL approaches, an extension to the reward function needs to be suitably de-
signed, to include all the trade-offs between various objectives. For one-shot
models, it is also not obvious how they can be extended for multi-objective
optimization since it is based on a search for sub-networks, which are of
roughly the same size. There are some works proposed [10, 11] to overcome
these issues, although, it is still not clear how more objectives can be added
to search in this indirect manner. Evolutionary algorithms are more flexible
in this regard, with years of research on multi-objective optimization, and
the ease to extend the algorithm to include more objectives.

However, the evolutionary algorithms need numerous GPUs to prepare,
run and converge the search process, which can consume tens to thousands
of days. This is because many of the existing evolutionary NAS approaches
rely heavily on resource-intensive and time-consuming training algorithms
to evaluate the accuracy of a neural network, which is required to direct the
search. Usually, full training of every CNN architecture, is considered to be
an isolated and separate task in these algorithms. This problem leads us to
our first research question:

RQ1: How can we design an efficient NAS algorithm that reduces the search
time, and has the capability to optimize for multiple objectives?

To be able to retain the flexibility of evolutionary algorithms for multi-
objective NAS and yet converge within reasonable time, we examined these
algorithms from a different viewpoint. In our work, we look into the pos-
sibility of searching for efficient architectures during a modified and ex-
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tended training process, in contrast to the conventional training methodol-
ogy as a distinct function. In Chapter 3, we propose a novel evolutionary
based NAS algorithm, called Evolutionary Piecemeal Training (EPT), which
searches for an efficient neural architecture for a given task and converges
in a few GPU hours.

Our work leverages a population-based computing technique which al-
lows a group of Convolutional Neural Networks (CNNs), a subset of neu-
ral networks with mainly convolutional layers, to train in parallel. During
this training, evolutionary operators are applied to some random neural
networks at regular intervals which leads to architecture modification and
hence exploration of the search space. A new architecture derived like this
is always already partially trained as it was modified from another archi-
tecture undergoing training. In subsequent iterations, the derived architec-
tures continue to train. Towards the end of this algorithm, the best candi-
dates are selected from the population, which can then be post processed
or trained further, as needed.

The algorithm is discussed in more detail in Chapter 4, which states the
training and subsequent accuracy evaluation as a “Gradually Saturating
Objective Function” and explains the modifications carried out to the stan-
dard algorithm, in order to allow for a better and more efficient search
methodology.

Both Chapter 3 and Chapter 4 only consider accuracy as an objective,
though all the neural networks generated and modified during search are
bound by minimum and maximum values for each architecture parameter.
These constraints are in place to make sure that architectures do not become
too large and ensures to limit the resource consumption of the final neural
network on the target hardware. This is one of the most important factors
to consider for tasks intended to be deployed on embedded systems.

The methodology is further extended in Chapter 5 to include multiple
objectives in the EPT methodology. To prove the efficacy of the extension
to original methodology, a first consideration is the reduction of the num-
ber of parameters of the neural network as an additional search goal. The
accuracy maximization and parameter minimization can be conflicting ob-
jectives for an efficient neural network. Smaller CNNs tend to have lower
accuracy and high accuracy is generally obtained by larger neural networks.
However, too many parameters tend to cause over-fitting, which may lead
to poor generalization, and therefore, highlight the importance of a con-
strained search process not only for hardware resource usage, but also to
avoid over-fitting.
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With multiple objective based searches, selection of the best candidates
is concluded through pareto optimization, where any objective cannot be
improved without worsening some of the other objectives. The set of can-
didates selected in such a fashion are collectively called a Pareto Front.
The Pareto Front obtained upon convergence sets forth the various possi-
ble CNNs to deploy on the target edge device. It allows the designer to
be aware of the architecture choices available in terms of which CNNs pro-
vide a trade-off between the size of CNN versus the accuracy. One of these
CNNs can be strategically deployed depending upon the desired functional
goals and available resources on the device.

To further augment and enhance our methodology for platform aware
characteristics, we looked at the most common demands on a CNN-based
application deployed on an edge, which are:

1. High accuracy: The CNN should be able to properly perform a task,
for which it is designed;

2. High throughput: Typically, the applications on the edge, require
CNNs to provide real-time response;

3. Low memory cost: Most edge devices have a limited amount of mem-
ory available;

4. Low energy cost: The energy of battery-powered edge devices, like
e.g. drones, is strictly limited.

The CNN execution characteristics - Accuracy, Throughput, Memory cost,
and Energy cost are hereinafter referred to as ATME characteristics. The
accuracy, typically measured in percent, characterizes the fraction of cor-
rect predictions generated by a CNN from the total number of predictions
generated by the CNN. The throughput, typically measured in frames per
second (fps), characterizes the speed with which the CNN is able to process
input data and produce output data. The memory cost, typically measured
in Megabytes (MB), specifies the total amount of memory required to exe-
cute a CNN. The energy cost, measured in Joules, specifies the amount of
energy consumed by a CNN to process one input frame.

1.3 adaptivity in cnn-based applications for edge

In real-world applications, the priorities of a CNN-based application, in
terms of its design objectives, are often influenced by the application en-
vironment, and can change during the application run-time. The question
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then arises if the neural architectures searched by a NAS methodology are
still efficient, when faced with a dynamic environment. Hence, the second
part of the thesis focuses on incorporating adaptivity (or some aspects of it)
into a CNN-based application, which is deployed on an edge device.

Considering the example shown earlier for a video surveillance applica-
tion (Figure 1.2), the cameras can be mounted on an unmanned aerial drone
to monitor the traffic conditions. The CNN-based application running on
the drone can have different priorities, dependent on the situation on the
roads and the level of the device’s battery. When the traffic is heavy, the ap-
plication priority would be to have high throughput and high accuracy to
quickly process its input data, which normally would result in high energy
cost. On the other hand, during a traffic jam, when the high throughput is
not essential, or in the event when the battery of the drone is running low,
the application would perform better by prioritizing energy efficiency over
high throughput.

The characteristics of a system that do not directly pertain to its core func-
tionality, but are important to ensure that the system operates smoothly,
are called extra-functional characteristics of the system. The example above
shows that CNN-based applications need a mechanism that can adapt their
extra-functional characteristics to the changes in the environment during
run-time. Additionally, such a mechanism should provide a high level of
responsiveness, e.g., if a drone battery is running low, the CNN-based ap-
plication on the drone, should switch to an energy-efficient mode as soon
as possible. This leads to our second research question:

RQ2: How can we ensure that a CNN-based application is able to efficiently
adapt its extra-functional characteristics synchronously with the changes in its
environment at run-time?

To answer this question, in Chapter 6, we propose a novel Scenario-Based
Run-time Switching (SBRS) methodology for CNN-based applications exe-
cuted at the edge. A CNN is associated with each of the application’s scenar-
ios, which is specifically designed to conform to certain application’s needs
in terms of the ATME characteristics. During the application execution, the
environment can trigger the application to switch between the scenarios,
thereby adapting the characteristics of the application to the environmental
variations.



10 introduction

The scenarios are derived prior to deployment, from the Pareto Front
obtained by executing the multi-objective EPT methodology with ATME
characteristics as its four objectives. Thus, the adaptivity in SBRS method-
ology is contrived on the foundations of multi-objective NAS, while taking
advantage of unique characteristics of the diverse neural architectures on
the final Pareto Front.

It is important to note that the versatility required from an CNN-based
application on the edge goes beyond immediate environmental changes.
Over the course of an application’s active lifetime, it is aspired that the ap-
plication continues to be resilient and adaptable to changes. Considering
the fact that CNNs are not only a means to add intelligence to a device,
they are also an important knowledge modality for the endless data being
produced. Moreover, we already see the dynamic behaviour of a neural net-
work during the operation of the EPT algorithm. Neural architectures are
slightly modified during each iteration to explore a huge search space. Even
though the motivation behind continuous neural architecture modification
is different than adaptivity, it is easy to notice that neural networks can be
seen as dynamic entities. This idea motivates the last research chapter of
our thesis, where we examine adaptivity of neural network over a longer
period of time, as opposed to just one operation (in the previous research
question). This awareness steers us towards the third research question:

RQ3: Is it possible for neural networks to be treated as a dynamic entity during
its active lifetime? If so, how can we ensure that a CNN, deployed at the edge,
can be regularly updated and maintained?

To answer this question, we look towards the Knowledge Centric Network-
ing (KCN) paradigm, where the communication in an IoT network changes
from a data-centric communication to knowledge-centric communication.
In a knowledge-centric communication, different AI models form the basis
of a communication between different devices, as opposed to the raw-data
(or semi-processed data).

Revisiting the example of the video surveillance system presented in Fig-
ure 1.2, which in essence is a distributed intelligent network, with each
camera having its own deep learning model. Depending on when the cam-
era is added to the system, it is possible that they have slightly different
models deployed on them. Nevertheless, it is still expected that they are
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highly correlated owing to a common task they all perform. Assuming that
this system is a KCN based IoT network, this high correlation of CNNs
deployed on different devices can be exploited by the distributed system
to reuse and combine each other’s knowledge to create a better application.
This can be achieved by coordinating efficient communication, exchange
and update of the various neural networks deployed, while being adapt-
able to accommodate new data generated and insights learnt.

Standardizing the knowledge update process, in the context of KCN mo-
tivates the proposal of a framework in Chapter 7. The proposed framework
focuses on CNNs as dynamic models and various approaches to update
them. It is noteworthy that the techniques discussed in Chapter 7 are not
limited to a KCN based IoT network. They can be applied in any situation
that warrants an adaptive deep learning based application.

In brief, the framework facilitates creation of a new CNNs and modifica-
tion of existing ones, and allows combination of multiple CNNs to compose
a new CNN. In addition, it is able to isolate layers of the CNN, which can
be individually transferred while supporting packaging and compression
for distribution. Some of these techniques are motivated from the NAS
work in the previously proposed EPT, where architecture modifications are
performed through genetic operators to carry out the exploration. There
are multitude of ways in which deep learning models can be modified,
both weights and architecture of the neural network can be updated, e.g.
add/prune layers, add residual connections, change layer activation. Im-
portantly, all of these tasks are unrelated to the training of CNNs or knowl-
edge creation directly, even so, these tasks are needed to keep the network’s
knowledge contemporary and maintain communication brevity with fre-
quent updates.

1.4 thesis overview

Figure 1.3 visualises how this thesis is organised. Chapter 2 provides back-
ground information for topics discussed throughout the rest of the thesis.
This chapter explores various neural architectures in the context of CNNs
and their evaluation for extra-functional characteristics.

Following the background chapter, this thesis is organized into two ma-
jor parts. The first part, consisting of three chapters, is focused on Neural
Architecture Search. Chapter 3 introduces a novel NAS algorithm called
Evolutionary Piecemeal Training (EPT), which is based on a genetic algo-
rithm. EPT defines a search space of valid CNNs and trains a population of
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them in parallel while searching for an efficient neural architecture through
evolutionary operators. Chapter 4 dives deeper into the workings of the
EPT algorithm. It explains the nature of dynamic optimization required
and a population diversity based mechanism deployed to derive a suitable
and efficient neural architecture.

So far, both these chapters consider only accuracy as the objective for
the search. Chapter 5 extends the original EPT algorithm to include mul-
tiple objectives to provide a Pareto Front of suitable neural architectures.
The flexibility of the EPT algorithm is demonstrated through two sets of
separate experiments, each with a different number of multiple objectives.

The second part of the thesis contains two chapters and is focused on
adaptivity in CNN based applications deployed on edge devices. The work
presented in both of these chapters is motivated from the first part of the
thesis. Chapter 6 presents a mechanism, called Scenario Based Run-time
Switching, for a CNN-based application to allow dynamic adaptation to-
wards its extra-functional behaviour, with respect to the changes in the
application environment at run-time. This chapter depends heavily on the
hardware-aware EPT algorithm presented in Chapter 5, to derive the sce-
narios suitable for different operational modes.

While Chapter 6 focuses on adaptivity during operation time, Chapter 7
examines adaptivity during a life cycle of a CNN-based application by con-
sidering neural networks as a dynamic entity. In Chapter 7, we discuss var-
ious possible scenarios where the application needs to be fine-tuned, when
the application is already deployed at the edge and suggests approaches
to update the CNNs as required. The concept of treating a CNN as a dy-
namic entity originates from the EPT algorithm, where neural architectures
are constantly being modified in each iteration. Although the reason for
the modification is to traverse a large search space of neural architectures,
the rationale of treating a neural network as a dynamic model is inherently
present in the algorithm. The work presented in Chapter 7 expands on the
ideas taken from the first part of the thesis and other existing literature to
formulate them in the context of Knowledge Centric Networking for adap-
tive environments.

These five research chapters contain our core contributions, and the thesis
culminates with a concluding chapter (Chapter 8), where we reflect on the
research questions and present some ideas on future work.
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1.4.1 Origins

Listed below are the author’s contributions and papers on which each of
the research chapters is based. The next section enumerates the full list of
the author’s publications.

PART I

ch.3: "Constrained evolutionary piecemeal training to design convolutional neural
networks" [P1]

"Designing convolutional neural networks with constrained evolutionary
piecemeal training" [P2]

ch.4 "An evolutionary optimization algorithm for gradually saturating objective
functions" [P3]

ch.5 "Designing convolutional neural networks with constrained evolutionary
piecemeal training" [P2]

"Scenario Based Run-time Switching for Adaptive CNN-based Applications
at the Edge" [P4]

PART II

ch.6: "Scenario Based Run-time Switching for Adaptive CNN-based Applications
at the Edge" [P4]

ch.7: "Deep learning model reuse and composition in knowledge centric network-
ing" [P5]

For papers [P1–P3, P5], the author of this thesis is the principal author
and performed all of the data analysis, software development, experimental
set-up, validation and writing of the original draft. In the paper [P4], the
author of this thesis was the main machinist in scenario definition and
derivation for the target hardware. The author performed data analysis,
software development, experiments and validation for scenario derivation
and is responsible for the writing of related parts in the original draft.

Papers [P6–P8] were part of the papers published though the project
ALOHA, which funded the author’s PhD. The content of these papers is
part of the thesis in some manner. Some parts from the paper [P9] have
been used in Chapter 2 to provide some background for neural architec-
tures. The rest of the papers are not directly related to the thesis, but were
published during the PhD.
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1.5 author publications

[P1] Dolly Sapra and Andy D Pimentel. “Constrained evolutionary piece-
meal training to design convolutional neural networks.” In: Interna-
tional Conference on Industrial, Engineering and Other Applications of Ap-
plied Intelligent Systems. (Best Paper Award). 2020.

[P2] Dolly Sapra and Andy D Pimentel. “Designing convolutional neu-
ral networks with constrained evolutionary piecemeal training.” In:
Applied Intelligence (2021).

[P3] Dolly Sapra and Andy D Pimentel. “An evolutionary optimization al-
gorithm for gradually saturating objective functions.” In: Proceedings
of the Genetic and Evolutionary Computation Conference. 2020.

[P4] Svetlana Minakova, Dolly Sapra, Todor Stefanov, and Andy D Pi-
mentel. “Scenario Based Run-time Switching for Adaptive CNN-based
Applications at the Edge.” In: ACM Transactions on Embedded Comput-
ing Systems (TECS) (2021).

[P5] Dolly Sapra and Andy D Pimentel. “Deep Learning Model Reuse
and Composition in Knowledge Centric Networking.” In: 2020 29th
International Conference on Computer Communications and Networks (IC-
CCN). 2020.

[P6] Paolo Meloni, Daniela Loi, Paola Busia, Gianfranco Deriu, Andy D
Pimentel, Dolly Sapra, Todor Stefanov, Svetlana Minakova, Francesco
Conti, et al. “Optimization and deployment of CNNs at the edge:
the ALOHA experience.” In: Proceedings of the 16th ACM International
Conference on Computing Frontiers. 2019.

[P7] Paolo Meloni, Daniela Loi, Gianfranco Deriu, Andy D Pimentel, Dolly
Sapra, Bernhard Moser, Natalia Shepeleva, Francesco Conti, Luca
Benini, et al. “ALOHA: an architectural-aware framework for deep
learning at the edge.” In: Proceedings of the Workshop on INTelligent
Embedded Systems Architectures and Applications. 2018.

[P8] Paolo Meloni, Daniela Loi, Gianfranco Deriu, Andy D Pimentel, Dolly
Sapra, Maura Pintort, Battista Biggio, Oscar Ripolles, David Solans,
et al. “Architecture-aware design and implementation of CNN algo-
rithms for embedded inference: the ALOHA project.” In: 2018 30th
International Conference on Microelectronics (ICM). 2018.
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[P9] Ilja van Ipenburg, Dolly Sapra, and Andy D Pimentel. “Exploring
Cell-based Neural Architectures for Embedded Systems.” In: 2nd In-
ternational Workshop on IoT, Edge, and Mobile for Embedded Machine
Learning. 2021.

[P10] Uraz Odyurt, Dolly Sapra, and Andy D Pimentel. “The Choice of AI
Matters: Alternative Machine Learning Approaches for CPS Anoma-
lies.” In: International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems. 2021.

[P11] Dolly Sapra and Sebastian Altmeyer. “Work-in-progress: design-space
exploration of multi-core processors for safety-critical real-time sys-
tems.” In: 2017 IEEE Real-Time Systems Symposium (RTSS). 2017.

1.6 source code

• The EPT implementation and SBRS scenario derivation script is avail-
able at https://github.com/dollysapra/EPT

• The framework implementation as described in Chapter 7 is available
at https://github.com/dollysapra/ONNXAlter

https://github.com/dollysapra/EPT
https://github.com/dollysapra/ONNXAlter


2
B A C K G R O U N D

In this chapter, we discuss the core ideas and terminologies which form
the foundation of this thesis. We delve into deep learning and challenges
faced for its deployment at the edge. Additionally, details are provided on
the AI tasks and datasets that have been used for experiments in the later
chapters.

2.1 convolutional neural network

Convolutional Neural Networks (CNNs) are the most popular type of neu-
ral network [12], and are mainly utilized for vision based tasks due to their
ability to recognize patterns in images. A CNN consists of many hidden lay-
ers between input and output through which the data must transit. The ma-
jority of these hidden layers in a CNN are convolutional layers. Figure 2.1
illustrates the working of a convolutional operation with a small mathemat-
ical matrix, called kernel. A kernel performs a matrix multiplication with
the input data to construct the output. The kernel is typically much smaller
than the input, so it repeatedly performs the matrix multiplication opera-
tion until the whole input is traversed.

The number of steps moved per operation by the kernel is called its stride.
The input can also be padded with zeroes or repeating edge values, in
order to avoid shrinking of the layer output. A typical convolutional layer
consists of many kernels, whose quantity is called the number of units
in a layer, or the channel width of the layer. Intuitively each kernel in a
layer is trying to detect a feature in the input layer. By having multiple
convolutional layers, it can be considered that earlier kernels are trying to
search for basic features in a small area of the input. Similarly, kernels in
later layers are seen as aggregating the information from previous layers, to
search for more complicated features of the input.

17
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Figure 2.1: An example of convolution operation on input with a small kernel

Since there are a large number of kernels in a typical CNN, there are
many parameters in the form of mathematical matrices, which are together
called model weights or coefficients. These coefficients are estimated, or
learned, during the training process of the deep learning model using the
training data available. The training of the neural network is performed
through the back-propagation algorithm [8], with the help of gradient de-
scent.

The back-propagation algorithm works on the basis of an error function,
which is computed using the difference in correct output and the predicted
output by the neural network. Since this thesis only looks into supervised
learning [7], it is assumed that a correct output label is available for every
intended input during training. To get the predicted output for available
input data, a normal matrix multiplication operation through all the layers
is performed first, in forward direction. Next, the error is computed and the
method further calculates the gradient of the error function, with respect
to the neural network’s weights. The estimation of the gradient then pro-
ceeds backwards through the neural network, i.e. the gradient of the last
layer weights is calculated first and the gradient of the first layer weights is
computed last. This iterative backward and forward flow of information, to
compute error and its gradients, allows for an efficient and fast estimation
of coefficients for each layer of the CNN.

With sufficient data available, the training of the neural network allows
the conversion of information from the input data to the coefficients of
the model. This results in many computations being performed during the
training, which is typically performed on high end GPUs with access to
large amounts of memory (>10GB). Once a neural network is sufficiently
trained, it can be deployed as a service to perform inference on the unseen
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Figure 2.2: Deep neural network example for image classification

data. Inference refers to the execution of a trained model to perform its
intended task, such as predicting a label of an image in image classification
task or recognizing an activity in Human Activity Recognition (HAR) task.

In this sense, the life-cycle of a neural network has two distinct phases:
training and inference. In Chapter 7 we argue that a neural network can be
treated as a dynamic entity and can have one more phase: update, which
involves a small update to the neural network, such as, changes to its archi-
tecture or re-training the model.

2.2 neural architectures

As discussed in Chapter 1, the neural architecture captures the manner in
which all the layers are arranged to construct the whole neural network. The
simplest architecture can be composed by linearly connecting the layers in
a chain structure, where any layer is only connected to two other layers. It
receives data from one layer and passes its output to the next. In this thesis,
such a CNN is also referred to as "Plain CNN", an example of which is
illustrated in Figure 2.2. In this illustration, the input data, in the form of
an image, passes through a sequence of linearly connected layers. The final
layer of this neural network is a predictor or a classifier for the expected
output.

Although the Plain CNNs are considered to have the simplest architec-
ture, there are numerous design choices to consider in building one such
model. Typically there are multiple layers in a CNN, with each layer hav-
ing specific parameters depending on its operation type. For instance, every
convolutional layer will have a few parameters to specify, a few of which
are number of kernel units, kernel size, stride and padding. For example,
one of the experiments in Chapter 3, for the CIFAR-10 dataset (the next
section explains the datasets used in this thesis), consists of 10

8 possible
configurations or design choices to build a plain CNN.

However, very deep neural networks can be hard to train, because of
the so-called vanishing gradient problem. During training with stochastic
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Figure 2.3: A residual connection with a block of convolutional layers

Figure 2.4: Standard Resnet-18 architecture, with many residual connections [5]

gradient descent [13], as the gradient is back-propagated to earlier layers,
continual multiplication may make the gradient rather small or even zero.
Hence, with a deeper model, the performance gets saturated or degrades
quickly. One of the ways to solve this problem is to introduce shortcut
connections between some layers, which allow the gradient to flow easily
through earlier layers. Figure 2.3 illustrates the shortcut connection, bypass-
ing a group of convolutional layers. This shortcut connection is also called
residual connection, skip connection or identity connection.

The family of neural networks with many such residual connections was
proposed in [5] and the architecture was named Resnet architecture. Depend-
ing on the number of layers, a number is usually added to a standard Resnet
architecture. For example, Figure 2.4 illustrated the standard Resnet-18 ar-
chitecture with 18 layers and multiple residual connections. It is notewor-
thy that these are standard Resnet architectures as proposed by the origi-
nal work. It is possible to have Resnet-style neural networks with multiple
residual connections bypassing any number of layers in between.

As discussed in Chapter 1, there is an important and increasingly popu-
lar subgroup of NAS approaches called one-shot methodology, consisting
of algorithms focused on cell-based neural architectures. These algorithms
search for a small sub-network called a cell, which are then linearly con-
nected to form the complete neural network. The composition of the final
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(a) Normal cell (b) Reduction cell

Figure 2.5: Cells found by one of the NAS algorithm: SNAS (mild constraint) [15]

neural network, established through the width of the cells and the depth of
the connections, is manually designed while being influenced by the avail-
able GPU memory.

The cell-based NAS typically discovers two types of cells, namely, a nor-
mal cell and a reduction cell [14]. Figure 2.5 illustrates an example of cells
as found by the SNAS methodology [15]. The cell itself is designed to take
the output of the two previous cells and consists of an acyclic graph of
various nodes. In the figure, blue nodes are input/output nodes of the cell
and orange nodes are the intermediate nodes. Each edge between an input
node and an intermediate node is either a convolutional operation or a skip
connection. The output of all the intermediate nodes is then concatenated
to produce the final cell output.

The normal cell is designed to maintain the feature map size of the input,
whereas the reduction cell reduces the feature map size. Feature map size
refers to the intermediate data that is transferred from one convolutional
layer to the next layer in a CNN. The complete neural architecture is gen-
erated by forming a linear connection of the normal cells, interrupted by
a few reduction cells at regular intervals. The neural architectures created
by repeating the same cell possess an inherent flexibility to be able to form
neural networks of different sizes. Individual cells can have variable chan-
nel width, i.e. can be wide or narrow (depending on the number of kernels
it has).The variable frequency of cell repetition in the neural network may
further add to their flexible nature.

As discussed in [16], cell-based NAS has some advantages over other
methodologies. Firstly, the search space of the NAS algorithm is reduced
as the algorithm only searches for a small sub-network, a cell, which is a
small part of a complete neural architecture. Secondly, these cells can be
transferred to and re-used in different datasets and domains.
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(a) SNAS original architecture
(2.9M parameters, 97.02% accuracy)
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(b) SNASc Architecture for an edge device
(0.3M parameters, 96.14% accuracy)

Figure 2.6: Cell-based architectures for CIFAR-10 with three blocks of normal cells
partitioned by two reduction cells (in red). FxN to the right of each
block represents the number of channels per cell in the block ⇥ number
of cells per block.

We did an exploratory work, to understand the suitability of cell based ar-
chitectures for edge devices [17]. Unsurprisingly, it was discovered that the
original cell-based architecture designed by SNAS [15] for a high-end GPU
is easily adaptable to consider resource limitations and therefore suitable
for an edge device as well. It was observed that the number of operations
per cell have to be drastically reduced, or in other words, channel width has
to be minimized, to make a cell-based architecture be deployed on an edge
device. Figure 2.6 illustrates the difference in channel widths and placement
of reduction cells between original SNAS architecture and another derived
architecture for an edge device. This new architecture sees a drop of ⇡ 1%
in the accuracy, but has far less parameters. This translates to lower memory
requirements, fewer arithmetic operations and hence, lower energy costs. It
is important to note that the new architecture is formed from the same
SNAS cell structure, where the channel width per cell has been reduced.

However, while a cell-based neural network may be extremely efficient,
these are not always easy to understand, train and implement. Most medium
complexity tasks and domains such as human activity recognition [18],
earth sciences [19, 20] and astronomical studies [21] deploy plain convo-
lutional networks as they are considered sufficient as well as easy to under-
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stand by scientists with a non-AI background. Therefore, a large part of our
work in the domain of NAS is focused on plain CNNs. In Chapter 5, we
further extend this work to include ResNet-style CNNs in the design space
of search algorithm.

2.3 datasets

In later chapters, the CIFAR-10 [22] and the Pascal VOC [23] datasets for im-
age classification and the PAMAP2 [24] dataset for Human Activity Recog-
nition (HAR) are used for different experiments. PAMAP2 has data from
body-worn sensors and predicts the activity performed by the wearer, while
Pascal VOC and CIFAR-10 are multi-label image classification datasets with
20 classes and 10 classes, respectively.

CIFAR-10 [22] is a labelled set of 60, 000 images, bifurcated into training
and test sets in the ratio of 5 : 1. The images are of size 32⇥ 32⇥ 3 and
are divided into 10 classes. We reserved 5, 000 images from the training
set, to use them for validation during the search process. The test set was
eventually used to evaluate the final accuracy of the neural network, which
is what we report in this thesis. Standard data augmentation techniques
were deployed [25, 26], which include small amounts of translation, crop,
rotation and horizontal flip. Data augmentation techniques create different
data from the available dataset, by altering them slightly in various ways.
This ensures that a newly created data-point still retains the essence of the
original class, and at the same time allow the deep learning model to train
from new inputs. These techniques are useful to improve the performance
and outcomes of the neural network in question.

Pascal VOC [23] has a set of around 17,000 labeled images belonging to 20
categories. It is sometimes referred to as just VOC in this thesis. The image
categories are some commonly found objects such as ‘cat’, ‘dog’, ‘car’ etc.
The images vary in their dimensions and were downsampled to a fixed res-
olution of 384⇥ 384 with 3 color channels. 20% of the images were reserved
for validation and testing and the rest were used during the training pro-
cess. It is important to note that VOC is an imbalanced dataset, where some
of the categories are significantly underrepresented in the dataset. For such
types of datasets, accuracy may provide an inaccurate picture, since a high
accuracy (or low error) is achievable by a no-skill model that only predicts
the majority class. In the next section, we discuss other metrics that can
be used to evaluate such imbalanced datasets. There are many threshold
based metrics and rank based metrics which are considered more suitable
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to evaluate models for such imbalanced datasets, we discussed some of
these metrics in the next section.

The markedly different PAMAP2 dataset [24] compiles recordings from
body-worn sensors. The input is organised as time-series data from a total
of 40 channels from three Inertial Measurement Units (IMU) along with a
heart rate monitor. The person wearing these sensors performed one of the
twelve different activities in everyday life. We ignored some of the optional
activities provided in the dataset. For a fair comparison with other papers,
the validation and the test sets were the same as in the other papers working
with this dataset ([27, 28]), i.e. the recordings from participants 5 and 6 were
used as validation and test sets respectively. To prepare the data, firstly, the
recordings from all IMUs were downsampled to 30 Hz and secondly, the
data was segmented through a sliding window approach, with a window
size of 3s (100 samples) and step size of 660ms (22 samples). For appropriate
data augmentation, we moved the sliding window using different step sizes
while the window size was kept the same at 3s.

Both PAMAP2 and Pascal VOC are imbalanced datasets, though the im-
balance in VOC is much higher. In PAMAP2, the ratio between minority
and majority class representation in the dataset is ⇡ 1 : 4, whereas the same
in VOC is ⇡ 1 : 20. Moreover, one particular class label: person, is present in
the dataset with a very high frequency.

2.4 neural network evaluation

In order to find a good neural network, we need to define the metric which
evaluates a neural network and determines which neural network can be
considered good. The most popularly used metric to evaluate a neural net-
work is classification accuracy, which is computed as the number of cor-
rectly predicted input frames to the total number of the CNN input frames.
For an imbalanced dataset, which means that some of the classes are over-
represented in the data set, classification accuracy is not always the best
choice to evaluate the CNN. Instead, F-1 score, precision, recall, Area un-
der curve for precision recall (PR-AUC) are some of the metrics used for
neural networks for imbalanced datasets [29].

One of the metrics we use for such datasets in this thesis is the weighted
F1-score (F1w) and mean F1-score (F1m). These scores are computed using
precision and recall for each class, and weigh the classification of each class
based on the ratio of class representation in the dataset. Precision is the ratio
of true positives to all positive predictions for a class. Whereas recall is the
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fraction of true positives predicted by the model from among all positive
labels for a class. Using precision and recall values per class, the F1 scores
are then computed as:

F1w =
X

i

2⇥ ni

N
⇥ precisioni ⇥ recalli

precisioni + recalli

F1m =
2

N
⇥
X

i

precisioni ⇥ recalli

precisioni + recalli

Here, ni is the number of samples per class and N represents the num-
ber of data points in the whole dataset. In comparison to the classification
accuracy, especially for imbalanced datasets, the F1-scores provide a bet-
ter judgement about the performance of a neural network. An F1-scores
in essence, is based on threshold based class assignments, which means a
threshold value (> 0.5 in our work) is used to decide whether an output
from the classifier can be treated as an assigned label (to a class) or not. The
classic accuracy evaluation is a threshold based metric as well.

For PAMAP2 based evaluations, where the imbalance between classes is
not too high, accuracy is still usable during our NAS algorithm, which is
presented in the next chapter. F1-scores are only evaluated in the end, in
order to compare with some other state-of-the-art methodologies presented
in the HAR domain with PAMAP2 dataset.

Another metric for imbalanced datasets, precision recall - area under curve
(PR-AUC), is calculated as the average of precision scores calculated for
each recall threshold. A PR curve is plotted as shown in Figure 2.7, where
precision is on the y-axis and recall is on the x-axis, and area under the
curve is considered the evaluation metric. It is desired that both precision
and recall are high, and the optimal PR curve is when the plot reaches the
upper right-hand corner where precision and recall both are 1. However, a
trade-off exists between precision and recall [30].

The intuition behind the suitability of PR-AUC for imbalanced datasets
is that, since PR-AUC focuses on the fraction of true positives among pos-
itive predictions, it tells how relevant the correctly labeled data points are.
This is important for under-represented classes in the dataset. Also, the PR-
AUC value represents the performance of a neural network across many
thresholds, rather than a single value. Hence, PR-AUC is able to reveal the
differences in the performance of a neural network that may go unnoticed
when using accuracy or F-1 score for highly imbalanced datasets [31].
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Figure 2.7: An example of area under curve for precision-recall curve

For Pascal VOC, the accuracy was used during initial experiments, which
always reported more than 97% accuracy, as the over-represented classes
were often correctly predicted. Hence, in this situation, the F1-score is more
useful to perform comparisons between partially trained models (during
the NAS, see Chapter 3). However, once a CNN is fully trained, the PR-
AUC is more insightful for highly imbalanced datasets [30]. The PR curve
represents various different levels of thresholds and has many F1-score val-
ues for various points on its curve. Therefore, for Pascal VOC, PR-AUC
is the metric used in our experiments in Chapter 5 to evaluate the fully
trained CNNs, although F1-score is used to compare the performance of a
partially trained CNN during the NAS.

2.5 interoperability

In any environment with multiple products and systems, it is desired that
all interfaces are well understood and are capable of comprehending each
other. There are many powerful deep learning languages, toolsets and frame-
works and it is possible to have an environment where all of these are
present in at least one of the devices. Further optimizing deep learning
models for specific hardware is difficult and since each hardware target
(cloud/edge, CPU/GPU, etc.) has different capabilities and characteristics,
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the problem becomes extremely hard and complex. Models from a variety
of frameworks need to run on a variety of platforms. It is very time consum-
ing to optimize all the different combinations of frameworks and hardware.
A solution to train in any framework but being able to communicate any-
where on the cloud or edge is needed. Keeping this in mind, all our works
use the Open Neural Network eXchange framework (ONNX) [32]. ONNX
is well suited for this task as it encapsulates architecture and coefficients
in a single modality and is widely seen as a solution to the interoperability
problem concerning different deep learning frameworks. Most of them al-
ready allow exporting or converting the model to the ONNX format, such
as PyTorch (and Caffe2, which got merged with Pytorch) [33], Keras [34],
Tensorflow [35], Apache MXNet [36], Microsoft Cognitive Toolkit [37]. Con-
verted models to ONNX can run on a variety of platforms and devices
directly using ONNX Runtime [38].





Part I

N E U R A L A R C H I T E C T U R E S E A R C H

The first part of the thesis is focused on the search for efficient
neural network architectures, which are suitable to be deployed
on resource-constrained edge devices. We explain the novel ge-
netic algorithm based approach, called Evolutionary Piecemeal
Training, which forms the basis of this thesis and further ex-
ploration towards adaptive applications in the next part of this
thesis.

Chapter 3, Constrained Evolutionary Piecemeal Training, gives
a brief introduction to the algorithm. Which searches for an ef-
ficient neural architecture within a constrained search space, to
ensure that the best model can fit into the target edge device.

Chapter 4, Evolutionary Piecemeal Training as Dynamic Opti-
mization, further explains the working of the algorithm, which
treats the search for neural architectures as dynamic optimiza-
tion.

Chapter 5, Multi-Objective Evolutionary Piecemeal Training, ex-
plains the extension of the proposed algorithm to include more
than one objective, such as the target hardware specific objec-
tives.





3
C O N S T R A I N E D E V O L U T I O N A RY

P I E C E M E A L T R A I N I N G

This chapter explains the basic concepts of the proposed NAS methodology, called
Evolutionary Piecemeal Training (EPT), with constraints placed to limit the archi-
tecture size of the neural networks in the search space. This algorithm treats the
search for neural architectures as an optimization problem, where the objective of
the optimization is to maximize the test accuracy of the resulting CNN. The con-
straints are put on minimum and maximum bounds on architecture parameters of
the neural networks. This enforces that all the neural networks under consideration
are restrained from becoming too large, and thus may be deployed on an edge device
with limited resources. To validate the algorithm, the search begins with random
untrained models, and achieves fully trained models with a competent architecture,
on CIFAR-10 and PAMAP2 datasets.

This Chapter is based on:

• D. Sapra and A. D. Pimentel "Constrained evolutionary piecemeal training to
design convolutional neural networks" [39], in International Conference on In-
dustrial, Engineering and Other Applications of Applied Intelligent Systems, ©
Springer. Best Paper Award

and its extended journal paper:

• D. Sapra and A. D. Pimentel "Designing convolutional neural networks with
constrained evolutionary piecemeal training" [40], in Applied Intelligence, ©
Springer.
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3.1 introduction

Popular NAS methodologies use evolutionary algorithms [41, 42] and rein-
forcement learning [43, 44], however, they need numerous GPUs consecu-
tively, to prepare, run and converge the search process, and can consume
tens to thousands of GPU-days. Many of these approaches rely heavily on
resource-intensive training to direct the search algorithm, which is usually
considered to be an isolated and separate task, to estimate the model per-
formance. NAS is examined from a different viewpoint in our work, by
looking at the possibility of searching for efficient architectures during a
modified and extended training process. This contradicts the conventional
training methodology as a distinct function, required for accuracy evalua-
tion.

Moreover, recent research in NAS approaches is mainly focused on datasets
in the image classification domain, specifically CIFAR-10 [22] and Ima-
genet [45]. This has contrived novel and intricate search spaces typically
matched to the vision based tasks. These innovative search spaces are usu-
ally derived from previous hand-crafted architectures, for example, resid-
ual connections [5], cell based designs such as inception [46], dense net
[47] or generated in a graph-like fashion [48]. Even though these innovative
search spaces exhibit ingenuity as well as efficiency, they are complex to
understand, design and train. Many tasks and domains that are of medium
complexity such as human activity recognition [18], earth sciences [19, 20]
and astronomical studies [21] utilize plain Convolutional Neural Networks
(CNNs) in their research. They are considered sufficient and are well under-
stood by scientists and researchers who do not come from a background in
Artificial Intelligence (AI).

Therefore, a tool, which is convenient to be used by non-AI experts from
various domains, and one which finds an efficient CNN in a timely manner,
is vital to simplify the design process of neural networks and subsequently
democratizing AI. For example, a neural network for breast cancer clas-
sification has been proposed in [49], which was manually designed and
further optimized. For a non-AI expert, the absence of relevant tools and
limited knowledge about the neural network architecture design can be a
hindrance in effectively utilizing AI models in their respective domains. In
this direction, the chief contribution of this work is a novel algorithm for
NAS, called Evolutionary Piecemeal Training.

Our algorithm explores the constrained design space of CNNs for the
selected task and attempts to discover an efficient architecture while con-
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verging in a restrained amount of GPU hours. The CNN models that are
created and altered during the search are constrained by a minimum and
maximum value for each of the architecture parameters. These bounds have
been set up to ensure that the size of all CNN architectures is regulated,
and at the same time, it limits their potential to outgrow the availability
of hardware resources. This is one of the crucial considerations for models
intended to be implemented on embedded systems, for instance wearables
in the Human Activity Recognition (HAR) domain. High computational
and memory demands by large neural networks may result in inefficient
utilization of the limited resources on the embedded device.

The proposed NAS technique explained in this chapter is based on a
population based computation method which allows a group of neural net-
works to train simultaneously. During the training process, random CNNs
from the population are chosen and evolutionary operators applied to them.
These evolutionary operators are designed in such a way that they lead
to small architecture modifications and hence guide the exploration of the
larger search space. Every new architecture derived through modification is
invariably partially trained, since the parent architecture was already under-
going the training. In every subsequent iteration, CNNs continue to train
while some of them are subject to architecture modifications. When the
algorithm converges, the best individual models (with high accuracy) are
chosen from the population. These selected CNNs can be post-processed
and trained for more epochs.

In particular, we use a genetic algorithm in our methodology, which
was chosen after considering various factors from amongst different meta-
heuristic algorithms, such as, Simulated Annealing and Particle Swarm Op-
timization [50]. The most important factor was the ability of the algorithm
to simultaneously allow the training to continue, while searching for an ap-
propriate neural architecture. To this end, the genetic operators (mutation
and recombination), can be defined in such a manner, that there is mini-
mum disruption to the training process, while the large design space of
architectures is explored. Additionally, these algorithms are well studied
in the multiple-objective search domain. At the onset of this research, the
potential to extend to multi-objective search was taken into consideration.
Moreover, other NAS methodologies, which are based on evolutionary al-
gorithms, prominently use the genetic algorithm in their research [41, 51].

In this chapter, the experiments and results are presented with two dis-
tinct datasets. The first one is the PAMAP2 [24] dataset, for the HAR do-
main, where the data is measured from body worn sensors on a person’s
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body to anticipate the activity being performed by the human wearer. The
second dataset is the CIFAR-10 dataset, which is popularly used in the do-
main of image classification. The versatility of the proposed approach is
demonstrated through the use of two markedly different datasets in terms
of both input data type and format.

3.2 related work

Various research works have been published recently demonstrating pro-
ficiency of NAS techniques. They can be partitioned mainly into three
categories, namely Reinforcement Learning (RL) based, evolutionary algo-
rithms and one-shot architecture search. Both reinforcement learning and
evolutionary based algorithms mandate the complete training of the neural
network at each search iteration for performance evaluation. In RL based
methods [43, 44, 52], the validation performance, or accuracy, of the trained
model guides the reward towards the RL agent. When the agent is continu-
ously rewarded for finding better architectures, the search is slowly steered
towards neural networks with higher performance. Any RL approach res-
olutely demands a suitable agent, which frequently happens to be a com-
plicated model or perhaps another neural network. The construction of the
agent and its optimization involve substantial effort towards designing and
subsequent fine tuning.

Evolutionary methodologies [42, 51, 53–55] utilize genetic algorithms to
discover the efficient neural architecture in a large search space. Evolution-
ary algorithms have also been successfully deployed for CNN optimiza-
tions, such as, for compression [56], pruning [57] and hyper-parameter op-
timization [58]. Evolutionary NAS algorithms work with a population of
possible CNN candidates, where each one of them is trained and evaluated
at every iteration. With subsequent iterations, the models in the population
get selected, rejected and modified depending on their accuracy and other
control variables of the algorithm. The aim is to improve the population’s
average performance with time. Eventually when the algorithm converges,
it has discovered an architecture for a high performing neural network. Our
work also utilizes an evolutionary algorithm for architecture modification,
where the key difference is in the manner training and architecture modi-
fications are interwoven in the algorithm to conduct joint search for both
weights and architecture.

Unfortunately, most of these approaches demand intensive computational
resources to train hundreds or thousands of neural network architectures.
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For example, the RL method in [44] trained more than 10,000 models,
involving over a thousand GPU days, while another adept evolutionary
search [59] required 56 GPU days to finally converge. Other works have uti-
lized proxy tasks, for example, hyper-networks [60], predictors [52, 61] and
controllers [43] to fasten up the search process. However, they still continue
to demand abundant planning and time to be implemented before the ac-
tual search commences. In direct contrast, our algorithm does not require
helpers and proxy tasks and still converges in a reasonable time.

One-Shot NAS methodologies are based on the concept of a trained
super-network, consisting of all the possible sub-networks within. The en-
tire super-network may have to fit in the GPU memory during the NAS
execution, which results in a highly restricted architecture size, and it typ-
ically results in a discovery of a small sub-network, called a cell with a
limited number of operations. The cell that is discovered through one-shot
search is sufficiently repeated and connected in an appropriate manner, to
eventually form a neural network that will perform the intended task. See
Chapter 2 for more explanation about cell-based neural architectures.

DropPath [62] is an example of a one-shot search approach, where a path
is dropped out with a fixed probability, and by randomly removing dif-
ferent paths, a new sub-network is formed. The pre-trained super-network
is then used to evaluate and eventually discover the best sub-network ar-
chitecture. DARTS [63] additionally proposed an architecture parameter
for every path and by employing the standard gradient descent to train
the weight and architecture parameters together. Other approaches attempt
to be more efficient by utilizing other proxy tasks, for instance [64] pro-
posed a memory-efficient algorithm to update fewer paths while searching.
Aside from posing a meta-architecture design challenge, the models based
on replication of single cells, may not be suitable to various domains.

3.3 methodology

In this section, we go into the details of our proposed methodology, Evo-
lutionary Piecemeal Training, describe its key concepts and the complete
algorithm. Piecemeal training makes a reference to the training of a CNN
with a small ‘data-piece’ randomly taken from the whole dataset, the size
of which, referred to as �, can vary from 5% to 20% of the dataset. The con-
ventional training of a neural network is regularly interrupted through an
evolutionary operator, at intervals determined by �. The operator modifies
some parameters in the model architecture, and subsequently permits the
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Figure 3.1: A general cluster based architecture with l clusters, where each cluster
defines its layer type along with the constraints it enforces on member
layers.

continuation of the training process. Numerous CNNs begin this training in
parallel, creating a population that is subject to architecture modifications
after each iteration of piecemeal training. The models that do not perform
as well as other models are removed from the population. Conceptually, in
the context of neural network training, this can be envisioned as the early
termination of candidates showing no promise in their ability to reach a
high accuracy.

All possible neural network architectures with their configurations and
constraints constitute the search space for our work. More specifically, we
focus on linearly connected plain CNNs, where layers are only connected to
their consecutive layer, and do not have complex connectivity through resid-
ual connections or branches. We anticipate that the search methodology can
be extended to more complicated search spaces. However, this particular re-
search is focused on plain CNNs, which are used by many non-AI experts
in their respective domains and may be considered sufficient for the given
task [18, 19, 21].

Figure 3.1 illustrates a general cluster based architecture, where similar
consecutive layers are grouped into clusters. Additionally, every cluster in
the architecture places constraints on its number of layers, on the number
of units per layer, and on other layer specific parameters such as the kernel
size in a convolutional layer.

For our experiments, all clusters and their boundary definitions are con-
strued before the start of the search algorithm. All possible permutations
of layers and their hyper-parameters together represent the whole search
space. This architecture search space is usually not a trivial space to navi-
gate. For example, the search spaces for experiments in Section 3.4.1 have
10

8 (CIFAR-10) and 10
5 (PAMAP2) possible architectures. This search space

definition is encoded in the form of a genotype to ensure the availability of
a factory to generate new neural networks, and also to warrant that the
evolutionary operators adhere to the cluster constraints.
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3.3.1 Population based training

We employ a population based training process where an initial population
of neural networks is randomly created from the defined gene pool. In each
iteration, all candidates of the population are piecemeal-trained and then
evaluated using the validation set. Depending upon the available resources,
all candidates can be trained in any combination of parallel and sequential
manner. The size of the population is kept constant throughout the algo-
rithm, though the candidates of the population keep changing as they are
altered through the evolutionary operators applied in each iteration. The
number of candidates in the population needs to be large enough to main-
tain enough diversity of CNN architectures in the population, while still
satisfying the constraints applied to it.

3.3.2 Evolutionary operators

The evolutionary algorithm needs to sufficiently explore the huge search
space to ensure that a good model with high performance can be discov-
ered in a reasonable time. To this cause, at each evolutionary step, architec-
tures of some of the models in the population are modified through one
of the evolutionary operators, i.e. the recombination or mutation operator.
While mutation does small changes to one layer at a time, recombination
exchanges some layers in one model to another to create significantly differ-
ent models. The mutation operator explores the search space closer to the
existing population, and in contrast, the recombination operator explores a
wider design space by generating diverse architectures. Next chapter, Chap-
ter 4 provides more details about how these two evolutionary operators are
designed to maintain diversity in the population during the search process.
The number of evolutionary operators executed in each iteration is con-
trolled through a pre-defined mutation rate (Pm) and recombination rate
(Pr).

Algorithm 1: Mutate
Inputs : Tparent, ⇢m

1 Lm  randomLayer(Tparent)
2 Lm  ChangeParameterOf(Lm, ⇢m)
3 Tchild  Merge(Tparent,Lm)
4 return Tchild
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Mutation operates on a CNN and randomly selects one layer to change
one of its hyper-parameters, such as the number of kernel units in the layer
or the kernel size. We employ the Net2Wider operator from [65] to broaden
the layer by increasing the number of kernel units. On the other hand, to
shrink the layer, we use a pruning process [66] to reduce the number of
units, by removing the least significant kernels in terms of their activation
weights. Kernels are radially zero-padded or cropped from the outer edge,
when their size changes because of mutation. The mutate operator is de-
scribed in Algorithm 1, which accepts a topology Tparent as an input and
returns the mutated topology Tchild.

Furthermore, the mutation operator is devised to be function-preserving
[65] in nature to make sure that mutation does not disrupt the ongoing
training of the neural networks. Any change to the architecture will invari-
ably cause an additional loss in the training process. The functions in mu-
tation operator were particularly chosen since these are either totally, or at
the minimum, partially function-preserving, implying that the loss drawn
from these operators is as minimum as possible and recovers quickly dur-
ing later piecemeal-training iterations.

In direct contrast to mutation, the recombination operates on two neural
networks and swaps all their layers in a cluster. The swap is carried out for
only one randomly selected cluster position. Figure 3.2 shows an example
of the recombination operator, which swaps different numbers of layers
from the clusters C2 in two different neural networks. Since all models
have exactly the same number of clusters, it follows that the layers that
are exchanged are approximately in the same stage of neural computation,
and hence the new models need minimum repair to the architecture to
remain valid. Algorithm 2 shows the steps for the recombination operator,
which accepts two parent topologies and returns children topologies after
the recombination operator has been applied.

It is important to note that the recombination is not a function preserv-
ing operator. However, they are required in the algorithm to introduce and
maintain diversity [67] by introducing significantly varied models into the

Algorithm 2: Recombination
Inputs : Tparent1, Tparent2

1 k randomClusterPosition(Tparent1.Numcluster)
2 Tchild1, Tchild2  SwapClusterAt(k, Tparent1, Tparent2)
3 return Tchild1, Tchild2
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Figure 3.2: Recombination operator applied to two neural networks, where the
cluster C2 gets swapped. The cluster has a different number of layers
in each model.

population. This is achievable due to the fact that the total number of layers
being swapped is not the same. To diminish the adverse effect of loss in-
curred by the recombination operator, a cooling-down approach is applied
to the recombination rate. During the early iterations, when the training
loss has not yet started to converge and is at a high value, more swaps are
allowed as compared to later iterations, when the training loss is low.

Together, these evolutionary operators are responsible for traversing the
large design space of neural network architectures in an efficient manner.
Additionally, these operators are responsible for making sure that the clus-
ter constraints are always adhered to. The mutation operator never allows
a layer to expand or narrow beyond the cluster defined boundaries, and it
also ensures that other layer hyper-parameters conform to the cluster spec-
ifications as well. The recombination operator swaps clusters which are
already within their bounds, thus maintaining the constraints.

3.3.3 Selection and Replacement

One of the most important features of the population based evolutionary
approach is that every subsequent population attempts to be better than
the one in the previous iteration. This is achieved through selection and
replacement policies geared towards retaining the better performing can-
didates at every step. A remove-worst strategy is employed to select the
next generation of the population. However, the rejection rate is kept rela-
tively low, around 2-5% of the total population. To keep the population size
constant, individuals are selected and put back in the population using a
non-elitist random selection policy. This means that every neural network
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Figure 3.3: Workflow for the Evolutionary Piecemeal Training.

in the population has an equal chance of being selected to replace the worst
performing model.

3.3.4 Workflow and Algorithm

We assemble all the concepts described and consolidate them to present a
brief overview of the workflow (Figure 3.3), together with the complete al-
gorithm (Algorithm 3). The algorithm begins with the initial set up of the
configuration parameters for both training and evolutionary operators. The
evolutionary inputs are, Ng: the number of iterations, Np: the population
size, Pr: Recombination rate, Pm: Mutation rate and ↵: the selection policy
for each iteration. Additionally, the training parameters ⌧params including
optimizer choice, learning rate, batch size etc., and � to determine the size
of the subset of data to be used for piecemeal training are provided. All
the evolutionary and training parameters are empirically selected after con-
ducting a small number of initial experiments, in order to fine-tune the algo-
rithm. The selection of evolutionary parameters is mainly guided by avail-
able computing resources, along with the complexity of the task. Whereas
the training parameters are determined through a small grid search by train-
ing a few architectures from the population prior to commencement of the
whole algorithm. These parameters stay constant throughout the algorithm,
unless specifically stated.

A genotype represents the search space, and contains all the information
about clusters and their respective constraints. The population is generated
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using this genotype. The function InitializePopulation() creates the pop-
ulation }o, of Np neural networks, and their initialization can be random
or through training for a few epochs.

Algorithm 3: Evolutionary Piecemeal Training
Evolutionary Inputs : Ng, Np, Pr, Pm, ↵
Training Inputs : ⌧params, �

1 }o  InitializePopulation(Np)
2 for i 0 .... Ng do

3 }i  PiecemealTrain(}i, ⌧params, �)
4 Ev  EvaluateAccuracy(}i)
5 }best  BestSelection(↵,}i,Ev)
6 }r  random((1-↵) ⇤ }i)
7 update }i  }best + }r

8 }rc  RecombinePopulation(}i,Pr)
9 }mu  MutatePopulation(}i,Pm)
10 }remaining  UnchangedPopulation(}i)
11 update }i  }mu + }rc + }remaining

12 end

13 Ev  EvaluateAccuracy(}
Ng

)

14 return BestCandidates(Ev)

Once the start set-up is complete, the iterative core of the algorithm is
initiated and this iterative algorithm runs for Ng generations. The popula-
tion at every i

th iteration is called }i. First, the function PiecemealTrain()
trains all individuals in the population }i, with the random subset of the
data. Next, EvaluateAccuracy() evaluates the accuracy of every model in
the population. Based on the accuracy values, BestSelection() selects the ↵

best individuals found so far (}best), from the whole population. To keep
rejection rate low, ↵ is chosen to be a high ratio of > 0.95 ⇤Np, which is im-
portant to keep the focus on removing the poor performing architectures
gradually from the population. This approach discourages the promotion
of a model that is able to learn fast but is unable to finally reach a high
accuracy. Afterwards, to keep the population size constant, 1 - ↵ neural
networks (}r), are randomly selected from survivors. The population }i is
updated by replacing the population with }best and }r. Random selection
makes sure that subsequent generations do not get crowded with only one
parent architecture, which got higher accuracy by chance due to the stochas-
tic nature of training. The evolutionary operators, RecombinePopulation()
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and MutatePopulation() select individuals (}rc and }mu), with probabil-
ity of Pm and Pr respectively, from the population to alter some of the neu-
ral network architectures. The actual alteration in performed through Algo-
rithm 1 and Algorithm 2. The population is then updated with modified
neural networks from }rc and }mu, while the part of the population not
undergoing any modification (}remaining) remains unchanged for the next
iteration of the algorithm.

After the iterations conclude, the algorithm evaluates all the remaining
models in the final population and returns the best neural networks deter-
mined. These best models are post-processed and modified, if needed, and
further trained to achieve final CNN configurations. Other hyper-parameter
optimization techniques [68] can be utilized to find the optimal training pa-
rameters, in order to train the CNNs at this stage.

3.4 experiments

In this section, we present the experimental setup, in addition to the al-
gorithm’s evaluations, using the datasets: CIFAR-10 and PAMAP2. We de-
scribe the search spaces for both the datasets, with the constraints and the
results achieved. We have utilized the Java based Jenetics library [69] for
evolution based operators and computation, while the Python based Caffe2
[33] library was used for the training and accuracy evaluation. The neural
networks were represented in the ONNX [32] format, which combines ar-
chitecture and weights in one file, and facilitates the storage and transfer of
the CNNs across different modules. All our experiments were performed
on a single GeForce RTX 2080Ti GPU.

3.4.1 Search Space

We outline the search space specifications for CIFAR-10 and PAMAP2 in
Table 3.1 and Table 3.2 respectively. In the CIFAR-10 experiments, the num-
ber of kernel units per layer were multiples of 16, which brings the total
number of models in the search space to the order of 108. For PAMAP2, the
number of kernels per layer are multiples of 8 and the total design points
are to the order of 105.
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Table 3.1: CIFAR-10 Architecture Search Space

Cluster Type Layers Units/Layer Kernel-size Stride

�
min

�
max

⌘
low

⌘
up

K
min

K
max St

C1:Convolution 2 5 48 96 3x3 7x7 1
C2:MaxPool 1 1 1 1 2x2 2x2 2
C3:Convolution 2 7 80 320 3x3 7x7 1
C4:MaxPool 1 1 1 1 2x2 2x2 2
C5:Convolution 2 7 256 640 3x3 7x7 1
C6:MaxPool 1 1 1 1 2x2 2x2 2
C7:FullyConnected 2 3 128 1024 - - -

Table 3.2: PAMAP2 Architecture Search Space

Cluster Type Layers Units/Layer Kernel-size Stride

�
min

�
max

⌘
low

⌘
up

K
min

K
max St

C1:Convolution 2 4 64 128 3x1 7x1 1
C2:MaxPool 1 1 1 1 2x1 2x1 2
C3:Convolution 2 5 96 256 3x1 7x1 1
C4:GlobalMaxPool 1 1 1 1 2x1 2x1 2
C5:FullyConnected 1 3 128 512 - - -

3.4.2 Training Setup

The CIFAR-10 dataset was trained for 80 generations, while the population
size was kept at 80. The data size, �, was set to 4,000 images (⇡ 8% of
training data) to be used by the piecemeal-training. Every convolution and
fully connected layer was appended by ReLu activations. Training was per-
formed with the Adam optimizer [70], while the batch size was set at 80.
Initial learning rate was set to 5e

-4, with a step learning rate decay policy
where the learning rate was reduced by 1e

-4 at the interval of 20 iterations.
The evolutionary selection probabilities Pm and Pr were both set to 0.3 at
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the beginning. Pm stayed constant, whereas Pr was reduced to reach 0.01
at the last iteration.

For the second dataset, PAMAP2, training was done during 30 genera-
tions with a population size of 50. The data size, �, for piecemeal-training
was set to 20,000 samples (⇡ 10% of training data). ReLu activations follow
every convolution and fully connected layer. The training was performed
with the Adam optimizer, the batch size of 100, and a learning rate of 1e-4.
Evolutionary selection probabilities Pm and Pr were both initialized as 0.3.
Similar to the CIFAR-10 experiment, Pm was kept constant, whereas Pr was
reduced to 0.01 towards the end.

The CIFAR-10 models are substantially more memory consuming than
the PAMAP2 models, which limits the amount of parallelism for training on
a single GPU with 11 GB memory. For CIFAR-10, 4 parallel training threads
could execute, while 7 simultaneous threads for PAMAP2 could run. The
limit on the level of parallel executions was governed by the GPU memory
available. Additionally, no Batch Normalization was used in order to fasten
up the search, since it consumes more memory and therefore reduces the
parallelism. Once the search finished, the best model found was altered, to
have a batch normalization layer following every convolutional layer and
was trained for 100 epochs more.

3.4.3 Results

The training curves for experiments on PAMAP2 and CIFAR-10 are de-
picted in Figure 3.4, where accuracy maximization is the only objective
in consideration. These graphs depict the accuracy of the piecemeal train-
ing process, and do not include the post-processing and final training of
the best found architectures. As the iterations continue, it can be observed
that the average accuracy of the whole population generally increases, de-
spite architecture modifications interrupting the training. The best accuracy
of any individual in the population is similarly increasing gradually with
each iteration. The best model in one iteration may be different from the
best one in the next iteration. The best model(s) discovered at completion
was trained further for more epochs to achieve the accuracy that is reported
in Table 3.3 and Table 3.4.

The first experiment using the CIFAR-10 dataset consumed 2-GPU days
and reached the best prediction accuracy of 92.5% on the test set. Table 3.3
compares our results with other evolutionary based NAS approaches. We
understand that when we compare the accuracy of 92.5% to other pub-
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Figure 3.4: Training curves. Average accuracy refers to the average performance of
the whole population at the given search iteration. Best accuracy refers
to best performance of any individual model in the population.

lished works, it ranks slightly lower than the other efforts, however, the key
difference is that the architecture space is defined for plain CNNs. There
is a marked omission of architectural enhancements such as residual con-
nections and cells in our architecture search space. In addition, advanced
data augmentation like mixup [71] or cutout [72] were not deployed either.
Other approaches commonly use a hybrid search space, which may include
different cell modules or architecture blocks along with arbitrary residual
connections.

Despite the lower accuracy, we emphasize the shorter convergence time,
of only 2 GPU-days, when compared with other evolutionary NAS method-
ologies. As summarized in Figure 3.5 (a), the best CNN found by the search
algorithm had 13 convolutional layers with addition of 2 fully connected
layers.

The PAMAP2 dataset is an unbalanced dataset, i.e. some of the classes
are over-represented in the data set. We compute both F1-scores as well as
accuracy, in order to compare the result with other published works.

Our algorithm was able to achieve impressive results on the PAMAP2
dataset. The search took 10 GPU-hours, while the best neural network dis-
covered after complete training was able to reach a prediction accuracy of
94.36%. Table 3.3 compares our algorithm’s results against other published
works. In direct comparison, the grid search [28] on neural networks for
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Table 3.3: CIFAR-10 Accuracy Comparisons with Evolutionary Approaches

Model Search Space GPU-days Accuracy(%)

CoDeepNeat [41] hybrid - 92.7
GeneticCNN [54] hybrid 17 92.9
EANN-Net [53] hybrid - 92.95
AmoebaNet [42] cell 3150 96.6
NSGANet [55] hybrid 8 96.15
Evolution [51] hybrid 1000+ 94.6
EPT (ours) plain CNN 2 92.5

Table 3.4: PAMAP2 Accuracy Comparisons

Model Accuracy(%) F1w(%) F1m(%)

Hand Designed [73] 93.13 93.21 -
Grid Search (CNN) [28] - - 93.7
D

2
C [27] - - 92.71

D
2
CL [27] - - 93.2

EPT (ours) 94.36 94.17 94.36

PAMAP2 was able to reach their best at 93.7% and another hand-crafted
model [73] achieved 93.21%. These results clearly demonstrate that our
methodology is more effective than the naive algorithms that involve simple
approaches such as random search or grid search. The best neural network
found had 7 convolutional layers and 3 fully connected layers as shown in
Figure 3.5 (b).

3.5 summary

In this chapter, a novel approach called Evolutionary Piecemeal Training
was presented, which traverses the search space of plain CNNs to find
an efficient architecture from a constrained search space for a given task.
The algorithm was validated on two different datasets, demonstrating the
versatility of our method. We showed that for moderate complexity tasks
such as the PAMAP2 dataset, our approach is better and more efficient
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(a) CIFAR-10 Model
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(b) PAMAP2 Model

Figure 3.5: Best neural networks found for (a) CIFAR-10 dataset and (b) PAMAP2
dataset. Every Convolutional layer is followed by a Batch Normaliza-
tion and a ReLu activation layer.

than random or grid search methodologies. The next chapter focuses on
describing the intricate characteristics of the methodology and how this
algorithm is treated as a dynamic optimization problem.
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E V O L U T I O N A RY P I E C E M E A L

T R A I N I N G A S D Y N A M I C
O P T I M I Z AT I O N

As explained in the previous chapter, the search for a suitable neural architecture
is treated as an optimization problem. This chapter further analyses the dynamic
nature of the optimization in the EPT algorithm. This chapter defines a Gradually
Saturating Objective Function (GSOF) in a dynamic optimization, its pertinence
to the EPT methodology and the challenges hence faced. An adaptive population-
diversity based approach is proposed, and its efficiency validated, to solve GSOF
and improve the standard evolutionary algorithm. It is important to note that this
chapter does not present an improved EPT algorithm, rather it discusses the chal-
lenges faced and solutions proposed during the design of EPT algorithm.

This Chapter is based on:

• D. Sapra and A. D. Pimentel "An evolutionary optimization algorithm for grad-
ually saturating objective functions" [67], in Proceedings of the Genetic and Evo-
lutionary Computation Conference, © ACM.

4.1 introduction

In traditional optimization problems, all environment variables and con-
straints are previously known and remain static throughout the optimiza-
tion task. In real life optimization problems, however, an environment may
change due to several factors, such as fault occurrence, slow degradation,
planned updates and modifications over a long period of time [74, 75].

49
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These are called dynamic optimization problems (DOPs) wherein objec-
tive functions, constraints or the number of parameters change over time
[76]. For static optimization problems the optimization model is predeter-
mined and designed for a specific non-moving objective. If an environ-
ment changes infrequently after long time frames, the dynamic optimiza-
tion problem can be treated as a sequence of static optimization tasks. How-
ever, in continuously changing dynamic optimizations, the model might re-
quire continuous adaptations along with the changing parameters and/or
moving optimum.

Evolutionary Dynamic Optimization (EDO) [77] in literature is focused
on recurrent or abrupt changes in the environment. There are various method-
ologies to detect sudden changes in the landscape [78, 79], memory based
approaches to handle recurring behavior (e.g. [80, 81]), and prediction strate-
gies to predict the moving optimum or the population suitable in the new
environment [82–84].

In a gradually changing environment, these techniques are too compli-
cated and somewhat of an overkill. Approaches based on maintaining di-
versity are more suitable in such scenarios. High diversity in the population
restricts the convergence of the optimization algorithm to a small search
space, consequently preventing it from getting stuck in a local optimum.
This allows the algorithm to monitor diverse parts of the search space so
the optimization can be efficient while the environment changes slightly
with each iteration.

Our focus in the EPT algorithm is on a dynamic environment with gradu-
ally changing objective functions which have a tendency to saturate, hence
turning the dynamic optimization into pseudo-static optimization after sat-
uration. As explained in previous chapter, the objective of the search is
to find a neural network topology that is efficient with high accuracy. A
population of neural networks is trained in parallel on a dataset and their
architecture is modified during the training using genetic operators. Fig-
ure 4.1 illustrates an example of a neural network performance during the
training process, also referred to as training curves. The training curve rep-
resents the iterative performance of a neural network during the training
and closely resembles an increasing saturating function such as functions
from the power law or the sigmoidal family [85].

As is evident from Figure 4.1, the prediction accuracy during the training
process is a continuous and slow moving target. The maximum achievable
accuracy increases with each training epoch and eventually starts to satu-
rate when the training is nearly complete. The high diversity in the popu-
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Figure 4.1: Example of training curves. Train and test accuracy are evaluated on
the train and test data set respectively.

lation in saturated stages is not desired, since it might counteract the need
for the algorithm to converge to good points now that the optimization
problem is pseudo-static.

For Gradually Saturating Objective Functions (GSOF) in an evolution-
ary algorithm, we propose an adaptive diversity control approach to solve
this dynamic optimization problem. We define two levels of diverseness
within the population and modify the algorithm with disruptive recombi-
nations and non-disruptive mutations while keeping the diverseness levels
in mind. By introducing controlled diversity into the population through
these genetic operators we are able to guide the optimization to achieve
better results as proved by the experimental results.

4.2 related work

Dynamic optimization problems (DOPs) are characterized by a variety of
mechanisms that can cause a change in the problem environment during
the optimization process. Some of the attributes that outline a dynamic be-
havior are frequency, severity and predictability of the change. In evolution-
ary solutions for DOPs, these environmental changes are handled in vari-
ous ways such as memory based approaches, multi-population based tech-
niques, prediction based methods and diversity based approaches. Some
hybrid approaches such as memetic algorithms [86], which combine differ-



52 evolutionary piecemeal training as dynamic optimization

ent aspects of these approaches, have also been proposed over the years.
An appropriate approach is chosen depending on the type of dynamism
present in the optimization problem’s environment.

For periodical changes, memory based approaches are suitable where
some candidates from the population are stored for later use. It reduces
the computation complexity by making good candidates readily available
in recurring situations. Memory can be implicitly encoded in genotype [80]
or explicitly stored externally [81, 87]. For sudden and irregular changes,
the main concern is to detect when the change occurs and to adapt the
population to be suitable for the new optimum as quickly as possible. A
change can be indicated by population statistics [88] or external sensors
[89].

Multi-population approaches divide the population into multiple sub-
populations, and each one tracks the optimum in different promising search
areas [90–93]. Sub-populations are generally independent of one another
and each one might employ its own search technique or track different op-
timum in multi-objective optimization problems. Sub-populations usually
remain disparate throughout the process, but some algorithms combine
them after some iterations to combine the search space explored individu-
ally by each sub-population [94].

For gradually changing targets, which is the focus of this chapter, the
techniques for maintaining diversity are more relevant. Diverse individuals
keep the search space broad and prevents the algorithm from prematurely
converging. This allows a wider exploration and lets the algorithm move its
focus in the search area with the moving optimum. The benefits of diversity
in evolutionary algorithms has been surveyed and analyzed in [95]. A clas-
sification of diversity maintaining, controlling and learning mechanisms is
discussed extensively in [96].

Hyper-mutation [97] and random immigrants [98] are two well-known
techniques and are widely used for introducing diversity in the evolution-
ary algorithms. Hyper-mutation increases mutation rate for a period of time
when a change is detected and random immigrants introduces randomly
generated individuals into the population with each generation. Variable lo-
cal search [99] is similar to hyper-mutation, it increases mutation strength
upon detecting a change, instead of changing the mutation rate. Fitness
sharing [100] penalizes similar individuals to encourage diversity in the
population. In dynamic problems where high diversity is critical, the prob-
lem is converted to a multi-objective optimization problem with diversity
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Figure 4.2: Plain CNN architecture where similar consecutive layers are grouped
into clusters. Conv is convolutional, MaxP is max-pool and FC is fully-
connected layer respectively.

as an extra objective to be maintained throughout the optimization process
[101].

Our approach is closer to hyper-mutation and variable local search ap-
proaches, where a disruptive genetic operator is used to introduce diversity
in the population. However, that is where the similarity ends. There is lit-
tle need to detect the changes in gradually moving functions, moreover
high population diversity is not a requisite near the saturation points. Our
work differs from most diversity maintenance techniques in the way diver-
sity level is explicitly guided in an adaptive manner based on the rate of
change of the moving optimum.

4.3 problem definition

In this section, the Evolutionary Piecemeal Training algorithm is formally
defined as an optimization problem. We train a population of neural net-
works, and the objective is to find a good topology, such that the accuracy
of the neural network is maximal for the given dataset, upon completion of
the training.

4.3.1 Neural Network

Formally, a neural network fnn, as presented in previous chapters, consists
of its architecture T and weights ! 2 R.

fnn = {T ,!} (1)

Here, T is a sequence of layers, which can further be grouped into clusters
of consecutively similar layers. Figure 4.2 illustrates the concept of cluster
formation for a simple CNN. All subsequent layers that are of the same type
are grouped in the same cluster, for instance, the first two convolutional
layers are in the cluster C1 and cluster C5 contains only fully-connected
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layers. A general cluster based architecture T with l clusters, and with I

and O as input and output layers respectively, can now be defined as:

T = {I,C1,C2...Cl,O}, (2)

A cluster Ck of type C
type

k
consisting of n layers can be represented by:

Ck = {Lk1,Lk2...Lkn} : �
min

k 6 n 6 �
max

k

where, Lki = {L|L 2 [Ctype

k
, ⌘ki, pki]} : ⌘
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k
) are the bounds on the number of layers possible in

the cluster, and the number of neurons in a layer are bounded by (⌘low
k

,⌘up

k
).

Moreover, the hyper-parameters that are dependant on the layer type, pki,
such as kernel size and stride, are defined by ⇡k in the cluster. These con-
straints are specific to each cluster and are independent from bounds of
the other clusters. Every layer in a cluster is of the same type (e.g., convo-
lution, pooling, fully connected), and its hyper-parameters conform to the
constraints placed by its parent cluster.

4.3.2 Population based training

While a neural network is being trained, its weights are constantly changing,
and in that sense both the weights and the neural network may be consid-
ered as functions of time (i.e., iterations): ! (t) and fnn (t). fnn (0) is then
the initial neural network at the beginning of its training with randomly
initialized weights ! (0). The architecture of this neural network remains
unchanged during the training. Hence,

fnn (t) = {T ,! (t)} (4)

A neural network fnn 2 gNN, where gNN is the set of all possible neural
networks with an architecture T 2 eT , where eT is the set of all architectures
defined in the search space along with its constraints. The population of
neural networks may also be seen as a function of time. The population
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eP (t) of CNNs at any given time can then be defined as a set of neural
networks at that point,

eP (t) = {gnn1(t), gnn2(t), gnn3(t).....gnns(t)} : s 2N+ (5)

The population size, s, is constant throughout the duration of the algo-
rithm. If a neural network is dropped from the population because it is not
performing as well as the other models, then it has to be replaced by an-
other neural network. Moreover, the population size is required to be large
enough so that enough diversity is maintained among the CNN models in
the population.

The algorithm runs for ⌧max iterations, the value of which is dependent
on the nature and complexity of the task. ⌧max can be defined at the be-
ginning of the search or can be updated during the iterations based on the
rate of change of the evaluation metric, such as prediction accuracy. We use
validation accuracy on test data, Acc(fnn), as the main performance metric
of a neural network, which is dependent on topology as well as its training
time or the number of iterations of the evolutionary algorithm. Accuracy
during training is then defined as:

8 1 6 t 6 ⌧max, Acc( fnn (t)) = Acc( fnn (t- 1)) +
@(Acc(fnn))

@t
(6)

In GSOF, @(Acc(gnn))
@t

is small and in the saturation phase it is almost zero.
Additionally, at any time t, the population is defined as,

8 1 6 t 6 ⌧max, eP (t) = fept(eP (t- 1)) (7)

The function fept() is applied to the population during every iteration.
In absence of the evolutionary architecture modifications, fept() consists of
only the training function ftrain(), which trains a CNN with a small subset
of training data (i.e., a piece-meal training step). It is possible to train all
neural networks in an iteration, in any order of sequential and parallel
executions, to best utilize the computational resources available.

4.3.3 Selection and Replacement

To summarize, if fevo() represents the evolutionary operator (both muta-
tion and recombination) function and fselect() represents the population
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selection function then, fept() from Equation (7), for population eP (t) at
any iteration t, can be defined as

fept(eP (t)) = ftrain � fselect � fevo(eP (t)) (8)

The function fept(), as composition of the other mentioned functions,
defines the transition function of the population from one iteration to the
next. ftrain() trains every CNN in the population, fselect() evaluates the
population and selects (or rejects) suitable candidates, some of which then
go through evolutionary operators in fevo().

As the iterations continue, the population keeps gradually changing, due
to architecture alterations, along with appropriate selection and replace-
ment of models.

4.3.4 Optimization Objective

The main objective of our algorithm is to find a neural network with max-
imum accuracy possible. As Acc( fnn( T ,!(t)) represents the accuracy of a
neural network fnn. Given eT as the set of all possible architectures and gNN

as the set of all possible neural networks, the objective is to find neural
network fnn 0 (fnn 0 2 gNN) with architecture (T 0 2 eT ), such that

maxgnn
0 2 gNN

Acc( fnn 0( T 0,!(t)) (9)

The optimization objective helps to formulate the fselect() function to
which the whole population is subject to after every iteration. To maximise
accuracy, fselect() chooses the best performing CNNs, able to reach higher
accuracy in the population.

4.4 population diversity for dynamic optimization

To reduce computational complexity, we have a fixed sized genotype repre-
sentation of the topology by fixing the number of clusters for every topol-
ogy. For different problems with each a different dataset, the number of
clusters and constrains in a cluster may vary. Even though the number of
clusters is fixed, each cluster can have a variable number of layers, result-
ing in a different total number of layers in every randomly created topology.
In a population based evolutionary methodology, there are many diversity
maintenance techniques as discussed in Section 4.2.
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In this work, diversity refers to the distance between individual neural
network topologies. We do not measure the distance between individuals
explicitly, instead we define two coarse-grained levels of diverseness. That
is, two individuals are dissimilar if the total number of layers or layer types
are different from each other. Two individuals are similar to each other when
the total number of combined layers as well as type of each layer is same for
both. Individual layer parameters (⇡l) may be different for every layer. The
layer parameters play a big role in making a neural network more efficient
than others even when having exactly the same layer types. Two individu-
als with similar diversity level does not imply they have similar prediction
accuracy. We explore these layer parameters during the algorithm through
the mutation operator, but mutation does not influence the diversity as the
number of layers remains unchanged.

4.4.1 Genetic Operators

By defining two levels of diverseness, we can differentiate the behavior of
mutation and recombination operators w.r.t. the diversity level it introduces
in the population. We implement a disruptive genetic recombination oper-
ator to introduce more diversity by creating children with a different num-
ber of total layers, whereas mutations operate on a layer’s parameters only,
therefore not contributing to a change in diversity levels of the population.
Both operators are described below.

Mutation

Our mutate operator randomly selects a layer from the neural network
topology and changes only one the layer parameters (⇡l) by a small value.
Change in the number of neurons of selected layer is constrained by ⇢m%.
The number of layers in the offspring remains the same creating a similar
individual in terms of diversity. The mutate operations are designed to be
function preserving taken from [65, 66], which means that the disturbance
on the training process and on the current performance of the child topol-
ogy is minimal. As the training continues, coefficients values of the child
topology change and these little changes may contribute to a better per-
forming topology towards the convergence of the optimization algorithm.

Recombination

The recombination operates on two individuals, randomly selects a clus-
ter position and swaps the whole cluster between both the topologies. Fig-
ure 4.3 exemplifies a swap operator with a topology having four clusters.
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Figure 4.3: Recombination operator applied to two neural networks, where the
cluster C2 gets swapped. The cluster has a different number of layers
in each model.

The reason for this being a disruptive operator comes from the fact that
even though the layers being swapped are roughly at the same position in
the layer chain, the number of layers present in each cluster are different.
One cluster of two convolutional layers might get swapped with another
cluster containing five convolutional layers, thus creating diverse dissimilar
offsprings. The clusters at those same positions are designed to keep the
same input-output feature map sizes, so the recombination does not result
in a corrupt neural network. There is some disturbance caused to the train-
ing process by the recombination operator, but as training continues, the
loss incurred is observed to have recovered in after a few iterations.

4.4.2 Adaptive diversity

The desired level of population diversity for the optimization varies de-
pending on the rate of change in the GSOF at any given time. High di-
versity is advantageous when the rate of change of the objective function
is high and vice versa. In the proposed methodology, we adaptively influ-
ence the diversity via recombination probability modification throughout
the iterative process. Recombination probability is an individual’s selection
probability to undergo a recombination operation. When the shape of the
objective function is known apriori, it is possible to setup an offline adap-
tive control function with expected rate of change to guide it. In absence
of this prior knowledge, the average rate of change of the objective func-
tion over a short interval gives a good indication of diversity needed at any
given time point. We call this an online adaptive diversity control function.
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Offline Adaptive

For an offline adaptive recombination probability function, we select an
exponential decay function which loosely represents the inverted accuracy
function during training. Where ↵ is the decay factor, recombination prob-
ability, Pr as a function of time is defined as:

Pr(t) = Pr(0) ⇤↵t, : 0 < ↵ < 1 (10)

Online Adaptive

For the online adaptive recombination probability function, the change in
objective function is monitored and recombination probability is modified
based on its current rate of change. This generic function can be applied
to any GSOF based optimization. With � as the scale factor, recombination
probability is modified by the following:

Pr(t) = Pr(0) ⇤ � ⇤
@(Acc(fnn))

@t
(11)

4.4.3 Algorithm

The EPT algorithm (Algorithm 3) is thereby slightly modified, with addi-
tion of the function updateCrossoverProbability() to manage the popu-
lation diversity. This function is called during each iteration to modify the
recombination probability rate depending on the chosen approach, i.e. ac-
cording to one of the equation: Equation (10) or Equation (11). The updated
algorithm is presented in Algorithm 4.

4.5 experimental study

In this section, we evaluate the diversity based techniques for EPT algo-
rithm using the PAMAP2 [24] dataset for human activity recognition and
outline the setup of our experiments. As in the the previous chapter, the
Java based Jenetics library [69] is used for evolutionary computation and
the Python based Caffe2 [33] library for training and testing. The ONNX
[32] format is utilized to represent and transfer the neural networks across
different modules. These experiments are executed on one GPU (GeForce
RTX 2080) to train the neural networks, however the algorithm is scalable
and is able to use multiple GPUs in parallel during each iteration.
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Algorithm 4: Evolutionary Piecemeal Training
Evolutionary Inputs : Ng, Np, Pr, Pm, ↵
Training Inputs : ⌧params, �

1 }o  InitializePopulation(Np)
2 for i 0 .... Ng do

3 }i  PiecemealTrain(}i, ⌧params, �)
4 Ev  EvaluateAccuracy(}i)
5 }best  BestSelection(↵,}i,Ev)
6 }r  random((1-↵) ⇤ }i)
7 update }i  }best + }r

8 P
0
r  updateRecombinationProbability(Pr, i,Ev)

9 }rc  RecombinePopulation(}i,P 0
r)

10 }mu  MutatePopulation(}i,Pm)
11 }remaining  UnchangedPopulation(}i)
12 update }i  }mu + }rc + }remaining

13 end

14 Ev  EvaluateAccuracy(}
Ng

)

15 return BestCandidates(Ev)

4.5.1 Setup

The topology structure for PAMAP2 is the same as the search space as de-
scribed in previous chapter. Table 3.2 (in Chapter 3) indicates each cluster’s
details and various constraints. Every layer is followed by a ReLu activation
layer and number of neurons are modified in steps of 8 during the mutation
operation.

The parameters of the algorithm for all variants were kept the same and
are summarized in Table 4.1. These parameters were determined during
preliminary experiments. Training of all neural networks was done using
the Adam optimizer [70], with a learning rate of 1e-4 and batch size 50.

4.5.2 Results

Figure 4.4 illustrates how the population of neural networks is evolving
while training during one run each of offline adaptive, online adaptive
and standard evolutionary algorithms. Each algorithm takes approximately
10 hours to complete with the majority of time spent in training a neural
network. The population size is fixed during the genetic iterations, so the
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Figure 4.4: Accuracy values for all of the neural networks evolving during an ex-
periment each for offline adaptive, online adaptive and standard evolu-
tionary algorithms.

total number of training operations are the same for all the algorithms.
We consider the standard evolutionary algorithm to have static mutation
and recombination probabilities. Experimental results of average accuracy
and best accuracy after completion of the optimization algorithm are pre-
sented in Table 4.2. All presented numbers are averages of 10 independent
runs. Figure 4.6 shows the performance of offline adaptive, online adaptive
and the standard evolutionary algorithm with best and average accuracy
found during each iteration. The information regarding standard deviation
is omitted from the average accuracy graph, in order to have a graph which
is easy to read.

Table 4.1: Algorithm parameter values in experiments

Parameter Value

Mutation change rate ⇢m 0.12
Mutation selection probability Pm 0.3
Initial Recombination selection probability Pr(0) 0.4
Adaptive offline decay factor ↵ 0.95
Adaptive online scale factor � 60
Population size Np 50
No of iterations Ng 50
Population replacement rate ⌦ 0.03
Training interval size �k 20,000
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Figure 4.5: Recombination probability during iterations of the online adaptive evo-
lutionary algorithm.

It is clear from the results that both of the adaptive diversity control
evolutionary algorithms outperform the standard evolutionary algorithm.
Among the adaptive varieties, the offline version performs slightly better
than the online version. It is to be expected as the rate of change of accu-
racy function can have small blips because of the stochastic nature of the
training process, which leads to lower or higher recombination probabili-
ties for short intervals. Figure 4.5 shows that the graph of recombination
probability with respect to the algorithm iterations is not as smooth as the
exponential decay function of the offline adaptive algorithm. However, the
trend is similar and we see decreasing values of recombination probability
over the iterations.

We see better results in the offline adaptive version, where the recombi-
nation probability curve is smooth and diversity is tightly controlled over

Table 4.2: Experimental results of the mean average accuracy and best accuracy in
the final iteration

Algorithm Average Best

Accuracy Accuracy

Offline adaptive 0.739 (±0.012) 0.859 (±0.010)
Online adaptive 0.718 (±0.009) 0.842 (±0.016)
Standard 0.688 (±0.015) 0.809 (±0.012)
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(a) Average accuracy of population

(b) Best Accuracy

Figure 4.6: Training curves. Average accuracy refers to the average performance
of whole population at the given optimization iteration. Best accuracy
refers to best found performance of an individual model in the popula-
tion.
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iterations. Results illustrate that whenever the GSOF is known, it is prefer-
able to design the diversity control function based on this knowledge. How-
ever, an evolutionary algorithm with an online adaptive diversity function
still performs better than the standard evolutionary algorithm with fixed
recombination probability suggesting that in the saturation phase, having
less diversity is better to explore the local search space.

The best neural networks found through these algorithms can be further
processed, modified or trained as needed outside this algorithm. It is im-
portant to note that the results presented in previous chapter were based on
the offline adaptive version of the EPT algorithm. The best ones found for
both PAMAP2 and CIFAR-10 were modified to add Batch Normalization
layers after every convolutional layer and trained further to achieve higher
accuracy (See Table 3.3 and Table 3.4). The work presented in this chapter is
not an improvement on the EPT algorithm. It is rather a discussion on the
challenges faced during the design of the original algorithm and put forth
the solutions that worked in making the algorithm achieve efficient neural
architectures.

4.6 summary

This chapter provided insights into characteristics of the EPT algorithm,
including the challenges faced due to the dynamic nature of the objective
function. We explored an adaptive diversity control based methodology for
evolutionary dynamic optimization of GSOFs. By defining coarse grained
diversity levels and designing genetic operators specific to each level, we
could influence and control the population diversity meaningfully. The di-
versity control approach for EPT was validated by performing experiments
on the PAMAP2 dataset. In the next chapter, this algorithm is extended to
include multiple objectives for the search, specifically keeping edge devices
and their resource limitations at the forefront.
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M U LT I - O B J E C T I V E

E V O L U T I O N A RY P I E C E M E A L
T R A I N I N G

As claimed in the previous chapters, the EPT algorithm can be further extended
to include multiple objectives as well as incorporate a search space with complex
neural architectures. To prove the efficacy of the extension to the original method-
ology, we first consider the reduction of the number of parameters of the neural
network as an additional search goal, for the PAMAP2 dataset. In the second set
of experiments, the algorithm is extended to include hardware specific objectives,
namely the throughput, the memory and the energy consumption on a target hard-
ware. Additionally, the design space is augmented with the possibility to include
skip connections, allowing the architecture search for ResNet style CNNs. The algo-
rithm converges with a Pareto Front, which is a set of CNNs with pareto optimality
w.r.t. all the given objectives. In a pareto optimal set, none of the objectives can be
further improved without worsening some of the other objectives, thereby producing
neural architectures with different trade-offs for the objectives in consideration.

This Chapter is based on:

• D. Sapra and A. D. Pimentel "Designing convolutional neural networks with
constrained evolutionary piecemeal training" [40], in Applied Intelligence, ©
Springer.

and,

• S. Minakova, D. Sapra, T. Stefanov and A. D. Pimentel "Scenario Based Run-
time Switching for Adaptive CNN-based Applications at the Edge" [102], in ACM
Transactions on Embedded Computing Systems, © ACM.

65



66 multi-objective evolutionary piecemeal training

5.1 introduction

At the very beginning of our research on efficient NAS, the ability of the
algorithm to extend to multi-objective search was taken into consideration.
Evolutionary algorithms are well studied in the multiple-objective search
domain and can be very flexible in the management of adding (or remov-
ing) objectives as required, for each execution of the algorithm. In this chap-
ter, the original EPT methodology, with only accuracy as an optimization
objective, is extended to consider multiple objectives for the search.

In the initial experiment, we consider the reduction of the number of pa-
rameters of the neural network as an additional search goal. The accuracy
maximization and parameter minimization can be conflicting objectives for
an efficient neural network. Smaller CNNs tend to have lower accuracy and
high accuracy is generally obtained by larger neural networks. However, too
many parameters tend to cause over-fitting, which may lead to poor gen-
eralization, and therefore, highlight the importance of a constrained search
process not only for hardware resource usage, but also to avoid over-fitting.
We apply the proposed extension to the PAMAP2 dataset and perform the
multi-objective search for efficient architectures.

Nevertheless, the deployment of neural networks in a wide range of set-
tings requires more than parameter reduction for an efficient application
execution in the long term. For example, by optimizing only the number of
mathematical operations through parameter reduction, it can not be guaran-
teed that the application meets the power constraint of a battery-operated
device. With the advent of connected IoT (Internet of Things) networks
[103], we see an urgent demand for intelligent applications that run di-
rectly on the edge devices, which typically do not have large computation
or storage capabilities. The execution of a CNN based application on the
edge can be extremely challenging, due to high demands placed by the ap-
plication while limited by the capabilities of the underlying hardware of an
edge device.

Keeping these factors in mind, the second set of experiment was designed
to focus on the objectives related to the capabilities of the target hardware,
in addition to the accuracy of the neural network. This experiment is then
considered to be a hardware-aware EPT algorithm, where the hardware
metrics are incorporated into the search algorithm as optimization objec-
tives. There can be a vast variety of requirements that an embedded system
needs to fulfill, a subset of which is taken into consideration for this ex-
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periment. The most common of the demands on a CNN-based application
running on an edge device are:

1. high accuracy. The CNN should be able to efficiently perform its in-
tended task;

2. high throughput. The applications running on an edge device might
require a (near) real-time response;

3. low memory cost. An edge device typically has limited memory avail-
able;

4. low energy cost. When an edge device is battery-powered, such as a
drone, it is important to have a low energy footprint.

Together we call them ATME characteristic (Accuracy, Throughput, Mem-
ory, Energy), and in the hardware-aware EPT algorithm, we consider each
of them as an optimization objective. The accuracy, typically measured in
percent, characterizes the fraction of correct predictions generated by a
CNN from the total number of predictions generated by the CNN. The
throughput, typically measured in frames per second (fps), characterizes
the speed with which the CNN is able to process input data and produce
output data. The memory cost, typically measured in Megabytes (MB), spec-
ifies the total amount of memory required to execute a CNN. The energy
cost, measured in Joules, specifies the amount of energy consumed by a
CNN to process one input frame.

It is conspicuous that the ATME characteristics are not representative for
the CNN in isolation, but the combination of neural architecture and its
execution on one specific hardware. The accuracy is solely dependent on
the learned coefficients during the training process, so it is never affected
by the hardware it runs on. On the other hand, the TME characteristics are
typically dependant on the capabilities of the target device. The results of
the hardware-aware EPT algorithm is presented for three datasets, namely
VOC, PAMAP2 and CIFAR-10, for the NVIDIA Jetson TX2 embedded plat-
form [104].

With a multiple objective based search, selection of the best candidates
is concluded through Pareto optimization, where any objective cannot be im-
proved without worsening some of the other objectives. The set of candi-
dates selected in such a fashion are collectively called a Pareto Front.

The Pareto Front obtained upon convergence sets forth the various pos-
sible CNNs to deploy on the wearable embedded device. It allows the de-
signer to be aware of the architecture choices available in terms of which
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neural architecture provides a trade-off between the size of the model ver-
sus the accuracy. One of these CNNs can be strategically deployed depend-
ing upon the desired functional goals and available resources on the device.

By presenting these two disparate multiple-objective experiments, we
also demonstrate the flexibility of the EPT algorithm. The algorithm makes
it feasible to have an adjustable number of objectives to design a CNN
based application that can be efficiently deployed on an edge device. More-
over, the search space for the CIFAR-10 and the VOC datasets in the second
set of experiments includes residual connections to allow a search space
consisting of ResNet [5] style neural networks. This further illustrates the
flexibility of the EPT algorithm in its ability to work with different styles of
neural architectures.

5.2 related work

Evolutionary-based multi-objective NAS algorithms have been widely ex-
plored for multi-objective search as their ability to easily incorporate an
extra objective is well known [105]. LEMONADE [59] is an evolutionary
based multi-objective algorithm, which utilizes the Lamarckian inheritance
mechanism. NSGA-Net [55] utilizes the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) to construct the Pareto Front with the aim of learn-
ing the trade-off between model classification error with its computational
complexity. Our work also utilizes an evolutionary algorithm for architec-
ture modification, where the key difference is in the way we look at NAS
from a different perspective, by exploring the possibility of finding opti-
mal architectures during the training process itself as opposed to accuracy
prediction or training as a separate performance estimation strategy.

Other approaches for multi-objective search have also been researched in
recent times, for example, Reinforcement Learning (RL) based approaches
incorporate the objectives directly into the reward function of an agent. The
agent is continuously rewarded for finding better architectures, and thus
the search is slowly steered towards neural networks with higher perfor-
mance. MONAS [106] and MnasNet [107] are examples of Reinforcement
Learning based approaches for multi-objective NAS. While MONAS uses
validation accuracy and energy expenditure on the target model to create
a Pareto Front, MnasNet explicitly incorporates the latency information in
the main search objective to discover models with a good trade-off across ac-
curacy and latency. Any RL approach resolutely demands a suitable agent,
which frequently happens to be a complicated model or perhaps another
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neural network. The construction of the agent and its optimization involve
substantial effort towards designing and subsequent fine tuning.

In order to deploy the one-shot architecture search in a multi-objective
scenario, the objectives are incorporated into the loss function of the train-
ing process. For example, FBNet [10] and DenseNAS [11] are multi-objective
one-shot differentiable NAS frameworks. In the former method, the loss
function is the weighted product of cross-entropy loss, incurred during
training, with the latency of the target device. Whereas in the latter work,
the loss function is the weighted aggregation of cross-entropy loss along
with the latency-based regularization. However, it is not possible to add all
objectives to the search in this manner, thereby making them inflexible to
embrace an additional objective on the go.

In addition to the NAS methodologies, there are various memory reduc-
tion techniques, for instance pruning [108], quantization [109] and compres-
sion [110–112], which can be deployed to either minimizing the number of
FLoating Point Operations (FLOPs), reduce the bit-width representation of
parameters or use compression algorithms. Though these can effectively
reduce memory cost and thereby energy consumption, they may lead to
loss in the CNN accuracy. Moreover, in some cases, these techniques may
result in worse performance, specially if the hardware is not optimized for
them. For example, a pruning approach may lead to sparse representation
for the coefficients [113], and the hardware needs to handle the sparsity ap-
propriately to take advantage of the smaller memory footprint and reduced
computation offered through pruning.

Therefore, multi-objective NAS algorithms provide a better mechanism to
find a suitable neural architecture by not only searching for suitable CNNs
for a target environment, but also providing insight into the trade-off be-
tween different objectives. However, the multi-objective NAS can be mod-
ified in a manner that optimizes for these memory-reduction techniques
within a NAS algorithm [114]. For instance, APQ [115] proposes a multi-
step NAS methodology, where an accuracy predictor for quantized CNNs
is designed first. This accuracy predictor is further utilized in the evalua-
tion of neural networks, during an evolutionary hardware-aware NAS for
CNNs with various quantization policies.

5.3 methodology

In this section, we first explain the approach used to evaluate all the ob-
jectives for a multi-objective NAS. Further, the modifications to the EPT
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Algorithm are outlined, which allow the algorithm to be extended in order
to conduct a multi-objective search.

5.3.1 Evaluation of the Objectives

Accuracy

The most popularly used metric, classification accuracy, is computed as
the number of correctly processed input frames to the total number of the
CNN input frames. It is important to note that even though we refer to
evaluation of a CNN as accuracy, it is possible to use any other evaluation
metric suitable to the application, as discussed in Chapter 2. For instance,
F-1 score, precision, recall, PR-AUC (Area under curve for precision recall)
are some of the metrics used for CNNs for imbalanced datasets.

Number of Parameters

The number of parameters of a CNN is the sum of parameters per layer,
which is computed as:

P =
X

li2L

|pari| (12)

Where |pari| is the total number of the learnable parameters of layer li and
L is the total number of layers of the CNN.

There are various ways to analyse the hardware metrics, through math-
ematical analysis, simulation and direct measurement on the embedded
device. Any of the suitable hardware models can be used in the evalua-
tion phase of the EPT algorithm. We have used a model developed by the
LERC group at Leiden University, where a mathematical analysis model
combined with a few direct measurements on the target hardware was
utilized [102]. Here we briefly describe the model which evaluates the
memory consumption, throughput and energy for the neural architecture
executing on the resource constrained hardware.

Memory

The CNN memory cost M is computed as:

M =
X

li2L

(|pari| ⇤ sizep2par +
X

eij2Oi

|Yi| ⇤ sizey2Yi
) (13)
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Where |pari| is the total number of the learnable parameters of layer li;
sizep2par is the amount of memory in MB, occupied by one learnable pa-
rameter; Yi is the data tensor, produced by layer li for its every output
edge eij 2 Oi; sizey2Yi

is the amount of memory in MB, occupied by one
element of data in Yi.

Throughput and Energy

The CNN throughput T is computed as:

T = N/

X

li2L

ti (14)

where N is the CNN batch size, i.e., the number of frames, processed by ev-
ery CNN layer li [116];

P
li2L

ti is the time in seconds, required to perform
execution of the CNN CNN(L, E), represented as a sequence of |L| compu-
tational steps, where at every step a CNN layer li 2 L is executed; ti is the
time required to execute layer li 2 L. Analogously, the CNN energy cost ⇠
is computed as:

⇠ =
X

li2L

⇠i/N (15)

where ⇠i is the energy cost (in Joules) associated with the execution of
CNN layer li. The execution time ti and energy cost ⇠i, associated with
CNN layer li, utilized in Equation (14) and Equation (15), are notoriously
hard to evaluate analytically [117]. Therefore, in this methodology, ti and
⇠i are obtained by performing measurements on the target edge device for
every different type of layer and for some of the basic layer configurations.

5.3.2 Workflow and Algorithm Extension

The original EPT methodology is extended in order to make it suitable for
multiple objectives besides the accuracy. Figure 5.1 highlights the changes
done to the primary workflow, for the multi-objective search. Initialization
and piecemeal-training steps remain the same, however, additional evalu-
ations are performed to deduce other objectives. In the first set of experi-
ments, the parameter count of the CNN model becomes the second evalu-
ation criterion, along with the accuracy of the model. In hardware-aware
EPT with four ATME objectives, all of them are evaluated at this step.
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Figure 5.1: Workflow for the Evolutionary Piecemeal Training, extended version to
include multiple objectives.

The selection policy is updated to be based on non-dominated sorting
[118], which takes into account all the objectives to sort the models in the
order of their relative quality of performance. Replacement policy, evolu-
tionary operator application and population update steps are unchanged
in the extended algorithm.

After the iterations are complete, a Pareto optimal set is selected from the
population based on all evaluated objectives. The CNNs in this Pareto opti-
mal set, also called as Pareto Front, are selected to be eventually completely
trained. In a Pareto Front, an objective cannot be further improved until one
or more of the other objectives are made worse. Therefore, all the models
in the Pareto set are considered to be equally adequate to be marked as the
best model. In this scenario, the final selection lies in the hands of system
designer, and may also be based on higher priority placed on one of the
objectives.

We outline the modified and extended algorithm for multi-objective search
in Algorithm 5. The changes to the original Algorithm 3 reflect the same
changes that were highlighted in the multi-objective workflow in Figure 5.1.
EvaluateParameters() evaluates all the evaluation metrics other than ac-
curacy. NSGA2Selection() replaces the previous selection algorithm with
↵ still kept at a very high value. This function is based on the popular multi-
objective selection algorithm, NSGA-II [118], which takes all objectives into
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Algorithm 5: Multi-Objective Evolutionary Piecemeal Training
Evolutionary Inputs : Ng, Np, Pr, Pm, ↵
Training Inputs : ⌧params, �

1 }o  InitializePopulation(Np)
2 for i 0 .... Ng do

3 }i  PiecemealTrain(}i, ⌧params, �)
4 Evacc  EvaluateAccuracy(}i)
5 Evparams  EvaluateParameters(}i)
6 }best  NSGA2Selection(↵,}i,Evacc,Evparams)
7 }r  random((1-↵) ⇤ }i)
8 update }i  }best + }r

9 }rc  Recombine(}i,Pr)
10 }mu  Mutate(}i,Pm)
11 update }i  }mu + }rc + }remaining

12 end

13 Evacc  EvaluateAccuracy(}
Ng

)

14 Evparams  EvaluateParameters(}
Ng

)

15 return ParetoFront(Evacc ,Evparams)

account when selecting the best individuals. This algorithm returns the
Pareto Front from the population.

In the first set of experiments, parameter minimization becomes the sec-
ond search objective, along with the accuracy maximization for the search.
Let Params( fnn( T ,!(t)) represent the number of parameters of a neural
network fnn. Then, the objective can be formulated to find a neural network
fnn 00 with architecture (T 00 2 eT ), such that

mingnn
00 2 gNN

Params( fnn 00( T 00,!(t)) (16)

From Equation (9), the original objective of the single objective EPT is to
find neural network fnn 0 (fnn 0 2 gNN) with architecture (T 0 2 eT ), such that

maxgnn
0 2 gNN

Acc( fnn 0( T 0,!(t))

When the optimization objectives are conflicting with each other, as is
the case with accuracy maximization and parameter minimization, fselect()
can not be as simple as selecting the best candidates based on linear sorting
on one specification. The selection function now has to consider a sorting
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based on non-domination of any single objective and select the best candi-
dates. The NSGA-II selection algorithm [118] ensures that both optimiza-
tion objectives are catered to during the search.

Similarly, for hardware-aware EPT, there are four objectives for the search,
namely, accuracy maximization, throughput maximization, memory mini-
mization and energy consumption minimization. The NSGA-II selection
algorithm [118] in this situation then is used for four objectives simultane-
ously.

5.4 experiments

In this section we demonstrate the efficiency of multi-objective EPT through
two independent experiments. As explained earlier, there are two sets of ex-
periments. The first experiment takes accuracy and number of parameters
into consideration, and the second experiment focuses on the target hard-
ware metrics along with accuracy. The details of each of these experiments
are provided below in this section.

5.4.1 Two-objective EPT

The experiment for the extended version of the algorithm with multiple ob-
jectives for the search has been performed on the PAMAP2 dataset. The defi-
nition of the architecture search space, and initialization of hyper-parameters
for both evolutionary operators and training is exactly the same as the orig-
inal algorithm.

The conflicting search objectives were to maximize accuracy while simul-
taneously to minimize the number of parameters of the CNN model. Once
the algorithm has finished all the iterations, we plot the graph for accuracy
versus the number of parameters for all models in the population, as shown
in Figure 5.2 (a). The Pareto Front as selected by the algorithm is marked
in red. The candidates that lie on the Pareto Front exhibit the trade-off be-
tween two objectives and one cannot be considered better over the other
w.r.t both the objectives.

Subsequently, all the candidates on the Pareto Front were processed and
trained further, after the addition of the Batch Normalization layers. Fig-
ure 5.2 (b) now presents two Pareto Fronts, first one being the Pareto Front
determined by the algorithm (in red), and the second curve (in green) de-
picts the associated "trained" Pareto Front. The latter curve plots the accu-
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(a) Pareto Front from the search

(b) Pareto Front trained further

(c) Updated final Pareto Front

Figure 5.2: Pareto Fronts for accuracy vs parameters of CNNs. Figure 5.2 (a) shows
the Pareto Front created during the search with EPT. The scattered
points represent CNNs from the final population upon convergence.
The candidates from Pareto Front are further trained and Figure 5.2 (b)
shows the "trained" Pareto Front. The Pareto Front is finally updated
( Figure 5.2 (c)) to remove points that do not fall on it anymore.
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racy for the same neural networks on the former curve, but as completely
trained models.

However, once the training is complete, it is highly probable that some
of the models do not follow the rules of a Pareto optimal set anymore.
Figure 5.2 (c) shows a closer look at the "trained" Pareto Front, where the
point marked in red clearly does not belong to the Pareto Front any longer.
Those points are then removed from consideration and eventually a final
Pareto Front is deduced.

The Pareto Front that is finally achieved gives a good indication of the
trade-off between size of a neural network versus the performance. In the
Pareto Front for PAMAP2, there were 5 points, ranging from 89.99% ac-
curacy to 93.34% accuracy with models consisting of ⇡ 200k to ⇡ 600k

parameters.

5.4.2 Hardware-aware EPT

The results for the second set of experiments on the hardware-aware EPT al-
gorithm is presented for three datasets, namely VOC, PAMAP2 and CIFAR-
10, for NVIDIA Jetson TX2 embedded platform [104]. As detailed in Chap-
ter 2, VOC and CIFAR-10 are image classification datasets and PAMAP2 is
for human activity recognition. NVIDIA Jetson TX2 is a resource limited
hardware platform with a GPU available to accelerate the execution of a
CNN. The objectives for this search are fourfold: Accuracy and throughput
maximization along with memory and energy consumption minimization.

To explore the design space in this experimental study, we first define
the search space in the form of cluster constraints as for all the datasets.
These search spaces are shown in Table 5.1 for the VOC dataset, Table 5.2
for the PAMAP2 dataset, and Table 5.3 for the CIFAR-10 dataset. In these
tables, the Cluster Type in the first column lists the abbreviated layer types.
Conv, MaxP, GlbAvgP, GlbMaxP, FC are abbreviations for convolution, max-
pool, global average pool, global max pool and fully connected, respectively.
Conv+Res is a special cluster where all layers are convolutional, but there
is a residual connection [5] from the input edge to the cluster until the out-
put edge. This residual connection is maintained (or repaired) as needed
during the architecture modification through evolutionary operators. The
Conv+Res cluster is designed based on the ResNet v1 [5] family of neural
networks. Since the CNNs are automatically generated based on the pro-
vided constraints by the NAS, they are not identical to any popular ResNet
variant, such as, ResNet-18 or ResNet-128. The rest of the columns define
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Table 5.1: VOC Search Space

Cluster Type Layers Neurons Kernel
�

min
�

max
⌘
low

⌘
up

K
min

K
max

C1:Conv 1 3 16 96 3x3 7x7
C2:MaxP - - - - 2x2 -
C3:Conv+Res 1 5 16 96 3x3 7x7
C4:MaxP - - - - 2x2 -
C5:Conv+Res 1 5 32 128 3x3 7x7
C6:MaxP - - - - 2x2 -
C7:Conv+Res 1 5 32 128 3x3 7x7
C8:MaxP - - - - 2x2 -
C9:Conv+Res 1 5 64 256 3x3 7x7
C10:MaxP - - - - 2x2 -
C11:GlbAvgP - - - - 2x2 -

Table 5.2: PAMAP2 Search Space

Cluster Type Layers Neurons Kernel
�

min
�

max
⌘
low

⌘
up

K
min

K
max

C1:Conv 2 7 64 128 3x1 7x1
C2:MaxP - - - - 2x1 -
C3:Conv 2 7 96 256 3x1 7x1
C4:GlbMaxP - - - - 2x1 -
C5:FC 1 4 128 512 - -

Table 5.3: CIFAR-10 Search Space

Cluster Type Layers Neurons Kernel
�

min
�

max
⌘
low

⌘
up

K
min

K
max

C1:Conv 1 3 32 64 3x3 7x7
C2:Conv+Res 2 4 32 128 3x3 7x7
C3:MaxP - - - - 2x2 -
C4:Conv+Res 2 4 64 256 3x3 7x7
C5:Conv+Res 2 4 64 256 3x3 7x7
C6:MaxP - - - - 2x2 -
C7:Conv+Res 2 5 128 512 3x3 7x7
C8:Conv+Res 2 5 128 1024 3x3 7x7
C9:MaxP - - - - 2x2 -
C10:FC 1 3 256 1024 - -
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(a) Pascal VOC Pareto Front

(b) PAMAP2 Pareto Front

(c) CIFAR-10 Pareto Front

Figure 5.3: Pareto Fronts based on 3 evaluation parameters, namely, accuracy (F1-
score for the Pascal VOC), throughput and energy
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cluster specific bounds, namely, the number of layers, the neurons per layer,
and the kernel sizes.

Table 5.4 lists the values for all parameters used for training the neural
networks and for the EPT algorithm settings.

Table 5.4: Algorithm parameters for Multi-Objective EPT

Parameter VOC PAMAP2 CIFAR-10

Mutation change rate ⇢m 0.10 0.12 0.12
Mutation probability Pm 0.3 0.3 0.3
Initial Crossover probability Pr(0) 0.3 0.4 0.3
Population size Np 60 50 100
No of iterations Ng 30 60 120
Population replacement rate ⌦ 0.02 0.03 0.02
Training Parameters ⌧params

Training size per iteration 1 epoch 1/5 epoch 1/8 epoch
Optimizer Adam Adam Adam
Learning rate 1e

-3
1e

-4
1e

-3

Batch size 10 50 64

Next, an exploration of the defined search space was performed using Al-
gorithm 5. This exploration resulted in a Pareto Front, consisting of CNNs
with evaluated objectives, such that an objective can not be improved fur-
ther without worsening at least one other objective. Figure 5.3 (a), Fig-
ure 5.3 (b) and Figure 5.3 (c) illustrate the Pareto Front for the Pascal VOC,
the PAMAP2 and the CIFAR-10, respectively. These Pareto Fronts do not
include memory evaluations to allow for a comprehensible visualization,
since the actual Pareto Fronts created in this experiment are four dimen-
sional. For the Pascal VOC dataset, which is an imbalanced set, the F1-score
was used as the efficiency evaluation metric to compare the partially trained
CNNs during the search (see Chapter 2 for more details).

The exploration took 6 days with 8 GPUs for the image recognition ap-
plication (i.e., the Pascal VOC dataset). It took 2.5 days on 4 GPUs for the
CIFAR-10 dataset, and 10 hours on 1 GPU for the HAR application (the
PAMAP2 dataset). The CNNs in the Pareto Fronts were modified further,
by adding a batch normalization layer after every convolutional layer. Sub-
sequently, these models were trained for 250 epochs for the Pascal VOC and
the CIFAR-10 and 100 epochs for the PAMAP2. Once the CNNs are trained,
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all the objectives are evaluated again to make sure they correctly reflect the
modifications applied to the CNNs.

To provide some examples from the Pareto Front, for the Pascal VOC,
after completion of the training, the F1-scores were between 77.6 and 72
whereas the memory consumption had a wide range from 0.384 to 0.078
Joules. Similarly, among the CNNs in the Pareto Front for the PAMAP2, the
accuracy was between 94.17% to 91.34%, while the memory required was
between 4 and 10 MB. For the CIFAR-10, the accuracy values spanned in
the middle of 94.86% and 92.84%, whilst the maximum possible throughput
was between 230 and 750 fps.

These Pareto Fronts give a system designer an important tool to pick the
most suitable neural network to deploy on the resource constrained device.
For example, when the memory is limited on the hardware platform, a
designer may consider it to be acceptable to use a model with slightly lower
accuracy, specially where a lower memory footprint may also result in a
better response time of the device.

5.5 summary

This chapter was focused on the multi-objective extension for the previ-
ously proposed EPT algorithm. The flexibility of the algorithm was clearly
demonstrated by optimizing simultaneously the neural network architec-
ture for multiple task specific objectives, such as number of parameters,
accuracy and hardware specific metrics. This allows for a better resource us-
age of the neural network on the designated hardware. We envision that the
Pareto Front obtained for multiple hardware-specific objectives will allow
the designer to have better design choices and more flexibility, in switching
from one CNN to another systematically, for both the given task and the
hardware. Additionally, the search space was extended to include residual
connections to have ResNet style CNNs to be deployed on edge devices.
The Pareto Fronts obtained from the hardware-aware EPT experiments are
further utilized in the next chapter, which derives scenarios and aims to
create an adaptive application, in sync with changes occurring in the envi-
ronment.



Part II

A D A P T I V E A P P L I C AT I O N S

The second part of the thesis investigates methodologies and
strategies to ensure adaptivity of CNN-based applications run-
ning on edge devices.

Chapter 6, Scenario Based Run-time Switching, introduces the
concept of multiple scenarios for an application, where each sce-
nario represents a set of priorities for an operation mode in the
target environment. By allowing the scenarios to switch at run-
time, the application can adapt to environmental changes dur-
ing its operation.

Chapter 7, Neural Network Reuse and Composition Update, ex-
plores the techniques which work towards ensuring longevity
of CNNs already deployed on an IoT network of interconnected
edge devices. This work considers neural networks as dynamic
entities, which can be continuously adapted and maintained in
line with dynamic system behaviors during a long operation
time.





6
S C E N A R I O B A S E D R U N - T I M E

S W I T C H I N G

Execution of neural networks on edge devices places numerous demands on the
application, a few of them are high accuracy, high throughput, low memory cost,
and low energy consumption. As demonstrated through the Pareto Front in Chap-
ter 5, these requirements are very difficult to satisfy at the same time. A CNN
execution at the edge typically involves trade-offs, such as high throughput maybe
achieved at the cost of decreased accuracy. In a typical system design process, such
trade-offs are considered once and a neural network is chosen to be deployed on
the hardware and remain fixed during the CNN-based application execution. Alter-
natively, they are adapted to suit the properties of the CNN input data or target
hardware, for example through compression or quantization. However, the require-
ments of the application can also be fundamentally influenced by the changes in
the application environment during its execution, for instance a change of the bat-
tery level in the edge device. Therefore, CNN-based applications will benefit from a
mechanism which allows a dynamic adaptation towards their extra-functional char-
acteristics with respect to the changes in the application environment at run-time.
This chapter presents a scenario-based run-time switching (SBRS) methodology,
which implements such a mechanism.

This Chapter is based on:

• S. Minakova, D. Sapra, T. Stefanov and A. D. Pimentel "Scenario Based Run-
time Switching for Adaptive CNN-based Applications at the Edge" [102], in ACM
Transactions on Embedded Computing Systems, © ACM.
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6.1 introduction

During the design process of a CNN-based application, the selection of
the requirements specific to the applications is typically carried out once,
and remains static during the execution. In practice, these priorities are
often influenced by the application environment, and may well need to
be adjusted during the application execution. The provision for this sort of
adaptivity can ensure that the application is compliant with its environment
while executing on the edge during all of its operation time.

As an example, a CNN-based road traffic monitoring application, de-
ployed on an Unmanned Aerial Vehicle (UAV) [119], may have different
priorities at different operation times, depending on the road situations
and the level of the device’s battery. When there is heavy traffic, it is highly
desirable to have high throughput from the application as well as a high
accuracy to process the input data, which in turn might assert a higher en-
ergy cost. On the other hand, a high throughput is not warranted in case of
a traffic jam. In a similar manner, when the battery of the UAV is running
low, the application would work optimally by prioritizing energy efficiency
over high throughput. This example shows that CNN-based applications
would benefit from a mechanism which allows dynamic adaptation of its
characteristics with respect to the changes in the application environment
at run-time (such as a change of the situation on the roads or a change of
the device’s battery level).

Moreover, the aforementioned mechanism should also be able to main-
tain a high level of responsiveness. For example, the switch to an energy-
efficient mode should be as swift as possible when the battery is running
low, during the execution of the CNN-based application on the UAV. How-
ever, to the best of our knowledge, neither existing Deep Learning method-
ologies [106–111, 117, 120–123] for resource-efficient CNN execution at the
edge, nor existing embedded systems design methodologies [124–126] for
execution of run-time adaptive applications at the edge, provide such a
mechanism.

In this chapter, we introduce a novel scenario-based run-time switching
(SBRS) methodology for CNN-based applications for execution on edge
devices. In this methodology, a CNN-based application is associated with
several scenarios, where each scenario represents a set of priorities for an
operation mode at run-time. Every scenario corresponds to a CNN, which
is specifically designed to conform to certain requirements for accuracy,
throughput, memory cost, and energy cost. During the execution of the
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application, the environment (or its monitor) can trigger a switch from cur-
rent scenario to another scenario, thereby adapting the characteristics of the
CNN-based application to the changes in its environment.

To capture multiple application scenarios and allow for run-time switch-
ing between these scenarios, the CNN-based application is represented us-
ing the novel SBRS Model of Computation (SBRS MoC). We note that, being
associated with multiple scenarios, each of which is essentially a neural net-
work, such an application within the SBRS methodology can have a high
memory cost. With resource limitations on edge devices, high memory cost
is undesired for such applications at the edge. To reduce the application
memory cost, the SBRS MoC also includes the efficient reuse of compo-
nents (layers and edges) among the different scenarios, and also within
every scenario. Additionally, to ensure high application responsiveness to a
scenarios switch request, the SBRS methodology also includes a transition
protocol (SBRS TP). The SBRS TP specifies switching from the old appli-
cation scenario to a new application scenario so that both old and new
scenarios remain consistent, and the new scenario can begin execution as
soon as possible. The SBRS TP also ensures that there is part overlapping
between the execution of the old and new scenarios, in order to improve
responsiveness.

In this chapter, we only present the portion of the SBRS methodology
related to scenario derivation and later present a comparative study with
another adaptive methodology, called MSDNet, which is closest to the SBRS
methodology in terms of adaptive execution. The development of the SBRS
MoC and transition protocol has been conducted by Leiden University as a
collaboration, and these parts of the SBRS methodology are, therefore, not
presented in this thesis.

6.2 related work

The platform-aware neural architecture search (NAS) methodologies, pro-
posed in [106, 107, 120–123] and reviewed in survey [117], allow for auto-
mated generation of different CNNs, which are characterized with differ-
ent accuracy, throughput, energy cost and memory cost. However, these
methodologies do not propose a mechanism for run-time switching be-
tween these CNNs, while such mechanism is necessary to ensure that appli-
cation needs are best served at every moment in time. In contrast to these
NAS methodologies, the SBRS methodology proposes such a mechanism,
and ensures that application needs are best served at every moment in time.
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The methodologies presented in [127–131] propose resource-efficient and
runtime-adaptive CNN execution at the edge. These methodologies rep-
resent a CNN as a dynamic computational graph, where for every CNN
input sample only a subset of the graph nodes is utilized to compute the
corresponding CNN output. The subset of graph nodes is selected dur-
ing the application run-time by special control mechanisms (e.g., control
nodes, augmenting the CNN graph topology). The utilization of only a
subset of graph nodes at every CNN computational step can increase the
CNN throughput and accuracy, and typically reduces the CNN energy cost.
However, these methodologies cannot adapt a CNN to changes in the appli-
cation environment, like changes of the device’s battery level, which affect
the CNN needs during the run-time. The adaptation in these methodolo-
gies is driven either by the complexity of the CNN input data [128–132] or
by the number of floating-point operations (FLOPs), required to perform
the CNN functionality [127, 131], while the changes in the application en-
vironment often cannot be captured in the CNN input data or estimated
using FLOPs. In contrast to these methodologies, the SBRS methodology
adapts a CNN-based application to the changes in the application environ-
ment, and therefore, allows to best serve the application needs, affected by
such changes.

A number of embedded systems design methodologies, proposed in [124–
126], allow for efficient execution of runtime-adaptive scenario-based ap-
plications at the edge. These methodologies represent an application, exe-
cuted at the edge in a specific model of computation (MoC), able to capture
the functionality of a runtime-adaptive application associated with several
scenarios, and ensure efficient run-time switching between the application
scenarios. However, these methodologies cannot be (directly) applied to
CNN-based applications due to a significant semantic difference between
the MoCs, utilized in these methodologies and the CNN model [133], typ-
ically utilized by CNN-based applications. First of all, the MoCs utilized
in these embedded systems design methodologies lack means for explicit
definition of various CNN-specific features, such as CNN parameters and
hyper-parameters, while explicit definition of these features is required for
the application analysis. Secondly, the MoCs utilized in these methodolo-
gies are not accepted as input by existing Deep Learning frameworks, such
as Keras [34] or TensorRT [134], widely used for efficient design, deploy-
ment and execution of CNN-based applications at the edge.

In the SBRS methodology, we propose a novel application model, in-
spired by the embedded systems design methodologies [124–126], to rep-
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resent a run-time adaptive CNN-based application and ensure efficient
switching between the CNN-based application scenarios. However, unlike
these, the SBRS methodology 1) explicitly defines and utilizes CNN-specific
features for efficient execution of CNN-based applications at the edge, and
2) allows for utilization of existing deep learning frameworks for design,
deployment, and execution of the CNN-based application at the edge.

6.3 motivational example

In this section, we show the necessity of devising a new methodology for
execution of adaptive CNN-based applications at the edge. To do so, we
present a simple example of a CNN-based application where the require-
ments change at run-time due to the changes in its environment. The ap-
plication is discussed in the context of the existing methodologies reviewed
in the "Related Works" Section, and the scenario-based run-time switching
(SBRS) methodology.

The example application performs CNN-based image recognition on a
battery powered Unmanned Aerial Vehicle (UAV). The UAV battery ca-
pacity defines a power budget, which is available for both the flight and
CNN-based application execution. The distribution of the power budget
between the flight and application is irregular, and depends on the weather
conditions, which can change during the run-time (the UAV flight). In calm
weather, the UAV requires less power to fly and can thus spend more power
on the CNN-based application. Conversely, when the weather is windy, the
UAV requires a large amount of power to fly, and therefore has less power
available for the CNN-based application. The weather prediction at the ap-
plication design time is an impossible task. Nevertheless, the CNN-based
application should be designed such that it: 1) meets the power constraint,
imposed on the application by the UAV battery and affected by weather
conditions; 2) demonstrates high image recognition accuracy (the higher
the better).

Figure 6.1 illustrates an example of how the execution of such CNN-
based application will transpire, when designed using the existing method-
ologies and the SBRS methodology. Subplots (a), (b), (c) juxtapose the power
available for the application execution (dashed line), against the power used
by the application (solid line) during the UAV flight, which lasts 2 hours.
The power available for the application execution is dependant on the UAV
battery capacity and weather conditions. In this example, we assume that
the CNN-based application is allowed to use up to 12 Watts of power in
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Figure 6.1: Execution of a CNN-based application, affected by the application en-
vironment and designed using different methodologies

turbulent weather (0 to 0.1 hours and 1.0 to 1.5 hours) and up to 32 Watts
of power in calm weather (0.1 to 1.0 hours and 1.5 to 2.0 hours). However,
the actual power used by the application is ultimately determined by the
application design methodology. Further, the subplots (d), (e), (f) show the
image recognition accuracy demonstrated by the application. Subplots (g),
(h), (i) show the current charge state (solid line) and minimum charge level
(dashed line) of the UAV battery. If the current battery charge reaches the
minimum allowed battery level, it may lead to an emergency landing of the
UAV.

As a first case, we discuss the multi-objective NAS methodologies [106,
107, 120–123] for the execution of the example application, that are typically
designed and utilized without considering a run-time changing environ-
ment. In these methodologies, a CNN is obtained via an automated multi-
objective search and characterized with constant accuracy and power con-
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sumption. To guarantee that the application meets a power constraint, such
a CNN has to account for the worst-case scenario, i.e., when the weather
is always windy and therefore only 12 Watts are available for the applica-
tion execution at any moment. In the illustrative example, such a CNN is
characterized with 11.2 Watts of power and 82% accuracy (see Figure 6.1
(a) and Figure 6.1 (d), respectively). As shown in Figure 6.1 (g), when the
UAV reaches its destination after 2 hours of flight, it still has ⇡50% battery
charge left. On the one hand, it means that the application always meets the
power constraint. On the other hand, the application could have spent⇡40%
remaining UAV battery charge by utilizing a more accurate CNN, though
demanding additional power. In other words, the multi-objective NAS method-
ologies in [106, 107, 120–123] can guarantee that the application meets the given
platform-aware constraints, but cannot guarantee efficient use of available platform
resources.

As a second case, when the application is designed using data-driven
adaptive methodologies, such as [128–132], the CNN execution is sensitive
to the input data complexity. To process "easy" images, they may use a lower
resolution or fewer layers, whereas processing "hard" images requires more
computation. In this manner, an adaptive CNN-based application is able
to adapt its power consumption depending on the input data complexity,
while demonstrating similar accuracy for all the inputs. However, such a
CNN cannot adapt to the changing environmental conditions, which can
not be explicitly captured in the input images. The application power con-
sumption can change during the application run-time, based on the input
images, although these changes may conflict with the application’s require-
ments, driven by the weather conditions. In Figure 6.1 (b), the CNN con-
sumes significant amount of power, between 1.0 and 1.25 hours, despite
the necessity to switch to the low power mode. This may lead to increased
UAV power consumption over the flight duration and, eventually, to a vi-
olation of the application power constraint, causing an emergency landing
as illustrated in Figure 6.1 (h). Thus, the data-driven adaptive methodologies
in [128–132] are not suitable for CNN-based applications executed at the edge in
a changing environment, because these can neither properly adapt the application
to the environment variations, nor guarantee that the application constantly meets
platform-aware constraints.

Another case of adaptive CNN-based application methodologies, is where
the application can adaptively change the number of floating-point opera-
tions (FLOPs) spent on the image recognition, such as those in [127, 131].
However, as shown in numerous works [120, 135, 136] FLOPs is an inaccu-
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rate indicator for real-world platform-aware characteristics such as power
consumption or throughput. These characteristics depend on many other
factors, for instance, the ability of the platform to perform parallel computa-
tions, time and energy overheads caused by the data transfers, internal hard-
ware limitations, etc. Consequently, the number of FLOPs spent during the
application run-time, neither guarantee that the application meets power
constraints nor estimate the application efficiency in terms of real-world
platform-aware characteristics. In other words, even though, the methodologies
in [127, 131] enable run-time CNN adaptivity, these cannot be directly deployed
for applications with real-world platform-aware requirements and constraints.

To summarize, the existing works lack a methodology to design an adap-
tive CNN-based application, for real-world platform-aware requirements
and constraints, specifically affected by the environment variations at run-
time. The motivation behind the SBRS methodology is to enable such run-
time adaptivity. To design an application using the SBRS methodology, we
perform multi-objective NAS, similar to those in [106, 107, 120–123]. How-
ever, unlike these methodologies, we derive multiple CNNs for each sce-
nario. For example, the first scenario for the example application for windy
weather, can have an associated CNN with 11.2 Watts power consumption
and 82% accuracy. The second scenario, for calm weather, is represented by
a CNN with 31.0 Watts power consumption and 89% accuracy. At run-time,
the application switches between these scenarios, based on the weather con-
ditions. Additionally, the SBRS methodology explicitly defines the switch-
ing mechanism based on triggers generated due to an environment change
at run-time. The execution of the CNN-based application with the SBRS is
shown in Figure 6.1 (c), (f), (i). Particularly, Figure 6.1 (i) highlights that the
application meets the given power constraint, i.e. the UAV battery charge
does not go below the minimum level before 2 hours, and the SBRS uses all
available power to achieve higher application accuracy in comparison with
Figure 6.1 (d). Thus, by switching among the scenarios, the SBRS guarantees
that a CNN-based application, affected by the environment, meets platform-aware
constraints while efficiently exploiting the available platform resources to improve
its accuracy.

6.4 sbrs methodology

In this section, we present the scenario-based run-time switching (SBRS)
methodology, which allows for run-time adaptation of a CNN-based ap-
plication to changes in the application environment, for an edge device.
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Figure 6.2: SBRS methodology

The general structure of the methodology is illustrated in Figure 6.2. The
methodology accepts as an input a baseline CNN and one or more require-
ments sets, associated with the CNN-based application. A baseline CNN is
an existing CNN (e.g., AlexNet [116], ResNet [116], or another), proven to
achieve good results at solving a CNN-based application task (e.g., classifi-
cation). The requirements sets describe a scope of needs, associated with the
devised application. Every application requirements set r = (ra, rt, rm, re)
specifies the application priority for high accuracy (ra), high throughput
(rt), low memory cost (rm), and low energy cost (re), respectively. One ap-
plication can have one or several sets of requirements, characterising the
application needs at different times of the application execution. The re-
quirements sets are defined by the application designer at the application
design time. As an output, the methodology provides a CNN-based ap-
plication with the SBRS capabilities, able to adapt its characteristics to the
changes in the application environment during the application run-time.

The SBRS methodology consists of three main steps, performed offline.
At Step 1, for every set of application requirements r, accepted as an input,
an application scenario is derived, i.e., a CNN that conforms to the given
set r of application requirements. To perform this step, we use the auto-
mated hardware-aware EPT algorithm, as explained in detail in Chapter 5.
At Step 2, the scenarios generated by Step 1 are utilized to automatically
derive a SBRS MoC of a CNN-based application with scenarios. The SBRS
MoC captures the scenarios associated with the CNN-based application,
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and allows for run-time switching among these scenarios. Moreover, the
SBRS MoC features efficient reuse of the components (layers and edges)
among and within application scenarios, thereby ensuring efficient utiliza-
tion of the platform memory by the CNN-based application with the SBRS.
Finally, at Step 3, the SBRS MoC derived at Step 2 is used to design the final
implementation of the CNN-based application with the SBRS. The final im-
plementation of the CNN-based application is deployed on the edge device
to perform the application functionality with run-time adaptive switching
among the application scenarios, and follows the transition protocol (SBRS
TP). As mentioned earlier, the SBRS MoC and the SBRS TP are presented in
the original paper on which this chapter is based [102], but are not part of
this thesis.

6.4.1 Scenarios derivation

In this section, we discuss the automated derivation of application scenar-
ios, which essentially generates a collection of CNNs. Each CNN services
a different set of requirements, that are determined by its associated sce-
nario. The derivation process builds upon the hardware-aware Evolution-
ary Piecemeal Training (EPT) methodology presented in Chapter 5, which
searches for the best CNN in terms of ATME characteristics. ATME refers to
four objectives, namely, Accuracy, Throughput, Memory and Energy, which
are important for the execution of a CNN-based application on a resource-
constrained edge device. The hardware-aware EPT algorithm results in a
Pareto Front, which represents the set of neural networks with the ATME
characteristics, where none of the objectives can be further improved with-
out worsening some of the other objectives

The scenario selection task, which follows the pareto set creation, refers
to the selection of the appropriate model designated for each scenario. Ev-
ery intended scenario is depicted by a requirements set r = (ra, rt, rm, re),
where ra, rt, rm, re refers to the importance of accuracy, throughput, mem-
ory and energy, respectively. Together, these variables constitute the influ-
ence factor of each objective in the scenario by assigning a weight value to
the requirements such that ra + rt + rm + re = 1.0. For example, in a sce-
nario where only high accuracy is pivotal, i.e. ra = 1.0, the requirements set
is r = (1.0, 0.0, 0.0, 0.0). However, in a scenario where all the objectives are
equally important, the requirements set becomes r = (0.25, 0.25, 0.25, 0.25).
For a complex scenario where the throughput and energy are critical fac-
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tors and accuracy is still moderately significant, the requirements set may
be represented as r = (0.2, 0.4, 0.0, 0.4).

The next task is to post-process all the CNN models in the pareto set,
for instance adding BatchNorm layers after every Conv layer. These CNNs
are not fully trained yet by the Algorithm 5, hence they are further trained,
to achieve the best possible accuracy. Subsequently, hardware metrics can
once more be evaluated at this point, especially if the structure of the CNN
was modified, such as by adding or removing some layers. For every CNN
model in the pareto set, each objective is separately ranked from 1 to N,
where 1 is the best value of an objective (in the set), and N, on the other
hand, is the worst. The ranking dominance concept, introduced in [137],
has been extended here with weighted aggregation of ranks based on re-
quirements set to derive a suitable CNN model to represent a scenario.

For a model CNNi, having a rank ROi for a given objective O, and as-
sociated requirement value ro, its weighted rank wROi for the objective in
consideration is computed as ro ⇤ ROi. Subsequently, for each scenario, the
weighted ranks are aggregated using the following equation

wRscn =
X

8O2⇥

(ro ⇤ ROi) (17)

where ⇥ is the set of all objectives. For the specific objectives in this work,
i.e. Accuracy (⇤), Throughput (T ), Memory(M) and Energy (⇠) for a model
CNNi, the equation translates to

wRscn = (ra ⇤ R⇤i
) + (rt ⇤ RTi

) + (rm ⇤ RMi
) + (re ⇤ R⇠i

) (18)

After computation of the weighted rank, wRscn, for each scenario, the
lowest rank value is considered to be the best model representing that sce-
nario. The weighted ranks and their respective aggregation is computed for
each scenario in the application. In a situation where two or more models
have the lowest rank value, a random model amongst them may be cho-
sen. Alternatively, the ranks can be computed again with a slightly altered
requirements set, such as assigning slightly higher importance to the accu-
racy requirement. Figure 6.3 exemplifies the process of a scenario selection
where the scenario requirements set is (ra = 0.4, rt = 0.3, rm = 0.1, re = 0.2),
i.e., in this scenario all requirements have varying degrees of importance:
high accuracy being the most crucial and memory being the least important
one.
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Evaluated Objectives Ranks Weighted Scenario Ranks Aggregated 
Rank

Figure 6.3: An example of scenario selection. First, a simple ranking is applied to
evaluated objectives. Next, the scenario requirements set (ra = 0.4, rt =
0.3, rm = 0.1, re = 0.2) is used to compute the weighted ranks for the
given scenario. Finally, the aggregated rank is calculated and the model
with the lowest rank value (CNN6) is selected as the model associated
with this scenario.

6.5 experimental study

To evaluate the SBRS methodology, we perform an experiment by apply-
ing the methodology to three CNN-based applications with scenarios. The
Pareto Fronts derived from the hardware-aware EPT algorithm, as explained
in Chapter 5, are utilized to automatically derive a set of scenarios for
all three CNN-based applications. The merits of the SBRS methodology
are demonstrated through three applications from two different domains,
namely Human Activity Recognition (HAR) and image classification. We
used the PAMAP2 dataset for HAR and the Pascal VOC and the CIFAR-10
datasets for image classification.

As indicated in the motivational example, none of the existing works
can currently design an adaptive CNN-based application, where platform-
aware requirements and constraints are specifically considered for the envi-
ronment changes occurring at run-time. Within this context, none of the ex-
isting works is completely comparable to the SBRS methodology. Nonethe-
less, we perform a partial comparison between the SBRS methodology and
the most relevant existing work. Among the existing works, the MSDNet
adaptive CNN methodology [131] is the most relevant to the SBRS method-
ology.

The MSDNet, which is similar to the SBRS methodology, associates a
CNN-based application with multiple alternative CNNs that are charac-
terized with different trade-offs between accuracy and resource utilization,
and can be used to process application inputs of any complexity. Addi-
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tionally, both the MSDNet and the SBRS methodologies provide means
to reduce the memory cost of a CNN-based application by reusing the
memory among the alternative CNNs. In this sense, the MSDNet and the
SBRS methodologies can be compared via 1) CNNs, designed for a spe-
cific dataset and edge platform; 2) run-time adaptive trade-offs between
application accuracy and resource utilization; 3) memory efficiency. Such a
comparison is undertaken using the image recognition CIFAR-10 dataset.

6.5.1 Application requirements

The main features and requirements for each CNN-based application are
listed in Table 6.1. The table summarizes the application name, the tasks
they perform along with the baseline CNN that was deployed to perform
the application tasks and the real-world datasets, which were used to train
and validate the applications’ baseline CNNs. The last column shows the
sets of application requirements ri, i 2 [1,S], where every set ri charac-
terizes a scenario, associated with the CNN-based application, S is the
total number of CNN-based application scenarios. The applications use
extremely different baseline CNNs (from the deep and complex ResNet
based topology [5] to the small and shallow PAMAP topology) and diverse
datasets (from the large Pascal VOC dataset to the small PAMAP2 and
CIFAR-10 datasets). The ResNet based baseline topologies for the VOC and
the CIFAR-10 applications are custom Resnets, both of which are smaller
than the popular ResNet-18. This leads to diversity in scenarios and the
SBRS MoCs, derived for these applications and, hence, provides a sufficient
basis for evaluation of the effectiveness of the SBRS methodology.

6.5.2 Automated scenarios derivation

Firstly, all the objectives of fully-trained CNNs in the Pareto Front achieved
from the hardware-aware EPT (Chapter 5) were ranked individually. This
exercise was performed for the NVIDIA Jetson TX2 embedded platform [104].
Secondly, the rank based weighted aggregation was performed for each sce-
nario, using the requirement sets from Table 6.1 for the three applications.
The selected CNNs for each scenario after rank aggregation are presented
in Table 6.2, Table 6.3, and Table 6.4 for Pascal VOC, PAMAP2 and CIFAR-
10, respectively.

As the evaluation metric, the accuracy was computed for PAMAP2, and
CIFAR-10, while PR-AUC (Area under precision-recall curve) was used for
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Table 6.1: Application requirements sets for the scenarios

App. task baseline CNN dataset app. requirements sets
Pascal
VOC

Image
recongition

ResNet [5] Pascal
VOC
[23]

r1=(1.0, 0.0, 0.0, 0.0)
r2=(0.7, 0.0, 0.3, 0.0)
r3=(0.6, 0.1, 0.0, 0.3)
r4=(0.5, 0.5, 0.0, 0.0)
r5=(0.1, 0.1, 0.4, 0.4)

PAMAP2 Human
activity

monitoring

PAMAP
(CNN-2) [73]

PAMAP2
[24]

r1=(1.0, 0.0, 0.0, 0.0)
r2=(0.2, 0.4, 0.0, 0.4)
r3=(0.5, 0.0, 0.0, 0.5)
r4=(0.5, 0.5, 0.0, 0.0)

CIFAR-
10

Image
recognition

ResNet [5] CIFAR-
10

[22]

r1=(1.0, 0.0, 0.0, 0.0)
r2=(0.25, 0.25, 0.25, 0.25)
r3=(0.5, 0.25, 0.0, 0.25)
r4=(0.5, 0.0, 0.0, 0.5)

the Pascal VOC (See Chapter 2 for more details). The hardware-aware EPT
took 6 days with 8 GPUs for the Pascal VOC dataset. While it took 2.5
days on 4 GPUs for the CIFAR-10 dataset, and 10 hours on 1 GPU for the
PAMAP2 dataset.

The throughput, typically measured in frames per second (fps), charac-
terizes the speed with which the CNN is able to process input data and
produce output data. The memory cost, typically measured in Megabytes
(MB), specifies the total amount of memory required to execute a CNN. The
energy cost, measured in Joules, specifies the amount of energy consumed
by a CNN to process one input frame.

The scenarios that were eventually automatically derived in the exper-
iments, showcase a compelling representation of the application require-
ments. For instance, the Pascal VOC scenarios have contrasting require-
ments in r1 and r5; r1 demands best possible model efficiency, while on the
other hand, r5 demands low memory and energy usage. In line with the re-
quirements, the scenario for r1 has the best associated CNN in terms of high
PR-AUC score, though with a high memory and energy cost. Whereas, the
CNN for r5 consumes significantly less memory and energy than the for-
mer, but with a lower PR-AUC score. In yet another example, if the CNNs
for r1 and r2 are compared, it is observed that both demand high efficiency,
while r2 additionally demands a lower memory footprint. The scenario that
was derived for r2 requires almost 25% less memory at the cost of a small
dip in the PR-AUC score.
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Table 6.2: VOC scenarios

Req. PR-AUC Throughput Memory Energy

set (fps) (MB) (J)

r1 77.78 15.41 292.61 0.384
r2 76.28 21.78 210.69 0.281
r3 77.69 20.26 242.72 0.291
r4 73.99 59.27 155.48 0.101
r5 72.85 75.07 130.21 0.078

Table 6.3: PAMAP2 scenarios

Req. Accuracy Throughput Memory Energy

set (%) (fps) (MB) (J)

r1 94.17 510.20 10.02 0.0083
r2 91.34 1333.33 4.30 0.0033
r3 92.56 970.87 4.86 0.0037
r4 92.93 1052.63 4.11 0.0039

Table 6.4: CIFAR-10 scenarios

Req. Accuracy Throughput Memory Energy

set (%) (fps) (MB) (J)

r1 94.86 231.80 52.87 0.0242
r2 92.84 754.15 13.07 0.0055
r3 93.46 538.79 18.30 0.0081
r4 94.46 403.71 28.07 0.0121
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For the PAMAP2 application, a similar CNN ensemble with various re-
quirement sets is automatically derived. For example, r1 and r2 require-
ment sets place contradicting demands: r1 demands higher accuracy, whereas
r2 has more focus on energy and throughput. The derived CNN for r1 has
high accuracy, while the CNN for r2 has lower accuracy, but ⇡2.5x better
throughput and more than halves the energy usage.

Comparably, CNNs were derived for the CIFAR-10 application in the
same manner. To illustrate, r1 and r2 requirement sets purposefully differ
from each other in their demands. The r1 requires high accuracy, whereas
the r2 considers all of the measured characteristics to have the same impor-
tance. Comparing the derived CNNs for r1 and r2, it is clearly observable
that r1 CNN has a high accuracy, while r2 CNN with a lower accuracy, per-
forms better on all other parameters. These experiments clearly illustrate
that the scenario derivation enables automatic generation of diverse CNNs
with different ATME characteristics.

6.5.3 Comparative study

In this section, the SBRS methodology is compared to the MSDNet adaptive
CNN methodology [131]. The MSDNet proposes an adaptive CNN-based
application which allows multiple exit points in a large neural network,
depending upon the input complexity and hardware resource budget allo-
cated to the application. Similarly to the SBRS methodology, the MSDNet
associates a CNN-based application with multiple alternative CNNs that
are characterized with different trade-offs between accuracy and resource
utilization, and can be used to process application inputs of any complexity.
In this sense, the MSDNet and the SBRS methodologies can be compared
via 1) CNNs, designed for a specific dataset and edge platform; 2) run-time
adaptive trade-offs between application accuracy and resource utilization;
3) memory efficiency.

The CNNs obtained using the SBRS methodology and the MSDNet method-
ology, for the purpose of comparison, perform image classification on the
CIFAR-10 dataset. We refer to these CNNs as to the SBRS points and the
MSDNet points, respectively. The MSDNet points, i.e., subgraphs or exits

of the MSDNet CNN, are derived using the official implementation of the
MSDNet methodology, executed with design and training parameters spec-
ified already for the CIFAR-10 dataset. In total, there are six MSDNet points.
For the SBRS points, we obtained eight SBRS points that are pareto-optimal
in terms of the ATME characteristics from the hardware-aware EPT algo-
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Figure 6.4: Comparison among the SBRS and the MSDNet [131] points

rithm. These points are not the final scenarios as portrayed in Table 6.4, but
the pareto-optimal CNNs resulting from the hardware-aware EPT (though,
post-processed further and fully-trained). The scenarios presented were de-
rived based on a weighted ranking from this pareto set of CNNs.

To compare the MSDNet points with the SBRS points, we have evalu-
ated the ATME characteristics of all the points on the same hardware. The
platform-aware characteristics (throughput, memory, and energy) are mea-
sured on the NVIDIA Jetson TX2 edge platform [104].

The SBRS and the MSDNet points comparison is shown in Figure 6.4.
Considering that it is not easy to draw and understand four-dimensional
plots, the comparison is represented as three two-dimensional plots, sub-
plots (a), (b) and (c), each comparing one of the platform-aware CNNs char-
acteristics to the CNNs accuracy. The accuracy (the higher the better) is
always on the vertical axis with different platform-aware characteristics on
the horizontal axis: energy (the lower the better), throughput (the higher
the better) and memory cost (the lower the better), respectively. Each sub-
plot shows the six points for the MSDNet and those SBRS points that are
pareto-optimal in terms of respective platform-aware characteristics.

Beside the visualization, these plots also provide insight into the key dif-
ference between the SBRS methodology and the MSDNet. It can be clearly
observed in Figure 6.4 that the SBRS points are able to achieve similar ac-
curacy when compared to the MSDNet points, but with lower energy cost,
higher throughput, and lower memory cost. We believe that the reason
for this direct distinction is caused by the optimization, applied (through
the hardware-aware NAS) by the SBRS methodology, to every SBRS point
to meet the platform-aware needs, while the MSDNet CNN does not pro-
vide such optimization. The plots in Figure 6.4 undoubtedly reveal that the
SBRS points are a better choice for using them as scenarios in the SBRS
methodology compared to the MSDNet points because none of the MSD-
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Net points pareto-dominates the SBRS points but many of the SBRS points
pareto-dominate the MSDNet points.

Additionally, to study the efficiency of the proposed methodology, we
compare accuracy and throughput characteristics of the MSDNet CNN and
the SBRS MoC, both constructed for an example CNN-based application.
The example application performs classification on the CIFAR-10 dataset,
and is affected by the application environment at run-time.

The MSDNet CNN is constructed according to the design and train-
ing parameters specified for the CIFAR-10 dataset in the original MSD-
Net work [131]. It has six exits, characterized with different accuracy and
throughput. During the application run-time, the MSDNet CNN can yield
data from different exits, thereby offering various trade-offs between the
application accuracy and throughput. We evaluate these trade-offs by ex-
ecuting the MSDNet CNN with an anytime prediction setting. This setting
allows the MSDNet CNN to switch among its subgraphs (exits), thereby
adapting the MSDNet CNN to changes in the application environment.

We note that in the original work the switching among the MSDNet CNN
exits is driven by a resource budget given in FLOPs, not by a throughput
requirement. However, conceptually, it is possible to extend the MSDNet
CNN with a throughput-driven adaptive mechanism. In this experiment,
we emulate execution of the MSDNet CNN with such a mechanism in order
to enable direct comparison of the MSDNet CNN with the SBRS MoC.

The SBRS MoC was created using the same settings as presented in
Table 5.3, and three sets of application requirements, specifically looking
only at accuracy and throughput for this comparative study. In the first
set r1 = {0.1, 0.9, 0.0, 0.0}, the application prioritizes high throughput over
high accuracy. In the second set r2 = {0.5, 0.5, 0.0, 0.0}, high throughput and
high accuracy are equally important for the application. In the third set
r3 = {0.9, 0.1, 0.0, 0.0}, the application prioritizes high accuracy over high
throughput. The obtained the SBRS MoC has three scenarios corresponding
to the three sets of requirements r1, r2, and r3. During the application run-
time the SBRS MoC can switch among its scenarios, thereby offering various
trade-offs between application accuracy and throughput, and adapting the
application to changes in the application environment at run-time.

The comparison between accuracy and throughput characteristics of the
aforementioned MSDNet CNN and the SBRS MoC, is visualized in Fig-
ure 6.5. The horizontal axis shows throughput (in fps). The vertical axis
shows accuracy (in %). The two step-wise curves in Figure 6.5 represent
the relationships between accuracy and throughput, exhibited by the MS-
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Figure 6.5: Comparison between the SBRS MoC and the MSDNet CNN [131], per-
forming classification on the CIFAR-10 dataset with throughput-driven
adaptive mechanism

DNet CNN and the SBRS MoC. Each flat segment of the step-wise curves
represents a scenario in the SBRS MoC or an exit in the MSDNet CNN.
For example, the flat segment of the MSDNet curve, characterized with
throughput between 231 and 392 fps and accuracy of 0.918%, represents
exit 2 of the MSDNet CNN. Each cross marker or triangle marker repre-
sents a switching point between the SBRS MoC scenarios or the MSDNet
CNN exits, respectively.

As explained above, run-time switching among the scenarios or exits oc-
curs when the application is affected by changes in its environment at run
time. Figure 6.5 illustrates such changes in the application environment as
the two vertical dashed lines, representing demands of minimum through-
put, imposed on the application by the environment at run time. For in-
stance, at the start of the application execution, the environment demands
that the application must have a throughput of no less than 200 fps with
as high as possible accuracy. In this case, the MSDNet CNN yields data
from exit 3, demonstrating 0.931% accuracy, and the SBRS MoC executes in
scenario 3, demonstrating 0.949% accuracy. Later, the application environ-
ment changes and demands that the application must have throughput of
no less than 394 fps. Thus, the MSDNet CNN starts to yield data from exit
1, demonstrating 0.902% accuracy, and the SBRS MoC switches to the next
scenario, demonstrating 0.946% accuracy.
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As depicted in Figure 6.5, the SBRS MoC exhibits higher accuracy than
the MSDNet CNN for any throughput requirement, except when the appli-
cation has to exhibit throughput lower or equal to 61 fps. In the latter case,
the accuracy of the SBRS MoC is comparable (0.05% lower) to the accuracy
of the MSDNet CNN. We believe that the difference in accuracy between the
SBRS MoC and the MSDNet CNN occurs because the scenarios in the SBRS
MoC are optimized for both high accuracy and high throughput, whereas
the exits of the MSDNet are only optimized for high CNN accuracy. Opti-
mization for the platform-aware requirements performed during the SBRS
MoC design enables for more efficient utilization of the platform resources,
and therefore for more efficient execution of the application when high
throughput is required.

6.6 summary

In this chapter, a novel methodology has been introduced, which provides
run-time adaptation for CNN-based applications executed at the edge to
changes in the application environment. We evaluated the proposed SBRS
methodology by designing three real-world run-time adaptive applications
in the domains of Human Activity Recognition (HAR) and image classifi-
cation, and executing these applications on the NVIDIA Jetson TX2 edge
device. The experimental results show that for real-world applications, the
SBRS methodology enables the efficient automated design of CNNs, charac-
terized with different accuracy, throughput, memory cost and energy con-
sumption. It further enables adaptive execution on the edge by allowing
different CNNs to be switched during run-time, depending on the changes
in the environment.

Additionally, we compared the SBRS methodology to the run-time adap-
tive MSDNet CNN methodology, which is the most relevant to the SBRS
methodology among the related work. The comparison is performed by
CNNs designed for the CIFAR-10 dataset and executed on the Jetson TX2
edge device. The comparison illustrates that the application designed us-
ing the SBRS methodology outperforms the MSDNet CNN when executed
under tight platform-aware requirements, and demonstrates comparable ac-
curacy against the MSDNet CNN when the platform-aware requirements
are relaxed. The difference can be attributed to the fact that unlike the MS-
DNet CNN, the SBRS methodology optimizes the application in terms of
both high accuracy and platform-aware characteristics.



7
N E U R A L N E T W O R K R E U S E A N D

C O M P O S I T I O N U P D AT E

Deep learning has inadvertently pioneered the transition of big data into big knowl-
edge. Neural networks absorb and incorporate knowledge from large scale data
through training and can be regarded as a representation of the knowledge learnt.
There are multitude of use cases where this acquired knowledge can be used to en-
hance future applications or speed up the training of new models. Yet, the efficient
sharing, exploitation and reusability of this knowledge remains a challenge. Moti-
vated from the EPT algorithm where neural networks are treated as dynamic enti-
ties, and are frequently modified to enable an efficient NAS algorithm, this chapter
introduces a framework for deep learning models that facilitates the reuse of model
architectures in an adaptivity-centric viewpoint. The framework has capability to
transfer coefficients between models for knowledge composition and updates, and to
apply compression and pruning techniques for efficient storage and communication.
We discuss the framework and its application in the context of Knowledge Centric
Networking (KCN) and demonstrate the framework potential through various ex-
periments, i.e. when knowledge has to be updated to accommodate new (raw) data
or to reduce complexity. In terms of adaptivity, this framework assists the neural
networks based applications to be useful beyond just one operation. It can provide
the support needed for longevity of existing and deployed deep learning models at
the edge.

This Chapter is based on:

• D. Sapra and A. D. Pimentel "Deep learning model reuse and composition in
knowledge centric networking" [138], in Proceedings of the International Confer-
ence on Computer Communications and Networks, © IEEE.
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7.1 introduction

In the age of the Internet of Things (IoT), where we have a complex network
of connected devices, sensors and computing units, there is a large amount
of data churning up every minute. As these networks grow with more de-
vices and users, the rapid growth of data can overwhelm the underlying
communication channels and resources. The data can be highly redundant
and obtaining data might not be the end objective in such networks. Con-
verting data to knowledge allows utilization in beneficent ways for different
tasks, such as visual monitoring in smart homes, remote assistance in med-
ical care or analyzing environmental data for agriculture. Machine learning
is increasingly being deployed to convert raw data into meaningful knowl-
edge. This conversion is majorly performed on a central server or knowl-
edge creator node with high computation capabilities, which can create
bottlenecks with high volumes of data communication. To overcome these
issues, Knowledge Centric Networking (KCN) was conceptualized in [139],
which proposes a paradigm shift, in a network, from data centric commu-
nication to knowledge centric communication. KCN emphasizes three key
aspects about knowledge: creation, composition and distribution.

Figure 7.1: Traditional IoT network with centralized knowledge server for intel-
ligence. Deep learning models are trained centrally using data from
devices and then distributed.

Deep learning models or Neural Networks (NNs) are a popular knowl-
edge modality for big data, storing the knowledge in the form of a brain-
like architecture and thousands to millions of coefficients, which are trained
from a large amount of data. They can be viewed as assimilating and ex-
tracting knowledge by storing data statistics and domain specific character-
istics through training. Figure 7.1 illustrates how IoT networks and deep
learning models are deployed and used in the traditional sense. There is
a central knowledge server that creates deep learning models from de-
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vice data, analyzes new incoming data and decides when to update the
knowledge model. This knowledge server frequently distributes appropri-
ate neural networks to all devices, in order to promote the use of better
and more intelligent applications. KCN visualizes the knowledge creation
at the edge wherever possible, and these deep learning models serve as
the basic communication paradigm. New dynamic data is continuously
sensed and devices are added to the network all the time. Sharing the as-
similated knowledge models, building newer knowledge models on top of
existing ones, and distributing decision making capabilities are aspired as
this would make the network more resilient and adaptable to changes over
the course of its active lifetime.

In such a distributed intelligent network, there is a need for frequent
knowledge updates, which leads to the demand of an adaptive nature of
the application over a longer period of time. From the work presented in
first part of this thesis, it has already been observed that neural networks
are dynamic entities. Their architectures are continuously modified during
the search to traverse a large search space of neural architectures. The same
rationale of treating a neural network as a dynamic model can be extended
to the KCN environment.

In a domain specific application, the high correlation of neural networks
can be exploited by different devices to reuse and combine each other’s
knowledge to create an adaptive application. Standardizing the knowledge
update process with the aim of reusing this high correlation, motivates
the creation of our framework. Our framework coordinates efficient com-
munication, exchange and update of deep learning models, while being
adaptable to accommodate new data being generated and insights learnt.

We differ from domain adaptation [140], knowledge distillation [141],
and similar teacher-student algorithms [142], which attempt to create new
models for similar tasks in different domains or constraints. In essence,
these techniques can be used with our framework to simplify the creation
of student models and streamlining their distribution through the network.

In short, our framework facilitates creation of a new network and modifi-
cation of existing ones, allows combination of multiple models to compose
a new model, replaces part(s) of a model with other sub-model(s), isolates
model layers that can be individually transferred while supporting packag-
ing and compression for distribution. There are multitude of ways in which
deep learning models can be modified, both weights and architecture of the
neural network can be updated, e.g. add/prune layers, add residual connec-
tions, change layer activation.
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Figure 7.2: KCN paradigm on IoT network with edge computing. Deep learning
models can be created on edge and transmitted from edge to edge, edge
to cloud as well as edge to IoT device [143].

All of these tasks are unrelated to the training of models or knowledge
creation directly, even so, these tasks are needed to keep the network’s
knowledge contemporary and maintain communication brevity with fre-
quent updates in the context of KCN. Applied properly, these tasks are
necessary to create an adaptable environment, where neural networks can
be modified to suit the changing needs over a long period of time.

This chapter introduces a framework for neural networks to facilitate
knowledge exchange, reuse and frequent updates. Additionally, we discuss
various deep learning model update techniques from existing literature and
formulate them in the context of Knowledge Centric Networking for adap-
tive environments. The framework is validated with experiments to update
CNNs by varying data information over time as well as model complexity.

7.2 knowledge centric networking (kcn)

In traditional IoT networks with cloud computing support, all devices trans-
fer the data to the cloud and delegate heavy computational tasks to the cen-
tral server. Data then converge and are progressively used for model train-
ing and fine tuning. This approach implicates heavy data transmission and
storage requirements on the network. The huge amount of data threatening
to throttle the network has prompted various research ideas, e.g. data com-
pression and quantization techniques [144, 145]. Despite very efficient data
compression techniques, the network still can be overwhelmed to meet the
demand for high efficiency with highly redundant data transmissions. A
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novel concept of KCN was envisioned and proposed in [139], which empha-
sises the communication of knowledge models instead of raw data. IoT de-
vices continuously sensing the environment and generating huge amounts
of temporal data, can use additional edge devices, which are closer to them
or maybe embedded along with sensors in the IoT device, for knowledge
extraction. KCN is based on the Edge computing paradigm [146], which
promotes more computation on edge devices and less on the cloud, thereby
reducing costs for data bandwidth and storage. Figure 7.2 illustrates this
concept: deep learning models can be created and updated at the edge and
transmitted to other IoT devices, edge devices or cloud. Besides improving
latency and scalability of the system, KCN also reduces exposure to pri-
vacy and security attacks by removing the private or sensitive data moving
around in the connected network.

This network allows a different granularity and hierarchy of knowledge
creation, re-composition, update and exchange. Edge nodes can extract lo-
cal knowledge from the sensed data and then upload to the cloud. The
cloud server collects models from different devices and can perform com-
posite knowledge updates. It can then further distribute the updated mod-
els to interactive and decision making devices, which might be considered
as front-ends of the system. Edge nodes can also request generated mod-
els at another edge node directly to perform its own task efficiently. This
results in frequent knowledge communication in the network as well as
recurring updates to knowledge models stored at different devices.

With significant recent advances in deep learning models and deploy-
ment of more and more IoT devices, it is probable that KCN will become
the key to control the too much data problem. The work in this chapter at-
tempts to take a step towards treating neural networks as dynamic entities,
which can be updated and adapted to the changing environment, as and
when required. It is important to note that the techniques discussed in this
chapter are not limited to a KCN based IoT network. They can be applied
in any situation that warrants an adaptive deep learning based application.

7.3 related work

The concept of incorporating knowledge based communication into net-
working is not new. There have been numerous works proposing the idea,
such as [147–149]. However, the focus of these works is towards network
communication analysis and control, while largely ignoring the utilization
of the knowledge modality in all other aspects of an IoT network. In direct
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contrast, KCN perceives the knowledge as the chief content operating in
the network, from front-end to back-end and from sensing to action. Knowl-
edge creation, composition and distribution are the primary expected fea-
tures of every device on the network.

Some works proposed in recent years investigate various different as-
pects of the knowledge centric paradigm to further the research on KCN
infrastructure. For knowledge distribution in KCN, [143] investigated inter-
model compression for compact representation of models to further reduce
the data bandwidth requirements. Our works are similar in respect that we
believe interoperability is the forefront of knowledge communication and
exchange, but diverge very quickly in the scope they are investigated. Our
focus is on knowledge modification as opposed to knowledge compression
for distribution. Deep learning model compression is a small part of our
framework whose aim is to allow coefficients isolation and efficient packag-
ing in situations where only some parts of the model need to be exchanged.

Foreseeing the problem of the knowledge-based forwarding on the knowl-
edge router, [150] proposed a novel data structure for the knowledge rout-
ing table index. This results in faster movement of knowledge on a physical
network and its efficient routing in terms of shorter latency, low memory
consumption, and fast routing table update. Similarly, [151] proposed an
intelligent routing algorithm for knowledge models in KCN based vehic-
ular ad hoc networks. These works, though dissimilar to ours, are vital to
achieve KCN deployment in physical IoT networks. These works strengthen
the viability of a KCN infrastructure implementation and in turn makes our
framework more practical and serviceable in a KCN based system.

The concepts of lifelong learning and never-ending learning [152, 153]
have also been around since a while. These ideas focus on individual mod-
els to be better learners of a variety of data types by being able to learn how to
learn, and thus keep evolving with the evolving environment. Even though
the concepts have been proposed for individual models, they can also be
reformulated for the KCN paradigm where the dynamic intelligence of the
network is able to improve implicitly over the course of time.

The implementation of systems that will last a long time is also possi-
ble through progressive learning methodologies for neural networks such
as for multi-class classification [154], face recognition [155] and Speech En-
hancement[156]. In progressive learning, the neural network starts learn-
ing from a small set of data but can expand automatically on introduc-
tion of new classes while still retaining the knowledge of previous classes.
Unlike our framework, these techniques let the model to grow with each
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update and do not perform model reduction or consider power-memory
constraints that are common with devices in the IoT network.

7.4 framework design

In this section, the framework and its features are introduced, while dis-
cussing the design choices that we contemplate to work best in different
situations that can occur in knowledge-based IoT networks. There is a
plethora of algorithms and techniques available in the literature that mod-
ify a neural network in different possible ways. We draw some techniques
from this pool for their suitability to KCN. We not only describe differ-
ent forms of model modifications in this section but also envision how and
where they can be used for efficient knowledge exchange. We specify which
techniques are supported by our framework and we try to point out their
applicability and possible use case settings. The novelty of this framework
lies in the detailed study and consolidation of deep learning modification
and communication techniques applicable to a progressive learning and fre-
quent update paradigm. We recognize that some of our work is about pic-
turing various situations in the context of KCN and building a framework
around it. We believe that formulating knowledge composition, update and
exchange methodologies will cater to the dynamic IoT network to be better
serviced for a longer period of time and it is a step forward towards moving
the KCN paradigm from a vision to reality.

7.4.1 Coefficients Update

The simplest form of knowledge update occurs in a neural network by train-
ing the existing model with more data. The model architecture remains ex-
actly the same, yet all coefficients get updated to reflect knowledge from
new data. Our framework implicitly handles the coefficients update by up-
dating the model file with new weight values after training. Training with
new data is done at the edge and it is expected that this operation is recur-
rent in nature on most, if not all, edge devices. With the knowledge model
being the important storage and communication entity, the data is expected
to be discarded after training. The frequency of training is driven by storage
capacities at the edge devices and training can be triggered with sufficient
accumulated data. Depending on data type and format, there may be a
data cleanup and pre-processing pipeline in place before the training oper-
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ation. The updated model is then available to be distributed or exchanged
through the network as needed.

7.4.2 Architecture Update

Designing a neural network is not trivial, and not all architectures are
equal in terms of their capacities and knowledge representation capabili-
ties. Deeper networks, with a higher number of layers, allow a more com-
plex and non-linear function to be learnt from data. However, apart from
needing huge amounts of training data to be able to meaningfully learn,
they require a large memory and powerful computation units, usually lack-
ing in edge devices.

There exists a performance-resource trade off in embedded and low power
systems, which is usually dissimilar for different types of devices. While ex-
changing neural networks between different nodes, there is a chance that at
the receiving device, the model is too large or demands more computation
resources than available, setting off a need to reduce the model complexity.
In some other cases, the initial data available is not enough to train a large
model, so a small model may be built to kick start the knowledge extraction
process which also prevents over-fitting on the small data-set at the same
time. A larger model is built later on to fully utilize all data that has been
sensed, which can be fabricated by expanding the current model capacity
instead of training from scratch. This progressive expansion is also expected
to reduce the upfront overhead of computational costs that training a large
model entails.

In all feasible and available possibilities for architecture update, it is as-
sumed vital for a model to be updated in a function preserving fashion, so
that the model does not leak its knowledge. All algorithms implemented in
the framework have been chosen to consider either the function preserva-
tion or minimal loss possible. Some of them were motivated by the genetic
operators in evolutionary neural architecture search (Chapter 3), where
function preservation is crucial. The small loss of performance with a ma-
jor update is expected to be gained back by training more and more as new
data keep arriving around the clock.

Our framework handles architecture updates by considering each layer as
a named node and storing its coefficients as a separate but connected block.
Each node can be isolated and its parameters, coefficients and formats up-
dated individually. It automatically checks for data format changes to be
done in subsequent layers of the modified node to keep the model valid
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and consistent. The named nodes are important and should be unique to
be able to be used as identifiers for all the update and modification opera-
tions.

Increasing the model capacity

Out of all possible ways to increase the model’s capacity, our framework
currently handles two ways to increase the capacity of the model: increase
the number of layers of the neural network or increase the number of
units or neurons in each or some of the layers. Our framework emulates
Net2Net [65] for function preserving expansion of the network. There are
two operations available in Net2Net: Net2Deeper and Net2Wider, to in-
crease neural network depth and layer size respectively. Any convolutional
or fully connected layer is replaced by two layers of the same type and size,
with one layer having the same coefficients as the original layer and the new
layer’s coefficient matrix as initialized to an identity matrix. To increase the
number of units in each layer, the coefficient matrix is expanded to the re-
quired size and then random layer units are selected and duplicated in the
expanded coefficient matrix. Any increase in number of units causes the
output of the layer to increase by the same amount, which means that there
is a parallel increase in the number of inputs to the subsequent layer. This
causes the coefficient matrix to expand as well, which is then appended
with randomly initialized values. These new layers and units remain free
to train further to take on any value later. Hence, the effect of increasing
layers and units in this way is only to provide a good initialization to the
newly created snippets in the knowledge. With further training on the data,
the coefficients get updated to preserve any new knowledge and slowly
diverge from their initial values.

Decreasing the model capacity

Contrary to the capacity increasing operations, it is not beneficial to delete
layers or sub-units of the model in an ad-hoc manner. Each layer of the
model holds information or features that subsequent layers use to build
their own sub-knowledge. Various pruning techniques have been proposed
in the last decades to reduce model complexity, redundancy and over-
fitting. In recent works, [157] and [158] suggested to remove all connections
whose weight was lower than a threshold and retrain the rest of the network
to fine-tune the model again. This approach leads to a reduction in model
size to the tune of 9⇥- 13⇥without any loss of accuracy but leads to lightly
populated coefficient matrices. This reduces memory footprint of the model
but fails to reduce the computation cost because of irregular sparsity in the
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pruned network. To overcome this issue, our framework emulates the inde-
pendent pruning technique from [159]. This approach prunes the layer size
by removing the least important units of a layer. The relative importance of
a unit in each layer is calculated by the sum of its absolute weights. This
value gives an expectation of the magnitude of the output of each unit, also
called a feature map. Feature maps with smaller weights tend to produce
outputs with weak activations when compared to the other units in that
layer. Based on the target reduction size, the units with the smallest sum
values and their corresponding feature maps are removed from the model.
To regain the accuracy that was lost by pruning, a prune-then-retrain strat-
egy needs to be adopted. In our framework, we prune filters of multiple
layers at once followed by further training, though it is also possible to iter-
atively prune small slices of the model and retrain the network repeatedly.
The iterative process may yield better results, but it requires more data and
training epochs to reach original performance.

Another way in which our framework decreases the network capacity is
by performing quantization on the coefficient values. Quantization refers
to the process of reducing the number of bits that represent a number. In
the context of deep learning for research and deployment, the predominant
numerical format used has been 32-bits floating point. Our framework cur-
rently converts 32-bits floating point numbers to 16-bits, thereby halving
the memory requirements for the model on devices. As shown by many
research works, replacement of high precision numbers by lower-precision
numerical formats can be done without incurring significant loss in accu-
racy [160, 161], thus preserving most of the knowledge encapsulated in the
converted model.

Replacing Layers

Our framework allows for replacing a layer block in a model with a layer
block from another model, which was trained on similar data but on an-
other device. For this replacement to work, the input and output format
of the switching block have to be same in both source and target models
while the size of the block can be different. Figure 7.3 illustrates the layer
replacing approach in our framework. If model complexity reduction is de-
sired, a block of n layers is replaced by a block of layers of size <n from the
source model, given the layers are at the same cluster position as defined
in Chapter 3, so that the input and output formats of the layer blocks are
identical. The inverse action is also possible to increase model capacity. This
situation in KCN is plausible when multiple knowledge models in the IoT
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Figure 7.3: Example of layer replacement. A layer from the source model replaces
a similar layer section in the target model to achieve a new model con-
taining fewer layers.

network are trained on same data but resulted in different deep learning
models based on each device’s own optimization for model creation and
composition over the course of time. Accuracy lost by performing this ac-
tion can be regained by retraining with more data, though sometimes the
new model might never be as proficient as the old one.

The model complexity of neural networks can also be reduced by re-
placing a fully connected layer of a convolutional neural network with the
Global Average Pooling layer. The network in Network architecture [162]
and GoogLenet [163] achieve state-of-the-art results on several benchmarks
by adopting this idea. Within our framework, replacing layers is achieved
by creating a new architecture for the model, which attempts to copy all
its coefficients from the old model. Coefficients for nodes which cannot be
found in the source model are then randomly initialized, these are essen-
tially now the new layers of our model.

7.4.3 Activation function update

Our framework allows changes to other parameters such as layer activa-
tions, drop-out units and normalization techniques as well. Activation func-
tions are used for introducing non-linearity into the neural network model
so that the network can progressively learn more effective feature repre-
sentations. Rectified Linear Units(ReLU)[164–166] are the most popular ac-
tivations as deep networks with ReLUs are more easily optimized than



114 neural network reuse and composition update

Figure 7.4: Popular activation functions for neural networks.

networks with sigmoid or tanh units [167]. Figure 7.4 shows some popular
activation functions.

Changing an activation function in the neural network has a huge impact
on the model behavior and changing them for an already trained model is
not a good idea. However, changing the activation function from related
functions is desirable in some cases, such as using Leaky-ReLU will avoid
the dead ReLU problem which happens when the ReLU activation always
have values under 0, which completely blocks further learning. Concate-
nated RelU[168] and Parametric Rectified Linear Unit (PReLU) [169] are
proposed to reduce redundancy and better generalize the traditional ReLU.
In principle, changing the activation function is carried out in our frame-
work by changing node parameters. However, the more disparate and dis-
similar activation functions are, the more knowledge is lost in the process.

7.4.4 Multi-source knowledge fusion

Our framework facilitates fusion of multiple neural networks to assimilate
knowledge from different sources into a larger model encapsulating the big-
ger picture. By using the same layer node names as source nodes, the fused
model represents replicas of the parts of different models joined together
within the new model. After the new model is created, it looks for associ-
ated source layer coefficients to be copied for later computation.

This feature is useful in IoT networks with temporal sensing such as with
Human Activity Recognition (HAR) [18, 170, 171], which is a vital step in
an application, such as skill assessment and smart home assistant. Each
sensor has its own knowledge extraction module to analyze and obtain
the local salient features from the data. This knowledge is pooled centrally
and processed to extract inter-sensor dependencies and detect associated
human activity in the given time period. Figure 7.5 illustrates the concept
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of multi-source knowledge fusion with deep learning models for time series
input sensors.
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Figure 7.5: Knowledge fusion model with different sensors in Human Activity
Recognition (HAR). Each time series data from sensors is locally pro-
cessed and fused together at a central node to extract inter-sensor rela-
tions to detect human activity [170].

In the context of KCN, this kind of model will have difficulties to start
knowledge extraction locally because all the sensor data needs to be trained
together to extract knowledge about both independent and inter-dependent
features for a meaningful activity recognition. All sensors might be served
by same edge node to collect data and start training the model. Once suf-
ficient performance is reached, the model parts might be isolated and dis-
tributed to relevant sensors. The sensors can then convert their local raw
data into knowledge using their own sub-model and send their knowledge
to the same edge node again to be fused with knowledge from other nodes.
Our framework allows layer isolation and model fusion to seamlessly exe-
cute this possible workflow.

Another example of knowledge fusion, called multi-source transfer learn-
ing [172, 173] is popular in medical image analysis. It is based on an ensem-
ble of models that are each created using single source transfer learning
from a variety of domains with similar data characteristics. In single source
transfer learning a number of consecutive layers are transferred from a cho-
sen pre-trained model (teacher) to initialize its counterpart target model
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Figure 7.6: Knowledge fusion model with multi-source transfer learning using an
ensemble of deep models from different sensors/devices. Knowledge
is transferred from each source database to a target model. A selection
process combines models into an ensemble that is used to train a single
randomly initialized neural network.

(student). The rest of the student model is created anew and randomly ini-
tialized. The layers obtained from the teacher are usually frozen and the
student model is trained on the target data-set to be fine-tuned for the in-
tended domain.

In our framework, single source transfer learning is realized by dupli-
cating the source model, freezing the coefficients of appropriate layers and
then replacing the rest of the layers with new randomly initialized replace-
ment layers. After re-training and fine tuning for the target task, the new
models can be saved at the central server.

An ensemble of all of the student models is then used to train another
model which is essentially now being generated by training from a knowl-
edge ensemble instead of raw data. Figure 7.6 shows the multi-source trans-
fer learning methodology. In KCN, this paradigm is very useful when a new
device is added to the network, allowing it to gain knowledge from already
available intelligence in the network and does not need to wait for a lot of
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data to be collected before being fully utilized and deployed in its intended
task. Our framework does not perform this training but facilitates the cre-
ation of ensembles of relevant student models. Using the ONNX file format,
any available or desired deep learning framework can be used to train from
the model ensemble.

7.4.5 Isolation and compression

As previously mentioned, our framework is capable of isolating layers and
their coefficients for all types of modifications done on the models. Com-
pression and packaging of raw coefficients data are vital for efficient trans-
mission and exchange throughout the system, especially when distributing
only a part of the model. We implemented basic support for general pur-
pose compression and decompression using the popular ZLIB compression
library [174]. But, other compression libraries can also be added to extend
our framework.

7.5 validations

In this section, we validate the framework and its viability to act as a
knowledge modification and update environment. We present the frame-
work setup followed by two use cases, a smart camera network and a multi-
sensor network, simulating the KCN environment. We discuss different use
cases for the framework within these use cases.

We implemented the framework using Java 8 and the Protocol Buffers
(protobuf) library [175] to build the ONNX components. Our framework
reads ONNX files and then alters them as per the requested use case and
writes the updated ONNX files onto the storage system again. For further
training and validation, we imported the ONNX files into the Python based
Caffe2 framework (from the Pytorch library) [33]. Our framework itself is
reasonably lightweight and runs without any GPU support, though we uti-
lized a GeForce RTX 2080[176] GPU to train all the deep models.

7.5.1 Smart camera network for object recognition

We simulated a KCN environment for a smart camera network for object
recognition as outlined in various other frameworks as well [177–179] (see
Figure 7.7). In the simulated environment, each camera is represented by a
unique convolutional model called a cam-model. In other words, each cam-
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Figure 7.7: Smart camera network with a central knowledge server.

model in the environment appears for a virtual camera and defines its object
recognition capabilities. In the experimental setup, we trained cam-models
on CIFAR-10 [22], which is a popular object recognition dataset. CIFAR-10
consists of 32⇥ 32 pixels RGB images classified into 10 categories and is
further divided into two sets of 50000 training and 10000 test images, to
train and validate the model respectively.

A cam-model is an assembly of multiple convolutional layers interspersed
with two maxpool layers for input size reduction, followed by fully con-
nected layers. The convolutional layers are also termed as feature extractor,
and a series of fully connected layers, work as a classifier, to correctly clas-
sify the image and provide a label.

Figure 7.8 illustrates a basic neural network structure used in the current
setup. Each cam-model has its own distinct topology where the number of
convolutional and fully connected layers as well as layer parameters such as
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Figure 7.8: Deep neural network depicting convolutional feature extractor and
fully connected classifier.
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Figure 7.9: Training curves for pruned model by 10%

the number of units and kernel sizes are randomly sampled taking the pre-
defined constraints into account. This is to reflect that in a real smart camera
network, cameras added over a long period of time will have different local
compute and storage capabilities and might have been initialized with a
distinctive deep learning model.

All models were built with ReLU activations and were trained (and re-
trained) with a learning rate of 0.0005 and batch size of 90 using the Adam
optimizer. We restricted the GPU memory usage to 5GB during training to
limit the size of Neural Network from becoming too large. It is assumed
that labelled data is available and accessible by relevant devices or the
server to perform these tasks. We discuss some use cases for our frame-
work below:

Pruning a model by 10%

Memory is usually limited on an edge device and therefore, pruning is a
very efficient technique to reduce the model’s memory footprint. To demon-
strate that performance is not degraded when removing redundant infor-
mation, we performed this experiment on a cam-model comprising of 13
convolutional layers and 3 fully connected layers having a total of ⇡10 mil-
lion coefficients.

We pruned the network to reduce all weights by 10%, resulting in a new
model with ⇡9 million coefficients. The resulting model uses less mem-
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Figure 7.10: Training curves for modified model with some convolutional layers
replaced from another pre-trained model

ory while also reducing the number of MAC (Multiply-Accumulate) oper-
ations needed in each run. The original model has 91.4% accuracy while
the pruned model actually performed slightly better with 91.59% accuracy
after re-training, see Figure 7.9. The increase in performance is caused by
weak activations removal which were not contributing considerably to the
model intelligence.

Model composition from two neural networks

For this use case, we selected a cam-model, with the aim of reducing the
storage size of the model on the edge. It has 10 wide convolutional layers
and 3 fully connected layers (⇡ 19 million coefficients) with test accuracy of
90.81%. We picked another cam-model with 13 (smaller) convolutional and
2 fully connected layers (⇡ 12 million coefficients) having an accuracy of
92.09%.

We chose a block of 2 convolutional layers from the latter model and used
it to replace a block of 4 convolutional layers in the first one. All the blocks
that were selected were operating on same input and output dimensions
and were roughly in a similar phase of feature extraction.

The resulting model now has 8 convolutional layers and 3 fully connected
layers with ⇡ 14 million coefficients. We re-trained it further and the new
model was able to achieve 89.5% accuracy, which is much less than its



7.5 validations 121

Figure 7.11: Training curves for modified pre-trained model to include a new class
"Flower" to the existing CIFAR-10 dataset.

parent. Figure 7.10 shows the related training curves. This illustrates the
point that composing a model from two different models is not always a
preserving function, however the benefit is still observed by lowering the
model complexity through a reduction in the number of layers, amount of
arithmetic computations and storage size.

Increasing the number of output classes

As mentioned above, there are 10 output classes for the CIFAR-10 dataset.
There are possible situations where sensed data or the environment has
evolved and there is a need to define an extra output class. It is not desir-
able to train from scratch, especially when original data were not saved in
the system. We added a class "Flower" to an existing, pre-trained model on
CIFAR-10. The number of images available for the new class were kept at
half of existing class samples to reflect the fact that in a dynamic environ-
ment new output classes will not be equally represented, specially in the
early stages of new data being sensed. To fine tune the model, we preserved
the feature extractor and expanded the last fully connected layer in the clas-
sifier to include new output, totalling the number of outputs to 11. The new
model was fine-tuned by training with an input data set containing all 11
classes, though only the last few layers were available to be updated as we
froze the feature extractor.
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Figure 7.12: Training curves for modified pre-trained model with Global Average
Pooling as classifier, replacing fully connected layers.

The randomly chosen cam-model, consists of 15 convolutional layers and
3 fully connected layers with 92.6% accuracy (with 10 classes). After only
10 epochs training, the reached accuracy for the extended CIFAR-10 dataset
is 91.57%, see Figure 7.11.

We did not observe an accuracy increase after 10 epochs. And we no-
ticed that there is a loss of performance, but handling the trade-off between
speed of knowledge update and best performance achievable is a complex
task to fulfill. The trade-off will generally vary with different data types,
model complexities and device computation capabilities. As future work,
the decision choices regarding how long to train and how many layers to
freeze might also be dynamically incorporated into the framework to get
the best model in terms of its performance when data characteristics change
over a long period of time.

Replacing layers

Replacing heavy fully connected layers with Global Average Pooling de-
creases the number of parameters of the model, and reduces the compu-
tation cost. We took the same cam-model as above (with 10 output classes)
and replaced the fully connected layers based classifier with a Global Av-
erage Pooling layer. In the given network it resulted in ⇡ 1.5 million fewer
multiply-accumulate operations, which leads to faster inference, along with
lower power consumption, computation and memory demands on the de-
vice.
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We re-trained the new network until the loss became stagnant, which was
at 45 epochs. The original model accuracy is 92.6%, and even though the
new model has fewer coefficients, it displayed a very small performance
degradation by reaching an accuracy of 92.39%, see Figure 7.12.

The last two graphs ( Figure 7.11 and Figure 7.12) are noticeably smoother
than the first two because the feature extractor was frozen in these two
experiments and only the classifier part of the network was actually re-
trained.

7.5.2 Multi-sensor based activity recognition

This case demonstrates the instances based on multi-source knowledge fu-
sion. We performed an activity recognition task based on the PAMAP2
dataset [24], which provides data recordings from four sensors, 13 chan-
nels each from three Inertial Measurement Units (IMU) and a single chan-
nel from a heart rate monitor. All these sensors are body worn and are on
distinct locations such as hand, chest and ankle, jointly forming a small net-
work which also involves communicating sensor data to a central controller
which recognizes the activity being performed. The setup in our experiment
is based on the CNN-IMU architecture from [73] as shown in Figure 7.13.

Figure 7.13: Activity Recognition based on multiple sensor data. Each sensor has a
convolutional sub-model, fused at the end with fully connected layers.

Each sensor has its own branch of four convolutional layers intermixed
with two maxpool layers, followed by a fully connected layer. The output
from these branches is concatenated and goes through fully connected lay-
ers that predict the activity. The whole network is trained together at once
with the RMSProp optimizer using a batch size of 50 and learning rate
of 10

-4 after downsampling the IMUs’ recordings to 30 Hz and a sliding
window of 3s (100 samples) and a step size of 660ms (22 samples).



124 neural network reuse and composition update

Isolating branches Using our framework, we isolated sub models from the
branches and their respective layers into individual ONNX files. The sub
model can be deployed close to the sensor itself, hence removing the need
for sensors to transmit all the data to the central controller. For a 13 channel
IMU, data needed to analyse each 3s window in our setup is equivalent
to approximately 8kB/s. By computing the sub models close to the sensor,
only the output of the last layer is sent over to the central server, which
is approximately 3kB/s, resulting in a 60% decrease of bandwidth require-
ment. The bandwidth saving becomes more important when there are many
sensors in the network.

7.6 summary

In this chapter, we introduced a framework for deep learning models that
facilitates knowledge update, composition and reuse in the scope of KCN.
We emphasized that our framework can be used to allow neural networks in
the context of IoT, for dynamic knowledge modality. We envisioned multi-
ple possible situations where neural networks will need to be remodeled to
suit evolving intelligence of the system and discussed ways to solve some of
those challenges with an appropriate methodology. We also demonstrated
with evaluations that our framework is able to update models in a vari-
ety of circumstances that are likely to occur in KCN. We showed that it is
possible to use neural networks as a dynamic knowledge modality, which
can be continuously modified and maintained in line with dynamic system
behaviors and changing requirements.



8
C O N C L U S I O N

This PhD thesis presented research performed by the author towards ef-
ficient neural architectures for resource-constrained edge devices. Neural
network deployment triggers a never-ending demand for resources, and
when deployed at the edge, these resources are perpetually in short supply.
Neural networks demand generous computation capabilities, high memory
and consume abundant energy in order to perform adequately. On the other
hand, edge devices are low cost hardware and often run on an internal bat-
tery. Consequentially, there are constraints on resources available, such as
memory, processing power, and energy.

Even with these challenges, neural networks operating on edge devices
have many advantages. Hence, the first part of the thesis presented work for
an efficient search methodology for a suitable CNN, which can thus operate
within the constraints imposed by the target hardware. The second part of
the thesis explored the subject of adaptivity in CNN-based application exe-
cuting at the edge. Two different aspects of adaptivity were examined. The
first one investigated adaptive switching of different deep-learning mod-
els based on the changes in the run-time environment of the application.
Whereas the second one analysed neural networks as dynamic models and
suggested techniques to keep them updated to reuse them over a longer
period of their deployment lifetime.

The main contributions of this thesis, in terms of the frameworks pro-
posed, are summarised below:

• The first framework proposed is called Evolutionary Piecemeal Train-
ing (EPT) to search for an efficient neural network architecture, which
has highest possible accuracy within the architectural constraints. The
constraints are placed to ensure that the discovered neural network
can fit the resources available in the target hardware. Based on an
evolutionary algorithm, it is subsequently extended to include mul-
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tiple search objectives, namely Accuracy, Throughput, Memory, and
Energy (ATME).

• The multi-objective algorithm forms the basis of the second frame-
work: Scenario-Based Run-time Switching (SBRS). Which allows a
CNN-based application to have environment triggered run-time switch-
ing between different neural networks, each having a unique ATME
characteristic. This allows an application to be flexible and adapt-
able while executing on an edge device. This thesis presents scenario
derivation in the SBRS framework. Additionally, but not as a part of
this thesis, SBRS includes a combined Model of Computation (MoC)
and a switching protocol.

• The third framework considers the versatility of a NN beyond one
execution or one device. In a long active lifetime of an application, it
is imperative that the NNs deployed need to be updated and reused.
The framework facilitates knowledge exchange, reuse and frequent
updates, by implementing various NN update techniques. These three
frameworks together allow neural architectures to be adaptable and
versatile for efficient utilization on the edge devices.

8.1 answers to research questions

In this section we reflect on the research questions set forth in Chapter 1
and evaluate how this thesis addressed them.

RQ1: How can we design an efficient NAS algorithm that reduces the search
time, and has the capability to optimize for multiple objectives?

To answer this question, we developed a Neural Architecture Search
(NAS) methodology, called Evolutionary Piecemeal Training (EPT). Chap-
ter 3 introduced the evolutionary based algorithm, which treated the NAS
as an optimization problem. The search space of all neural networks in the
algorithm had boundaries placed on the model size, so that the resulting
CNNs never becomes too large to restrict their deployment on edge devices.
Initially, the optimization objective of the EPT algorithm was only to maxi-
mize the test accuracy of the resulting CNN. Though the vision to extend
the algorithm to include multiple objectives motivated the selection of an
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evolutionary based algorithm for this task. Evolutionary algorithms already
have a large body of research presented in the multi-objective optimization
domain.

With most of the other evolutionary NAS algorithms, evaluating the accu-
racy of every CNN was a time consuming and resource hungry task, since
it was performed after the full-training of a CNN. While most algorithms
looked at training as an isolated and a separate task, the EPT algorithm
examined the evolutionary algorithm from a different perspective, where
the search for neural architectures was performed during a modified and
extended training process instead. This method was able to converge in
few GPU hours as opposed to tens of thousands of GPU hours needed
by conventional evolutionary NAS algorithms. The algorithm performance
was validated on the CIFAR-10 and the PAMAP2 datasets.

Further, the EPT algorithm was discussed in more details in Chapter 4.
Defining the optimization objective as a Gradually Saturating Objective Func-
tion (GSOF), this chapter explained the challenges faced in designing the
EPT algorithm and the adaptive diversity control based approach that worked
during the design process. The proposed approach was validated with the
PAMAP2 dataset.

An extension to the original EPT algorithm was presented in Chapter 5
for multi-objective NAS, which was validated by two sets of experiments.
In the first set of experiments, there were two objectives incorporated in the
algorithm, for the PAMAP2 dataset. Along with the prediction accuracy,
the reduction of the number of parameters of the neural network was con-
sidered as an additional objective. For the second set of experiments, also
termed as the hardware-aware EPT, the algorithm was extended to include
hardware specific objectives, namely memory footprint, energy consump-
tion and throughput. The hardware-aware EPT evaluated the performance
of every CNN on a specific target hardware. This version of experiments
was evaluated for the VOC, the CIFAR-10 and the PAMAP2 datasets for
NVIDIA Jetson TX2 platform.

RQ2: How can we ensure that a CNN-based application is able to efficiently
adapt its extra-functional characteristics synchronously with the changes in its
environment at run-time?

A novel Scenario Based Run-time Switching methodology for CNN-based
applications was proposed in Chapter 6. The extra-functional characteris-
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tics of the CNN-based application can be captured by different scenarios,
where each scenario has unique ATME (Accuracy, Throughput, Memory,
Energy) requirements. Each scenario was associated with a CNN, which
are derived from the hardware-aware EPT algorithm. During the appli-
cation operation, an environmental change can trigger the application to
switch between scenarios, thereby adapting its extra-functional characteris-
tics with the changes to the environment. The algorithm was validated by
designing three run-time adaptive applications for the VOC, the CIFAR-10
and the PAMAP2 datasets. In addition, the SBRS methodology was com-
pared with the MSDNet methodology for the CIFAR-10 dataset. Both of
the methodologies were executed on an NVIDIA Jetson TX2 device. When
executed under tight hardware-aware requirements, the SBRS methodol-
ogy outperformed the MSDNet methodology. The difference was probably
caused by the fact that the SBRS methodology optimized the application
in terms of both accuracy and hardware-aware characteristics, whereas the
MSDNet only optimized accuracy.

RQ3: Is it possible for neural network to be treated as a dynamic entity during
its active lifetime? If so, how can we ensure that a CNN, deployed at the edge,
can be regularly updated and maintained?

This research question has two parts to it. The first question was partially
answered by the first part of the thesis, where neural networks were treated
as dynamic models by the EPT algorithm. The neural architectures are mod-
ified by the evolutionary operators, in each iteration, to cover a huge search
space. The reason for frequent updates in the EPT algorithm is not adaptiv-
ity, however, the same rationale of treating a neural network as a dynamic
model can be extended to a KCN based IoT environment.

The framework presented in Chapter 7 attempted to answer the second
question, by expanding the ideas from the first part of the thesis and other
existing literature. The framework suggested approaches to enable contin-
uous deep learning model reuse and updates during a longer lifetime of
a CNN-based application at the edge. Chapter 7 demonstrated, with eval-
uations, that the framework was able to update CNNs in a variety of cir-
cumstances that are likely to occur in KCN. Hence, we showed that neural
networks can be utilised as a dynamic entity, which can be continuously
modified and maintained in sync with dynamic environments.
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8.2 future work

Revisiting the Chapter 2, where we discussed cell-based neural architec-
tures. The preliminary exploratory work that was performed to examine
their suitability towards edge devices demonstrated very promising results [17].
However, this work was not a full-fledged or in-depth analysis based on
a complex NAS methodology. Hence, the first obvious future work is to
extend the search spaces for the EPT algorithm to include cell-based archi-
tectures. The search for a cell-based architecture will also be interesting to
evaluate from two separate fronts. The first one to discover an efficient cell
structure itself and the second one to examine the placement of these cells.

Another interesting subsequent research direction will be to extend the
SBRS methodology, where scenarios can share more parameters amongst
them and thus allow for a faster switching. In its present form, many coef-
ficients have to be swapped in the memory to switch scenarios. There can
be a few approaches to carry out this task, such as a shared training for
some of the common layers for the neural architectures derived through
the hardware-aware EPT algorithm. Another approach can be to modify
the EPT algorithm itself so that the architectures which have a common
ancestor are trained jointly (similar to a joint training approach for neural
network ensembles). Nevertheless, this problem has an intriguing research
proposition for the future.

With significant recent advances in deep learning models and deploy-
ment of more and more IoT devices, it is probable that KCN will become
the key to control the too much data problem. There are still some open prob-
lems that need to be solved in order to see KCN being deployed in reality.
Specifically, knowledge creation and modification strategies that are geared
towards very low-power embedded devices and real time constraints. These
issues require further investigation and extension of our framework to
integrate resource/performance trade-offs based model modification tech-
niques and faster update mechanisms for real time requirements.
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[96] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. “Exploration and exploitation in
evolutionary algorithms: A survey.” In: ACM computing surveys (CSUR) 45.3 (2013).

[97] Helen G Cobb. An investigation into the use of hypermutation as an adaptive operator in
genetic algorithms having continuous, time-dependent nonstationary environments. Tech.
rep. Naval Research Lab Washington DC, 1990.

[98] John J Grefenstette et al. “Genetic algorithms for changing environments.” In: PPSN.
Vol. 2. 1992.

[99] Frank Vavak, KA Jukes, Terrence C Fogarty, et al. “Performance of a genetic algo-
rithm with variable local search range relative to frequency of the environmental
changes.” In: Genetic Programming (1998).

[100] HC Andersen. “An investigation into genetic algorithms, and the relationship be-
tween speciation and the tracking of optima in dynamic functions.” In: Brisbane,
Australia: Honors, Queensland Univ (1991).

[101] Andrea Toffolo and Ernesto Benini. “Genetic diversity as an objective in multi-
objective evolutionary algorithms.” In: Evolutionary computation 11.2 (2003).

[102] Svetlana Minakova, Dolly Sapra, Todor Stefanov, and Andy D Pimentel. “Scenario
Based Run-time Switching for Adaptive CNN-based Applications at the Edge.” In:
ACM Transactions on Embedded Computing Systems (TECS) (2021).

[103] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang. “Edge Intelligence: Paving
the Last Mile of Artificial Intelligence With Edge Computing.” In: Proceedings of the
IEEE 107.8 (2019).

[104] NVIDIA. Jetson TX2. 2016. url: https://www.nvidia.com/en- us/autonomous-
machines/embedded-systems/jetson-tx2.

[105] Carlos A Coello Coello, Gary B Lamont, David A Van Veldhuizen, et al. Evolutionary
algorithms for solving multi-objective problems. Vol. 5. 2007.

[106] Chi-Hung Hsu, Shu-Huan Chang, Jhao-Hong Liang, Hsin-Ping Chou, Chun-Hao
Liu, Shih-Chieh Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng Juan.
“Monas: Multi-objective neural architecture search using reinforcement learning.”
In: arXiv preprint arXiv:1806.10332 (2018).

[107] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. “Mnasnet: Platform-aware neural architecture search for
mobile.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2019.

[108] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. “Designing Energy-Efficient Convo-
lutional Neural Networks Using Energy-Aware Pruning.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2017).

[109] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. “Quantized Neural Networks: Training Neural Networks with Low Precision
Weights and Activations.” In: 18.1 (2017).

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2


138 bibliography

[110] Vinu Joseph, Ganesh L Gopalakrishnan, Saurav Muralidharan, Michael Garland,
and Animesh Garg. “A Programmable Approach to Neural Network Compression.”
In: IEEE Micro 40.5 (2020).

[111] Brandon Reagen, Udit Gupta, Robert Adolf, Michael Mitzenmacher, Alexander Rush,
Gu-Yeon Wei, and David Brooks. “Weightless: Lossy Weight Encoding For Deep
Neural Network Compression.” In: International Conference on Machine Learning. 2018.

[112] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. “A Survey of Model Compression
and Acceleration for Deep Neural Networks.” In: IEEE Signal Processing Magazine
(2018).

[113] Adrián Alcolea Moreno, Javier Olivito, Javier Resano, and Hortensia Mecha. “Anal-
ysis of a pipelined architecture for sparse DNNs on embedded systems.” In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 28.9 (2020).

[114] Xin He, Kaiyong Zhao, and Xiaowen Chu. “AutoML: A Survey of the State-of-the-
Art.” In: Knowledge-Based Systems 212 (2021).

[115] Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun Lin,
and Song Han. “Apq: Joint search for network architecture, pruning and quantiza-
tion policy.” In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020.

[116] Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Pahed-
ing Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and Vi-
jayan K Asari. “The History Began from AlexNet: A Comprehensive Survey on
Deep Learning Approaches.” In: ArXiv abs/1803.01164 (2018).

[117] An-Chieh Cheng, Jin-Dong Dong, Chi-Hung Hsu, Shu-Huan Chang, Min Sun, Shih-
Chieh Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. “Searching
Toward Pareto-Optimal Device-Aware Neural Architectures.” In: 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE. 2018.

[118] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. “A fast
elitist non-dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II.” In: International conference on parallel problem solving from nature. 2000.

[119] Christos Kyrkou, George Plastiras, Theocharis Theocharides, Stylianos I Venieris,
and Christos-Savvas Bouganis. “DroNet: Efficient convolutional neural network de-
tector for real-time UAV applications.” In: 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 2018.

[120] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Bowen Shi, Qi Tian, and Hongkai
Xiong. “Latency-aware differentiable neural architecture search.” In: arXiv preprint
arXiv:2001.06392 (2020).

[121] Weiwen Jiang, Xinyi Zhang, Edwin H-M Sha, Lei Yang, Qingfeng Zhuge, Yiyu Shi,
and Jingtong Hu. “Accuracy vs. efficiency: Achieving both through fpga-implementation
aware neural architecture search.” In: Proceedings of the 56th Annual Design Automa-
tion Conference. 2019.

[122] Mohamed S Abdelfattah, Łukasz Dudziak, Thomas Chau, Royson Lee, Hyeji Kim,
and Nicholas D Lane. “Best of both worlds: Automl codesign of a cnn and its hard-
ware accelerator.” In: Proceedings of the 57th Annual Design Automation Conference.
2020.



bibliography 139

[123] Chuan-Chi Wang, Ying-Chiao Liao, Ming-Chang Kao, Wen-Yew Liang, and Shih-
Hao Hung. In: PerfNet: Platform-Aware Performance Modeling for Deep Neural Networks.
2020.

[124] Ricardo Bonna, Denis S Loubach, George Ungureanu, and Ingo Sander. “Modeling
and Simulation of Dynamic Applications Using Scenario-Aware Dataflow.” In: 24.5
(2019).

[125] Jiali Teddy Zhai, Sobhan Niknam, and Todor Stefanov. “Modeling, Analysis, and
Hard Real-Time Scheduling of Adaptive Streaming Applications.” In: IEEE TCAD
(2018).

[126] O. Moreira. “Temporal analysis and scheduling of hard real-time radios running on
a multi-processor.” PhD thesis. Technical University Eindhoven, 2012.

[127] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. “Slimmable
Neural Networks.” In: International Conference on Machine Learning. 2019.

[128] L. Liu and J. Deng. “Dynamic Deep Neural Networks: Optimizing Accuracy-Efficiency
Trade-Offs by Selective Execution.” In: Thirty-Second AAAI Conference on Artificial In-
telligence. 2018.

[129] Yue Wang, Jianghao Shen, Ting-Kuei Hu, Pengfei Xu, Tan Nguyen, Richard Bara-
niuk, Zhangyang Wang, and Yingyan Lin. “Dual Dynamic Inference: Enabling More
Efficient, Adaptive and Controllable Deep Inference.” In: IEEE Journal of Selected Top-
ics in Signal Processing (2020).

[130] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. “Adaptive
Neural Networks for Efficient Inference.” In: International Conference on Machine
Learning. 2017.

[131] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens Van Der Maaten, and
Kilian Q Weinberger. “Multi-Scale Dense Networks for Resource Efficient Image
Classification.” In: International Conference on Learning Representations. 2018.

[132] Ilias Theodorakopoulos, Vasileios Pothos, Dimitris Kastaniotis, and Nikos Fragoulis.
Parsimonious Inference on Convolutional Neural Networks: Learning and applying on-line
kernel activation rules. 2017.

[133] Martín Abadi, Michael Isard, and Derek G Murray. “A Computational Model for
TensorFlow: An Introduction.” In: Proceedings of the 1st ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages. 2017.

[134] NVIDIA. TensorRT framework. 2021. url: https://developer.nvidia.com/tensorrt.

[135] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu,
Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. “FBNet: Hardware-
Aware Efficient ConvNet Design via Differentiable Neural Architecture Search.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019.

[136] L. Lai, N.Suda, and V. Chandra. “Not All Ops Are Created Equal!” In: 2018.

[137] Saku Kukkonen and Jouni Lampinen. “Ranking-Dominance and Many-Objective
Optimization.” In: 2007 IEEE Congress on Evolutionary Computation. 2007.

[138] Dolly Sapra and Andy D Pimentel. “Deep Learning Model Reuse and Composition
in Knowledge Centric Networking.” In: 2020 29th International Conference on Com-
puter Communications and Networks (ICCCN). 2020.

https://developer.nvidia.com/tensorrt


140 bibliography

[139] Dapeng Wu, Zhenjiang Li, Jianping Wang, Yuanqing Zheng, Mo Li, and Qiuyuan
Huang. “Vision and Challenges for Knowledge Centric Networking.” In: IEEE Wire-
less Communications (2019).

[140] Muhammad Ghifary, W Bastiaan Kleijn, and Mengjie Zhang. “Domain adaptive
neural networks for object recognition.” In: Pacific Rim international conference on
artificial intelligence. 2014.

[141] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural
network.” In: arXiv preprint arXiv:1503.02531 (2015).

[142] Jinyu Li, Michael L Seltzer, Xi Wang, Rui Zhao, and Yifan Gong. “Large-scale do-
main adaptation via teacher-student learning.” In: arXiv preprint arXiv:1708.05466
(2017).

[143] Ziqian Chen, Ling-Yu Duan, Shiqi Wang, Yihang Lou, Tiejun Huang, Dapeng Oliver
Wu, and Wen Gao. “Toward Knowledge as a Service Over Networks: A Deep Learn-
ing Model Communication Paradigm.” In: IEEE Journal on Selected Areas in Commu-
nications 37.6 (2019).

[144] Chenwei Feng, Mingxia Lin, Xinlin Xie, and Mingjiang Zhang. “Data Compression
Scheme for Fronthaul Based on Vector Quantization.” In: Proceedings of the 2019
International Conference on Robotics, Intelligent Control and Artificial Intelligence. 2019.

[145] Mohammad R Khosravi and Sadegh Samadi. “Data compression in ViSAR sensor
networks using non-linear adaptive weighting.” In: EURASIP Journal on Wireless
Communications and Networking 2019.1 (2019).

[146] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. “Edge computing:
Vision and challenges.” In: IEEE Internet of Things Journal 3.5 (2016).

[147] Florin Coras Ma’ruf, Vina Ermagan, Hugo Latapie, Chris Cassar, John Evans, Fabio
Maino, Jean Walrand, and Albert Cabellos. “Knowledge-Defined Networking.” In:
ACM SIGCOMM Computer Communication Review 47.3 (2017).

[148] Zubair Md Fadlullah, Fengxiao Tang, Bomin Mao, Nei Kato, Osamu Akashi, Takeru
Inoue, and Kimihiro Mizutani. “State-of-the-art deep learning: Evolving machine
intelligence toward tomorrow’s intelligent network traffic control systems.” In: IEEE
Communications Surveys & Tutorials 19.4 (2017).

[149] Muhammad Usama, Junaid Qadir, Aunn Raza, Hunain Arif, Kok-Lim Alvin Yau,
Yehia Elkhatib, Amir Hussain, and Ala Al-Fuqaha. “Unsupervised machine learning
for networking: Techniques, applications and research challenges.” In: IEEE Access
7 (2019).

[150] Qi Zhang, Xiaofeng Jiang, Shuangwu Chen, Jinsen Xie, Jian Yang, and Ling Xing.
“An Information Feature Extraction and Rapid Updating Scheme for Knowledge
Centric Networking.” In: 2019 International Conference on Computing, Networking and
Communications (ICNC). 2019.

[151] Tao Zhang, Xingyan Chen, and Changqiao Xu. “Intelligent Routing Algorithm Based
on Deep Belief Network for Multimedia Service in Knowledge Centric VANETs.” In:
2018 International Conference on Networking and Network Applications (NaNA). 2018.

[152] Daniel L Silver, Qiang Yang, and Lianghao Li. “Lifelong machine learning systems:
Beyond learning algorithms.” In: 2013 AAAI spring symposium series. 2013.



bibliography 141

[153] Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar, Bo Yang, Justin
Betteridge, Andrew Carlson, B Dalvi, Matt Gardner, Bryan Kisiel, et al. “Never-
ending learning.” In: Communications of the ACM 61.5 (2018).

[154] Rajasekar Venkatesan and Meng Joo Er. “A novel progressive learning technique for
multi-class classification.” In: Neurocomputing 207 (2016).

[155] Liang Lin, Keze Wang, Deyu Meng, Wangmeng Zuo, and Lei Zhang. “Active self-
paced learning for cost-effective and progressive face identification.” In: IEEE trans-
actions on pattern analysis and machine intelligence 40.1 (2017).

[156] Tian Gao, Jun Du, Li-Rong Dai, and Chin-Hui Lee. “Densely connected progressive
learning for lstm-based speech enhancement.” In: 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2018.

[157] Song Han, Jeff Pool, John Tran, and William Dally. “Learning both weights and
connections for efficient neural network.” In: Advances in neural information processing
systems. 2015.

[158] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.” In: arXiv
preprint arXiv:1510.00149 (2015).

[159] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. “Pruning
filters for efficient convnets.” In: International Conference on Learning Representation.
2017.

[160] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. “Fixed point optimization of
deep convolutional neural networks for object recognition.” In: 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 2015.

[161] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
“Deep learning with limited numerical precision.” In: International Conference on Ma-
chine Learning. 2015.

[162] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in network.” In: arXiv preprint
arXiv:1312.4400 (2013).

[163] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going
deeper with convolutions.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.

[164] Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Douglas,
and H Sebastian Seung. “Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit.” In: Nature 405.6789 (2000).

[165] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. “What
is the best multi-stage architecture for object recognition?” In: IEEE International
Conference on Computer vision. 2009.

[166] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted boltz-
mann machines.” In: Proceedings of the 27th international conference on Machine Learn-
ing. 2010.

[167] Bekir Karlik and A Vehbi Olgac. “Performance analysis of various activation func-
tions in generalized MLP architectures of neural networks.” In: International Journal
of Artificial Intelligence and Expert Systems 1.4 (2011).



142 bibliography

[168] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. “Understand-
ing and improving convolutional neural networks via concatenated rectified linear
units.” In: International Cconference on Machine Learning. 2016.

[169] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification.” In: Proceed-
ings of the IEEE International Conference on Computer Vision. 2015.

[170] Ming Zeng, Le T Nguyen, Bo Yu, Ole J Mengshoel, Jiang Zhu, Pang Wu, and Joy
Zhang. “Convolutional neural networks for human activity recognition using mo-
bile sensors.” In: 6th International Conference on Mobile Computing, Applications and
Services. 2014.

[171] Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiao Li Li, and Shonali Krish-
naswamy. “Deep convolutional neural networks on multichannel time series for hu-
man activity recognition.” In: Twenty-Fourth International Joint Conference on Artificial
Intelligence. 2015.

[172] Stergios Christodoulidis, Marios Anthimopoulos, Lukas Ebner, Andreas Christe,
and Stavroula Mougiakakou. “Multisource transfer learning with convolutional neu-
ral networks for lung pattern analysis.” In: IEEE journal of biomedical and health infor-
matics 21.1 (2016).

[173] Jinpeng Li, Shuang Qiu, Yuan-Yuan Shen, Cheng-Lin Liu, and Huiguang He. “Mul-
tisource Transfer Learning for Cross-Subject EEG Emotion Recognition.” In: IEEE
transactions on cybernetics (2019).

[174] Zlib: A Massively Spiffy Yet Delicately Unobtrusive Compression Library. 2019. url: https:
//www.zlib.net/.

[175] Protocol Buffers. 2019. url: https://developers.google.com/protocol-buffers.

[176] NVIDIA GEFORCE RTX 2080 GPU. 2019. url: https://www.nvidia.com/en-in/
geforce/graphics-cards/rtx-2080/.

[177] Alireza Rahimpour, Ali Taalimi, Jiajia Luo, and Hairong Qi. “Distributed object
recognition in smart camera networks.” In: 2016 IEEE International Conference on
Image Processing (ICIP). 2016.

[178] Roberto Marroquin, Julien Dubois, and Christophe Nicolle. “Ontology for a Panoptes
building: Exploiting contextual information and a smart camera network.” In: Se-
mantic Web 9.6 (2018).

[179] Phoebus Chen, Parvez Ahammad, Colby Boyer, Shih-I Huang, Leon Lin, Edgar Lo-
baton, Marci Meingast, Songhwai Oh, Simon Wang, Posu Yan, et al. “CITRIC: A
low-bandwidth wireless camera network platform.” In: 2008 Second ACM/IEEE In-
ternational Conference on Distributed Smart Cameras. 2008.

https://www.zlib.net/
https://www.zlib.net/
https://developers.google.com/protocol-buffers
https://www.nvidia.com/en-in/geforce/graphics-cards/rtx-2080/
https://www.nvidia.com/en-in/geforce/graphics-cards/rtx-2080/


"Computers are useless. They can only give you answers."

— Pablo Picasso

A C K N O W L E D G M E N T S
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S U M M A RY

Generally, deep neural networks are executed on big servers on the cloud
with availability of many GPUs and other computational resources. How-
ever, there has been a conspicuous rise of IoT networks with numerous con-
nected devices and a demand for data processing closer to the data source.
This has led to a strong interest in deployment of deep learning models at
the edge. An edge refers to the small micro-processor based computer hard-
ware with limited resources, and is usually placed near to a data sensor or
a consumer.

Executing a neural network at the edge makes an advantageous premise
and may provide better privacy, security and reliability. Deployment of neu-
ral networks at the edge is highly desirable, though challenging, for many
applications. The main challenge arises from the fact that neural networks
demand high computational capabilities from the underlying hardware,
whereas an edge device has limited resource availability.

In this thesis, the focus is particularly on the neural architectures of Con-
volutional Neural Networks (CNNs) that can execute on the edge devices.
The first part of the thesis presents Evolutionary Piecemeal Training (EPT), an
evolutionary based algorithm to search for an efficient neural network ar-
chitecture. This algorithm treats the Neural Architecture Search (NAS) as
an optimization problem and provides a flexible methodology to consider
a single objective or multiple objectives for the search.

The initial single objective EPT experiments considered only the accuracy
maximization of the resulting neural network. To ensure their suitability
to the edge devices, the model size was restricted through the constraints
placed on the number of parameters of the neural networks. The next set of
experiments extended the algorithm to consider two objectives, namely the
accuracy maximization and the minimization of the number of parameters
of the model.

In yet another set of experiments, also referred to as hardware-aware EPT,
four objectives were considered for the search. As the name suggests, apart
from the accuracy maximization, the rest of the objectives are specific to
the execution of a neural network on a target hardware. The objectives
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aimed towards CNN execution on the device are collectively referred to as
ATME characteristics, which is short for Accuracy, Throughput, Memory
and Energy characteristics. The hardware-aware EPT is able to derive various
CNNs, which provide different trade-offs for the objectives in consideration
through a pareto optimal set.

Furthermore, the second part of the thesis examines strategies and tech-
niques to ensure adaptivity of the CNN-based application running on the
edge. The first work presented in this direction is the Scenario Based Run-
time Switching (SBRS) framework. SBRS proposes the concept of scenarios,
where each scenario is associated with a unique CNN and represents an
operation mode of the application. An operation mode reflects the immedi-
ate environment needs of the target device at different circumstances. An
application in SBRS may switch from one scenario to another, therefore,
allowing the application to adapt synchronously with the environmental
changes.

Continuing with the theme of adaptivity, we proposed a framework to
investigate the efficient sharing, exploitation and reusability of deployed
CNNs in a distributed network. This is realized in the context of Knowl-
edge Centric Networking (KCN) by considering neural networks as dy-
namic models. In terms of adaptivity, this framework aims to provide the
support needed for maintenance and modification of existing and deployed
CNNs at the edge.

To conclude, the work presented in this thesis demonstrates various strate-
gies and methodologies focused on neural architectures. The aim is to im-
prove the performance of a CNN-based application deployed on a resource-
constrained edge device. In a nutshell, the key ideas explored in this thesis
include searching for an efficient neural architecture, adaptive applications
to allow run-time CNN switching and CNNs as dynamic entities in a dis-
tributed IoT network.



S A M E N VAT T I N G

Over het algemeen worden diepe neurale netwerken uitgevoerd op grote
servers in de cloud met de beschikbaarheid van veel GPU’s en andere
computerbronnen. Er is echter een opvallende opkomst van IoT-netwerken
met tal van aangesloten apparaten en een vraag naar gegevensverwerking
dichter bij de gegevensbron. Dit heeft geleid tot een sterke interesse in de
inzet van deep learning-modellen aan de edge. Een edge verwijst naar de re-
latief eenvoudige computerhardware op basis van een microprocessor met
beperkte middelen en wordt meestal in de buurt van een gegevenssensor
of een consument geplaatst.

Het uitvoeren van een neuraal netwerk aan de edge is voordelig aangezien
het kan zorgen voor betere privacy, beveiliging en betrouwbaarheid. Hoewel
uitdagend voor veel applicaties, is de inzet van neurale netwerken aan
de edge voor veel toepassingen dus zeer wenselijk. De grootste uitdaging
komt voort uit het feit dat neurale netwerken hoge rekencapaciteiten van de
onderliggende hardware vereisen, terwijl een edge-apparaat een beperkte
beschikbaarheid van middelen heeft.

In dit proefschrift ligt de focus op zogenaamde convolutionele neurale
netwerken (CNN’s) die kunnen worden uitgevoerd op edge-apparatuur.
Het eerste deel van het proefschrift presenteert Evolutionary Piecemeal Train-
ing (EPT), een evolutionair gebaseerd algoritme om te zoeken naar een
efficiënte neurale netwerkarchitectuur. Dit algoritme behandelt de Neural
Architecture Search (NAS) als een optimalisatieprobleem en biedt een flex-
ibele methodologie om een enkele doelstelling of meerdere doelstellingen
voor de zoekopdracht in overweging te nemen.

Bij de eerste EPT-experimenten met één enkele doelstelling werd alleen
de nauwkeurigheidsmaximalisatie van het resulterende neurale netwerk
in overweging genomen. Om de geschiktheid voor de edge-apparatuur te
garanderen, werd de modelgrootte van de CNN modellen beperkt door een
maximum op het aantal parameters van de neurale netwerken. De volgende
reeks experimenten breidde het algoritme uit om twee doelen in overweg-
ing te nemen, namelijk het maximaliseren van de nauwkeurigheid en het
minimaliseren van het aantal parameters van het model.
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In nog een andere reeks experimenten, ook wel hardware-aware EPT ge-
noemd, werden vier doelen voor het zoeken overwogen. Zoals de naam al
doet vermoeden, zijn de meeste van deze doelstellingen, afgezien van het
maximaliseren van de nauwkeurigheid, specifiek voor de uitvoering van
een neuraal netwerk op specifieke hardware. De doelstellingen gericht op
CNN-uitvoering op het apparaat worden gezamenlijk ATME-kenmerken
genoemd, wat een afkorting is voor nauwkeurigheid, doorvoer, geheugen
en energiekenmerken. De hardware-aware EPT is in staat om verschillende
CNN’s af te leiden, die verschillende afwegingen bieden voor de beoogde
doelstellingen via een pareto-optimale set.

Verder onderzoekt het tweede deel van het proefschrift strategieën en
technieken om de adaptiviteit van een op CNN gebaseerde applicatie die
aan de edge draait, te verzekeren. Het eerste werk dat in deze richting
wordt gepresenteerd, is het Scenario Based Run-time Switching (SBRS) raamw-
erk. SBRS stelt het concept van scenario’s voor, waarbij elk scenario is
gekoppeld aan een unieke CNN en een bedrijfsmodus van de toepass-
ing vertegenwoordigt. Een bedrijfsmodus weerspiegelt de onmiddellijke
omgevingsbehoeften van het doelapparaat onder verschillende omstandighe-
den. Een toepassing in SBRS kan van het ene scenario naar het andere over-
schakelen, waardoor de toepassing zich synchroon aanpast aan de omgev-
ingsveranderingen.

Voortbordurend op het thema van adaptiviteit, hebben we een raamw-
erk voorgesteld om het efficiënt delen, exploiteren en hergebruiken van
ingezette CNN’s in een gedistribueerd netwerk te onderzoeken. Dit wordt
gerealiseerd in de context van Knowledge Centric Networking (KCN) door
neurale netwerken als dynamische modellen te beschouwen. Op het gebied
van adaptiviteit heeft dit raamwerk tot doel de ondersteuning te bieden die
nodig is voor onderhoud en wijziging van bestaande en ingezette CNN’s
aan de edge.

Tot slot, het werk dat in dit proefschrift wordt gepresenteerd demon-
streert verschillende strategieën en methodologieën gericht op neurale ar-
chitecturen. Het doel is om de prestaties te verbeteren van een op CNN
gebaseerde applicatie die wordt geïmplementeerd op een edge-apparaat
met beperkte middelen. In een notendop, de belangrijkste ideeën die in
dit proefschrift worden onderzocht, zijn onder meer het zoeken naar een
efficiënte neurale architectuur, adaptieve toepassingen om runtime CNN-
switching mogelijk te maken en CNN’s als dynamische entiteiten in een
gedistribueerd IoT-netwerk.
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