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Executive Summary 
From July to October 2019, the Argonne, Oak Ridge, and Berkeley National Laboratories hosted a 
series of four town hall meetings attended by more than 1,000 U.S. scientists and engineers. The 
goal of the town hall series was to examine scientific opportunities in the areas of artificial 
intelligence (AI), Big Data, and high-performance computing (HPC) in the next decade, and to 
capture the big ideas, grand challenges, and next steps to realizing these opportunities. 
 
In this report and in the Department of Energy (DOE) laboratory community, we use the term “AI 
for Science” to broadly represent the next generation of methods and scientific opportunities in 
computing, including the development and application of AI methods (e.g., machine learning, deep 
learning, statistical methods, data analytics, automated control, and related areas) to build models 
from data and to use these models alone or in conjunction with simulation and scalable computing 
to advance scientific research.  
 
The AI for Science town hall discussions focused on capturing the transformational uses of AI that 
employ HPC and/or data analysis, leveraging data sets from HPC simulations or instruments and 
user facilities, and addressing scientific challenges unique to DOE user facilities and the agency’s 
wide-ranging fundamental and applied science enterprise. 
 
The town halls engaged diverse science and user facility communities, with both discipline- and 
infrastructure-specific representation. The discussions, captured in the 16 chapters of this report, 
contain common arcs revealing classes of opportunities to develop and exploit AI techniques and 
methods to improve not only the efficacy and efficiency of science but also the operation and 
optimization of scientific infrastructure.  
 
The community’s experience with machine learning (ML), HPC simulation, data analysis methods, 
and the consideration of long-term science objectives revealed a growing collection of unique and 
novel opportunities for breakthrough science, unforeseeable discoveries, and more powerful 
methods that will accelerate science and its application to benefit the nation and, ultimately, 
the world. 
 
New AI techniques will be indispensable to supporting the continued growth and expansion of 
DOE science infrastructure from ESnet to new light sources to exascale systems, where system 
scale and complexity demand AI-assisted design, operation, and optimization. Toward this end, 
novel AI approaches to experiment design, in-situ analysis of intermediate results, experiment 
steering, and instrument control systems will be required. 
 
DOE’s co-design culture involving teams of scientific users, instrument providers, mathematicians 
and computer scientists can be leveraged to develop new capabilities and tools such that they can 
be readily applied across the agency’s (and indeed the nation’s) diversity of instruments, facilities, 
and infrastructure. This report captures some early opportunities in this direction, but much more 
needs to be explored. 
 
From chemistry to materials sciences to biology, the use of ML and deep learning (DL) techniques 
opens the potential to move beyond today’s heuristics-based experimental design and discovery to 
AI-enhanced strategies of the future.  
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Early use of generative models in materials exploration suggests that millions of possible materials 
could be identified with desired properties and functions and evaluated with respect to 
synthesizability. The synthesis and testing stages necessary for such scales will in turn rely on ML 
and adaptive, autonomous robotic control of high-throughput synthesis and testing lines, creating 
“self-driving” laboratories.  
 
The same complexity challenge and concomitant need to move from human-in-the-loop to AI-
driven design, discovery, and evaluation also manifests across the design of scientific workflows, 
optimization of large-scale simulation codes, and operation of next generation instruments. 
 
Exascale systems and new scientific instruments, such as upgraded light sources and 
accelerators, are increasing the velocity of data beyond the capabilities of existing instrument data 
transmission and storage technologies. Consequently, real-time hardware is needed to detect 
events and anomalies in order to reduce the raw instrument data rates to manageable levels. New 
ML, including DL, capabilities will be critically important in order to fully exploit these instruments, 
replacing pre-programmed hardware event triggers with algorithms that can learn and adapt, as 
well as discover unforeseen or rare phenomena that would otherwise be lost in compression.  
 
In recent years, the success of DL models has resulted in enormous computational workloads for 
training AI models, representing a new genre of HPC resource demand. Here, the use of AI 
techniques to optimize learning algorithms and implementation will be necessary with respect to 
both the energy cost of large-scale computation and to the exploitation of new computing 
hardware architectures. AI in HPC has already taken the form of neural networks trained as 
surrogates to computational functions (or even entire simulations), demonstrating the potential for 
AI to provide non-linear improvements of multiple orders of magnitude in time-to-solution for HPC 
applications (and, coincidentally, reductions in their cost).  
 
Similarly, scientific infrastructure—accelerators, light sources, networks, computation and data 
resources—have reached scales and complexities that require the use of ML for tasks such as 
anomaly detection in operational data (e.g., for cybersecurity). Moving from today’s fixed rules-
based operating procedures to the use of AI algorithms that factor real-time analysis will be 
indispensable for optimizing performance and energy use of increasingly complex, large-scale 
infrastructures. New DL methods are required to detect anomalies and optimize operating 
parameters, with additional potential to predict failures as well as to discover new optimization 
algorithms and novel mechanical or externally induced threats. 
 
The DOE computing facilities such as Summit, Perlmutter, Aurora and Frontier will simultaneously 
support the development of existing large-scale simulations, new hybrid HPC models with AI 
surrogates, and the exploration of new types of generative models emerging from multimodel data 
streams and sources. Future systems envisioned over the next decade may need to support even 
richer workloads of traditional HPC and next-generation AI-driven scientific models. 
 
AI will not magically address these and the other opportunities and challenges discussed in this 
report. Much work will be required within all science disciplines, across science infrastructure, and 
in the theory, methods, software, and hardware that underpin AI methods. The use of AI to design 
and tune hardware systems—whether exascale workflows, national networks, or smart energy 
infrastructure—will require the development and evaluation of a new generation of AI frameworks 
and tools that can serve as building blocks that can be adapted and reused across disciplines and  
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across heterogeneous infrastructure. Bringing AI to any specific domain—whether it is nuclear 
physics or biology and life sciences—will demand significant effort to incorporate domain 
knowledge into AI systems, quantify uncertainty, error, and precision, and appropriately integrate 
these new mechanisms into state-of-the-art computational and laboratory systems. 
 
The overflowing attendance at the AI for Science town halls, the level of enthusiasm and the 
engagement of attendees, the number of spontaneous AI projects throughout every scientific 
discipline, and the commitment to growth in this area at the nation’s premiere laboratories all 
combine to indicate that the DOE scientific community is ready to explore and further the 
transformational potential of AI through 2030 and beyond. 
 



 

  4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally blank. 
 
 



 

INTRODUCTION  5 

Introduction: AI for Science 
The AI for Science town halls brought together 
more than a thousand researchers from 
DOE National Laboratories, industry, and 
academia to identify opportunities for AI to 
impact the national science enterprise 
supported by DOE. The teams also outlined 
the research and infrastructure needed to 
advance AI methods and techniques for 
science applications.  
 
Sixteen topical expert teams summarized the 
state of the art, outlined challenges, developed 
an AI roadmap for the coming decade, and 
explored opportunities for accelerating 
progress on that roadmap.  
 
Important themes emerged for AI applications 
in science. For example, participants anticipate 
the use of AI methods to accelerate the design, 
discovery, and evaluation of new materials, 
and to advance the development of new 
hardware and software systems; to identify 
new science and theories within increasingly 
high-bandwidth instrument data streams;  
to improve experiments by inserting inference 
capabilities in control and analysis  
loops; and to enable the design, evaluation, 
autonomous operation, and optimization of 
complex systems from light sources to HPC 
data centers; and to advance the  
development of self-driving laboratories and 
scientific workflows.  
 
Important themes also emerged with respect to 
outlining the research needed to advance AI. 
For example, participants highlighted the need 
to incorporate domain knowledge into AI 
methods to improve the quality and inter-
pretability of the models; the need to develop 
software environments to enable AI capabilities 
to seamlessly integrate with large-scale HPC 
models; and the need to automate the large-
scale creation of “FAIR” (findable, accessible, 
interoperable, and reusable) data, given the 
central role of data in an AI-centric future 
science landscape. 

Below, we briefly outline the principle findings 
of the main sections of the report. 

Materials, Environmental, and 
Life Sciences 
Chapters 1–3 
 
Finding new materials, chemical compounds, 
and biological agents able to address 
contemporary challenges—for example, 
batteries with 10 times more storage capacity, 
materials that capture more solar energy at 
greater efficiency, and new drugs targeting 
emerging pathogens—is a grand challenge due 
to the nearly infinite chemical, biological, and 
atomic design spaces to which scientists have 
access. Such discovery requires pervasive AI-
enabled automation, from experiment design to 
execution and analysis. 
 
Projecting environmental risk and developing 
resiliency in a changing environment are 
central challenges to earth and environmental 
sciences, encompassing atmosphere, land, 
and subsurface systems along with their 
interdependencies. From large-scale observa-
tories such as the Atmospheric Radiation 
Measurement (ARM) facility, AI methods will be 
essential to obtaining the data needed to refine 
complex earth and environmental systems 
models, and to developing new models with 
unprecedented fidelity and resolution. AI “at the 
edge”—where people and things meet—will 
enable autonomous observatories to detect 
anomalies and outliers, adapting instrument 
settings and algorithms to provide detailed 
measurement of events and conditions that 
would otherwise go unnoticed. 
 
Biology and life sciences are at the vanguard of 
AI applications, for instance using population 
genomics data to learn the bases of complex 
traits and discovering or building workflows that 
automate the inverse design of microbial and 
plant cells. “Self-driving” laboratories will 



 

INTRODUCTION  6 

leverage new generative models and 
reinforcement learning to explore potential 
compounds for cancer drugs, evaluate their 
synthesizability, or model their response in 
target tumors.  

Discovery and Data 

Scientists have used computational 
approaches to explore virtually materials and 
chemical compounds, leveraging new data 
sources containing the simulated properties of 
millions of simple materials and chemical 
compounds. Deep learning approaches are 
being developed to explore more deeply inside 
vast molecular and biological design spaces. 
Molecular scientists are using AI to learn force 
fields to enable near-exact molecular dynamic 
(MD) simulations with fully quantized electrons 
and nuclei. Such analyses, intractable only a 
few years ago, must now be captured and 
advanced in the form of AI software toolkits 
and services. 
 
Across the sciences, rapidly growing data 
sources can, in principle, be used to train ML 
models provided that the data can be “found, 
accessed, and are interoperable and reusable,” 
or “FAIR.” The use of DL and unsupervised 
learning for automatic labeling and reduction of 
data also needs to be captured as adaptable 
software services that can be applied to data 
sources ranging from environmental datasets 
at broad spatial and time scales, to instrument 
data from materials testing, to genomics data. 
 
For life sciences, energy infrastructure 
sciences, and even national security, access is 
needed to protected sensitive data. We must 
establish new infrastructure to enable shared 
use of data that cannot be moved or revealed 
due to privacy concerns. Similar challenges 
arise with respect to proprietary manufacturing, 
mobility, and private energy data. 

Learning and Integrating Domain 
Knowledge 

Today’s computational learning frameworks are 
not yet able to realize the full potential of 
AI-enabled materials, chemical, environmental, 
and biological sciences. We need new AI 
methods that can both predict complex 
phenomena and provide insights into 
underlying processes. Such methods will be 
foundational to our capacity to design custom 
biological systems capable of addressing major 
global health and environmental challenges—
that is, ultimately to “build life to spec.” Here, as 
with materials design, AI-enabled, self-driving 
laboratories (through new automation and 
decision support services) can fuel game-
changing advances in the understanding and 
deployment of biological, chemical, and 
environmental systems. 

Self-Driving and Steering Laboratories 

The most exciting discovery possibilities for 
emerging instruments such as for bio- or 
materials imaging lie in going beyond today’s 
human-in-the-loop experimentation, and 
allowing embedded AI to evaluate results and 
steer experiments.  
 
AI-assisted management and control of 
research labs, instruments, facilities, experi-
ments, and workflows can help achieve a 
variety of goals, for instance by adapting 
workflows in response to new hypotheses 
generated during workflow execution, 
scheduling resources for more efficient use of 
facility hardware, and dramatically reducing the 
total cost of operating facilities. 
 
Experimental science is moving rapidly toward 
more frequent online analysis and adaptation. 
In “self-driving” laboratories, AI can be used not 
only for analysis and hypothesis generation, 
but also to act on intermediate results, adapting 
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to new data by adjusting experimental 
parameters or laboratory processes toward 
specific goals, such as protecting resources, 
maximizing the data gathered related to a 
specific phenomenon, or following up on 
surprising or anomalous results. 
 
AI-guided self-driving laboratories are 
envisioned that can automate the design, 
synthesis, and evaluation of material and 
increase the pace of discovery by orders  
of magnitude. 

AI in HPC 

Multi-scale models are needed to understand 
the underlying systems affecting phenomena 
associated with the growing global demand for 
fuel, food, water, and predictable weather. 
AI technologies can reveal the emergent 
controls of these enormously complex environ-
mental, plant, and microbial biosystems, 
enabling us to engineer our environment, for 
instance to expand the range of arable lands 
while improving water availability and quality. In 
order to enable such discovery capabilities, we 
must not only improve the performance and 
quality of HPC models (e.g., using ML 
surrogates) but we must make it possible to 
build generative models from diverse 
observations (e.g., time series measurements) 
and computational simulations. This will need 
to be aligned with AI-based inverse problem 
solvers, such as for image-to-phase or 
waveform-to-source problems to explore novel 
geoengineered solutions. 
 
Such simulation models represent another 
domain where AI is already showing trans-
formative results. Time-to-solution of modeling 
systems and associated reduction in 
computational needs (and associated energy 
use) can be improved by combining data-
informed AI approximations with physical 
principles for earth systems, ecosystems, soil 
microbiology, watershed, and other models. 
The use of such AI “surrogate” functions will 
require robust, explainable AI methods for 
training and validating hybrid models, and the 

integration of uncertainty quantification into AI 
workflows. 
 
A secure environment for objective bench-
marking of AI algorithms against community 
consensus metrics is needed to detect, 
monitor, and possibly correct dataset biases or 
inconsistent AI performance. Foundational 
technologies are needed to promote a rigorous 
statistical framework to monitor for potential 
biases or inaccuracies in collected data, and to 
monitor AI performance to confirm robust 
performance or identify performance gaps. 
These topics are detailed in Foundations, 
Software, Data Infrastructure, and Hardware 
(page 11). 

High-Energy, Nuclear, and 
Plasma Physics 
Chapters 4–6 
 
In cosmology, high-energy physics, fusion, and 
nuclear physics, the next decade will bring 
new, enormous, and rich data sets from new 
light sources, accelerators, tokamak facilities, 
and advanced survey telescopes, unparalleled 
in depth and resolution at the observed scales. 
These observations will be combined with 
exascale-enabled simulations modeling 
structure formation in unprecedented detail to 
enable major scientific advances. ML, including 
DL, techniques will be crucial in the analysis of 
multi-spectral observational data sets. “AI-in-
HPC” approaches to simulation that use fast 
AI-based surrogates will allow the reconstruc-
tion of the history of the universe from the Big 
Bang until today at unprecedented fidelity, from 
the largest scales down to our own galaxy. 
 
The multiscale, highly correlated, and high-
dimensionality nature of the physics of the 
nuclear force also leads to a rich set of 
phenomena in nuclear physics. AI techniques 
offer the possibility of increased understanding 
and new discoveries via DL analyses of light 
source experimental data, especially given 
recent and planned upgrades and resulting 



 

INTRODUCTION  8 

increased data volumes and rates. Fusion 
scientists look to AI/ML techniques for 
breakthroughs ranging from maximizing 
predictive understanding of fusion plasmas and 
the burning plasma state to enabling real-time 
control in long-pulse tokamak experiments, and 
ultimately AI-in-the-loop plasma prediction and 
control solutions necessary for sustained, safe, 
and efficient fusion power plant operation. 

Discovery and Data 

In coming years, the global high-energy 
physics community will deploy AI-controlled, 
city-size scientific instruments (particle 
accelerators and particle detectors) that 
produce zettabytes of data. Similarly, high-
bandwidth streams will come from new survey 
telescopes, upgraded light sources, and 
tokamak experiments. AI-powered hardware 
will be required to filter detector data in 
microseconds. AI inference systems trained by 
data and simulations of detector response will 
be needed to enable high-precision studies, 
while unsupervised AI-based searches for 
anomalies and rare events, indeed even for 
“New Physics,” will open new windows for 
discovery.  

Learning and Integrating Domain 
Knowledge 

AI methods are critically important if we are to 
fully exploit data from new or upgraded large-
scale instruments and complex experiments—
facilitating the collection, evaluation, and 
analysis of metadata; improving data reduction 
and documentation of experimental conditions; 
and facilitating data interoperability. 
 
To achieve such capabilities across diverse 
instruments, we must create usable tools for 
the large-scale training and optimization of ML 
models, training methodologies that can detect 
rare features in high-dimensional spaces, and 
tools to quantify the impact of systematic 
effects of the accuracy and stability of complex 
ML models. However, one of the obstacles to 
applying data science to hypothesis generation 

and experimental design is the availability (to 
the general community) and the lack of 
uniformity of data. A significant need in the 
coming decade will be to develop ML methods 
to automatically annotate and structure data 
from computational models and experimental 
facilities such as the international ITER 
Tokamak, upgraded light sources such as the 
Advanced Photon Source (APS), and 
Advanced Light Source (ALS). 

Designing and Steering Experiments 

The introduction of ML and AI into the scientific 
process for hypothesis generation and the 
design of experiments promise to significantly 
accelerate the scientific process by automating 
and accelerating the development of models 
and the testing of hypotheses. For this to 
become reality, domain knowledge must be 
integrated into ML models, moving beyond 
current models that are either purely data-
driven or that incorporate only simple 
algorithms, laws, and constraints. ML 
techniques that combine theoretical and data-
driven models in hybrid systems that better 
represent the underlying dynamics specific to 
phenomena will be especially key. 
 
Across experimental sciences, AI-aware 
experimental design, construction, and 
operation of scientific instruments offer 
transformative improvements. For detectors 
and accelerators, the use of reinforcement 
learning (RL) will both reduce beam generation 
times and improve the quality of beams 
delivered to end stations. Improving particle 
tracking will also rely on ML techniques, but 
these techniques must be sufficiently validated 
to ensure the tracking performs on data in  
the energy region of interest. AI-centric 
workflows using deep neural networks (DNNs) 
trained by detector signals will improve our 
ability to distinguish event candidates from 
background data.  
 
AI algorithms have demonstrated powerful 
anomaly detection capabilities and will  
also provide the necessary performance for 
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intelligent instrument operation and experi-
ment-steering. ML inference with microsecond 
latency will be required to support particle 
physics trigger applications in large detectors 
and associated event processing operations.  
 
The use of AI for real-time experiment-steering 
will increasingly become indispensable, 
whether for light source instruments or 
tokamak experiments, and will become equally 
critical for orchestrating the coupling of 
cosmological models with the steering 
mechanisms of a new generation of multi-
spectral telescopes.  

Engineering, Instruments, and 
Infrastructure 
Chapters 7–9 and 14–16 
 
Terms such as “smart manufacturing” and 
“digital twins” reference transformational 
approaches for expanding optimization to 
include an entire manufacturing lifespan, from 
raw materials to shape/topology to manufac-
turing process to end use. Concurrently, AI has 
been used in generative design, a two-step 
iterative process based on design goals that 
first generates possible outputs that meet 
specified constraints and then allows a 
designer to tune variables to meet constraints. 
Generative adversarial networks are often used 
to drive the underlying optimal design. 
 
The nation’s energy infrastructure is moving 
increasingly from traditional loads (non-digital, 
invisible) to many more and smaller loads that 
expose data (are visible) and have 
communication and intelligence features 
amenable to a cooperative load-management 
approach. Combined with increasingly 
intelligent energy distribution and generation 
infrastructure, the complexity, nonlinearity, and 
emergent behaviors of these systems will 
require AI-enabled, distributed and cooperative 
configuration, optimization, threat detection and 
avoidance, and control.  

Designing and Steering Infrastructure 

Just as AI will enable breakthroughs in 
automation (such as designing experiments, 
self-driving laboratories, or steering 
instruments), it will make it possible for the 
same techniques to be applied to designing 
and operating complex infrastructure. From 
electrical generation to transmission to 
distribution systems, increasingly powerful 
sensors—with edge computation enabling AI 
in-situ for anomaly detection, predictive 
analytics, and controls/optimization—will 
improve resilience as well as restoration by 
enabling predictive capabilities of after-event 
states and sharper awareness during the 
restoration process. AI-driven, real-time 
intelligence in this context can perform 
information fusion from disparate sources, 
coupling real-time infrastructure data with 
infrastructure models (e.g., a “digital twin”). 
Similarly, AI/ML-enabled predictive models 
trained by infrastructure data will be 
indispensable for exploring the design spaces 
for smart energy—as well as transportation—
infrastructure, HPC computing systems and 
data centers, and communications networks.  
 
In similar fashion, particle accelerators, light 
sources, and complex instruments such as 
ITER comprise many interconnected 
subsystems of magnets; mechanical, vacuum, 
and cooling equipment; power supplies; and 
other components. These instruments have 
thousands of control points and require high 
levels of stability, making their operation a 
complex optimization problem. The operation 
of these instruments has benefited from AI/ML-
based solutions but remains extremely difficult 
due to the lack of a priori models for reliable 
and safe control. In the absence of such 
models, learning models based on raw data 
and other AI/ML-based solutions have been 
explored, with promising results.  
 
Even smaller scales, such as manufacturers of 
limited volume batches of materials and those 
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that produce many variants of similar designs 
for customized products, are limited by mere 
automation with heuristics-based operational 
rules on robotic assembly lines. As with self-
driving laboratories, this widespread class of 
manufacturing genre must move to robotics 
with AI-at-the-edge to perform tasks 
autonomously (in similar fashion, as noted 
earlier, with respect to self-driving laboratories 
or remote observatories).  
 
These data-driven methods for control-level 
modeling, management, and interpretation of 
real-time data for control, optimal trajectory 
determination, and real-time prediction to 
support continuous and asynchronous actions 
and prevent faults will also accelerate the 
development of approaches to the operation of 
new types of infrastructure such as fusion 
power plants. 
 
DOE also operates instruments with 
components distributed over distances from 
hundreds of kilometers (e.g., ESnet or the ARM 
facility). Moving to autonomy and adaptive 
measurement makes the current practice of 
centralized control intractable. Whether in 
laboratory experiment lines, on city-sized 
accelerator facilities, or for continental-scale 
infrastructure, AI will be needed to support 
infrastructure as autonomous, self-tuning, and 
self-healing complex systems with emergent 
properties and non-linear behavior, relying on 
AI-at-the-edge due to complexity as well as 
latency and data communications bandwidth.  
 
Commercial AI hardware and system-on-chip 
(SoC) systems also have a key role to play, 
given DOE’s billions of dollars of investment in 
experimental facilities. Ultra-low latency and 
low power inference for scientific experimental 
control in these facilities can enable more 
complex, intelligent experiments, and more 
efficient operation. Again co-design and overall 
system architecture are critical as even the 
most time-sensitive commercial applications 
fueling the AI hardware industry, such as 
autonomous driving, require millisecond 
response, while DOE instruments such as 

electron microscopes and light sources can 
require responses in the 100 nanosecond 
range—over 100,000 times faster. 
 
All of DOE’s current scientific facilities—ESnet, 
exascale machines, the continentally 
distributed ARM, individual light sources, data 
sources from field-deployed sensors, and 
instrument and HPC data repositories—have 
been designed for traditional scientific 
workflows. Every link in this chain, from data 
portals and networks to edge systems, HPC 
resources, and input/output (I/O) systems must 
evolve to support the new demands of AI 
applications and workflows. 

Infrastructure Security 

As critical infrastructures increasingly rely on 
information systems, AI applications will offer 
the best approach to detecting and diagnosing 
cyber and physical attacks and threats in real-
time. Removing the human-in-the-loop is 
increasingly necessary for defensive responses 
on the same millisecond timescales as digital 
attacks. Here AI can offer novel techniques, 
including surrogate models, closure models, 
and learning-driven compute acceleration of 
high-fidelity models and solvers.  

AI in HPC 

As noted above, use of AI surrogates within 
HPC models has the potential to improve time-
to-solution by orders of magnitude, albeit 
replacing first-principles functions with 
approximations. AI-based surrogate models 
can play at least three roles in manufacturing 
systems, including a priori optimization,  
in situ real-time process control, and 
heterogeneous manufacturing through the 
transfer of AI models between different devices 
and/or feedstocks. 
 
With infrastructure and manufacturing, 
surrogate models could form the basis for 
digital twins that guide design and operation. 
Determining the best AI techniques to generate 
and validate surrogates that are robust and 
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with minimal bias will be important, along with 
research to explore, for at least several 
exemplar manufacturing and infrastructure 
processes, the optimal type and quantity of 
data to improve design optimization. 
 
Surrogates must also incorporate an 
understanding of emergent behaviors of 
interacting AI agents while capturing the multi-
physics of complex infrastructure and energy 
systems, learning from the combination of 
measured data and physics- or model-based 
simulation data for rapid prediction. Critically, 
new methods for validating and testing AI-
based models, controls, and optimization will 
be required in order to entrust critical services 
to their control, with verifiable trust being as 
important as the capabilities themselves.  

AI-Driven Leadership Computing 

The DOE’s Aurora, Frontier, and Perlmutter 
architectures are already designed to optimize 
for AI workflows. Follow-on systems at the 
LCFs and NERSC will have upgrades and 
enhancements informed by the new AI 
services, workflows, and toolkits discussed 
throughout this report. Aligning the future path-
forward efforts with the development of these 
new capabilities will be critical to enabling an 
AI-based instrument approach to future 
infrastructure and experiment design. 

Instrument-to-Edge 

Existing large-scale instruments, upgrades 
such as those to APS or ALS, and new 
instruments such as ITER, all share the need 
for AI services that can exploit their capabilities 
and plumb the unprecedented volumes of data 
they produce. The envisioned AI-based 
services and toolkits as described earlier will 
have the most impact if undertaken in concert 
with an “Instrument-to-Edge” hardware and 
software infrastructure that is developed and 
incrementally deployed to grow a common 
control and analysis architecture across DOE’s 
major instruments. Experiments using these 
instruments will rely on these new AI design, 

optimization, and control services while also 
providing data that can use new AI-based 
services for creating and refining generative 
models that can guide the optimization and 
safe operation of the instruments themselves. 

Foundations, Software, Data 
Infrastructure, and Hardware 
Chapters 10–13 
 
As noted throughout the disciplinary, 
engineering, and infrastructure discussions, 
research and infrastructure are needed to 
advance AI methods and techniques to 
address the complex challenges of using AI to 
advance science discovery. It is recognized 
that research is needed in areas such as 
processor and memory design, mathematical 
AI foundations, software environments, data 
infrastructure, and hardware. 

Training Models 

The core of any ML-based AI system is the 
creation of an abstract model and the training 
of that model is based on data. Data efficient 
learning in ML systems must be studied with 
respect to algorithms and efficiency of 
implementation, and especially with respect to 
exploiting new architectures, whether through 
the use of AI-oriented, reduced precision 
accelerator hardware or novel computing 
systems (e.g., quantum, neuromorphic) and 
associated programming paradigms. 
 
Today’s approaches to ML and AI are generally 
domain-agnostic, ignoring domain knowledge 
that extends far beyond the raw data itself. For 
example, current approaches ignore physical 
laws, available forward simulations, and 
established invariances and symmetries. 
Incorporating modeling and simulation 
capabilities to generate use case specific 
training data leverages decades of HPC 
improvements to accelerate learning; incor-
porating mathematical equations and scientific 
literature leverages centuries of advances 
in theory. 
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New AI Hardware and Systems 
Components 

There is an explosion of new AI hardware in 
industry, however the target applications 
driving these devices largely comprise 
consumer or enterprise areas such as 
autonomous driving, social networks, e-
commerce, and gaming. As evidenced in 
DOE’s Exascale Computing Project, there are 
significant opportunities to co-design 
heterogeneous compute nodes that leverage 
these new architectures and commodity 
SoC ecosystems. 
 
A set of integrated new AI workflow 
frameworks and exemplar applications will be 
needed to evaluate emerging AI architectures 
from edge SoCs to HPC data centers. This 
would effectively create both an evaluation tool 
set and a simultaneous series of specific 
science-based challenges to drive and shape 
new AI technologies, including those that fuse 
explicit knowledge and learned function. 

Programming Models and Workflows 

The design of next-generation hardware and 
software systems—from new chips to entire 
HPC systems—and the mapping of application 
codes to target systems is currently a static 
process that involves human-in-the-loop design 
with repeated experiments, modeling, and 
design space exploration. As these systems 
increase in complexity and heterogeneity, 
current strategies will be impractical. 
 
Early work demonstrating systems and 
workflows that integrate AI capabilities with 
traditional HPC simulation has largely involved 
bespoke capabilities for each experiment. The 
frameworks, software, and data structures are 
distinct, and APIs do not exist that would 
enable even simple coupling of simulation and 
modeling codes with AI libraries and 
frameworks. In situ data analysis requiring ML 
capabilities suffers from the same limitations. 
 

To fully realize capabilities ranging from self-
driving laboratories to AI-designed, imple-
mented, and operated scientific workflows, new 
programming and run-time models must also 
be developed. For example, scientists might 
ideally describe workflows as high-level goals 
and itemize building-block tasks (i.e., 
experiments, simulations) and rough models of 
the costs of those tasks. An AI system could 
instead generate a specific workflow, 
incorporating expert knowledge, to accomplish 
those tasks, adapting as results are uncovered 
or new data become available and refining the 
models of costs (e.g., in energy use or time). 
Such workflows will need to operate across 
orders of magnitude variations in 
communications latency and bandwidth and in 
computational power and storage, especially in 
cases of specialized edge devices designed for 
low-power deployments in the field. These 
programming frameworks will need to provide 
resource discovery, matching, negotiation, and 
complex optimizations of these new forms of 
heterogeneous distributed computing infra-
structure, including the integration of inference 
on low-power edge systems with iterative 
learning systems within a few milliseconds of 
the edge (e.g., in 5G telecommunications 
stations) and deep learning in data centers. 
 
Current HPC memory and storage systems are 
architected for traditional HPC simulation-only 
workloads with relatively small inputs and large 
outputs, where the access patterns are 
predictable, contiguous, block-based opera-
tions. Current AI training workloads, in contrast, 
must read large datasets (i.e., petabytes) 
repeatedly and perhaps non-contiguously for 
training. AI models will need to be stored and 
dispatched to inference engines, which may 
appear as small, frequent, random operations. 
Indeed, the model for computing within DOE 
will need to evolve to where specialized AI 
hardware cooperates with traditional HPC 
systems to train models that are dispatched to 
low-power devices at the edge. 
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AI Foundations 

AI presents a unique opportunity for creating 
data-driven surrogate models that are 
potentially orders of magnitude faster to run 
than first-principles simulation codes and that 
can be particularly effective in the ability to 
simulate physical processes that span many 
spatial and temporal scales. Rigorously 
understanding tradeoffs such as generalization 
limits, proofs of interpolation/extrapolation, 
robustness, assessment of confidence 
associated with predictions, and effects of the 
input data will impact not only model selection 
in AI systems, but also the creation and 
investigation of new classes and types 
of models. 
 
At the most basic level, frameworks and tools 
are needed to establish that a given problem is 
effectively solvable by AI/ML methods and is 
not subject to limits such as extreme 
complexity, unbounded problems, or explain-
ability. Principles of theoretical computer 
science provide a rigorous framework to 
establish critical properties of AI/ML codes, 
namely computability, learnability, 
explainability, and provability. 
 
To become an accepted part of the toolboxes 
used by scientists and engineers, the validity 
and robustness of AI techniques need to be 
trusted. What are the limits of AI techniques, 
and what assumptions and circumstances can 
lead to establishing assurance of AI predictions 
and decisions? Which AI techniques can best 
address different sampling scenarios and 
enable efficient AI on various computing and 
sensing environments? Resulting AI systems 
must similarly address assurance: whether and 
when an AI model can be trusted. Why does 
the AI model work for a problem? What are the 
internal representations of data that the AI 
model has learned during training? How can 
the behavior of the AI model be explained? 
How confident are the AI models on their 
predictions given the different sources of 
uncertainties and inductive biases involved? 
For such an AI model to be accepted as a well-

characterized tool for science, the research 
community will need to address these 
questions and develop advanced capabilities to 
explain the behavior of the AI model. 
 
Especially for systems operating experiments, 
instruments, or critical infrastructure, validation 
is vital regardless of whether the AI model is 
making the right decision for the right reason. 
Has the AI model learned spurious 
correlations, or can the model determine the 
control variables? Can AI be used to identify 
causal variables or distinguish between cause 
and effect? Typically this cannot be done with a 
single training dataset. Instead, the AI model 
needs to be trained to construct a hypothesis, 
typically a counterfactual one, and to design an 
experiment—including the collection of data 
(and the suitability of that data)—to test that 
hypothesis. 
 
Opportunities exist for fundamental advances 
in optimization algorithms, differentiation 
techniques, and models—foundational to 
training in AI. Additionally, an important aspect 
in the development and application of AI is the 
quantification of uncertainties. Where AI and 
ML are used in physics-based applications, 
established approaches to UQ are applicable. 
In other cases, particularly in classification 
problems, ML models tend to be highly 
nonlinear systems that are extremely sensitive 
to input data, and small (e.g., undetectable to 
the human eye) changes can lead to 
misclassification. 
 
Addressing the computer science challenges 
will require a comprehensive AI/ML science 
program to develop and refine foundational 
limits and solvable problems and to sharpen 
the solutions for solvable classes to ensure 
effective computation, performance guarantees 
and explanations. This is an urgent issue, as 
work on the foundations of AI and ML has been 
far outpaced by the empirical exploration and 
use of such techniques—often in the form of 
bespoke systems with disparate architectures. 
Consequently, the principles underlying the use 
and understanding of these and other 
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techniques tend to be scattered across 
disciplines, from theoretical computer science 
to signal processing to statistics.  

Discovery and Data 

Accelerating science, engineering, and 
manufacturing through AI methods requires 
large and diverse sources of data. At the same 
time, AI may hold the key to the limitations 
associated with that data. That is, applying 
data sources—from instruments, simulations, 
sensor networks, satellites, the scientific 
literature, and research results—is inherently 
challenging with respect to data being “FAIR” 
(findable, accessible, interoperable, reusable). 
AI systems can be employed to automate the 
creation of FAIR data and integrate it into 
knowledge repositories, in turn providing the 
architectural basis for new data infrastructure 
necessary to accelerate AI training and 
model development. 
 
This high-volume data acquisition not only 
extends the end-to-end experimentation time 
but also limits experiments with time-sensitive 
phenomena. Smart data reduction techniques 
(e.g., filtering relevant data or point-of-interest 
data acquisition) will be necessities rather than 
features with the upcoming instruments such 
as those mentioned earlier. 
 
Data produced by instruments, manufacturing 
systems, or engineered products (e.g., 
vehicles), often cannot be shared due to 
regulations (e.g., medical records or energy 
usage data) or the competitive nature of the 
data (e.g., factory or mobility data). AI-based 
federated learning techniques can accelerate 
model development, for instance, by 
harnessing proprietary manufacturing data 
from multiple sources. These techniques 
enable the development and training of models 
with data from many sources without requiring 
data sharing among them.  
 
AI-based data services that leverage success 
to date of new DL and unsupervised learning 

techniques are vital to designing and operating 
increasingly large scale, complex infrastruc-
ture. These services will, in turn, require AI-
based functions that can integrate and 
augment multimodal data sources including 
metadata, such as scientific instrument 
responses (e.g., flux and focus) in combination 
with a record of instrument configurations (e.g., 
motor positions, neutron chopper phases, 
monochromator bending parameters), and 
measurable instrument and environmental 
parameters (e.g., ring current, cooling water 
flow, and temperature). The integrated data will 
underpin AI services for developing generative 
models and decision-making functions that will 
be required to build advanced predictive 
models of accelerators, end stations, and 
sample delivery systems. Such services and 
models will also aid in automated alignment 
and calibration of instruments, stabilizing user 
operations, predicting and preventing 
catastrophic failures, and/or reducing the total 
downtime of the instrument. 
 
While the infrastructure and methods needed 
to enable AI methods to access, learn from, 
and add to the broad body of knowledge are 
nascent, there are promising examples, such 
as the use of reinforcement learning, 
unsupervised learning, and classification 
techniques to automate labeling and creation of 
metadata. 

Conclusions 
 
Realizing the scientific capabilities discussed 
throughout this report will require extensive co-
design work for domain scientists, facility 
designers, AI experts, mathematicians, 
computer scientists, and software research 
teams. Across the 16 chapters are scientific 
requirements that suggest a suite of new AI-
capability building blocks and services, from 
design to control, augmented simulations to 
generative models, decision making to inverse 
problems, and the ability to learn not only from 
multi-model data (e.g., text, graphics, images, 
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waveforms, structured, time series) but from 
the domain knowledge embodied in the 
scientific literature.  
 
To achieve the grand challenge of developing 
self-improving and self-adaptive hardware-
software systems and applications, the 
services, applications, and software 
infrastructure must be both grounded by 
mathematical and AI foundations research and 
also implemented, evaluated, and adjusted 
over the coming decade. While this report is a 
not a detailed implementation plan, we can see 
possibilities for how to accelerate the 
opportunities identified by the community. One 
potential path is to partner with industry along 
at least two roadmaps. 
 
The first is an “Instrument-to-Edge” activity that 
charts the course toward common tools and 
services for instrument, experiment, and 
infrastructure design, evaluation, optimization 
and steering, and safer operation across the 
DOE enterprise. 
 
The second entails continuing efforts to 
advance a leadership computing, data, and  
 

analysis infrastructure that fully exploits and 
optimally supports new, AI-enabled software, 
data lifecycle, workflow, and modeling services 
and toolkits. 
 
DOE’s programmatic approaches, such as co-
design or SciDAC programs, are ideal for 
developing the new AI services—packaged 
and supported as reusable toolkits and building 
blocks—that are required for self-driving 
laboratories and for steering scientific 
instruments. AI-based components including 
design, decision-making and evaluation, 
control and optimization, or the creation of 
generative models from instrument data and 
simulations are necessary to move from 
“AI has potential for…” to “AI is enabling…”. 
 
International leadership in AI over the coming 
decade will hinge on an integrated set of 
programs across four interdependent areas—
new applications, software infrastructure, 
foundations, and hardware tools and 
technologies, feeding into and informed 
concurrently by DOE’s scientific instrument 
facilities and by DOE’s leadership class 
computing infrastructure. 
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01. Chemistry, Materials, and Nanoscience 
The ability to design and refine materials and 
chemical compounds has always been key to 
the rapid advancement of society’s technology 
and infrastructure. Today’s complex 
technologies require a broad spectrum of 
needs when developing and optimizing 
materials and chemicals with desired 
performance [1–3], such as mechanical, 
electronic, optical, and magnetic properties 
(e.g., smartphones use up to 75 different 
elements compared to the twentieth-century 
version that had only ~30). This new level of 
technological complexity, combined with the 
need to search undiscovered areas of  
the chemical and materials landscape without 
clear theories or synthesis directions,  
[4] requires new paradigms that utilize artificial 
intelligence (AI).  
 
AI will become an integral part of a scientist’s 
arsenal, alongside pen and paper, and 
experimental and computational tools. It will 
accelerate the next scientific discoveries and 
the design and development of revolutionary 
technologies benefiting society. AI will identify 
both promising materials and chemicals, and 
the reaction pathways to make them [5]. 
Scientists will use AI to generate scientific data 
in a rational way, formulating new physical 
models and theoretical insights that drive new 
paths for rational design of materials and 
chemicals, and exploring atomic design spaces 
currently unimaginable. 

1. State of the Art 
Our ability to discover new materials and 
chemical reactions is driven by intuition, design 
rules, models, and theories derived from 
scientific data generated by experiments and 
simulation. The number of materials and 
chemical compounds that can be derived is 
astronomical, so finding the desired ones can 
be like looking for a needle in a haystack. 
Currently, various machine learning (ML) 
approaches are used to help scientists explore 
complex information and data sets with the 
goal of gaining new insights that lead to 
scientific discoveries. Future discoveries of 
advanced materials could be greatly 
accelerated through ML. Note, for example, the 
timeline from discovery of LiMn2O4 to nickel-
manganese-cobalt (NMC) materials for 
batteries. Using known data, we could use ML 
to accelerate discovery of new material classes 
for batteries from 14 years to less than 5 years 
(Figure 1.1).  
 
Nowadays, experimental characterization tools 
routinely provide picometer/picosecond 
resolved images at an ever-increasing rate, 
and, when coupled with a modern camera, are 
capable of providing several hundreds of 
frames per second. This pushes the data size 
into the several hundreds of terabytes (TB) per 
experiment for a single microscope [6]. Real-
time analysis of this data, aided by AI, is  
  

 
Figure 1.1 Timeline from discovery of LiMn2O4 to NMC materials for batteries. 
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needed to provide rapid feedback to and from 
models and simulations that can both  
inform and validate decisions. Such rapid 
feedback would also enable experimental 
adjustments on the fly. Progress has begun to 
address two major gaps in the current 
paradigm of materials design and discovery 
that typically proceeds via synthesis ⇒ 
characterization ⇒ theory. 
 
First, continuous growth in high-performance 
computing (HPC) capabilities, combined with 
the development of efficient and scalable 
electronic structure calculation methods, is 
enabling scientists to virtually explore materials 
and chemical compounds. Large databases 
have come online containing the simulated 
properties of millions of relatively simple 
materials and chemical compounds. Deep 
learning (DL) approaches are being developed 
for various tasks, such as predicting properties 
or structure, but this barely scratches the 
surface of the full atomic design space 
available to us. Even more, the real world is far 
more complicated than the simple structures 
often studied by electronic structure calcula-
tions, and simulations investigating systems 
under device-relevant conditions are still 
prohibitively expensive. Advances are needed 
in reliable and precise computational tech-
niques that accurately (and rapidly) address 
the increasingly complex functionalities 
required for today’s technological applications.  
 
Second, significant progress has been made 
toward fully exploiting all of the information 
contained in experimental and computational 
data to predict and understand new materials. 
An example is the automated image analysis 
and recognition based on DL networks that 
was successfully developed to identify and 
enumerate defects, and that created a library of 
(meta) stable defect configurations 
(Figure 1.2). The electronic properties of the 
sample surface were further explored by 
atomically resolved scanning tunneling 
microscopy (STM). Density functional theory 
(DFT) was used to estimate the STM 
signatures of the classified defects from the 

created library, allowing for the identification of 
several defect types across multiple imaging 
platforms. This approach now allows automatic 
creation of defect libraries in solids, explores 
the metastable configurations that are always 
present in real materials, and provides 
correlative studies with other atomically 
resolved techniques than can provide compre-
hensive insight into defect functionalities. 
 
It is this integration and analysis of multiple, 
complex data sources combined with current 
state-of-the-art ML approaches that holds great 
promise for a drastic acceleration of materials 
and chemical compound discovery. 

2. Major (Grand) Challenges 
Finding new materials or chemical compounds 
that have unique properties needed for real-
world applications—for example, batteries that 
hold 10x the storage capacity compared to 
today’s batteries, or materials that capture 
more solar energy at greater efficiency—is a 
grand challenge due to the nearly infinite 
chemical or atomic design space to which 
scientists have access. To date, our modern 
chemical and materials synthesis and 
discovery process incorporates a wide range of 
design rules and theories, alongside advanced 
characterization tools capable of observing 
synthesis processes on size and time scales at 
which they occur. At the same time, high-
throughput screening via theory-driven 
approaches, per the materials genome, has 
provided guidance in identifying promising 
candidates optimized for particular properties. 
Early work in ML shows the potential for AI to 
start to provide guidance on the synthesis 
pathways to make a material or chemical. The 
underlying grand challenge as outlined by the 
Basic Energy Sciences Advisory Committee 
(BESAC) is how to design and perfect atom- 
and energy-efficient synthesis of revolutionary 
new forms of matter with tailored properties. 
This requires us to explore materials and 
chemical compounds compositions entirely 
unknown, driving questions such as, where in 
our atomic design space do we look? How do 
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we search the chosen space in the most 
efficient way or decide to move on to other 
areas? Can we develop new design rules? 
Aiding this would be the ability to understand 
the length- and time-scale evolution of 
functional chemical and materials systems. 
 
The primary challenges are concisely 
described by BESAC’s 2015 report, Challenges 
at the Frontiers of Matter and Energy: 
Transformative Opportunities for Discovery 
Science. 
 
• Mastering Hierarchical Architectures and 

Beyond-Equilibrium Matter 
• Beyond Ideal Materials and Systems: 

Understanding the Critical Roles of 
Heterogeneity, Interfaces, and Disorder 

• Revolutionary Advances in Models, Mathe-
matics, Algorithms, Data, and Computing 

• Harnessing Coherence in Light and Matter 
• Exploiting Transformative Advances in 

Imaging Capabilities across Multiple Scales 
 

Specifically, gaps/challenges that need to be 
addressed by AI/ML are listed below. 
 
Design metastable phases and materials 
that persist out of equilibrium. These 
materials enable access to a diversity of 
properties beyond the limits drawn by 
equilibrium thermodynamics. For example, 
optically driven processes of materials could 
provide more control over the chemical 
processes and lead to new materials, such as 
metastable phases or new low-dimensional 
materials with dynamics controlled by in-plane 
heterogeneity rather than layer stacking order. 
Another example is self-assembly, where 
transient (non-equilibrium) intermediate states 
frequently appear, and control of assembly 
pathways can enable improved structural 
control. Modern characterization systems such 
as electron and scanning probe microscopies 
may allow “bottom-up” fabrication of new 
structures that are metastable, which allows 
arrays, for example, of topological defects to be 
created with nanometer precision for desired 
properties. The challenge is to do this in an 
efficient and reproducible fashion; this requires 
in-line analytics and feedback of very high 
velocity and volume data streams. 
 

 
Figure 1.2 A scanning transmission electron microscope (STEM) images materials where there are defects 
present or intentionally induced by the electron beam in the STEM. DL via convolutional neural networks is used 
to process the data to recognize and categorize defects. These data are populated into a database hosted by 
CITRINE Informatics. DFT calculations via HPC are used to predict STM images for the different defect classes, 
which then are used to train the DL in a similar fashion to the STEM, and then deposited into the database [7].  
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Understand and control interfacial 
processes and properties. Controlling 
interfaces (liquid/liquid, gas/solid, etc.) often 
rely on precise control of atomic bonding and 
molecular interactions between two dissimilar 
phases. The ideal strategy to avoid 
performance-limiting defects in materials, for 
example, is to minimize perturbation of the 
atomic order at the interface by preserving a 
high degree of crystallographic order (e.g., 
epitaxy). However, atomic scale insights into 
grown structures present significant inverse 
problems that have been difficult to address. 
This may potentially be tackled using combined 
physics-ML methodologies (Figure 1.3). 
Additionally, chemical separations, an area 
which is fundamentally important to almost 
every aspect of our daily lives, from the energy 
we utilize to our medications to chemical 
purification, including water, can see 
transformative advances with AI in terms of 
refining and optimizing experimental 
approaches. The use of AI will aid the pursuit 
of grand challenges such as understanding 

complex hierarchical correlations, from 
molecular-scale interactions up to transport 
phenomena, and mapping energy landscapes 
for the chemical and materials transformations 
that occur during aging of separation 
materials/chemicals. 
 

 
Figure 1.3 An integrated approach for future design of 
materials interfaces tailored for performance. Key to this vision 
is inclusion of multi-modal operando experiments enabled by 
AI/ML. 
 
Design materials and molecules for 
quantum information sciences (QIS). Much 
of the transformative success of technologies 
underlying the information age was built on our 
ability to manipulate chemical composition and 
doping, and hence electronic band structure 
and electrochemical potential, within materials 
at tiny length scales, encode local electronic 
properties as the physical instantiation of 
information, and thus control the storage, flow, 
and processing of information. We now stand 
on the brink of a quantum information 
revolution. Here, breakthroughs will be driven 
by the ability to harness the interplay and 
evolution of quantum entangled and coherent 
ensembles as the physical representation and 
processing of information. This will provide 
radically new opportunities in computation, 
enabling exponentially higher speeds and 
efficiencies and the ability to solve problems 
that are currently intractable. As such, there is 
a desperate need to deliver systems for 
potential solid-state qubits, photon sources, 
and quantum sensing systems [BES 
Roundtable, Opportunities for Basic Research 

In January 2018, the U.S. Department of Energy’s 
(DOE’s) Office of Advanced Scientific Computing 
Research (ASCR) hosted a Basic Research  
Needs workshop focused on ML for science. This 
workshop resulted in development of priority research 
directions (PRDs) for interpretability, domain 
awareness, robustness, and needed capabilities 
(Workshop report on Basic Research Needs for 
Scientific Machine Learning: Core Technologies for 
Artificial Intelligence, https://www.osti.gov/servlets/ 
purl/1478744). Although the workshop highlighted 
significant investment in ML for the analysis of big 
data, there has been less activity on the generation of 
such data sets—a critical need as DOE’s major 
experimental facility upgrades begin commissioning. 
PRD-6 from the workshop, intelligent automation and 
decision-support, is highly relevant as timely 
advances in AI and ML will be critical to enable the 
full scientific potential. To make AI/ML successful for 
the large experimental and computational data from 
our facilities, there are challenges in terms of 
archiving metadata and preserving provenance, 
workflows to manage data transfer to and from 
instruments and integration with HPC facilities, 
development of software stacks (federated), and 
uncertainty quantification to identify regions of model 
validity. 

https://www.osti.gov/servlets/purl/1478744
https://www.osti.gov/servlets/purl/1478744
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for Next-Generation Quantum Systems, Oct. 
30–31 (2017); Roundtable, Opportunities for 
Quantum Computing in Chemical and Materials 
Sciences, Oct. 31–Nov. 1 (2017)]. Promising 
advances at DOE facilities in layered materials 
stamping and a new pulsed laser deposition 
(PLD) system will generate rich structural, 
heterointerface, and functional property 
datasets that will require deep AI/ML analysis 
and real time control. This analysis/control will 
need to be done in situ and on the timeframe of 
the experiments to enable smart-steering of the 
synthesis processes toward successful 
quantum materials. 
 
Understand the critical roles of hetero-
geneity in complex systems. Heterogeneities 
and interfaces underlie novel functionalities 
and drive dynamical processes, such as 
charge and exciton transport (e.g., along grain 
boundaries), charge separation (at Type II 
heterojunctions) and recombination (at Type I 
heterojunctions), spin evolution, and transport 
of ions or molecules through ordered and 
disordered systems (e.g., at battery interfaces 
or through metal organic frameworks). 
However, understanding transient and time-
dependent processes in material and chemical 
systems is enormously challenging; examples 
include identifying chemical reaction pathways, 
visualizing electronic and optoelectronic 
processes at their native lengths (single atoms 
to many nanometers) and time scales (femto to 
nanoseconds and beyond) in heterogeneous 
materials, and studying exchange processes 
between excitations on various length scales. 
Progress can be made via high-throughput 
materials synthesis and automated atomic-
scale/multimodal characterization. Here the 
aim is to broadly understand how population 
diversity influences growth and behavior, with 
the ultimate goal of creating a closed-loop 
materials property prediction, synthesis, and 
characterization loop. By understanding and 
controlling heterogeneity, it may be finally 
possible to design multifunctional and self-
regenerating catalytic systems. 
 

Understand and master energy and 
information with capabilities rivaling those 
of biological systems. Biological systems 
naturally transform and distribute energy 
through photosynthesis and subsequent 
decomposition of photosynthetic material. 
Conversion of energy to biomass can occur via 
various mechanisms, including photosynthetic 
and chemical pathways with oxygen (i.e., 
aerobic) and without oxygen (i.e., anaerobic). 
Greater insights are needed into the regulation 
of these pathways, the mechanisms 
responsible for the reactions, and environ-
mental influences on the reactions. This 
improved understanding is a precursor to 
enabling changes in pathways that may 
uncover new or more efficient energy sources. 

3. Advances in the Next Decade 
In the next five to 10 years, AI will be an 
integral part of a scientist’s discovery and 
design arsenal. Scientists will use AI to 
generate scientific data in a rational way, 
formulating new physical models and 
theoretical insights that drive new paths of 
rational design of materials and chemicals, 
exploring atomic design spaces currently 
unimaginable. 
 
The ultimate form of AI for materials, chemistry, 
and nanoscience constitutes autonomous-
smart experiments and simulations, 
including synthesis and automated 
discovery, that integrate all aspects of the 
materials and chemistry discovery loop—from 
preparation through characterization, to data 
interpretation and feedback—in order to 
minimize the experimental trials needed to 
achieve a desired property or set of properties. 
This could allow vastly more challenging 
materials and chemical compound problems to 
be tackled. However, such an autonomous 
process will still require expert scientists in the 
loop to ensure viability and success. Overall, 
the vision of “autonomous-smart experiments” 
is an as-yet unrealized grand challenge, as the 
parameter space is simply too large to manage 
in traditional ways. AI/ML can clearly be a 
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transformative key to bridge this gap, but it will 
require addressing a number of challenges 
(ranging from teaching the AI physical 
concepts and rational design decisions), 
making experimental instruments “smart,” 
integrating experimental and simulation data, 
working with large and diverse sets of 
streaming data, and having precise control 
over the experiments. AI/ML can be 
transformative in terms of high-throughput 
screening, drastically accelerating simulation 
capabilities to achieve desired precision with 
very low computational cost and opening the 
door to virtually explore a much larger part of 
the available design space. 
 
Efficient materials, chemical, and device 
characterization are critical elements in the 
scientific discovery workflow. As such, the 
characterization capabilities are constantly 
used for the determination of chemical 
composition, structure, physical properties, and 
overall functionality. In general, this involves 
(1) an analytical step to confirm that the target 
chemicals and/or materials are produced; 
(2) characterization of the physical properties, 
morphologies, defects, and interfaces of the 
functional materials and chemicals by multiple 
probes/techniques; (3) characterization of the 
functional properties, in situ/operando, in 
devices. This means it will require new analysis 
across all of these platforms, including 
registration of data from different instruments 
(e.g., pan sharpening) and scaling for  

structure-property mapping. It will be important 
to fully enable in situ multimodal analysis with 
streaming data, for example, implementing 
online analysis and active learning during an 
experiment when more than one type of probe 
is being used (as data will be streaming at 
potentially very high velocity and volume). 
 
With AI and ML automation of model-building 
and decision-making in experimental loops, 
machine-guided synthesis, processing, and 
ultimately materials and chemistry discovery 
can be achieved, enabling discovery, 
synthesis, and control of novel processes and 
properties (Figure 1.4). 
 
In the next decade, all the upgrades to DOE’s 
light sources will be completed alongside the 
proton power upgrade at the neutron source. 
Thus, there will be significant advances and 
new information in the following areas. 
 
New data sets/instruments online. There will 
be a continued increase in the capabilities in 
detectors/cameras alongside accelerators that 
will lead to a tremendous increase in potentially 
high-quality information from microscopes and 
light sources. Those instrument advances will 
provide extreme volumes and velocities of data 
that contain deep information regarding 
materials/chemistry processes alongside a 
modality that enables manipulation and control 
of the materials. 
 

 
Figure 1.4 Schematic illustration of the elements of experiments and computations that are 
required to enable autonomous-smart experiments for materials/chemical design/synthesis. 
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Enhancement in big data and data curation. 
There must be a focused effort to link major 
facilities and capabilities, such as our 
leadership computing facilities and our 
microscopy, light, and neutron sources, to 
characterize and fully understand the new 
materials. We need a radical improvement on 
data sharing, analysis, and curation that will 
catalyze scientific discovery. This requires the 
development of protocols, common data 
formats, and complete metadata to document 
and curate the full history and knowledge of the 
synthesized material. Furthermore, workflows 
to integrate knowledge across multiple 
facilities, and the ability to create and draw on 
knowledge graphs to better inform modeling 
and propose new experiments, should be 
expected. Ultimately, a shared and curated 
source of data that is easily searchable and 
minable will be a fundamentally needed 
infrastructure. Progress is expected along the 
lines of new AI platforms that integrate diverse 
scientific data resources, including the 
literature, and respective mining engines, 
which will enable automatic development of 
training sets from heterogeneous experimental 
and simulated data (see Chapter 12, Data 
Lifecycle and Infrastructure). 
 
Rare events detection and identification. 
Rare events are events that occur very 
infrequently, i.e., their frequency ranges from 
0.1 percent to less than 10 percent. While 
these events are low probability, they can have 
high impact. 
 
Events such as failure in materials under 
stress, or side reactions in gas phase 
chemistry that may occur on time scales too 
short for humans to observe, are very 
important to identify. Near-term adaptive 
control of some experiments—when 
implemented as real-time decision-making 
during an experiment—can identify regions of 
interest and save the relevant data. The 
introduction of AI into instrument control 
systems will allow detection when their 
alignment has drifted and then perform 
automated alignment and recalibration. 

Computers and algorithms. There will 
continue to be major advances in computer 
capacity and mathematical algorithms which 
will further enhance the ability to perform in-line 
and real-time analysis of experimental and 
computational data.  
 
Accelerated simulation. Continued advances 
in computing capacity and computational 
chemistry and materials methodologies, 
combined with ML network development, will 
provide new sets of data for AI/ML and 
decision making. 
 
New AI/ML techniques. Advances are 
expected in reinforcement (algorithms that 
employ reward/punishment), active learning 
and neuromorphic computing that may be used 
“at the edge”—where people and things meet 
(AI/ML at the edge)—as well as in explainable 
and interpretable AI/ML (see Chapter 10, AI 
Foundations and Open Problems). Particularly 
important will be advances in AI/ML 
approaches that can deal effectively with 
sparse, unlabeled data. 

4. Accelerating Development 
To achieve the vision of autonomous-smart 
experiments/discovery, a number of technical 
challenges must be addressed. It will be  
critical to accelerate development in the 
following areas. 
 
Advance edge computing and integrated 
experimental instruments. Computing at the 
experimental instrument(s) for on-the-fly 
analysis with feedback during an experiment 
will need to be implemented to maximize 
information gain and efficient control. This will 
be particularly important for multimodal 
experimental probes that require analysis 
across different platforms. Edge computing for 
automating aspects of experiments, such as for 
AI/ML-assisted tuning of the environment, 
importance sampling, next-experiment 
recommendation, etc., will be critical. 
Additionally, on-demand pipelines to HPC for 
automatic spawning of jobs directly related to 
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discoveries at the instrument are needed. This 
can be important for forming databases based 
on higher levels of ML models trained on 
simulated data, where the simulations would 
require an HPC environment. The goal is to 
provide fast on-the-fly analysis of “streaming” 
experimental data. 
 
Enable in situ multimodal analysis. 
Characterization capabilities are constantly 
used for the determination of chemical 
composition, materials structure, physical 
properties, and how such properties correlate 
with functionality. In general, this involves  
(1) an analytical step to confirm that the target 
chemicals and/or materials are produced;  
(2) characterization of the physical properties, 
morphologies, defects, and interfaces of  
the functional materials, by multiple 
probes/techniques; (3) characterization of the 
multi-functional properties, in situ/operando, in 
devices (in vacuo, in solute, in atmosphere) 
across a broad frequency range. Achieving 
acceleration will require new in situ multimodal 
diagnostic approaches which incorporate all of 
these analytical platforms in one experiment. 
These include registration of data from different 
instruments/in situ probes and scaling (e.g., 
pan sharpening) for structure-property map-
ping, multimodal cross-correlation, and building 
of frameworks to integrate knowledge in a 
rigorous physics-based framework that 
incorporates uncertainty quantification meta 
data analytics. In situ data analytics, including 
cross modeling, will be approached on two 
levels, the first level at the point of experiment 
using edge computing and at the second level 
of HPC. The ML algorithms will be incorporated 
as a part of in situ multimodal analysis. It will 
lead to machine-guided decision-making 
algorithms for selection of optimal experimental 
condition, minimal number of experiments, and 
reduced model error. 
 
Enable automated smart characterization. 
The use of active learning and Bayesian 
methodologies in combination with predictive 
modeling during experimental characterization 
can enable the efficient exploration of 

heterogeneities in materials and the delicate 
balance in chemical compounds and reactions. 
The goal is to minimize the uncertainty and to 
maximize physics knowledge gain. 
 
Enable AI/ML approaches to represent 
physics. Dictated by the laws of physics, only 
discretized structures exist in nature. This 
“discreteness” needs to be represented 
properly in the encoding space to control 
erroneous predictions and misclassifications. 
New and novel mathematical approaches are 
needed to incorporate physical constraints and 
symmetries into the representation and 
encoding of chemical and materials data, 
feature detection, and the learning process 
itself. New kernels that can operate on 
hierarchical structured data for similarity 
quantification to enable the application of 
uncertainty-aware regression methods are 
also needed. 
 
Enable big-fast data at the signal-noise 
edge. Use of ML models for characterization at 
the dose limited range is critical for 
autonomous experiments. Big-data-based 
techniques, such as four-dimensional scanning 
transmission electron microscopy (4D-STEM), 
are limited by how fast the data can be 
collected, with the bottlenecks arising from 
detector readout times and data transfer rates. 
This imposes constraints on the sample since it 
rules out beam-sensitive samples that will not 
be stable under the comparatively slower 
imaging conditions, and also dynamic in situ 
experiments. Fast detection is possible, but the 
data is noisier. Current state-of-the-art iterative 
analysis protocols are more susceptible to 
noise, and next-generation ML models trained 
on HPC-simulated datasets can be a way to 
bridge this gap between big data in microscopy 
and dynamic microscopy. 
 
This includes integrating data efficiently from 
different characterization techniques to provide 
a more complete perspective on materials 
structure and function. Even with this promising 
progress, there is still tremendous need for 
work that can bridge a number of critical gaps, 
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including delivering a set of open-source 
petascale quantum simulation, data 
assimilation, and data analysis tools for 
functional materials design, within an approach 
that includes uncertainty quantification and 
experimental validation and verification of AI 
models (see Chapter 10, AI Foundations and 
Open Problems). 
 
Develop a workforce that can work across 
domains. Existing and emerging training 
programs in chemistry and materials need to 
be expanded to ensure a workforce that 
understands AI approaches and how they can 
best benefit problems in chemistry and 
materials discovery.  

5. Expected Outcomes 
Success in achieving autonomous-smart 
experiments will lead to transformative 
advances in: 
 
• The diversity of materials properties possible 

beyond the limits drawn by equilibrium 
thermodynamics or our imagination based 
on discovered design rules. 

• The realization of multifunctional and self-
regenerating catalytic systems. 

• The control of interfaces optimized to 
perform desired functions.  

• On-the-fly materials and (bio)chemical 
design and synthesis. 

• The discovery of unknown synthesizable 
materials and complex chemical species 
1000x faster and with desired properties. 
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02. Earth and Environmental Sciences 
Earth and Environmental Sciences addresses 
some of the most pressing challenges in the 
nation, from natural resource utilization to 
maintaining our infrastructure and environment. 
In particular, recent events have highlighted the 
fact that our society is vulnerable to 
increasingly frequent natural hazards, including 
wildfire, drought and extreme precipitation 
events (Figure 2.1). An urgent need exists for 
improving our predictive capabilities of earth 
and environmental systems, including physical, 
chemical, and biological processes that govern 
the complex interactions among the land, 
atmosphere, subsurface, and ocean 
components from molecular to global scales, 
and from daily to decadal time scales. 
 

 
Figure 2.1 Billion-dollar weather and climate disasters for the 
year 2018 [32]. 
 
In recent decades, Earth observation 
capabilities have been revolutionized, based on 
a suite of novel sensor, analytics and 
telecommunication technologies. In particular, 
DOE has pioneered integrated observational 
capabilities at the laboratory scale (e.g., EMSL, 
SNS, ALS) and at field scales (e.g., NGEEs, 
ARM), as well as developed systems biology 
databases (e.g., KBase) and data archives 
(e.g., ESS-DIVE and ESGF). We now have 
access to several hundred petabytes of 
observational data of the Earth system in the 
U.S. alone; most of them in real-time. In 
parallel, predictive modeling capabilities have 
advanced significantly to simulate complex 

Earth systems, facilitated by HPC capabilities. 
Together, these vast observation and 
simulation data offer unique opportunities  
to apply AI approaches for improved 
understanding and scientific discovery in Earth 
and environmental sciences. AI methods offer 
the promise to accelerate development of 
advanced tools and the next generation of 
technology for assimilating observations and 
data-driven forecasting.  

1. State of the Art 
Applications of AI methods for Earth, 
environment, and climate research are in their 
infancy, but interest is growing rapidly as  
our ability to collect and create data outpaces 
our ability to assimilate, interpret, and 
understand it [24,3]. Primary applications 
include (1) knowledge discovery and 
estimation; (2) data assimilation and data-
driven models; (3) model emulators, and  
(4) hybrid process-/ML-based models that 
integrate process scale data. Artificial neural 
networks (ANNs) and deep neural networks 
(DNNs) have been widely used for producing 
weather forecasts (e.g., [8]), spatiotemporal 
gap filling (e.g., [13]), and various remote 
sensing and geophysical image processing and 
analysis [3,21]. Random forest (RF) methods 
are widely used to understand and interpret 
complex environmental data [1], as well as to 
estimate environmental parameters such as 
soil properties at the global scale [12]. In 
addition, unsupervised learning and clustering 
methods have been used to discover key 
spatiotemporal patterns in large remote 
sensing and simulation datasets (e.g., [14]). 
 
More recently, increasing interest in ML 
applications have fueled development of 
emulators for environmental process  
models, particularly in the subsurface and 
atmospheric sciences (e.g., [25,17,29]). New 
parameterizations based on ANNs have been 
developed for representing stochastic 
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convection based on simulations from fully 
resolved cloud models [6,23,22] with similar 
efforts for ocean modeling [4]. Earth, 
environment, and climate research is seeing 
rapid acceleration in the use of AI for data 
assimilation and for producing hybrid process-
/ML-based models and physics-informed ML, 
including “active learning” methods and 
GANs [26,27]. 

2. Major (Grand) Challenges 
Four grand challenges have emerged in the 
Earth, environment, and climate disciplines that 
could be revolutionized through application of 
AI methods and incorporation of burgeoning 
data, leading to new scientific discoveries and 
advances in energy security, national security, 
and adaptation and resilience to extremes in 
our changing environment. 
 
Project environmental risk and develop 
resiliency in a changing environment. 
Increasing risks are posed by changing 
environmental conditions and increasing 
frequency of weather extremes on various 
aspects of our society and energy sector, 
including detrimental effects of wildfires, floods, 
droughts, wind, solar energy production and 

contamination (Figure 2.2). Our ability to 
assess the vulnerability from such changing 
conditions, mitigate imposed risks, and 
respond rapidly to such events is limited by the 
fidelity of modeling and observational tools. 
New advanced sensors coupled with edge 
computing capacity are now available for rapid 
data acquisition, but many challenges still exist 
for real-time data-model assimilation. New 
tools are needed to accelerate the projection of 
weather extremes and their result impacts on 
energy infrastructure and the built environment 
(i.e., buildings, roads, utilities) under changing 
environmental conditions. Efforts to build 
resiliency to address evolving risks will benefit 
from data-driven approaches that integrate 
smart sensing systems, built-for-purpose 
models, large ensemble forecasts to quantify 
uncertainty, and dynamic decision support 
systems for critical infrastructure. The 10-year 
goals include (1) development and under-
standing of predictive capabilities of Earth, 
environment, and climate models from sub-
seasonal to decadal scales; (2) development of 
coupled datasets that are consistent across all 
components of the Earth, environment, and 
climate; (3) development of purpose-built and 
point-of-action forecast models of Earth, 
environment, and climate that are usable for 

 
Figure 2.2 There are many ways environmental conditions and changes in the environment affect energy 
systems [33]. 
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estimating risk and resilience, and (4) the 
scaling up of the observational capabilities of 
extreme events. 
 
Develop adaptive subsurface management 
strategies for energy production and 
storage, and waste isolation. The energy 
security of our nation relies on the utilization of 
subsurface reservoirs for energy production 
and storage, carbon storage, and spent nuclear 
fuel storage. We need to substantially increase 
hydrocarbon extraction efficiency from 
unconventional reservoirs; discover and exploit 
hidden geothermal resources; reduce 
environmental impacts, including induced 
seismicity; dramatically increase geologic CO2 
storage; and improve prediction of the long-
term fate and transport of contaminants. 
However, our capabilities to assimilate existing 
data to understand, reliably predict, and 
adaptively control subsurface processes are 
extremely limited (Figure 2.3). The subsurface 
datasets and real-time data streams are 
typically uncertain, disparate, diverse, sparse, 
and affected by scaling issues. The physical 
models of subsurface processes (e.g., flow, 
storage, stress, chemistry) are incomplete, 
uncertain, and frequently unreliable for making 
predictions. The 10-year goal would be 
seamless integration of multivariate data with 
real-time data streams into forecasts of system 
behavior with innovative visualization, including 
the capability for predictive models to test 
various hypothetical operational and economic 
scenarios, as needed, to guide operational 
decisions in near real-time. 
 
Develop a predictive understanding of the 
Earth system under a changing environ-
ment. To advance the nation’s energy and 
infrastructure security, a foundational scientific 
understanding of complex and dynamic 
biological, geochemical, and hydrological 
processes, and their interactions under 
environmental change, is required (Figure 2.4). 
The knowledge gained through this research 
must be incorporated into models of the Earth 
system—designed to simulate atmospheric, 
 

 
Figure 2.3 AI/ML is required to connect multiscale data of 
geomechanical-chemical-transport trapping mechanisms in 
Geological Carbon Capture and Sequestration for the case of a 
deep saline reservoir [34]. 
 
land surface, oceans, sea ice, land ice, and 
subsurface processes—to yield predictions of 
future climate and Earth system conditions 
under various scenarios of human factors such 
as population, socioeconomics, and energy 
production and use. Accurate predictions 
needed to close the carbon cycle require 
understanding the responses of terrestrial and 
marine ecosystems to changes in temperature 
and atmospheric composition and the 
feedbacks of those responses on the climate 
system. Integral to this research is 
characterizing the influence of water in 
mediating biological responses and in 
transferring energy, carbon, and nutrients 
across all components of the Earth system. In 
addition, leveraging advances in genomics and 
bioscience data promises to provide detailed 
understanding of plant/microbial functions and 
their adaptation and feedbacks to the changing 
environment. The 10-year goal would be 
leveraging AI methods for (1) assimilating large 
volumes of continuous observations into 
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data-driven models and for optimizing  
model parameters; (2) extrapolating sparse 
measurements across space and through time 
to characterize functional traits of biological 
systems and dynamic processes important for 
closing the carbon cycle, and (3) developing 
hybrid process-based/ML models that improve 
climate predictability and reduce uncertainty in 
future projections. 
 
Ensure water security under a changing 
environment. Water resources are critical for 
human health, energy production, food 
security, and economic growth. The demand 
for fresh water is increasing because of the 
growing population and corresponding 
consumption practices. However, water 
availability and water quality are being 
impacted by climate change, extreme weather, 
and disturbances such as wildfire, droughts, 
floods, and land-use change. Processes 
affecting water quality and water availability 
span multiple spatiotemporal scales from soil 
microbiology to individual watersheds to 
continental scale hydrology (Figure 2.5). 
Therefore, water availability and water quality 
cannot be adequately addressed locally or 
regionally or within a single compartment. 
Methods are needed to integrate disparate and 
diverse multi-scale data with models of 
watersheds, rivers, and water utility 
infrastructure for near-real time prediction and 
water management. The 10-year goals  
 

 
Figure 2.5 Achieving predictive capabilities toward water 
security requires the integration of diverse data from 
multidisciplinary Earth sciences, including hydrology, ecology, 
climate, geology, geophysics, geochemistry, and microbiology. 
Adapted from [28]. 
 
are (1) development and understanding of 
predictive capabilities of water availability and 
water quality at the continental scale;  
(2) development of modeling and sensing 
systems to obtain representative data across 
the range of scales and compartments;  
(3) development of scale-relevant theories to 
bridge scales for prediction and control, and  
(4) development of faster execution capabilities 
to predict water availability and water quality 
across scales. 

 
Earth System Model 
(ESM) Simulations 

 
Energy and Water Cycles 

 
Carbon and Biogeochemical 

Cycles 
Figure 2.4 Earth system models (ESMs) are designed to capture the behavior of interacting natural and anthropogenic 
processes and to project future behavior as a result of changes in population, economics and policy, and strategies for future 
energy production and use [31]. 
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3. Advances in the Next Decade 
Observations of the atmosphere, biosphere, 
ocean, land, and subsurface are expected to 
improve considerably over the next five to  
10 years. Increasingly, remote sensing data 
from satellite platforms is providing profiles 
through the depth of the atmosphere, oceans, 
and even soil layers over land and surface and 
subsurface deformation. This increases the 
volume of data available several fold. Ground-
based measurements are also rapidly 
increasing in ubiquity and the variety of 
geophysical variables that are sensed. 
Geophysical methods continue to advance 
their capabilities particularly due to massive 
amounts of data collected by dense sensor 
deployments, or rapid advancements in fiber 
optic sensing. Observations collected on 
robotic platforms that navigate remote oceans 
and cheap sensors in everyday devices 
(Internet of Things) are becoming increasingly 
common for collecting environmental data (see 
Chapter 15, AI at the Edge). These types of 
sensors excel in the frequency of data 
collection and produce copious amounts of 
data. Data from the next generation of 
accelerators and light sources will be another 
source of large datasets in the next few  
years (see Chapter 14, AI for Imaging). 
Characterizing the properties of atmospheric 
particles, biogeochemistry of soil cores, and 
geochemical processes at nano and atomic 
scale in controlled laboratory settings will be 
widely available [20]. Recently, the ability to 
collect extensive, multimodal genomic and 
microbial data across spatiotemporal scales 
and tools enabling precise modification and 
control of biological (see Chapter 3, Biology 
and Life Sciences) and environmental systems 
have significantly expanded and are expected 
to enhance multifold in the future.  
 
Below ground datasets are challenging to 
collect as most of the available data are based 
on in situ measurements, soil core collection, 
and subsequent laboratory analysis, and 
limited remote sensing technologies [16]. 

Synchrotron light sources, neutron scattering 
facilities, and electron beam imaging devices 
are becoming sufficiently penetrating that they 
allow us to observe directly the reactivity 
occurring inside a rock or other porous matrix 
[18,30]. Increasing flux has improved the time 
resolution dramatically; however, this creates a 
challenge in that the data sets derived are 
massive and unwieldy [11]. Artificial 
intelligence has the potential to allow us to 
quantify pore-fluid accessible surface areas of 
different mineral phases, fluid-fluid contact 
areas that allow us to measure residual 
trapping efficiencies for carbon dioxide. The 
increasing complexity of systems capable of 
being measured is directly matched by 
dramatic increases in the size and complexity 
of the associated data, necessitating new 
approaches to analysis and interpretation [9,7]. 
 
Simulation data sets are also increasing in 
size. Earth system modeling is a key 
application targeted by upcoming DOE 
exascale computing platforms. The resolution 
of Earth system models, such as the DOE 
E3SM model, is increasing toward resolving 
mesoscale extreme weather phenomena and 
eddy processes at the ice–ocean interface, and 
ultimately toward full cloud resolving models. 
Resolving detailed processes in these 
growingly complex models produces large 
increases in model output; however, I/O 
bandwidth limitations of high-performance 
computing platforms will increasingly limit these 
high-frequency, highly resolved data from 
being saved for later analysis. This points to 
both the need for online intelligent feature 
extraction to reduce simulation data [15], and 
to deploy ML and statistical analysis algorithms 
in situ within simulation codes to analyze 
output as it is being generated [2]. 

4. Accelerating Development 
While the amount of data collected on the 
various components of the Earth system are 
increasing, the ability to use these data in 
developing improved forecasts and model 
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development has not kept pace. Numerical 
model development is constrained by the ability 
of scientists to evaluate the data, develop and 
test hypotheses, and produce new models. 
Earth and environmental data for global 
change presents a challenge to ML methods 
because the dimension of the data (e.g., spatial 
resolution) can be much greater than the 
number of data samples (e.g., time slices). 
Data are often multiscale, can be irregularly 
distributed (point cloud or unstructured mesh 
data), and in some cases can be sparse or 
missing in random ways (measurement bias). 
Data are usually correlated across large 
distances in space and time, which presents 
challenges for traditional ML methods that 
assume independent samples or that assume 
spatial regions can be analyzed independently. 
Computer science innovations will be required 
both in training algorithms and in distributed 
computation. Thus, to accelerate development, 
the following issues specific to environmental 
datasets will have to be addressed. 
 
Multi-scale data. Earth and environmental 
data are often available from different  
sources (such as satellite sensors, in situ 
measurements and model simulations, and, 
increasingly, robotic sensors) and at varying 
spatial and temporal resolutions, exhibiting 
different characteristics (such as sampling 
frequency and accuracy). 
 
Noisy, missing, and uncertain data. Earth 
and environmental data show different degrees 
of noise, incompleteness, and uncertainty. 
Satellite sensors can be noisy with clouds and 
snow cover; sensors may temporarily fail 
causing missing data; and some environmental 
variables can be measured only indirectly from 
other observations or model simulations with 
uncertainty. 
 
Shortage of labeled data with ground truth. 
Collecting high-quality and high-resolution 
Earth and environmental data is very 
expensive and time-consuming, and for some 
environmental variables and processes 

(e.g., subsurface structure and subsurface 
flow) there are no ground truth observations. 
 
Spatial and temporal heterogeneity. Earth 
and environmental processes have large 
spatiotemporal variability, which is highly 
correlated and structured. The data often have 
nonlinear relationships, feedbacks, non-
stationary features, and low frequency high 
impact events. 
 
Environmental forecasting is complex and 
uncertain. Environmental projections are 
developed using complex, coupled, nonlinear 
systems representing different components of 
the Earth system. This makes the projections 
from these models uncertain, with uncertainties 
propagated from data, model structural and 
model parameters. It is necessary to 
characterize these uncertainties and increase 
the credibility of the projections to support 
decision making. 
 
What must we do to accelerate develop-
ment? 
 
a) Develop AI approaches to improve and 

optimize data acquisition, including sensor 
network optimization, data compression 
and edge computing (see Chapter 10, AI 
Foundations and Open Problems). 

b) Establish the protocols and tools to allow 
access, transfer, curation, quality control, 
and maintenance of public datasets that 
can dynamically be coupled with the 
model/simulation systems (see Chapter 12, 
Data Life Cycle and Infrastructure). 

c) Develop supervised, semi-supervised, and 
unsupervised AI systems for multiscale 
multi-type data (see Chapter 10, AI 
Foundations and Open Problems). 

d) Relieve the bottlenecks in processing 
petabytes of data and speeding up the 
entire model development and training 
algorithms, by exploiting effective 
CPU/GPU communication patterns (see 
Chapter 13, Hardware Architectures). 
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e) Develop AI-enabled automated approaches 
for model development and hypothesis 
testing which can provide improved insights 
on physics, chemistry, and biogeochemistry 
(see Chapter 10, AI Foundations and Open 
Problems). 

f) Develop fully AI/physics-coupled models 
that can ingest massive data and honor 
mass/energy conservations, and other 
physical principles (see Chapter 10, AI 
Foundations and Open Problems).  

 
What are the top priorities? 
 
• Develop AI-assisted data acquisition 

strategies associated with new robotics and 
in situ sensors.  

• Develop consistent and high throughput 
data access, compression and transfer 
software for the variety of Earth and 
environmental science datasets.  

• Apply automatic labeling and reduction of 
environmental datasets at various spatial 
and time scales. 

• Advance explainability of AI approaches for 
modeling EC phenomena and avoiding the 
“black box” conundrum. 

• Develop a hybrid approach to combine AI 
with physical principles for EC models, and 
develop robust explainable AI software for 
training and validating hybrid models 
(Figure 2.6). 

• Develop robust and consistent protocols for 
testing the transferability and reproducibility 
of AI models across a wide range of 
conditions. 

• Advance uncertainty quantification 
methodology as an integral part of the AI 
workflow. 

 

 
Figure 2.6 Hybrid approach that combines AI with physical understanding to address some of the black box issues and 
make the models physically consistent: (a) shows a multilayer neural network, with n the number of neural layers and m 
the number of physical layers; b and c are concrete examples of hybrid modelling; (b) prediction of sea-surface 
temperatures from past temperature fields; (c) a biological regulation process (opening of the stomatal ‘valves’ 
controlling water vapor flux from the leaves) is modelled with a recurrent neural network [24]. Hybrid models are useful 
for replacing poorly understood or unresolved (sub-grid scale) phenomena. Challenges include (a) obey physical 
constraints; (b) quantify uncertainties in the parameters in the network models; and (c) develop methods for adding 
explanation to the network models and parameters. Training hybrid models using offline or online methods need 
exploration. 
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How do we improve scale? 
Most of the applications in the literature were 
performed with small datasets in the range of 
gigabytes. Handling large data throughputs will 
be necessary to fully realize the potential of AI, 
requiring scaling up of computational infra-
structure and the ability of the AI algorithms to 
handle large volumes of data. As these data 
volumes grow over time, data cannot be kept in 
memory continuously for retraining ANNs. 
Thus, we need AI algorithms that scale in 
terms of intelligence while processing very 
large data volumes out-of-core.  
 
Scalability will be an important challenge, 
potentially requiring a move toward streaming 
analysis methods adapted to spatially and 
temporally correlated data. When conducted 
online in conjunction with physics simulations, 
additional scalability challenges will arise due 
to incompatibilities between traditional AI 
distributed training techniques and distributed 
computation for physics simulations, requiring 
new, potentially domain-specific algorithms. 

5. Expected Outcomes 
Success in these areas means: 
 
• AI will revolutionize the development of 

process scale models by accelerating the 
process of discovery and model creation. 

• AI will enable rapid prototyping of purpose-
built models of Earth system processes and 
energy/built infrastructure that will enhance 
national energy and water security 
preparedness. 

• AI will make it feasible to merge large 
datasets with numerical models for a new 
generation of predictive models that can 
span the forecast scale from daily to decadal 
and local to global. 
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03. Biology and Life Sciences 
The capacity to predict, control, and 
understand biological systems in mechanistic, 
often molecular detail, is on the horizon. 
Biology is being transformed by the ability to 
collect large, multimodal data across 
spatiotemporal scales, as well as by tools that 
enable precise modification and control of 
biological and environmental systems. 
 
Concomitant advances in data analysis, ML, 
and new hardware architectures, coupled with 
HPC-enabled simulations are transforming our 
capacity to connect molecular interactions to 
higher levels of organization, from cells to 
ecosystems. To deliver on the promise of 
emerging technologies—to offer personalized 
medical solutions by developing and testing 
mechanistic hypotheses in tractable laboratory 
or in silico settings—requires fundamental 
advances in statistical ML and AI that  
integrate massively multiscale and multimodal 
sensing modalities.  

1. State of the Art 
The dawn of AI-enabled discovery in biology 
has occurred. Population genomics data is 
being used to learn the bases of complex traits, 
enabling researchers to discover non-linear 
molecular and gene-regulatory interactions 
along with the architecture of their phenotypic 
manifestations [1]. Elsewhere, neuroscientists 
are learning the dynamics of the thousands of 
neurons that control behavior from electrical 
and imaging data [2]. Synthetic biologists are 
building workflows that automate the inverse 
design of microbial and plant cells [3]. 
Computational biologists are using AI to learn 
force fields to enable near-exact molecular 
dynamic (MD) simulations with fully quantized 
electrons and nuclei [4]. Such analyses were 
intractable only a few years ago, and now the 
pace of innovation driven by AI technologies 
is accelerating. 
 

However, realizing the future potential of AI-
enabled bioscience is impeded by limitations of 
the computational learning frameworks that 
exist today. AI must be predictive of complex 
phenomena and simultaneously provide insight 
into the underlying biophysical processes they 
model [5]. Analyses that enable understanding 
have something in common: they are 
amenable to human exploration, statistical 
inference, and model discovery and selection. 
For example, a perfect, atomistic generative 
model of a bioreactor could be available, yet, if 
that model is not amenable to goal-based 
optimization—to inverse design—its utility is 
limited to “guess and check” prediction. In 
biology, guess-and-check prediction is often 
useless (if we had a strong hypothesis about 
the system as a whole, we wouldn’t be 
resorting to AI in the first place). Furthermore, if 
the model is as complex as the system itself, 
have we really learned how it works, or merely 
demonstrated the ability to replicate it in silico? 
 
These challenges are particularly clear in 
healthcare, one of the fastest growing 
segments of the digital universe, which is 
expected to reach 2,314 exabytes of data by 
2020 [6]. While the average lifespan in the U.S. 
(79 years) has increased 30 years over the 
past century, medical research has been less 
successful at prolonging healthy life (i.e., health 
span). Prolonging our lifespan without 
prolonging our health span is financially 
unsustainable for our nation (total costs of age-
related diseases are expected to skyrocket, 
exceeding $1.5 trillion in the U.S. by 2030). AI 
could offer powerful solutions to these 
challenges by enabling powerful utilization of 
rapidly accumulating health data. This 
ambitious endeavor requires data-driven 
mapping of the human genome (i.e., genomic 
profile), phenome (i.e., physiologic status), and 
exposome (i.e., physical and social 
environment) in real-time and across the 
human lifetime. It is clear that the state of the 
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art falls far short of what the economy and 
society requires to survive.  

2. Major (Grand) Challenges 
Biological systems are dynamic processes 
characterized by combinatorically vast 
configuration spaces and the presence of 
emergent control principles at multiple levels of 
spatiotemporal organization. The overarching 
challenge before us is to enable the 
mechanistic characterization of biological 
systems through increasingly automated cycles 
of multimodal observation followed by 
experimentation. We see this manifest in three 
grand challenges. 
 
Build the capacity to design custom 
biological systems capable of addressing 
major global health and environmental 
challenges – “build life to spec.” Synthetic 
biology leverages engineering approaches to 
produce biological systems to a given 
specification (e.g., producing a target drug [7] 
or the capacity to invade cancer cells [8]). 
Tools are available that promise to disrupt this 
field: clustered regularly interspaced short 
palindromic repeats (CRISPR)-enabled genetic 
editing, high-throughput multi-omics pheno-
typing, and exponentially growing DNA 
synthesis capabilities, among others. However, 
synthetic biology will only reach its full potential 
when we have developed the capability to 
predict the behavior of biological systems, to 
develop first principles models, and to observe 
biological systems with much finer spatial and 
temporal resolution [9]. AI can provide the 
required predictive power, and improved 
methods for interrogating fitted AI learners may 
ultimately facilitate the detailed mechanistic 
understanding needed to support synthetic 
biology (Figure 3.1). 
 
“Digital twins” of organisms will be a key 
enabling technology toward the capacity to 
design organisms to specifications—
quantitatively modeling and simulating the 
behavior of complex biosystems [10] (see also  

 
Figure 3.1 AI can revolutionize synthetic biology if applied 
wisely. AI can help systematically choose molecules that fit a 
desired specification, and propose possible pathways and 
hosts to synthesize it. AI can help power self-driving labs able 
to collect high-quality, abundant data needed for ML to be 
effective. AI can complement mechanistic models to accurately 
simulate and model cells in a variety of environments. This can 
make production scale-up a predictable endeavor, a process 
that is presently more an art than a science.  
 
Chapter 7: Engineering and Manufacturing, 
and Chapter 11: Software Environments and 
Software Research). Digital twins of cells could 
be created by combining traditional 
mechanistic models with AI algorithms, 
leveraging the predictive capabilities of the 
latter and the insight of the former. Importantly, 
the ability to modify cells through synthetic 
biology tools brings about the possibility of 
validating and sequentially constraining such 
models systematically. It is reasonable to 
anticipate that obtaining first-principles models 
for biological systems will soon be on 
the horizon. 
 
Foundational challenges remain—even the 
“vocabulary” of biological systems is 
resplendent with “dark matter” [11]. Despite 
progress in the past decade, the fundamental 
challenge of systematically exploring small-
molecule chemical space to find new 
applications and biological knowledge remains 
largely unsolved. At least a third of sequenced 
genes across organisms are of completely 
unknown function. In meta-metabolomics 
experiments, it is rare that more than 5 percent 
of mass-spectra can be identified. To 
understand how organisms operate in 
ecological and environmental contexts, 
learning the molecular vocabulary of life is a 
prerequisite. Using AI to integrate multi-omics 
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data constitutes an opportunity to accelerate 
the discovery of function for these “dark” 
molecules. 
 
Bioimaging technologies are rapidly improving 
in resolution and dynamic range. CryoEM 
tomography enables atomistic modeling of 
complex macromolecules [12]. However, extant 
tools for learning these models from low signal-
to-noise cryoEM data rely heavily on real-time 
inputs from human operators. Work stations for 
state-of-the-art microscopes must be proximal 
to the scopes themselves for guidance during 
experiments derived from human insight and 
intuition. Beyond cryoEM, hyperspectral 
imaging provides increasing power to discover 
biomarkers and elucidate chemistry without 
appeal to destructive omics modalities. With 
advances in AI, real-time imaging of 
biochemical processes and landscapes in living 
samples is on the horizon [13]. Machine vision 
for low signal-to-noise technologies, as well as 
tensor-on-tensor regression strategies to 
translate between hyperspectral and omics 
modalities are needed to radically increase the 
automation, throughput, and discovery-power 
of bioimaging technologies. 
 
The modeling of biomechanical systems pose 
similar challenges—and opportunities. For 
example, vascular flow simulations to 
understand the fluid dynamics that result in 
aneurysms and other anatomical anomalies 
are poised to deliver early prognosis of patient 
risks that, today, are rarely detected prior to 
pathogenesis. Coupling physical simulations to 
AI “hypervisors” to guide variable mesh 
resolution stands to radically accelerate the 
modeling of complex biophysical systems. The 
same technologies will enable the study of fluid 
dynamics in bioreactors, or cell-free systems 
for chemical or pharmaceutical production—
where understanding fluid dynamics and 
diffusion is essential to achieving efficiency.  
 
More generally, using AI to design organisms 
to a given specification requires large amounts 
of high-quality data. We cannot produce these 
data without leveraging automation. The 

codesign of algorithms and automated systems 
for data collection therefore arises as a need 
rather than a luxury [14] (see “self-driving 
labs” below). 
 
Learn to systematically manage and 
engineer global environmental systems by 
obtaining a predictive understanding of 
ecosystems and their services. Attempting to 
understand how ecosystem services emerge 
from organismal and environmental 
interactions is central in environmental and 
biomedical sciences. The mechanisms behind 
carbon, nitrogen, phosphorous, potassium, and 
micronutrient cycles are determined by the 
integration of microbial, plant, fungal, 
metazoan, and viral interactions that, despite 
decades of quantitative ecology, remain 
challenging to predict, or even quantify. In 
recent years, our capacity to measure the 
ecology, chemistry, and hydrology that give 
rise to nutrient dynamics has evolved 
exponentially—metagenomics, untargeted 
chemistry, hyperspectral imaging, satellite 
imaging, in situ sensing, and soon quantum 
sensing systems. The challenge is discovering 
mechanistic models that are amenable to 
inverse design, thus enabling intervention at 
scales relevant to engineering our troposphere. 
 
With growing global demand for fuel, food, 
water, and predictable weather, learning to 
engineer ecosystems has become urgent. In 
the U.S. alone, there are more than 1.1B acres 
of managed lands [15]. In the last 100 years, 
some 50% of soil carbon has been depleted 
through land use practices and soils [16]. 
Before us is the unprecedented opportunity to 
transform our managed lands into engines for 
environmental control. Atmospheric carbon is 
rising—an opportunity to mine this carbon 
presents a trillion dollar opportunity—to enrich 
our soils with labile carbon, enhancing the 
fertility, and therefore the value of our 
farmlands, to render marginal lands fertile, to 
grow our economy, and to feed our future 
population. In our depleted soils, prescriptions 
of chemical fertilizers are overused, which 
pollute our fresh and marine waters, leading to 
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algal blooms and marine dead zones. The soil-
water interface is equally important, and 
currently extremely difficult to simulate or 
model with any accuracy—and it is essential to 
understand if we are to intelligently manage 
marine and freshwater algal blooms, and to 
ameliorate marine dead zones.  
 
AI technologies can reveal the emergent 
controls of these enormously complex systems, 
and enable us to engineer our environment to 
radically expand the range of arable lands, 
while improving our freshwater availability and 
quality—in part, by replacing our dependence 
on chemical fertilizers with designed plant and 
microbial biosystems. The modeling of 
macroecology, and cognizance of impacts on 
species distributions and clines, are required 
for the intentional design and engineering of 
ecological processes. Such models may 
ultimately reveal control principles for natural 
ecosystems, enabling the responsible 
stewardship of our managed wildlands. 
Moreover, these ambitions require rigorous 
biosecurity, which itself is a design problem 
ripe for AI-powered guidance. AI for biosecurity 
will be under exquisite scrutiny—these 
applications are likely to push the development 
of secure, explainable AI systems with rigorous 
statistical guarantees.  
 
Integration of AI with experimentally 
constrained, large-scale, biophysically detailed 
simulations will be required to refine and 
construct forward and inverse models—a 
particular challenge in the biological and 
environmental sciences, where most 
knowledge is stored only in the literature. Novel 
methods are required for extracting and 
organizing knowledge in constructs compatible 
with guiding learning in AI architectures, 
resulting in biologically meaningful discoveries. 
 
Throughout the biological and environmental 
sciences, forward and inverse models of meso/

macroscale measurements need to be 
constructed that provide multiscale under-
standing of cellular and community functions. 
These capabilities are required to predict, 
control, and understand the biological pro-
cesses underlying productivity, health, disease, 
and bio-resilience to environmental conditions. 
 
AI technologies aimed at ecosystem control 
have enormous implications for human health 
and biomanufacturing as well. For example, the 
challenge of efficiently scaling up reactor 
results from lab-scale (50 ml) to commercial 
volumes (10,000 l) requires understanding the 
biodynamics that lead to stable production. The 
need to identify and understand meaningful 
levels of organization in biological systems 
from a control perspective is exceptionally clear 
in the biomedical sciences. Diseases are 
caused by small-scale disruptions (e.g., genetic 
mutations) that manifest at larger scales. 
Effective medical treatments require 
identification, prediction, and control of 
biological processes. However, most small 
scale processes are currently immeasurable in 
humans at the required time-scales  
(Figure 3.2). For example, in the brain, while 
meso/macroscale measurements (e.g., 
electrocorticography (ECoG), functional 
magnetic resonance imaging (fMRI)) have 
revealed principles of global processing of 
brain areas in humans, the precise biophysical 
mechanisms that relate these signals to the 
activity of individual neurons is unclear. This 
impedes translation between basic 
neuroscience findings and our understanding 
of the human brain in health and disease, 
including dementia. To overcome these 
challenges, AI is needed that can discover 
nonlinear “governing equations” from high-
dimensional, noisy time-series data with 
unobserved influences to bridge the gap 
between observed processes and those that 
require control. 
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Figure 3.2 Biological systems, including humans, constitute 
the integration of many levels of spatiotemporal organization. 
AI technologies hold promise to enable the systematic 
discovery of the manifestations of molecular interactions and 
processes on higher levels of physiological organization.  
 
Develop AI-enabled, self-driving labora-
tories to enable game-changing advances 
in the understanding and deployment of 
biological, chemical, and environmental 
systems. Fundamental to the role of AI  
in Science, and in particular biological, 
chemical, and environmental sciences, is the 
advancement of laboratories through 
automation and decision support (Figure 3.3). 
 

 
Figure 3.3 AI-enabled self-driving laboratories couple auto-
mated robotics platforms for experimentation and data 
collection, with AI systems that choose not only the parameters 
for the next experiment but also the hypotheses to be tested. 
Figure adapted from Häse et al., Trends in Chemistry 2019. 
 
However, laboratory automation without 
carefully guided experimental design will 
contribute to the aggregation of low-value data. 

As in the manufacturing sector, we will soon 
see the effects of automation and robotics 
throughout biology. Industrial robots featuring 
high-quality computing capabilities, improved 
operational mobility, and machine vision 
systems are needed for future laboratories, 
particularly in synthetic biology, where goals 
will include genetic engineering toward an 
optimized design specification. 
 
The future of these highly automated 
laboratories coupled with autonomous robots 
with enhanced dexterity must be intricately 
connected with the advancement of our 
application of AI to the challenges outlined 
above. Self-driving laboratories will require tight 
coupling with advanced AI models capable of 
representing complex biology far beyond what 
is possible today. Current AI approaches, such 
as model validation, uncertainty quantification, 
and active learning are relatively immature and 
will need to be common throughout our science 
to drive the execution of laboratory 
experiments—for example in molecular biology 
reactions, chemical reactions, and high 
resolution imaging—to a continuous feedback 
loop of data in the coming years.  

3. Advances in the Next Decade 
In the next 10 years, it will be possible to 
automate the process of biological discovery 
on unprecedented scales. The promise of self-
driving laboratories is exceptional, and may 
underlie our capacity to achieve many other 
grand challenges: AI algorithms that design 
optimal experiments to reduce model 
uncertainty and constrain their own constructs 
toward learning mechanisms and robotically 
perform the experiments, the improvement of 
reducibility and reductions in cost, and time-to-
discovery. Equally importantly, AI amenable to 
inverse design will enable “hypothesis 
discovery” and reduce our collective reliance 
on human intuition, with the potential to 
accelerate the pace of biological and environ-
mental sciences by orders of magnitude. 
 



 

03. BIOLOGY AND LIFE SCIENCES  42 

However, there are two significant advances 
that need to be achieved. Because much of 
modern biology is not in the “big data” regime, 
model training must become more data-
efficient than it is today. Additionally, 
scientifically meaningful insights from the fitted 
AI must be extracted. 
 
First there is the need for data efficiency. 
Alternative learning approaches need to be 
developed that do not require highly 
overparameterized models for optimization, but 
that still admit the capabilities of neural 
networks—the ability to extract hierarchical 
representation from raw data (essential when 
data inputs lack semantic meaning, as with 
imaging data) and exquisite generalization 
accuracy. Here, biology may provide inspiration 
for AI methods development: biomimetic 
systems are needed that radically expand the 
domain of transfer learning and one-shot or 
few-shot learning. For the foreseeable future, 
there will remain scientific regimes in which 
dozens or hundreds of observations derive only 
from enormous community efforts. In 
ecosystems biology, for example, metage-
nomics and other molecular surveys will likely 
remain ultra-sparse at landscape scales. In 
biomedical sciences, in which phase 1 clinical 
trials are an essential data point in the lifecycle 
of a novel therapeutic or procedure, methods 
amenable to “small data” regimes will continue 
to be required.  
 
Second, scientists will need methods to extract 
scientifically meaningful insights from what an 
AI model has learned from the data. Two 
complementary approaches are emerging. In 
one approach, human-understandable reduced 
order surrogate models (ROSMs) are extracted 
from more complicated models that accurately 
represent what an AI algorithm has learned 
during training. In a second approach, scientific 
knowledge and constraints are imparted to the 
architecture or objective function to ‘focus’ the 
learned representations so they are 
scientifically interpretable. There has been 
initial success in both the physical and 
biological sciences in this direction. The mathe-

matical foundations of constrained representa-
tion learning as it relates to the geometry of 
loss-surfaces during training (hence the 
learnability) and inference (hence the 
generalizability) need substantial attention. 
While these initial steps are promising, much 
more work is required in these and other areas 
of AI. 
 
To obtain complete descriptions of what class-
leading deep neural networks learn from data 
during training will require new mathematics. 
This is a daunting prospect for a community 
built on yoking tools from statistics, numerical 
optimization, linear algebra, and dozens of 
other areas, not on developing novel theory. 
Here, biology may be as useful to the future of 
AI as AI is to biology. There is an opportunity to 
draw inspiration from the remarkable 
adaptability and self-regularization of biology to 
produce the next generation of AI algorithms 
and hardware. Blue sky research into 
alternative learning automata that reduce the 
initial ambient dimension of high-performing 
learning architectures is urgently needed for 
applications in the biological sciences. New 
learning “atoms” will undoubtedly come with 
new hardware requirements, and blue sky 
research has the potential to advance in both 
directions simultaneously.  

4. Accelerating Development 
Biological datasets must scale in their quantity, 
quality, and provenance. We need increased 
standardization of measurement techniques 
and metadata collection across the 
biosciences, and reconceptualized data 
sources as streams rather than the result of 
single experiments. The lack of data is by far 
the largest threat to the dawn of strongly 
AI-enabled biology.  
 
Further, data availability faces special 
challenges in the biomedical sciences. We 
must establish the infrastructure required to 
make communal use of data that cannot be 
moved or revealed due to privacy concerns. An 
outstanding issue for sensitive domains, such 
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as health and medicine, is how to preserve 
privacy while computing with shared data to 
obtain insights. Removing personal identifiers 
and confidential details is insufficient, as an 
attacker can still make inferences to recover 
aspects of the missing data. Inference attacks 
can also jeopardize AI algorithms over shared 
data by targeting the shared AI model training 
process and the trained model itself. Indeed, 
serious threats are encountered in collective AI 
endeavors that aggregate data from different 
sources, since the most vulnerable source 
establishes the overall security level. This is an 
underdeveloped field of AI research in which 
Research & Development (R&D) investments 
are well warranted to develop new solutions so 
that the community can responsibly and 
privately share sensitive data for aggregated 
analysis, including training shared AI models, 
and performing transfer learning with 
sensitive data. 
 
With the support of other federal agencies, the 
DOE national laboratories could provide a 
secure environment for objective benchmarking 
of AI algorithms against community consensus 
metrics to detect, monitor, and possibly correct 
dataset biases or inconsistent AI technology 
performance. First, investment is needed in 
foundational technologies to promote a 
rigorous statistical framework to monitor for 
potential biases or inaccuracies in collected 
data. During the deployment phase, rigorous 
quality control should be implemented, 
monitoring AI performance across subgroups 
to confirm robust performance or identify 
performance gaps.  

5. Expected Outcomes 
Throughout the biosciences, ultimately, the 
expected outcome is an understanding of life, 
from the ground up. 
 
• Mining excess carbon from the atmosphere, 

revolutionizing human health, and 
engineering microbes and ecosystems to  

given specifications is within reach. Success 
in the development of AI for biology can 
transform our farmlands into an engine for 
soil security and the economic development 
of rural America. AI has the potential to 
extend the average human life, while 
significantly reducing healthcare costs. 

• The potential impacts of AI technologies for 
health are difficult to overstate. Studies 
estimate that every federal dollar invested to 
map the human genome returned $60–$140 
to the U.S. economy [17]. By leveraging 
federal health data assets, DOE’s  
computing capabilities, and AI, novel 
solutions can be developed to extend health 
span and rein in costs by understanding the 
broad spectrum of factors impacting well-
being and discovering cost-effective 
approaches to scale promising precision 
medicine solutions. 

• Impacts on synthetic and environmental 
biology will become increasingly apparent as 
the AI technologies are developed to 
understand how ecosystem services emerge 
from biological processes. AI capabilities, 
coupled with retrobiosynthesis tools from 
synthetic biology pinpointing genetic and 
molecular controls of complex traits, can 
dramatically change the time scales for 
product realization, whether that product is a 
biofuel, a soil amendment, or the founda-
tional understanding of a natural ecosystem. 
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04. High Energy Physics 
High Energy Physics (HEP) is concerned with 
discovering the ultimate constituents of matter 
and uncovering the nature of space and time. 
The underlying theory and associated 
experiments cover the smallest scales in all of 
science to the very largest. In the DOE context, 
this research quest is divided into three 
Frontiers: Cosmic, Energy, and Intensity [1]. 
 
The Cosmic Frontier uses probes relying on 
multi-wavelength surveys of the sky. The 
probes treat the universe itself as an 
experimental apparatus to investigate the 
mysteries of dark energy and dark matter—the 
primordial fluctuations from which all cosmic 
structure came to be—and to determine the 
masses of neutrinos, the lightest known 
material particles. In addition, experiments 
searching for direct evidence for dark matter 
fall within the purview of the Cosmic Frontier.  
 
The Energy Frontier studies the fundamental 
constituents of matter by accelerating and 
colliding charged particles at very high 
energies in particle accelerators and by 
recreating conditions that only existed in the 
very early universe. The massive detectors that 
are used to study the collision events are 
among the most complex scientific devices 
ever constructed by humans (Figure 4.1). Work 
in the Energy Frontier is centered on searches 
for physics beyond the particle physics 
Standard Model, and investigation of the 
properties of the Higgs boson, discovered 
in 2012. 
 
Intensity Frontier experiments require very 
sensitive detectors to study rare processes, 
and intense particle beams are often needed 
for this purpose. The primary area of interest 
here is the neutrino sector. Neutrinos are 
known to exist in three types (‘flavors’) and 
change flavor via quantum oscillations as they 
propagate in space and time. The oscillations 
imply the existence of neutrino mass. The 
origins of neutrino mass, the mass ordering,  
 

 
Figure 4.1 The ATLAS detector at the LHC under construction 
in 2007. 
 
and whether neutrinos are their own anti-
particles are just a few of the questions being 
addressed by Intensity Frontier experiments. 
 
A defining characteristic of all experiments in 
this field is the generation of large, complex 
datasets that can range from the hundreds of 
petabytes to exabytes. In addition, simulation 
data, required to interpret the experiments, can 
reach similar scales. The experiments also 
feature high data throughputs. Because of both 
the volume and velocity of data, AI approaches 
are needed at multiple levels in the data 
management chain to improve the 
understanding of subtle systematics effects 
and to open new avenues for scientific 
discovery (see Chapter 10, AI Foundations and 
Open Problems). 
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The deployment of AI techniques in HEP has 
much in common with strategies and use cases 
discussed in other chapters. Certain general 
notions such as automated discovery, end-to-
end workflows, explainability, and integration of 
data and theory are, of course, ubiquitous. 
More specifically, the idea of digital twins (see 
Chapter 8, Smart Energy Infrastructure) 
strongly resonates with the modeling-intensive 
approach characteristic of HEP. Data curation 
(see Chapter 12, Data Life Cycle and 
Infrastructure) is an essential aspect of HEP 
science. AI with edge systems (see Chapter 
15, AI at the Edge) is analogous to HEP 
detector online computing tasks. Finally, 
employing AI in reconstruction and tracking is 
highly applicable, as HEP could profit from 
advances in physics-informed AI models  
for sparse, high-precision measurements  
(see Chapter 10, AI Foundations and 
Open Problems). 

1. State of the Art 
Advanced statistical methods and classical ML 
approaches have a long and productive history 
in particle physics, and crowd-sourcing 
techniques have been put to excellent use by 
cosmologists to lead to new discoveries. There 
are, therefore, a great number of natural 
applications of AI methods, a large fraction of 
which can potentially exploit the burgeoning 
activity in deep learning. Though in early 
stages, many ideas are being actively 
investigated with a view to addressing a 
number of crucial problems. 
 
Cosmology offers multiple challenges being 
tackled today using AI approaches. Examples 
can be found in areas such as (a) photometric 
redshift estimation [2], (b) image analysis and 
feature extraction [3], (c) reconstruction 
methodologies [4] (including gap-filling),  
(d) object [5] and real-time transient 
classification, (e) inference frameworks [6], and 
(f) fast predictions derived from expensive 
simulations (emulators) [7].  
 

The AI methodologies employed are as broad 
as the problems to be solved. They range from 
deep learning and active learning methods to 
random forest classifications, and they include 
more traditional machine learning approaches 
such as Gaussian process modeling. A 
noteworthy feature is the close connection with 
statistics—in particular, sampling theory and 
Bayesian methods— because of a focus on 
topics such as detailed verification and 
validation, which are typically not considered in 
non-scientific applications.  
 
The Cosmic Frontier provides a rich application 
area for several reasons (Figure 4.2). First, 
cosmology is based on large observational 
datasets rather than on isolated experiments. 
The observational nature of the field makes it 
oftentimes impossible to extract the full 
information content from the data without the 
use of optimized learning algorithms. Image 
analysis approaches to disentangle images of 
galaxies (deblending), analysis of photometric 
data for redshift estimation, and feature 
extraction to identify (e.g., strong lenses) are 
just a handful of examples that have been 
actively developed in cosmology.  
 

 
Figure 4.2 Cosmological inference problem: AI methods will 
contribute in all individual phases as well as in a full end-to-end 
analysis. 
 
Second, object classification plays a critical 
role in cosmology and AI offers manifold 
approaches in this area. In particular, AI has 
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been used for the classification of transient 
objects, such as supernovae.  
 
Third, the ultimate goal of cosmology is to infer 
the underlying physics of the universe from a 
complex set of data products across multiple 
wavebands spanning many orders of 
magnitude. This endeavor has to necessarily 
combine sophisticated data analysis with the 
best possible, and very computationally 
intensive, cosmological simulations. Here, ML 
approaches have been successfully used to 
develop precision emulators, and to help 
mitigate systematic effects. The already 
successful ongoing efforts using AI in 
cosmology along with new—and possibly 
unexpected—approaches will come together in 
the next 10 to 15 years to revolutionize our 
understanding of the universe and help answer 
some of the deepest questions in physics. 
 
ML-based methods already define the state-of-
the-art in a number of areas in particle physics 
experiments, including event and particle 
identification and energy estimation. The 
dominant algorithms are boosted decision trees 
and neural networks [8,9]. Since model training 
is the most computationally expensive 
component, particle physics experiments are 
increasingly employing sophisticated ML 
applications and reaping high value from them 
through the rapid turnaround of training and 
optimization tasks by spiking large scale, but 
relatively brief, workloads into a variety of 
large-scale computational resources, including 
the ASCR LCFs and NERSC, other HPC 
systems, Grids, and Clouds. Highly scalable 
distributed workload management systems 
already exist due to the use of the Grid 
paradigm in particle physics, and these 
systems (e.g., PanDA and HEPCloud) can be 
used to provide an integrated capability that 
runs seamlessly over a heterogeneous 
resource environment. 
 
Accurate detector simulation using known 
interactions is necessary to compare with 
actual data in order to search for new physics. 
This complex task involves modeling the 

events via event generators followed by 
detailed, time-consuming Monte Carlo 
simulations for the interactions within the 
detectors. ML techniques for replacing the slow 
pieces of the simulations hold significant future 
promise, and work on these is currently 
underway. Event generators have a large 
number of parameters and tuning these in 
high-dimensional space is another obvious AI 
application (e.g., using Bayesian optimization 
[10]). ML techniques have been used for a long 
time to reconstruct certain characteristics of 
collision events from detector raw data [11] via 
pattern recognition and classification methods 
(including boosted decision trees and 
neural networks). 
 
More recently, unsupervised or weakly 
supervised anomaly detection models (e.g., 
[12]) have been applied to model-independent 
resonance searches, opening new 
opportunities to detect physics Beyond the 
Standard Model (BSM). ML applications also 
have a place in theoretical approaches, such 
as the estimation of parton distribution 
functions, which cannot be computed from first 
principles QCD alone, and which need to be 
determined using experimental data [13]. 
 
AI techniques have been used successfully in 
the Intensity frontier experiments NovA [14] 
and MicroBooNE [15], which employed 
convolutional neural networks (CNNs), as 
these are particularly suited for applications to 
the large, homogeneous detectors that are 
characteristic of neutrino experiments. These 
techniques have been shown to outperform 
algorithms used previously, in part because 
they can exploit the suitability of GPUs for 
ameliorating the high training costs of CNNs. 

2. Major (Grand) Challenges 
The grand challenges in high energy physics, 
described as follows, are driven by the 
availability of high-volume, high-throughput 
data with significantly enhanced scientific value 
in resolution, sensitivity, and physics coverage. 
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Reconstruct the history of the universe 
using AI techniques. During the next decade, 
rich data sets will appear from advanced 
survey telescopes. At the same time, the 
advent of exascale computing will enable the 
next generation of sophisticated cosmological 
simulations, modeling structure formation in 
unprecedented detail. The new observations—
unparalleled in depth and resolution at the 
observed scales—combined with the 
simulations and advances in AI, will allow the 
reconstruction of the history of the universe 
from the Big Bang until today, from the largest 
scales down to our own Galaxy. We will 
advance our understanding of the nature of 
dark energy and dark matter, gain insight to the 
earliest moments of the universe as currently 
described by inflation, and measure the mass 
of the neutrino. AI will play a pivotal role in this 
endeavor. Conventional methods, such as 
2-point correlation function measurements, fail 
to extract all of the information encoded in the 
data. To optimally extract information while 
maintaining robustness, new AI techniques 
combined with statistical methods and HPC 
simulations will need to be developed. This 
combination will enable predictions deep into 
the nonlinear regime of structure formation, 
spanning a large mass and spatiotemporal 
dynamic range. Not only will this sharply 
determine the cosmological parameters casting 
light on fundamental physics, it will enable us 
to run the movie of our own universe back to 
the far past—the era of primordial fluctua-
tions—as well as forward, enabling a glimpse 
into the future evolution of our local universe. 
 
Advance knowledge of cosmic structure 
formation with the AI-driven Automated 
Cosmology Experiment (ACE). Based on 
advances in the next decade and driven by 
observational facilities such as the Large 
Synoptic Survey Telescope (LSST) and the 
Dark Energy Survey Instrument (DESI), the 
next generation of cosmological surveys will 
enable a new approach to cosmology via  
a fully automated, AI-driven, cosmological 
experiment, ACE. By combining already 
available cosmological data with 

unprecedented simulations generated by 
exascale and beyond computing capabilities, 
AI will enable a fully optimized experimental 
set-up. This set-up will include (1) the 
development of an optimal observing strategy, 
given the scientific focus of the observations 
(for example, finding the best compromise for 
deep versus wide field observations to deliver 
the highest-accuracy dark energy constraints); 
(2) best-possible methods to remove system-
atics from the data; (3) increased processing 
speed; (4) optimal calibration, and (5) the 
search of new observable features and 
anomalies and, therefore, the identification of 
new observing opportunities. ACE would be a 
combination of survey telescopes with follow-
up instruments to enable fast tracking of 
unexpected objects as well as transient follow-
ups important for cosmology. The continuous 
analysis of the data stream in combination with 
the predictions from the simulations will allow 
further on-the-fly optimization of the survey. 
ACE will be the cosmological equivalent of the 
Event Horizon Telescope (EHT) [16], a 
concerted effort between a network of radio 
telescopes that captured the image of a black 
hole and its shadow for the first time. In a 
similar way, ACE will capture the structures in 
the universe in a concerted effort of optical 
telescopes to shed light on the dark universe. 
 
Zettascale AI to uncover new fundamental 
physics. Over the next decade, we will deploy 
AI-controlled, city-size scientific instruments 
(particle accelerators and particle detectors) 
that produce zettabytes of detector data. AI-
powered hardware will filter the detector data in 
microseconds. AI-simulations of the detector 
response will enable high-precision studies, 
while completely unsupervised AI-searches for 
“New Physics” will open new windows for 
discovery (Figure 4.3).  
 
To make this vision reality, we need: 
 
i) Intelligent Operations. AI algorithms for 
anomaly detection will monitor the performance 
of particle accelerators, detectors, and 
computing systems, looking for early signs of 
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potential problems (see Chapter 10, AI 
Foundations and Open Problems). These 
techniques will allow for optimization of the 
operations of these complex systems to 
prevent or mitigate the impact of certain faults 
and to accelerate the return to normal 
operations if a fault occurs, increasing the 
instrument science output. 
 
ii) ML inference with microsecond-latency 
in particle physics trigger applications. At 
HL-LHC, each detector will produce petabytes 
of detector data per second. The experiments 
will rely on a “trigger” system built from custom 
hardware, plus FPGAs, CPUs, and GPUs 
processors to reduce these data rates to a 
more manageable 10GB/s. The first level of 
this trigger system will reduce the detector data 
rate by three orders of magnitude in 
10 microseconds or less. The challenge is to 
do that without throwing away any collision 
event resulting from rare or new physics 
processes. AI advances will allow us to detect 
and preserve these precious events that would 
otherwise be lost forever, while still meeting the 
stringent data rejection and latency 
requirements. Advances in AI model 
architectures and in the use of inference 
hardware (e.g., FPGAs) will be needed (see 
Chapter 13, Hardware Architectures). 
 
iii) AI-enabled, ultra-fast event processing 
chain. Over the next decade, accelerator 
facilities—such as the High-Luminosity Large 

Hadron Collider (HL-LHC), and the Deep 
Underground Neutrino Experiment (DUNE)—
will transform high energy physics. These 
facilities will be precise and powerful tools that 
will enable both the discovery of new particles 
and in-depth studies of known particles and 
fundamental interactions. They will produce 
hundreds of petabytes of raw data every year, 
and exabytes of simulated and secondary data 
streams. These data volumes will preclude 
straightforward extensions of current 
approaches for detector data analysis. Collider 
physics can be described as a massive inverse 
problem, requiring techniques from data 
merging, data visualization, and large-scale 
inference, first to “deconvolute” the detector 
signals from thousands of particles traversing 
it, and then to reconstruct the primary collision 
event from the particle measurements. 
 
Key to the success of detector deconvolution 
and, in general, to the analysis of any particle 
detector dataset is the availability of accurate, 
high-statistics simulations of the detector 
response to particle traversal. Currently, high-
accuracy detector simulation is performed 
using the Geant4 toolkit. As an example, the 
availability of datasets with trillions of simulated 
collision events could significantly increase the 
sensitivity of precision measurements in the 
Higgs and W boson sectors at the HL-LHC and 
help provide the first evidence for physics 
beyond the Standard Model. Simulating a 
collision event at HL-LHC can take up to 

 
Figure 4.3 AI-enabled ultra-fast event processing chain for HEP experiments. 
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O(1Tflop) of computation and output O(1MB) of 
data. Producing and storing one trillion Geant4 
collision events would be a challenge even on 
an exascale system. To achieve their physics 
goals, the next generation of facilities needs an 
ambitious R&D program in generative models 
with the goal to simulate the detector response 
for one collision (or interaction) event with 
O(1Gflop) or less, while maintaining an 
accuracy comparable to the one achievable 
using Geant4 (see Chapter 10, AI Foundations 
and Open Problems). Once this goal is 
achieved, the next challenge will be to integrate 
the AI-accelerated simulation into a fast in situ 
data processing chain of AI models for pattern 
recognition, particle classification, signal/ 
background discrimination, anomaly detection, 
and model-free searches. Running this “fast 
chain” on massively parallel systems (see 
Chapter 16, Facilities Integration and AI 
Ecosystem) will be vital to maximizing the 
discovery potential of the next generation of 
particle-physics experiments. 

3. Advances in the Next Decade 
Major advances in experiments are expected in 
the next decade. The Cosmic Microwave 
Background Stage-4 (CMB-S4), DESI, and 
LSST surveys will be operating on the ground 
and Euclid, eROSITA, SPHEREx, and WFIRST 
will be sending data from space. HL-LHC and 
DUNE will be taking data by the middle of 
the decade. 
 
The cosmological survey landscape in the 
coming decade will offer exciting challenges at 
the data analysis front. Interestingly (from the 
AI perspective), it is not only the increase in 
data size compared to contemporary surveys 
but also the increased complexity of the data 
due to enhanced resolution and depth of the 
telescopes. In particular, DOE is interested in 
extracting fundamental physics knowledge 
from cosmological surveys and answering 
questions about the nature of dark matter and 
dark energy, constraining the mass of 
neutrinos and the number of non-relativistic 
species, and investigating the physics of the 

very early universe. These questions have led 
to a rich observational program, currently 
focused in the optical and microwave bands. 
Specifically, during the next 10 to 15 years, 
data will be obtained and analyzed from the 
following DOE-supported surveys: DESI, 
LSST, and the CMB-S4 experiment. The data 
will provide many AI challenges, from 
understanding and reducing systematic errors 
to the determination of the most valuable 
follow-up observations, to image analyses,  
and to the inference of the cosmological 
parameters that describe the physics of 
our universe. 
 
HL-LHC will be a major upgrade of the LHC 
and of its detectors. The experiments will 
observe at least 50 times more proton-proton 
collisions per unit time. The increased statistics 
will push the precision of most measurements 
of the property of the Higgs boson against the 
detectors’ systematic accuracy. If the 
experiments can reduce their systematical 
errors, particularly by simulating the response 
of their detectors with high accuracy, the 
following may be enabled: (1) understand the 
nature of the Higgs boson (is it a fundamental 
particle or a composite?); (2) probe directly or 
indirectly the existence of new Beyond-
Standard-Model particles and interactions, and 
(3) probe the existence of heavy, weakly 
interacting particles which may be dark 
matter constituents. 
 
DUNE will study with unprecedented precision 
and accuracy the physics of neutrinos and offer 
new windows into the origin of the universe 
matter-antimatter asymmetry. The DUNE 
detector is also capable of studying neutrino 
bursts from exotic cosmic events, such as the 
formation of a black hole. DUNE may also be 
the first detector capable of observing the 
exceedingly rare decay of a proton, allowing  
it to constrain the energy scale at which the  
three gauge interactions are unified in a 
single theory. 
 
The new HEP experimental facilities will be 
some of the world’s largest sources of 
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high-quality scientific data. Exploitation and 
analysis of these data sets will greatly benefit 
from integration within the larger AI ecosystem 
consisting of DOE’s high-performance 
computing and high-performance networking 
(HEP) facilities. The data itself will be 
generated within HEP facilities and instruments 
whose operation will also avail of a number of 
AI capabilities in the sphere of high-speed data 
classification, selection, and reduction, and in 
real-time control and optimization. In some 
contrast to the situation described in  
Chapters 14 (AI for Imaging) and 16 (Facilities 
Integration and AI Ecosystem), HEP data sets 
are already subject to well-defined quality 
standards and the field has a long history of 
established practice in large-scale data 
management and the exploitation of ML 
techniques. For these reasons, HEP facilities 
are in an excellent position to take immediate 
advantage of AI-enabled methodologies as 
they become available. Because large-scale 
HEP experiments have already built a 
sophisticated infrastructure for distributed data 
management and analysis based on a 
hierarchy of storage and analysis hubs and 
platforms, an exciting opportunity for greatly 
enhanced scientific returns exists in embedding 
this capability within DOE’s broader HPC and 
HPN infrastructure via AI-enabled smart  
edge services to HPC systems and AI-
enhanced “just-in-time” HPN-based data 
delivery systems. 

4. Accelerating Development 
The amount and complexity of the next-
generation data stream will require a concerted 
effort to combine new analysis and modeling 
and simulation methods that effectively 
leverage AI technologies. New cosmological 
surveys are rapidly coming online. Given the 
aim of these surveys to deliver cosmological 
parameter constraints at percent level 
accuracy, AI will play a central role in the 
analysis and interpretation of the data. The 
cosmology community has embraced this 
opportunity fully and is developing approaches 
for numerous tasks already. In the near future, 

the focus will be to establish the reliability and 
robustness of AI-based methods for the 
different application areas (see Chapter 10, AI 
Foundations and Open Problems). In 
particular, whenever high precision is required, 
it has to be ensured that the AI approaches do 
not lead to undesirable biases due to, for 
example, misclassification of objects. With 
LSST and DESI coming on-line very soon, 
many new approaches will be applied and 
tested. In particular, for LSST’s Dark Energy 
Science Collaboration (DESC), simulated data 
challenges are being created that will provide 
excellent testbeds for many of these projects. 
Therefore, the highest priority in cosmology 
over the next few years will be to develop a 
roadmap that clearly establishes the best 
application areas for AI and a solid 
understanding of their error properties. Based 
on the findings, the cosmology community will 
be able to fully integrate AI in their data 
analysis approaches and pipelines and then 
take the next major steps as outlined in the 
Grand Challenge problems to create a well-
integrated overarching approach for use of AI 
to enable major advances in cosmological 
inference, extract the maximum possible 
information from the data, and inform and 
optimize new observational strategies.  
 
For AI to play a critical role in DUNE and HL-
LHC data simulation, processing, and 
analyses, new AI models are needed which are 
well suited to the sparse, high-precision nature 
of the measurements from most HEP 
detectors. Pattern recognition algorithms 
developed for a 10 MPixel photo camera do not 
work out of the box for a detector with 
10 million active pixels, which are millimeters or 
even meters apart. Likewise, AI image-
generation techniques commonly used to 
simulate new images from a library of existing 
ones, do not meet the stringent accuracy 
requirements of HEP detector simulation, 
particularly when it comes to simulating the 
tails of detector response. In general, for AI to 
address HEP data challenges of the next 
decade, we will need to identify resource-
critical applications (such as detector 
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simulation) and to develop ML models that are 
good at simulating and detecting extremely 
rare phenomena1 with high efficiency and 
accuracy. Besides supporting a robust R&D 
program targeting select HEP grand 
challenges, the development needed to meet 
these grand challenges includes: 
 
(1) Create usable tools for large-scale 

distributed training and optimization of ML 
models to enable physicists to scale up the 
complexity of their models orders of 
magnitude above the current “laptop-size.” 

(2) Develop training methodologies that are 
able to detect rare features in high-
dimensional spaces while being robust 
against systematic effects. 

(3) Design tools to quantify the impact of 
systematic effects of the accuracy and 
stability of complex ML models. 

5. Expected Outcomes 
The primary aim of ongoing and upcoming 
cosmological experiments is to further our 
understanding of the dark universe (dark 
matter and dark energy), the very early 
moments of cosmic evolution (inflation), and 
the make-up of the universe. These are 
profound questions in the area of fundamental 
physics. AI will enable the exploration of the 
data from the next-generation surveys in new 
and unexpected ways. The data amount and 
the complexity of the data will increase 
immensely in the coming years, and in some 
areas, traditional methods will break down due 
to the sheer data volume (e.g., no human will 
be able to look at each image taken by the new 
surveys). The ability to make a movie of the 
universe from its earliest moments until today 
and into the future will have a profound 
impact—AI in cosmology will be central to our 
quest to understand the universe in which 
we live. 

 
1 For example, DUNE expects to observe O(1) proton 

decay candidate per year while processing O(PB/s) 
of detector raw data. 

AI algorithms will play a vital role in the next 
generation of particle physics detectors and 
accelerators from Intelligent Operations, to 
Fast AI for data selection. Simulating and 
processing the DUNE and the LHC detector 
data with high statistics and high accuracy will 
usher in a new era of precision physics at the 
Energy and Intensity frontiers that may shed 
light on HEP fundamental questions such as 
the scale at which nature’s fundamental forces 
are unified, the origin of the universe’s matter-
antimatter asymmetry, and the constituents of 
dark matter. The introduction of model-free, 
unsupervised AI searches will further push the 
potential of discoveries that may transform our 
understanding of fundamental physics over the 
next decade. 
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05. Nuclear Physics 
The nature of matter is the fundamental 
question in nuclear physics: what are the basic 
components of matter and how do they interact 
to form the elements that make up our 
universe? This question is not limited to familiar 
forms of matter, but also includes exotic forms, 
such as those that existed in the first moments 
after the Big Bang, and those that exist today 
inside neutron stars. In addition to the 
fundamental questions of how and why matter 
takes on specific forms, it is also important to 
understand how that knowledge can benefit 
society in the areas of medicine, nuclear 
energy, and national security. Nuclear 
experiments include a range of devices, from 
small- and intermediate-scale devices to very 
large detector programs at accelerator 
laboratories like the Relativistic Heavy Ion 
Collider (RHIC) at Brookhaven National 
Laboratory (BNL), the Continuous Electron 
Beam Accelerator Facility at Thomas Jefferson 
National Accelerator Facility (Jefferson Lab), 
and the Argonne Tandem Linac Accelerator 
System at Argonne National Laboratory 
(Argonne). Nuclear physicists also lead 
experiments at other user facilities such as the 
Large Hadron Collider (LHC) at the European 
Organization for Nuclear Research (CERN) 
(Figure 5.1), the Japan Proton Accelerator 
Research Complex (J-PARC), and the 
Spallation Neutron Source (SNS) at Oak Ridge 
National Laboratory (ORNL). 
 
Nuclear theory is concerned with how quarks 
and gluons interact to form protons, neutrons, 
and other hadrons, as well as how those 
hadrons interact to form and determine the 
behavior of atomic nuclei. Studies of the 
formation and characteristics of nuclear matter 
in stellar explosions (i.e., supernovae) and 
neutron stars are among the most 
computationally intensive investigations 
currently underway. 
 

The Nuclear Physics Long Range Plan 
identifies the priorities for the field. These are: 
 
• Utilize investments in accelerators, 

detectors, and computational infrastructure. 
• Develop a U.S.-led, ton-scale neutrinoless 

double beta decay experiment. 
• An electron-ion collider is the highest priority 

for new facility construction. 
• Invest in small and mid-scale projects and 

initiatives enabling forefront research, 
including theory.  

 
Applications of nuclear physics for societal 
benefit are also important. 
 
The multiscale, highly correlated, and high-
dimensionality nature of the physics of  
the nuclear force leads to a rich set of 
phenomena in nuclear physics. AI techniques 
offer the possibility of increasing our 
understanding of this physics and making new 
discoveries, through a number of applications, 
detailed here. 
 

 
Figure 5.1 An event display shows particle tracks from a lead-
on-lead collision in the ALICE detector. Image courtesy of 
CERN, ALICE Collaboration [taken from https://www.energy.gov/ 
science/np/articles/explaining-light-nuclei-production-heavy-
ion-nuclear-collisions]. 
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1. State of the Art 
Increasing data volumes from nuclear 
experiments and simulations have already led 
to a variety of AI approaches being employed 
in the field. These span nuclear theory, 
experiments at various scales, accelerator 
optimization and controls, and applied 
nuclear physics. 
 
Nuclear binding energy, for example, is an 
essential property for understanding the 
production of nuclear species in astrophysical 
events such as supernovae and neutron star 
mergers. Some relevant binding energies 
cannot be measured directly and rely on 
nuclear models. Supercomputer calculations 
based on fundamental theory provide our best 
predictions for these binding energies and 
other important nuclear properties, but to reach 
the needed precision, these calculations 
become very computationally expensive. A 
team led by researchers from Iowa State 
University and Lawrence Berkeley National 
Laboratory (LBNL) developed a DL approach 
using a neural network trained with state- 
of-the-art supercomputer calculations [5].  
The trained network estimates binding energies 
and other properties with precision  
beyond expectations from the available 
calculations. The researchers validated their 
approach by demonstrating consistency with 
available analytic and phenomenological 
extrapolation tools. 
 
Experimental groups in all areas of nuclear 
physics are using AI techniques to characterize 
features in their data more quickly, efficiently, 
and with increasing sensitivity. 
 
Experimental nuclear astrophysicists use the 
MUlti-Sampling Ionization Chamber (MUSIC) 
detector at Argonne to study the fusion of 
nuclei in stars and to understand explosive 
stellar phenomena such as Type I X-ray bursts 
and superbursts. Standard data analysis 
techniques require months to select relevant 
events. Data that were previously analyzed 

with standard techniques pass through 
algorithms based on the T-distributed 
stochastic neighbor embedding (t-SNE) 
approach [6] for unsupervised DL. The t-SNE 
approach was able to find clusters in  
35 dimensions corresponding to different 
detector signals, clearly delineating previously 
identified 17F(α,p) reactions, providing a proof-
of-concept for use in other reactions. 
 
Analysis of the very complex data sets from 
heavy ion collisions at RHIC and the LHC 
already benefits from AI. Deep neural networks 
can connect specific moments of the complex 
particle correlations inside jets of hadrons with 
properties of the quark gluon plasma produced 
in the collision—in ways not previously 
predictable [8]. 
 
The GlueX experiment at Jefferson Lab utilizes 
a high-intensity photon beam and a large-
acceptance particle detector to search for 
exotic hadrons. Individual collisions are 
reconstructed from fine-grained detector 
systems. A key use case of ML at GlueX thus 
far is in filtering those events containing rare 
reactions. GlueX demonstrated that Boosted 
Decision Trees achieved the required 
performance [7]. Another recent development 
in GlueX is a system of data quality  
monitoring using ML to evaluate images of data 
quality histograms in real time to identify 
problematic regions of the detector during the 
experiment’s operation. 
 
It is now known that neutrinos have mass. 
However, it is not known whether the neutrino 
is a Dirac or Majorana particle (i.e., the 
neutrino and the antineutrino are the same 
particle). To answer this question, nuclear 
physicists search for the lepton-number 
violating process of neutrinoless double beta 
decay, wherein two neutrons in an atomic 
nucleus are transformed into two protons 
without the usual emission of two antineutrinos. 
In such searches, it is paramount to 
differentiate a very small signal from 
background events that occur at rates orders of 
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magnitude larger. The backgrounds are 
dominated by intrinsic radioactivity in the 
detector along with instrumental backgrounds. 
Current neutrinoless double-beta decay 
demonstrator experiments are exploring 
different techniques to classify and separate 
the two-beta-electron signal from other classes 
of events in detectors, including large-scale 
liquid scintillators, semiconductor ionization 
detectors, bolometers, and high pressure 
gaseous Xenon TPCs. Geometric patterns of 
fired photomultiplier tubes are examined, or the 
pulses from charge or phonon collection are 
used. Most developments were begun with 
decision tree techniques, as event 
classification is the primary goal. Now, 
experiments are implementing DNNs and other 
DL methods. Improvements to the sensitivity to 
neutrinoless double beta decay have been 
demonstrated through more effective 
identification of background events. 
 
As an example, the high spatial resolution of 
Xenon TPCs offer an additional handle for 
neutrinoless double beta decay searches 
beyond the excellent energy resolution at the 
0νββ region of interest. The addition of spatial 
tracking information provided by the detector 
offers a topological separation of 2-electron 
events (resulting from a neutrinoless double 
beta decay event) from a single electron event 
of the same energy resulting from a  

background event. Calorimetric resolution of 
the Bragg peak of stopping particles 
differentiates between the start and end point 
of an electron track, and the topological 
signature (one Bragg peak or two Bragg 
Peaks) differentiates between single  
and double electron events (Figure 5.2). 
Topological signatures are important for 
reducing background rates and reaching the 
experimental sensitivity needed to learn the 
nature of the neutrino. 
 
Spatially sparse image data, such as that found 
in high pressure Xenon TPCs, naturally lends 
itself to the application of CNNs for topological 
discrimination. ML, including DL, methods have 
shown excellent promise in this task of 
resolving signal and background events at the 
same energy in high pressure Xenon TPCs 
simulation and data, a neutrinoless double beta 
decay prototype, through the use of CNNs in 
three dimensions. Additionally, these networks 
were trained using scalable distributed learning 
techniques with spatially sparse convolutional 
networks and achieved the state of the art in 
less than 30 minutes of computational time. 
 
Accelerator facilities are improving operations 
using AI technologies. At RHIC, efforts are 
under way to implement anomaly detection in 
the controls and AI methods in data mining. In 
addition, reinforcement learning is used along  
  

 

 
                              (a)                                                          (b) 

Figure 5.2 (left) 3D rendering of double beta decay-like data in high pressure TPC 
type detector. (right a,b) Simulated neutrinoless double beta decay interactions 
(right a) have two Bragg peaks, while energetically indistinguishable background 
events have just one (right b). Right a,b images are 2D projections [9]. 
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with game theory to analyze client activities in 
the RHIC control systems [4]. Prognostics and 
errant beam prevention are becoming 
increasingly important in an age where we 
have many superconducting accelerators 
(superconducting magnets and super-
conducting radio frequency), with high 
repetition rates and high power, and complex 
sensitive components. There is a much greater 
need for improved prognostics to avoid faults 
and to improve on recovery from faults. Many 
groups have efforts focusing on these areas, 
including improving mining large repositories of 
accelerator engineering data and introducing 
methods for real-time anomaly detection in 
operating systems. 
 
An ongoing project at Jefferson Lab leverages 
ML to automate cavity trip classification. 
Traditional methods have been effective at 
identifying superconducting radiofrequency 
(SRF) trip causes, but are labor intensive and 
generate results in an asynchronous fashion. 
Identifying and correcting faults in real-time will 
have numerous benefits including improving 
the stability of the SRF system, providing a 
more reliable and available accelerator, and 
extending the energy reach. It will also provide 
important statistics and insights on cryomodule 
operations to engineering and SRF R&D staff 
while freeing them to focus on the future design 
and fabrication of SRF cryomodules. The 
project established a prototype system that 
reads data from the control system as faults 
occur, classifies it with a trained ML model, and 
outputs the result to subject matter experts. 
The system provides a cavity trip type, 
identifies the cavity causing the instability, and, 
potentially, can predict a trip before it occurs. It 
is a first step towards a diagnostic tool for daily 
use by operators to accurately identify a cause 
of a trip and apply precise response  
measures, avoiding unnecessary gradient 
reduction [10,11]. 

2. Major (Grand) Challenges 
Advances in the use of AI/ML/DL techniques in 
nuclear physics will be driven by the volume 
and complexity of new data—both from 
experimental facilities (as described above) 
and from theory and simulation. The ability to 
discern physical causality and discover new 
phenomena will require the application of  
new technologies to augment human 
understanding. We note several grand 
challenges for better understanding the nature 
of matter in this section. 
 
Generate detailed tomography of the 
proton/nuclei. This 3D tomography of hadrons 
and nuclear structure is not directly accessible 
in experiments. Obtaining the quantities of 
interest, such as generalized and transverse 
momentum dependent parton distribution 
functions (Generalized Parton Distributions 
(GPDs) and Transverse Momentum 
Distributions (TMDs)), involves an inverse 
problem. This is because these objects are 
inferred from experimental data using 
theoretical frameworks such as quantum 
chromodynamics (QCD) factorization theorems 
(e.g., collinear factorization, TMD factorization). 
Such a procedure allows one to connect 
experimental data to quantum probability 
distributions that characterize hadron and 
nuclear structure and the emergence of 
hadrons in terms of quark and gluon degrees 
of freedom. 
 
Existing techniques to extract probability 
distributions from data have primarily been 
used to obtain a 1D tomography of hadrons, 
provided by parton distribution and 
fragmentation functions. These techniques 
usually rely on Bayesian likelihood techniques 
and Monte Carlo sampling methods, which are 
coupled with suitable parametrizations for the 
distribution functions of interest (Figure 5.3).  
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Figure 5.3 A momentum space tomography of a hadron at 
difference slices in Bjorken x, for u and d anti-quarks. The 
images show how the variable x provides a filter to select 
different aspects of nucleon or nuclear partonic structure. 
 
In the Electron-Ion Collider (EIC) era, such 
methods need to be dramatically improved 
upon so that the full impact of the science can 
be assessed in real-time. This provides an 
important opportunity to utilize AI/ML 
techniques to obtain approximate solutions to 
the associated inverse problems. That is, to 
find an efficient mapping between the exabytes 
of experimental cross-section data and the 
theoretical objects of interest, namely the 
quantum probability distributions. Such a 
project will produce the next generation of QCD 
analysis tools that will provide rapid feedback 
between experimental data and a deeper 
understanding of strong interaction dynamics. 
Therefore, AI/ML methods will help guarantee 
maximum science output from the EIC. 
 
Increase the understanding of matter/anti-
matter in the universe. A better 
understanding of electroweak interactions 

are fundamental to understanding matter/ 
antimatter asymmetry in the universe and 
neutrinoless double beta decay offers a 
window into these phenomena. CNNs offer the 
ability to reach beyond current technologies for 
neutrinoless double beta decay, thanks to the 
ability to quickly learn pattern recognition and 
discriminate important topological features. A 
significant challenge, however, will be 
validating a ML technique sufficiently well to 
ensure it performs on data in the energy region 
of interest. 
 
With the availability of radioactive sources for 
calibration, such as Thallium in high pressure 
Xenon TPCs, researchers have access to a 
dataset with signal-like and background-like 
events that have a very similar topological 
signature to a neutrinoless double beta decay 
signal and background events, but at a 
different energy and with high statistics. The 
combination of available simulation, validation 
datasets, and very fast training times will allow 
experiments to perform an optimization 
campaign to build a robust neural architecture 
for fast analysis of neutrinoless double beta 
data with high confidence of similar 
performance on data and simulation. 
Additionally, the introduction of Generative 
Adversarial Networks (GANs) to model 
data/simulation discrepancies, with the ability 
to validate over large energy regimes, 
increases the confidence in a network trained 
on simulation + GAN datasets. The grand 
challenge in this space is to create an AI-
centric workflow to distinguish neutrinoless 
double beta decay candidates from 
background, while using AI to validate 
simulations and ensure high-quality inference 
results on data. 
 
Advance the understanding of nucleo-
synthesis. Our understanding of 
nucleosynthesis is growing through studies of 
astronomical measurements, theoretical 
calculations, and experimental measurements 
of exotic nuclei generated at advanced 
experimental facilities. 
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Researchers are now working to extend deep 
learning to a wide range of important properties 
that govern the production of nuclei in the 
Cosmos. Further developments include 
applications to measure electromagnetic and 
weak transition rates in both stable and 
unstable nuclei. In addition, applications to 
improve scattering and reaction cross-sections 
based on fundamental theory appear feasible 
in light of the initial successes with binding 
energies. For example, incompletely converged 
supercomputer calculations of nucleon-nucleus 
cross-sections based on microscopic theory 
have appeared recently and, as with the 
binding energy example, a DL approach could 
extend those results to produce cross-sections 
at convergence with quantified uncertainties. 
 
Nuclear astrophysics simulations—including 
core-collapse supernovae, X-ray bursts, and 
neutron star mergers—continue an inexorable 
march towards higher computational intensity, 
as increased physical fidelity is realized using 
higher spatial resolutions, longer physical 
times, and more complete microphysical 
descriptions. Anomaly detection for these very 
expensive (i.e., of order tens of millions of LCF 
node-hours) calculations becomes essential to 
ensure that scarce computational resources 
are not consumed in error. In addition, many of 
the requisite microphysics in these simulations 
(e.g., neutrino-matter interaction rates, 
thermonuclear reaction rates, and high-density 
equations of state) are recovered via the use of 
high-dimensional interpolation tables. ML 
techniques such as Gaussian process models 
and deep neural networks can replace 
traditional interpolation techniques while 
providing superior robustness. 
 
When completed in 2022, the Facility for Rare 
Isotope Beams (FRIB) will be the world’s most 
powerful rare isotope research laboratory. By 
producing intense beams of nearly 80 percent 
of the predicted isotopes for elements up to 
uranium, FRIB will enable researchers to make 
major advances in the structure, stability, and 
limits of nuclear matter, as well as in their 
interactions and decays (Figure 5.4). We 

anticipate that a variety of AI/ML approaches 
will be developed to address specific needs at 
FRIB, including beam generation, event 
characterization, detector response, experi-
ment optimization, and data analysis. 
 

 
Figure 5.4 The Facility for Rare Isotope Beams (FRIB) will 
provide unparalleled beam intensities of the most exotic nuclei. 
 
Transform the operation of accelerators and 
detector systems. In data analysis, 
experimental design and optimization, and 
even facility operation, AI/ML may provide 
approaches that are complementary to and 
offer improvement over traditional techniques. 
AI/ML studies can offer transformative progress 
in optimal operations of accelerators. In 
addition to the ongoing work at BNL and 
Jefferson Lab, FRIB operations will surely 
benefit. Production of high-purity, high-intensity 
beams of unstable nuclei and delivery with high 
efficiency to the FRIB experimental end 
stations present a daunting challenge. As data-
taking runs for each measurement can be 
short, tuning time is important. 
 
Time-consuming, multi-step beam generation 
efforts potentially limit the overall scientific 
productivity of the facility, as will the need to 
(on occasion) use sub-optimal beams with 
lower intensity. By utilizing supervised ML 
methods or reinforcement learning, it is 
anticipated that beam generation times can be 
significantly reduced compared to manual 
efforts, while simultaneously improving the 
quality of beams delivered to the end stations. 
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Detector systems used in nuclear physics 
experiments and nuclear physics applications 
will continue to generate higher fidelity data, 
which will drive needs for better data analysis 
methods, and, in some cases, for faster and 
high-fidelity edge-driven analysis.  
 
AI techniques are being developed for event 
characterization, particle and photon tracking, 
particle identification, and energy 
reconstruction. Reconstruction of tracks in time 
projection chambers could be greatly improved 
with such approaches. At FRIB, logistic 
regression, fully connected neural networks, 
convolutional neural networks, and other 
approaches are being explored to identify 
event tracks in the Active Target Time 
Projection Chamber (AT-TPC). This step could 
be decoupled from fitting the tracks to 
determine reaction kinematics. 
 
The enormous particle multiplicities in TPC’s at 
heavy ion colliders cause track reconstruction 
to be slow and require complex correction for 
distortions due to the large charge load  
in the TPC. Application of ML to this problem 
would greatly simplify calibration and 
track reconstruction. 
 
Methods to improving particle tracking through 
sophisticated magnetic spectrometers are also 
being developed through AI/ML. While the 
exact technique differs for different magnet 
configurations, room for improvement exists at 
all DOE Nuclear Physics (NP) accelerator 
facilities. At FRIB, correlating signals in the 
focal plane detectors of the magnetic 
spectrometers using a series of masks at the 
target location could be used to train 
corrections for offsets in initial particle angle 
and position. This could markedly improve the 
energy/momentum resolution of the focal 
plane spectra.  
 
DNNs are being applied to complement 
existing Monte Carlo approaches for particle 
identification. Event shapes in multi-
dimensional (detector signal) space can be 
used to train ML algorithms to recognize the 

location of foreground events in the presence 
of significant backgrounds. In calorimeters, 
DDN’s allow sophisticated analysis of shower 
shapes to separate single photons, hadrons, 
and their decays. 
 
Many modern detectors digitize the signals 
(waveforms) from each event. For example, 
new large-volume germanium detectors for 
gamma-ray spectroscopy will enable position 
sensitivity, i.e., determining not only the total 
energy deposited via gamma rays, but also the 
energy and position of the individual 
interactions within the detector. Spatial 
resolutions of a few millimeters will be possible, 
enabling so-called gamma-ray tracking, 
another area where ML is applicable. Gamma-
ray tracking is the core operating principle of 
the Gamma-Ray Energy Tracking Array 
(GRETA) spectrometer, and AI/ML methods 
may transform current approaches using 
deterministic and probabilistic methods to 
reconstruct the path of multiple gamma rays 
from measured interaction positions and 
corresponding deposited energies. ML 
algorithms could be trained on the pattern of 
interaction points and energies with no 
assumptions of the underlying scattering 
processes. By focusing on differentiating 
events that are completely absorbed versus 
those that are partially absorbed, significant 
improvements are anticipated in determination 
of the peak-to-total, Doppler correction, angular 
distributions, and linear polarizations of events 
in GRETA. Improving the determination of 
gamma-ray transport parameters and transfer 
functions will improve the position resolution of 
the detector, especially for lower energy 
interaction points. Among other more 
established approaches, the use of GANs [3] 
for the discovery of these transfer functions is 
an attractive avenue of investigation. These 
techniques will be applicable to other detector 
systems, as well.  

3. Advances in the Next Decade 
The growth of AI techniques and the 
familiarization of nuclear physicists with those 
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techniques is anticipated to result in substantial 
advances in the next decade, which is 
particularly important given the planned 
increase in date volume and fidelity resulting 
from new experiments and facilities.  
In particular, the following advances 
are anticipated. 
 
Extracting physics from simulations and 
other large-scale inverse problems. The 
coupling of higher-fidelity simulations that 
leverage HPC environments with the ability to 
conduct an ever-increasing number of 
simulations provides great opportunity to 
leverage AI to infer physics, manage and plan 
simulations, and tackle many other large-scale 
inverse problems, including 3D tomography, 
which relates to precision medicine  
(see Chapter 10, AI Foundations and 
Open Problems). 
 
Data analysis. Data analysis methods will 
continue to advance the AI methods that are 
being leveraged for data analysis in both online 
and offline scenarios, where the online AI 
activities may be pushed closer to the sensor 
edge. Advances in particle tracking, particle 
identification, data fusion, and background 
reduction, as well as methods such as using 
shallow neural networks for curve fitting and 
other data analysis methods, will continue  
(see Chapter 10, AI Foundations and 
Open Problems).  
 
Data management. Similar to data analysis 
methods, methods used to provide metadata, 
facilitate data discovery and data retrieval, and 
enable cross-experiment analyses will evolve 
thanks to AI methods that can reduce the now 
human-intensive task of curating data (see 
Chapter 12, Data Life Cycle and Infrastructure). 
 
Facility operation. Experimental facilities are 
major investments in capital. Operating these 
facilities with minimal down-time and maximal 
user value provides the best return on 
investment and scientific outcomes. 
Improvements in beam diagnostics and control 
and beam-line planning will save human effort 

and produce better stewardship of the major 
investments (see Chapter 14 AI for Imaging). 
 
Experimental design. More capable, AI-driven 
computing at the sensor edge will enable 
higher precision instruments to be developed 
and fielded at NP experiments. These 
advances may result in near-real-time tuning of 
detector parameters and better data acquisition 
decisions (see Chapter 15, AI at the Edge).  

4. Accelerating Development 
As outlined above, the sheer volume and 
complexity of nuclear physics data is 
increasing at a rapid pace. These increases 
are occurring across the enterprise of nuclear 
physics, from nuclear theory to experiment, 
and to the operation of facilities and the 
collection of data in support of nuclear science 
applications. Inference from these increasingly 
complex sources, and therefore physical 
understanding, is constrained even now by 
physicists’ ability to examine, analyze, and 
interrogate data. The effective continued 
adoption of AI techniques into the nuclear 
physics workflow depends most critically on 
several factors: 
 
• The development of AI/ML/DL techniques 

that are scalable from modest or scarce data 
volumes, to data volumes that can be 
exponentially larger (see Chapter 10, AI 
Foundations and Open Problems). 

• AI approaches for anomaly detection and 
decision support that can be used in 
operating environments where expensive 
resources (e.g., accelerator beamlines and 
leadership-class supercomputers) are being 
used (see Chapter 15, AI at the Edge).  

• Creation of new data analysis techniques for 
analyzing and interpreting the large 
multidimensional data sets produced by 
heterogeneous sensor networks, and 
methods of performing online sensor and 
sensor network reconfiguration to optimize 
performance. Two techniques of particular 
interest are the use of unsupervised learning 
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methods for the discovery of multi-
dimensional patterns and the development 
of underlying models, as well as online 
learning techniques that are able to use 
streaming data to adapt to changing 
conditions across a network in real time (see 
Chapter 10, AI Foundations and Open 
Problems and Chapter 15, AI at the Edge). 

• AI techniques that can optimize the design 
of complex, larger scale experiments could 
completely revolutionize the way 
experimental nuclear physics is done (see 
Chapter 10, AI Foundations and Open 
Problems).  

• AI techniques can facilitate the collection 
and analysis of metadata, facilitating data 
reduction tasks to better document 
experimental conditions and better facilitate 
nuclear data evaluation and the 
‘interoperability’ of data resulting from 
complex experiments (see Chapter 12, Data 
Life Cycle and Infrastructure).  

5. Expected Outcomes 
• One of the fundamental goals of nuclear 

physics is to understand how interactions 
between quarks and gluons ultimately 
manifest in the structure and binding of 
nucleons and nuclei. Approximate 
symmetries found in nuclear physics are 
thought to have origins not only in the 
underlying interaction, but also in the 
complicated many-body physics of the 
problems. AI has the potential to aid human 
understanding of these complex systems 
through improved methods that discern the 
origins of these symmetries and the 
emergent behavior that is often observed.  

• Applications of AI in nuclear physics will 
produce a paradigm shift in the way 
information is gathered, stored, analyzed, 
and interpreted from the large amount of 
data obtained from scattering and decay 
experiments. With the aid of AI, experiments 
that require years of analysis will see 
decisions on optimization and results in near 

real-time. The accessibility of the data to the 
wider nuclear physics community would 
create a connectivity across experiments not 
seen before. This connectivity will become 
the standard rather than the exception in 
understanding nuclear phenomena from the 
laboratory to the universe. 

• In a practical sense, radioactive and stable 
isotopes are critical to several societal 
needs. They are essential for energy 
exploration and innovation, medical 
applications, national security, and basic 
research. The utilization of AI to optimize the 
choice of reactor parameters, exposure 
time, and sample composition poses the 
potential to significantly increase the reliable 
and cost-effective production of isotopes, 
thereby impacting national needs in 
these areas.  
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06. Fusion 
The pursuit of fusion energy has required 
extensive experimental and theoretical science 
activities to develop the knowledge that will be 
needed to enable the design of successful 
fusion power plants. Even today, following 
decades of research in many key areas, 
including plasma physics and material science, 
much remains to be learned about the 
optimization of the tokamak—an experimental 
magnetic confinement machine that has the 
potential to produce controlled thermonuclear 
fusion power—or other paths toward 
fusion energy. 
 
Data science methods from the fields of ML 
and AI offer opportunities for enabling or 
accelerating progress toward the realization of 
fusion energy by maximizing the amount and 
usefulness of information extracted from 
experimental and simulation output data (see 
Chapter 10, AI Foundations and Open 
Problems). While data-driven methods have 
long been used for specific roles in fusion 
research, such as real-time prediction of 
disruption risk in tokamaks [7], there is 
significant potential for impactful application to 
other areas, such as hypothesis generation 
and testing, optimization and acceleration of 
scientific workflows (Figure 6.1), boosting of 
experimental diagnostic data interpretability, 
model extraction and reduction, augmentation 
of plasma control effectiveness, and data-
enhanced event and state prediction 
algorithms. The DOE recently sponsored 
workshops and assessments to determine 
optimal approaches and priority research 
opportunities for advancing fusion with ML and 
AI [2,8,18]. Grand challenges, anticipated 
advances, and expected outcomes discussed 
herein are abstracted from these and related 
assessment efforts. 

1. State of the Art 
ML models trained on large datasets have 
been employed in fusion energy research since 

the early 1990s. The most extensive 
applications have been to predict disruptions 
(catastrophic, sudden loss of plasma 
confinement due to growing instabilities) in 
tokamak magnetic confinement devices. 
Tokamaks have confined plasmas with 
temperatures in excess of 150 million degrees 
Celsius for many seconds and are the present 
leading candidate for a fusion power plant. 
There are a multitude of examples of ML 
application for disruption prediction, such as 
employing a neural network to predict high beta 
disruptions in real time from many 
axisymmetric-only input signals [21]; producing 
a multi-machine applicable disruption predictor 
for the Joint European Torus (JET) [20, 17] and 
the Axially Symmetric Divertor Experiment 
Upgrade (ASDEX-UG) [4,15,16]; demonstrat-
ing use of time series data and explicit look-
ahead time windows for disruption predictability 
in Alcator C-Mod [5], DIII-D [11], and the 
Experimental Advanced Superconducting 
Tokomak (EAST) [13] (Figure 6.2); and 
demonstrating use of extensive profile 
measurements in multi-machine disruption 
prediction for the JET and DIII-D tokamaks with 
convolutional and recurrent neural networks 
[12]. Even with the growing use of ML methods  
 

 
Figure 6.1 Scientific discovery with ML includes approaches to 
bridging gaps in theoretical understanding through the identifi-
cation of missing effects using large datasets, accelerating 
hypothesis generation and testing, and optimizing experimental 
planning to help speed progress in gaining new knowledge. 
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in fusion energy science applications, very little 
attention has been given to uncertainty 
quantification. Due to the inherent statistical 
nature of ML algorithms, comparing model 
predictions to data is nontrivial since 
uncertainty must be considered [19]. The 
predictive capabilities of a ML model are 
assessed using the model response as well as 
the uncertainty, and each aspect is critical to 
the combined effectiveness of real-time and 
offline applications. 
 
In addition to the rapid growth in tokamak 
disruption predictors, in recent years 
applications of ML and statistical inference to 
fusion research have expanded to include 
model reduction for code acceleration  
[14], plasma control [6], and physics 
discovery [3,10].  

2. Major (Grand) Challenges 
The principal challenge in fusion energy 
research for the coming decades is to 
determine the key solutions that would 
establish the viability of a fusion power plant. 
The work on components of this overarching 
challenge is expected to grow, developing in 
perhaps unanticipated directions with the 
arrival of new burning plasma experiments 
such as ITER [1]. A recent joint Fusion Energy 
Sciences (FES)/Advanced Scientific 
Computing Research (ASCR)-sponsored 
workshop [2] identified a set of seven priority 
research opportunities for the application of ML 
to accelerate this process. These priorities 

were used to formulate the four Grand 
Challenges in this area.  
 
Maximize predictive understanding of 
fusion plasmas and the burning plasma 
state. A central challenge for the advancement 
of fusion science toward the realization of 
fusion energy is the achievement of sufficiently 
predictive understanding of confined plasmas 
and, in particular, the burning plasma state. 
While both computational theoretical and 
experimental studies have produced 
substantial understanding of fundamental 
fusion plasma phenomena, significant progress 
is needed to enable high confidence design of 
operational power plants. For example, further 
understanding of energetic particle behavior in 
tokamak burning plasmas is needed to enable 
calculation of power plant performance and first 
wall impacts. Divertor function in self-heated 
tokamak plasmas must be projected to enable 
design of waste heat and exhaust handling 
solutions in a power plant. Much of this 
predictive understanding may still be 
undiscovered in data collected from fusion 
experiments and produced by simulations over 
the last ~50 years. Maximizing predictive 
understanding from data, both available and 
produced in the future, will be significantly 
aided by design and application of specialized 
ML methods. 
 
This challenge can be addressed further 
through the development of specialized 
infrastructure, for which requirements are  
  

   

Figure 6.2 The left two plots compare the performance of machine-specific disruption predictors on three different tokamaks 
(EAST, DIII-D, C-Mod). The rightmost plot shows the output of a real-time predictor installed in the DIII-D plasma control 
system, demonstrating an effective warning time of several hundred milliseconds before disruption [15]. 
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tightly coupled to the unique nature of fusion 
experimental and computational resources. For 
example, neither experimental nor simulation 
data produced today are typically archived or 
made accessible in ways appropriate for large-
scale application of ML methods. The Fusion 
Data Machine Learning Platform [2] is 
envisioned as a novel system for managing, 
formatting and curating fusion experimental 
and simulation data, with the goal of 
dramatically improving usability of data for ML 
algorithms. Such a platform is needed to 
enable unified management of both 
experimental and simulation workflows for ML, 
by supporting sufficiently rapid access to data 
from multiple experimental and computational 
sources (Figure 6.3). Fusion-specialized tools 
will be needed to enable efficient access to 
multi-machine and simulated data, either 
centralized or distributed, and to enable 
automated generation of fusion metadata for 
supervised learning. 
 

 
Figure 6.3 Vision for a future Fusion Data Machine Learning 
Platform that connects tokamak experiments with an advanced 
storage and data streaming infrastructure that is immediately 
queryable and enables efficient processing by ML/AI 
algorithms. 
 
Key goals in this area for the next 10 to  
15 years include the deployment of an effective 
Fusion Data Machine Learning Platform, 
characterized by extensive integration into the 
U.S. and international fusion workflow, and 
development of the relevant enabling 
algorithmic and computer science solutions 
specific to maximizing fusion plasma predictive 

understanding from plasma confinement 
experiments and simulations. 
 
Enable real-time understanding in long- 
pulse tokamak experiments. The advent of 
long pulse, burning plasma, large-scale 
international fusion experimental devices will 
drive unique needs to extract the maximum 
amount of information from increasingly large 
and rapid real-time streams of data  
(Figure 6.4). These long pulse experimental 
devices will provide the first examples of the 
unique real-time data streaming and analysis 
requirements that will be posed by an 
operational fusion power plant.  
 
Addressing this challenge will require 
interpreting and reducing fusion data at the 
source, as well as along the processing 
pipeline. The requirements for generation of 
real-time understanding and the nature of long 
pulse tokamak data streams are significantly 
unique to fusion experiments and burning 
plasma devices soon to be online. As such, 
they demand unique solutions and unique 
specific deployments of analysis systems. The 
effort will include integrating large numbers of 
fusion-specific data sources (multi-code, multi-
machine, multi-diagnostic) to produce 
statistically supported interpretations, quantify 
uncertainties, and yield more understanding 
than the sum of individual sources. In 
particular, enabling federated, multi-institution 
collaborations on very large scales will pose 
unique problems. AI and ML methods are 
expected to be instrumental in addressing this 
challenge by providing methods for managing 
the increased data scales and unique fusion 
data types, as well as fusion-specific tools for 
enhancing interpretability. 
 
Key goals in this area for the next 10 to  
15 years include development of AI methods 
that will enable: a) in situ, in-memory analysis 
and reduction of extreme-scale simulation data 
as part of a federated, multi-institutional 
workflow, and b) ingestion into the new Fusion 
Data Machine Learning Platform and analysis 
of extreme-scale fusion experimental data  
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for real- or near-real-time collaborative 
experimental research. 
 
Develop models that bridge gaps in fusion 
plasma confinement and stability 
prediction. Fusion energy science is 
significantly challenged by existing gaps and 
uncertainties in the understanding of fusion-
specific plasma physics, coupled with the 
increasing importance of simulations and 
analyses in closing these gaps. For example, 
while great strides have been made in 
modeling plasma phenomena that contribute to 
energy and particle transport in a tokamak, 
sufficient predictability has not been achieved, 
and the yet-unseen burning plasma regime is 
expected to yield further new phenomena that 
must be represented in models. Sufficient 
predictability of crucial performance-limiting 
and potentially disruptive instabilities such as 
tearing modes in tokamaks must also be 
achieved to enable operational scenarios and 
control for a reliable power plant.  
 
ML offers techniques that can combine 
theoretical and data-driven models in hybrid 
systems that better represent the underlying 
dynamics specific to such fusion plasma 
phenomena. This approach has already been 

used successfully in fusion research [3,10], and 
is expected to play an increasingly important 
role in managing uncertainties and knowledge 
gaps in the coming era of long pulse burning 
plasma experiments. 
 
Key goals in this area for the next 10 to  
15 years include the development of 
interpretable ML methods and model extraction 
and reduction techniques that will help guide 
future experimental campaigns and help close 
gaps in the understanding of physics. Hybrid or 
other ML-informed models will be developed to 
enable sufficient predictability with quantified 
uncertainties for fusion plasma confinement, 
instabilities, plasma-wall interaction, and other 
critical physics areas. 
 
Establish the plasma prediction and control 
solutions for sustained fusion power plant 
operation. A viable tokamak-based fusion 
power plant must have high-reliability, high-
performance plasma control to ensure very low 
rates of operational interruption and system 
failure. Both control physics and control 
algorithm mathematics requirements for fusion 
plasma control are uniquely challenging due to 
their extreme nonlinearity, degree of 
multiphysics overlaps, resource limitations, 

 
Figure 6.4 The shot cycle in tokamak experiments includes many diagnostic data handling and analysis steps that could be 
enhanced or enabled by ML methods. These processes include interpretation of profile data, interpretation of fluctuation 
spectra, determination of particle and energy balances, and mapping of MHD stability throughout the discharge. 
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reliability requirements, and range of 
bandwidths involved. A key requirement is 
therefore to use data-driven methods to 
contribute to control-level modeling, manage-
ment and interpretation of real-time data  
for control, optimal trajectory determination, 
and real-time prediction to support continuous 
and asynchronous actions and prevent 
faults (Figure 6.5). 
 

 
Figure 6.5 The ITER Plasma Control System (PCS) Forecast-
ing System will include functions to predict plasma evolution 
under planned control, plant system health and certain classes 
of impending faults, as well as real-time and projected plasma 
stability/controllability, including likelihood of pre-disruptive and 
disruptive conditions. Many or all of these functions will be 
aided or enabled by application of ML methods. 
 
Use of data-driven methods in control modeling 
and algorithm design always poses a challenge 
to operational application, due to the difficulty 
of quantifying uncertainty and reliability of 
performance with such approaches. The 
challenges specific to fusion are particularly 
demanding of advances in scientific 
understanding, as well as mathematical control 
theorems, due to the combination of 
multiphysics and range of bandwidth and plant 
integration scales. These characteristics 
dramatically amplify the fundamental challenge 
of operating the most complex, control-
intensive power plant ever envisioned by 
mankind reliably for months at a time with 
extremely limited sensor and actuator 
resources (compared with present-day 
fusion devices). 
 

Key goals in this area for the next 10 to  
15 years include the identification of areas of 
fusion plasma control research that will most 
significantly benefit from ML/AI-augmented 
control algorithms, including data-driven 
methods that enable the prediction of key 
plasma phenomena and plant system states, 
allowing critical real-time and offline health 
monitoring and fault prediction. Mathematical 
approaches must be developed for quantifying 
the uncertainty of the data-driven fusion 
plasma models identified and the reliability of 
corresponding plasma control algorithms. 
Methods must be developed and qualified for 
extracting the required level of real-time control 
knowledge from limited diagnostics in a fusion 
power plant environment, while accomplishing 
the required level of control authority from 
limited actuators.  
 
Addressing these four grand challenges for the 
application of statistical inference, AI, and ML 
methods to fusion research will contribute 
significantly to accelerating the development of 
solutions to many key problems on the path to 
fusion energy.  

3. Advances in the Next Decade 
Presently operating fusion experimental 
facilities will make significant advances in 
diagnostics, actuators, and accessible regimes 
in the coming decade, which will have equally 
significant impact on the data available for 
AI/ML applications (see Chapter 10, AI 
Foundations and Open Problems).  
 
The advent of exascale high performance com-
puting resources will provide a revolution in 
processing capabilities, enabling a similar leap 
forward in the effectiveness of large-scale data-
driven algorithms (see Chapter 16, Facilities 
Integration and AI Ecosystem). 
 
The most significant impact in the coming 
decade to the application of AI/ML methods to 
fusion problems is expected to be the 
availability of data from several key 
experimental facilities. ITER, the world’s first 
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burning plasma experiment, will provide unique 
opportunities to study self-heated plasmas on a 
size and power scale relevant to a fusion 
power plant. JT-60SA [9], the largest long 
pulse superconducting tokamak in the world 
(until ITER operates), will explore advanced 
tokamak regimes not accessible by ITER. Data 
from these devices will provide extensive, 
novel groundwork for application of AI/ML 
techniques that maximize the information and 
understanding extracted. The amount and 
quality of these data will help better validate 
key components of plasma physics codes and 
reveal gaps in the understanding of the physics 
behind the models, thus suggesting 
improvements to the implementation of codes 
as well as the theory. 
 
The deployment of a Fusion Machine Learning 
Data Platform could in itself prove a trans-
formational advance, dramatically increasing 
the ability of fusion science, mathematics, and 
computer science communities to combine 
their areas of expertise in accelerating the 
solution of fusion energy problems.  

4. Accelerating Development 
The introduction of ML and AI into the scientific 
process for hypothesis generation and the 
design of experiments promises to significantly 
accelerate the scientific process by automating 
and accelerating the development of models 
and the testing of hypotheses (see Chapter 10, 
AI Foundations and Open Problems).  
 
Perhaps the biggest obstacle in applying data 
science to hypothesis generation and 
experimental design is the availability of data 
and its lack of uniformity. In fusion, 
experimental data is limited by available 
diagnostics, experiments that cannot be 
reproduced at a sufficient frequency, and a lack 
of infrastructure and policies to easily share 
data. Furthermore, even with access to the 
existing data, there is still the obstacle that 
these data have not been properly curated for 

easy use by others. The Fusion Data Machine 
Learning Platform is envisioned as a step 
toward solving these problems (see 
Chapter 12, Data Life Cycle and Infrastructure). 
 
Despite these gaps, we believe a research 
direction with the potentially highest payoff may 
be the integration of our knowledge of physics 
into ML models. Most existing AI/ML models 
are either purely data-driven or incorporate 
very simple physical laws and constraints. 
Without building the structure of physical laws 
into ML methods, it is difficult to interpret the 
predictions from data-driven models.  

5. Expected Outcomes 
Application of AI/ML methods to fusion energy 
research will accelerate progress toward 
realization of a commercial fusion power plant. 
It is very possible that the new capabilities 
offered will actually enable practical solution of 
problems not otherwise tractable even on a 
timescale of decades without use of data-
driven methods. 
 
Fusion energy offers an essentially infinite 
energy source with minimal environmental 
impacts, and high power density compatible 
with siting near high-demand population 
centers. Large-scale deployment of 
economically viable fusion power plants on 
worldwide grids have the potential to minimize 
the impacts of climate change and address the 
energy demands of the coming centuries. 
Fusion remains the only known energy option 
with virtually unlimited scalability to match 
growth in demand. 
 
The long-term impacts of solving the relevant 
scientific challenges and achieving routine and 
widespread deployment of fusion power plants 
are potentially transformational, for society as a 
whole, and for the enterprise of science in 
particular. 
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07. Engineering and Manufacturing 
Over the last decade, advances in 
technologies, such as sensors, networks, and 
control systems, along with the rise of data 
analytics and artificial intelligence (AI) 
approaches, such as machine learning (ML), 
have led to increasing discussion of holistic 
approaches to manufacturing and engineering 
(see Chapter 15, AI at the Edge). Terms such 
as “smart manufacturing,” “the Internet of 
things,” and “digital twins” are used to refer to 
these types of transformational approaches, 
with the concept of optimization expanding to 
include an entire lifespan, from raw materials to 
shape/topology to manufacturing process to 
end use.  
 
The future of manufacturing hinges on the 
ability to bring new ideas and custom products 
to market faster than ever before while 
reducing cost, energy use, and waste products. 
A major effort is under way to use distributed 
manufacturing and products designed for a 
circular economy to shrink the supply chain to 
the benefit of local communities. Obstacles 
include: disruptions in the supply chain due to 
natural disasters; changing economic costs 
(tariffs, transportation costs, etc.) or new 
regulations; inability to optimally utilize differing 
raw materials; appropriate data collection; 
weakness in altering processes in real time; 
and cybersecurity threats, among others. The 
goal is to overcome these obstacles in an 
optimal way to the benefit of the manufacturer, 
consumer, and environment. 

1. State of the Art 
AI has yet to have a major impact in 
manufacturing and engineering, but in the 
handful of examples provided here one can 
easily see the potential it has to change 
industry. To date, some of the initial forays into 
using AI have focused on smart manufacturing 
(improving efficiency and reducing waste), 
generative design, and autonomous 
robotic assembly.  
 

Manufacturers of smaller batches, and ones 
who produce many different variants of similar 
designs for consumers who want a customized 
product, need robots on the assembly line to 
perform tasks autonomously rather than 
automatically. Typical automation is not 
profitable at this level, and this is often referred 
to as the “Batch Size 1” or “Order of One” 
problem. What is meant by “autonomous” is 
that the robots are not reprogrammed step-by-
step to complete the new assembly; rather, 
they independently learn how to optimally 
assemble one variant or another. Basically, the 
robots are provided the fundamentals to learn 
how to assemble on their own.  
 
Siemens Corporate Technology has managed 
to solve this problem for some simple 
assemblies [1]. They have done this by 
semantically converting the parts and process 
information into ontologies and knowledge 
graphs, thereby converting implicit information 
into explicit. Previously, the robots had to be 
taught through code, but now the robots 
analyze the CAD drawings and find  
the corresponding solution to assembly  
(Figure 7.1). An added benefit is that the robots 
are also able to correct some faults without 
having this option explicitly instructed 
beforehand. If a part slips and falls or is 
needed on the other side of the assembly, one 
robotic arm can stop and pick it up or pass it off 
to its partner and the assembly can continue 
on unimpeded. 
 

 
Figure 7.1 This Siemens two-armed robot uses AI to interpret 
CAD instructions and assemble parts. 
 
In Korea, Siemens’ largest IT provider, LG 
CNS, works across a variety of industries using 
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its cloud-based smart factory service. This 
service helps manufacturers automate 
production and keep track of efficiency 
throughout the entire process. Collecting data 
over large swaths of production history and 
placing it into easily accessible databases, 
manufacturers have used Microsoft’s Azure 
Machine Learning to predict defects before 
they happen [2]. While not perfect, it greatly 
minimizes costs due to delays on the 
production line and the subsequent waste 
these defects cause.  
 
Generative design is one of the newest areas 
through which AI has had an impact on 
manufacturing. This is a two-step iterative 
process that, based on design goals, generates 
a number of possible outputs that meet the 
specified constraints. A designer then tunes 
variables in these outputs (over previously set 
minimal and maximal values) to reduce and 
optimize potential outputs that meet the 
aforementioned constraints. Generative 
adversarial networks are often used to drive 
the underlying optimal design. Airbus has 
employed this technique to improve the design 
of the partition that separates the passenger 
compartment from the galley in the Airbus 
A320 cabin (Figures 7.2 and 7.3). Their design 
goals focused on a reduction in weight with 
constraints in maximal width, strength to 
support two jump seats during takeoffs and 
landings, and number of airframe attachment 
points [3]. Note that the models used to assess 
designs are typically reduced-order surrogates, 
and the impact of their fidelity to optimality of 
the final design is an open question. 

2. Major (Grand) Challenges 
Since additive manufacturing (AM) is in 
relatively early stages of development, it can 
simultaneously gain the greatest benefit from 
advanced simulation, data analytics, and AI 
approaches and offers the greatest flexibility 
and research resources for implementing those 
ideas. So, although the spectrum of 
engineering and manufacturing processes that 

can be impacted is much broader than AM, it 
will serve as our exemplar. 
 
AM is revolutionizing manufacturing, allowing 
construction of complex parts not readily 
fabricated by traditional techniques. In addition, 
AM offers the possibility of constructing 
“designer materials” by adjusting process 
control variables to achieve spatially varying 
physical properties. AM is a unique application 
area due to its strategic importance to both 
U.S. industry and federal agencies (DOE, 
NNSA, DOD, NASA). Although there has been 
significant interest and investment in AM, the 
fraction of this investment devoted to modeling 
and simulation—not to mention data analytics, 
ML, and AI—is relatively small. 
 
Modeling of the AM process allows both 
prediction of how the AM process variables 
(the “machine knobs”) impact the resulting 
material microstructure (the forward problem) 
and the ability to control the AM process to 
manufacture parts with desired properties (the 
optimization problem). Our grand challenges 
tackle some of the most pressing problems in 
these areas, and the ones with the most 
potential to accelerate manufacturing. 
 
We would be remiss if we failed to reference 
reports from two workshops held by the 
National Academies of Sciences, Engineering, 
and Medicine. The first, held in 2016, was titled 
“Predictive Theoretical and Computational 
Approaches for Additive Manufacturing” [4]. 
The second, held in 2018, was titled “Data-
Driven Modeling for Additive Manufacturing of 
Metals” [5] and is of particular relevance to the 
current topic. 
 
Optimally solve the Batch Size 1 problem in 
additive manufacturing. The ability to quickly 
design a new product, optimally, without going 
through an expensive simulation (let alone trial 
and error), is the path to solving the “Batch 
Size 1” problem in AM. This can be carried  
out through the creation of a high-quality 
surrogate model.  
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Surrogate models (which includes reduced 
order models, see Chapter 10, AI Foundations 
and Open Problems) can play at least three 
roles in AM: (1) a priori optimization, (2) in situ, 
real-time process control, and (3) transferability 
of AI models between different devices and/or 
feedstocks—heterogeneous manufacturing. 
The first role encompasses both design and 
process optimization. Design optimization is 
the outermost loop and includes both shape 
and topology and implicitly local control of 
microstructure and properties. Although there 
has been significant research over the last few 
years in shape and topology optimization, it 
typically relies on extremely simplistic physical 
models. The extent to which model fidelity 
impacts “optimal” design is unknown. Similarly, 
process optimization (selection of parameters 
such as beam diameter, beam power, preheat, 
and scan strategy) also relies on approximate 

models. Improved surrogate models based on 
physics-informed AI models would enable more 
extensive exploration of both design and 
parameter space, ultimately accelerating 
qualification of AM parts. 
 
The second role would have even more impact, 
but is also significantly more difficult. It requires 
access to the AM control system, an extensive 
array of sensors, and the ability to process data 
from the sensors during a build, analyze it in 
real time, and determine whether and how to 
alter any process control parameters. Since 
this would have to happen in a matter of 
seconds (between layers of a build), the data 
processing and analysis requirements are 
significant, and accurate, fast-running 
surrogate models are essential (see 
Chapter 15, AI at the Edge). 

   
Figure 7.2 This generative designed partition for the Airbus A320, with its seemingly random construction, has been 
optimally designed to be both lightweight and strong. 

 

   
Figure 7.3 Left: In 2010, an Airbus A380 sustained an uncontained engine rotor failure (UERF) of the No. 2 engine as it 
departed from Singapore while climbing through 7,000 ft. Debris from the UERF hit the aircraft, which led to significant 
structural damage. Bottom: The culprit was caused by metal fatigue in an oil feed stub pipe due to a slightly misaligned 
machining that left the pipe a little thinner on one side. [Australian Transport Safety Bureau Investigation #: A0-2010-089] 
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An additional twist to this entire process would 
be the ability to transfer a surrogate model 
trained on one AM system to another of a 
different design, or equally from one feedstock 
to another on the same AM system. 
Heterogenous manufacturing, where different 
systems build the same part to the same 
specifications, would open up the possibility of 
distributed manufacturing at an entirely new 
level. Here a CAD drawing for a given part, 
along with the system configuration and 
feedstock, would be used as inputs to the AI 
process to produce the optimal design for the 
system in question. 
 
Couple material design with prediction and 
control of the additive manufacturing 
design process. Microstructures produced by 
AM processes are very different from those 
that arise from traditional manufacturing 
processes, such as casting and forging, and 
these differences can lead to extremely poor 
properties (strength, ductility, etc.) and 
unsatisfactory performance (likelihood of 
fatigue/cracking, lifetime, etc.). The good news 
is that the microstructures produced are 
strongly dependent on process parameters and 
conditions such as the beam power, scan 
speed, scan pattern, etc., and on geometry. 
 
It should be noted that the microstructures 
produced by AM can be better or worse than 
those produced by traditional processes. Part 
of the difference is due to the unpredictability of 
response to process parameters. But another 
important factor is that most alloys were 
designed for traditional processes, and we 
cannot expect them to respond in the same 
way when manufactured using AM. Most of the 
alloys we use today were invented years or 
decades ago. The best high-performance 
aluminum alloy for pistons was invented after 
World War II and hasn’t been improved upon 
for more than 70 years! We have to relearn 
how to innovate in metallurgy and 
manufacturing to be successful. Coupling an 
understanding of the fundamental materials 
science with prediction and control of the 

process dynamics through AI will allow us to 
design new materials and process 
characteristics to achieve desirable 
microstructures and properties (see Chapter 1, 
Chemistry, Materials, and Nanoscience). 
 
Along this line, a very important component to 
manufacturing is a full understanding of part 
tolerances and lifetimes. Folding this into the 
entire aforementioned design process is a 
major goal in the future. Parts are precisely 
designed to meet specific tolerances and are 
engineered to function perfectly over a 
specified lifetime. Failure to meet these 
specifications can often produce catastrophic 
consequences. For these reasons, many 
potential applications of AI in manufacturing will 
need to be explainable (or interpretable). Parts 
designed by AI for use in the automotive, 
aircraft, or medical device industry (among 
many others) will need to have a full cost 
accounting of how they met the design 
specifications and to what tolerances. 
 
Securely aggregate data across the 
manufacturing industry. A key challenge in 
maximizing our knowledge in the manufactur-
ing process, and doing it robustly, is the 
collection of vast quantities of data across 
many different systems. This is hindered by the 
fact that companies do not want to share this 
data for fear of losing their IP and subsequent 
competitive advantage in the field. A path 
toward solving this challenge can be found in 
federated learning. This is an ML technique 
where the goal is to train a high-quality, 
centralized model in which the training data 
remains distributed over a large number of 
clients. For every iteration during the learning, 
each client independently computes an update 
to the current model based on its own data and 
then pushes this update to a central server, 
where it is aggregated to compute a new 
globally optimized model [6]. Through secure, 
federated learning, it is now possible with 
several AI applications to train the models 
without exposing the underlying data, even 
when attacked by a variety of adversaries [7]. 
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Develop data and design tools for 
manufacturing in a circular economy. By 
2050, the world’s population will likely pass 10 
billion. As the Earth’s raw materials are not 
limitless, and global labor and the costs for 
these materials are on the rise, new solutions 
are needed to mitigate this emerging 
challenge. Circular economy business 
opportunities are one way manufacturing can 
grow and diversify under these pressures. In a 
circular economy, materials, and the resultant 
products, keep circulating in a high- value state 
of use, through supply chains, for as long as 
possible. The key challenge of transforming the 
current manufacturing ecosystem is providing 
design tools to develop products that are easy 
to remanufacture, recycle, or capture critical 
materials for reuse. Many locally sourced and 
sustainable materials are hard to integrate in 
product design and prototyping. The linear 
economy depends on mines and materials 
scale-up facilities across the globe for 
dependable supply. The challenging aspect of 
manufacturing for a circular economy is the 
ability to identify and optimize a supply chain 
using massive amounts of customer data on 
products currently in use, and incentivizing 
consumers to engage in the supply chain. New 
models need to be developed for tagging 
products nearing end-of-life and they need to 
use AI to optimize supply chain models to 
reduce fluctuations and disruptions. 
 
Transition to smart engineering of 
products, services, and operations. Finally, 
engineering functions across the value chain 
need to evolve to integrate AI to create better 
products as well as the next wave of products. 
There are four major tasks here: (1) AI to 
reduce cost and accelerate time-to-market; (2) 
AI for optimization under uncertainty and 
constraints; (3) AI for real-time control and 
steering, and (4) AI for cradle-to-grave system 
state awareness.  
 
The challenges here are large. From jet 
engines to consumer products, designers will 
need access to innovative tools and accessible 
computing services to partner with AI without a 

steep learning curve. The bootstrapping of 
industrial machines, with the ability to perform 
optimization under uncertainty and constraints, 
will require a range of new method 
development to respond to streaming data from 
machines and the fusion of complex datasets 
in real time. Here there is an additional need to 
provide robust safeguards such as physics 
constraints and strong cybersecurity. This can 
alter the trajectory of research in control 
systems for many domains where we need a 
cost-effective way to transform the legacy 
machines into smart machines. Ultimately, from 
large machines to connected products in the 
hands of consumers like smart phones, the 
cradle-to-grave awareness of the system state 
will create a new engineering ecosystem.  
 
The four cases described above have 
commonality in the need for the integration of 
datasets across different engineering functions 
in an ecosystem of smart machines and smart 
products. This will enable lower cost, energy-
efficient operations, and, ultimately, a 
sustainable products and consumption 
economy with responsible use of resources. 

3. Advances in the Next Decade 
Building an integrated software environment for 
manufacturing data and AI will provide 
researchers with the ability to merge data, ML 
models, computer vision, simulations, and 
knowledge to accelerate the state-of-the-art in 
manufacturing. Leadership from the national 
labs can improve the edge-to-exascale 
infrastructure needed to advance response 
time. For manufacturing, the ability to provide 
real-time quality control for products such as 
advanced batteries, complex parts, electronics, 
and sensors will be unique in the nation. 
 
The future of manufacturing is closely linked to 
advances in intelligent cyber-physical systems 
for bringing new ideas and custom products to 
market faster than ever before. In addition, 
enabling creative but market-conscious design 
where one includes constraints based on cost, 
quality, lifetime, aesthetics, manufacturability, 
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recyclability, and supply-chain logistics will be 
critical for gaining an edge in manufacturing. 
Given the sheer complexity of this system, an 
AI-driven design process is a natural solution 
for this optimizing problem. 
 
The response time and data needs can 
skyrocket if decisions are not made locally and 
models for the manufacturing process are not 
trained in smart ways. The need for software-
defined sensors and edge computing is 
paramount for making progress in improving AI 
models for a digital and custom manufacturing 
future. It will also be likely that a new 
generation of low-cost imaging and metrology 
will need to be developed. 
 
DOE recently launched the ReCell Center to 
capture critical materials such as cobalt from 
electric vehicle (EV) batteries. EV batteries that 
are 100% recyclable will be needed to meet the 
demand of a rapidly growing market, with few 
suppliers for critical materials for mobility. 
Application of similar concepts to consumer 
electronics can be transformational for design 
and reduction of e-waste and are estimated  
to unlock $90 billion economic value by  
2030 [8,9]. AI can be used to connect 
manufacturing processes to adjust to changes 
in supply, develop intelligent process 
optimization to increase efficiency, and allow 
continuous improvement of products for a 
circular economy. 

4. Accelerating Development 
The main bottleneck in a competitive labor 
market is to develop a fully functional model for 
integrating AI all across the design, engi-
neering, supply-chain management, resource 
planning, and manufacturing sectors. A good 
way to accelerate the transition is to allow 
development and testing of applications in a 
secured environment. The ideal framework will 
be to build pre-competitive tools and 
benchmarks for manufacturing with strong 
adherence to standards and safe keeping of 
proprietary data.  
 

More research in secure, federated learning 
will be needed to not only accelerate AI’s 
adoption by more users, but to know which AI 
methods can remain secure. A public-private 
partnership supporting the creation of such a 
hub for training and testing accessible AI tools 
will increase industry’s access to the expertise 
in the national labs and academia. This will 
allow industries in the U.S., struggling to take 
advantage of AI for improving business 
efficiency for engineering services and 
manufacturing, to leverage these new 
capabilities and know that their data is secure. 
Another major challenge for applying AI to 
manufacturing is that the data is both noisy and 
expensive to collect. We have to efficiently 
design experiments to collect the most valuable 
data, design high-quality characterization and 
sensing modalities to get clean, pedigreed 
data, and then properly label that data. In 
addition, there is significant need for curated, 
publicly accessible datasets—both experi-
mental and simulation. Efforts such as the 
NIST Additive Manufacturing Benchmark Test 
Series (AM-Bench) is a huge step in the right 
direction, but these efforts need more 
widespread support with an additional focus on 
community data formats. 
 
Finally, AM systems themselves need to be 
more open. APIs for the control systems should 
be available to researchers to explore more 
advanced, real-time analysis, feedback, and 
process control, all of which is necessary 
before AI can be effectively deployed on these 
systems. 
 
What must we do to accelerate 
development? 
 
a) Automate the entire learning pipeline: The 

goal is for the machines to be intelligent 
and learn the production process with full 
awareness of the intent of the designer  
and certification/qualification goals (see 
Chapter 9, AI for Computer Science). 
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b) Determine the best AI techniques for 
developing surrogate models for the 
manufacturing process. 

c) Combine sensor modalities and incorporate 
data from a fleet of machines instead of a 
single machine, as the data from a single 
machine is prone to variability and often 
provides poor statistics for creating  
an intelligent learning environment  
(see Chapter 10, AI Foundations and 
Open Problems). 

d) Develop an open framework with 
standardization data formats and plug-and-
play module capabilities, but designed  
with protection through secure,  
federated learning to make use of exact 
design specifications while maintaining 
proprietary knowledge. 

e) Provide access to curated datasets so that 
we can accelerate reinforcement learning 
across the manufacturing industry. 

f) Incorporate physics-informed AI to reduce 
simulation and data requirements in training 
(see Chapter 10, AI Foundations and 
Open Problems). 

 
What are the top priorities? 
 
• Couple current mod-sim efforts in 

manufacturing with a variety of AI-generated 
surrogate models to determine which are the 
most robust and least biased. 

• Determine which AI techniques are 
amenable to secure, federated learning. 

• Design experiments to determine which data 
is needed, and of what quality, in a few 
exemplar manufacturing processes to 
improve design optimization through AI. 

 
How do we improve scale? 
Several of the potential methods one might 
employ for the creation of surrogate models, for 
both design and optimization, will require a 
major scale-up effort. These simulations are 
already pushing toward the exascale level. 

Running hundreds or thousands of higher 
fidelity physics models to develop the 
appropriate training data, understand bounds, 
etc., will be a major challenge. Efforts to reduce 
this cost, or enable the transfer of trained 
models from one system setup to another, will 
likely be critical to the success of this effort. 
 
Equally important will be the confrontation of 
data, which is currently limited in nature, 
quality, and size, to these models to constrain 
parameter space and perform effective 
optimization. Major efforts need to be made in 
increasing data collection, determining which 
data needs to be collected, and improving the 
quality of the data, as well as designing the 
data formats to be optimized for AI training. 

5. Expected Outcomes 
The domains of engineering and manufacturing 
span a large portion of the U.S. Gross 
Domestic Product (GDP) and investment in 
R&D. While U.S. consumption is high, much of 
the manufacturing is currently done outside the 
U.S. The supremacy of products and the ability 
to compete in a global marketplace can be 
accelerated through technological leadership 
and dominance in AI in manufacturing. Use of 
AI will become the primary way in which future 
workforces can participate in a distributed 
manufacturing ecosystem where design, 
supply-chain management, prototyping, and 
production will be managed by people with 
diverse skill sets, and distributed 
geographically, but they will be connected by a 
digital manufacturing backbone with strong 
integration of training data, accessible 
knowledge, and AI-enabled tools. This will 
allow entrepreneurs and small businesses to 
successfully compete on the world stage. 
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08. Smart Energy Infrastructure 
Cities, local governments, and communities are 
trying to manage growth and build for 
resilience, while much of America’s aging 
energy infrastructure—the electrical grid 
and gas pipelines, as well as many buildings 
and transportation systems—needs to be 
repaired or replaced. 
 
Resilience is a primary concern for the energy 
infrastructure. It entails the ability to recover 
rapidly, with minimal interruptions and damage 
to infrastructure and consumers, when 
submitted to external stresses such as extreme 
weather, unexpected outages, or malicious 
attacks. Such problems dominated the news in 
the cases of Puerto Rico’s power system [1] 
being crippled by Hurricane Maria in 2017 (the 
largest blackout in U.S. history) and the 
destructive 2018 Camp Fire in California (the 
deadliest U.S. fire in the past 100 years), which 
was likely started by power lines built in the 
early 1900s. In 2003, the Northeast blackout [2] 
left 55 million people in the U.S. and Canada 
without power for up to 14 days. 
 
Reliable delivery of electricity requires an 
instantaneous and continuous balance 
between supply and demand at multiple scales 
[3]. However, a number of factors are adding 
increasing uncertainty to the situation, including 
intermittent renewable energy sources (e.g., 
solar, wind), more dynamic and unpredictable 
demand from buildings, increasing use of 
electric vehicles and evolving charging 
patterns, and deployment of decentralized 
power generation/storage facilities [4]. This 
poses a significant challenge for wide-area 
coordinated operation of the nation’s power 
grid. These challenges also stem from a lack of 
flexibility by traditional generation facilities, 
such as coal-fired and nuclear power plants, to 
accommodate rapid changes in the supply and 
demand balance. Moreover, impacts of long-
term climate change and short-term extreme 
weather on the energy infrastructure are 
intensifying [5]. As the grid continues to evolve 

at the edge, stationary electrical energy 
storage has played an important role in the 
U.S. electricity system. Energy storage 
solutions currently deployed in the grid, while 
developed to smooth out peaks or support 
intra-day shifts in energy consumption patterns, 
can also be used to integrate electricity from 
intermittent renewables. Additionally, urban 
planners have an increasing need for better 
tools to plan and improve their overburdened 
transportation infrastructure and co-optimize 
with electrical infrastructure operators to be 
ready for future demands, including connected, 
mixed autonomous, shared, and electrified 
vehicle fleets. 
 
A smart energy infrastructure that meets 
energy demands at multi-spatial and temporal 
scales and operates in an intelligent manner to 
achieve energy efficiency, flexibility, and 
resilience is needed to help local, state, and 
federal governments achieve their energy, 
economic, and environmental goals. Artificial 
intelligence can contribute to meeting 
these objectives. 

1. State of the Art 
Novel opportunities for AI in this area stem 
from the rapid deployment of connected 
devices in the energy infrastructure. Smart 
energy systems comprise interconnected 
systems of buildings, urban microclimates, 
vehicles, power and water supplies, and 
humans [6]. Urban-scale smart energy 
infrastructure research offers insights into 
efficiency, sustainability, and resilience, 
leveraging emerging opportunities in the 
Internet of Things (IoT), big data, machine 
learning, and exascale computing [7]. Modern 
infrastructure and technologies applied to 
urban systems include wide-area monitoring, 
distributed control, advanced communication 
systems, and varying levels of AI at the edge. 
IoT has become a critical part of the daily 
operation in smart buildings, mobility, and the 
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electric grid, with deployments happening at 
the city scale. On the transportation side, new 
data streams from infrastructure sensors and 
geospatial positioning devices paint a noisy, 
complex picture of the demands on the 
transportation system. As a result, large 
volumes of data are flowing into cities 
and communities. 
 
Technologies developed for the IoT and smart 
devices offer an unprecedented opportunity to 
observe and reliably operate the electrical 
power system through dynamic control of 
demand. IoT devices and technologies have 
effectively provided a “software interface” to 
energy generation, consumption, monitoring, 
and control assets that drive the electrical grid, 
enabling an unprecedented opportunity to 
federate a large number of heterogeneous 
devices for performing a decentralized, 
coordinated control toward a next-generation 
smart energy infrastructure. Similarly, 
distributed control of vehicles presents a huge 
challenge for cities, where currently multiple 
agencies operate independently with different 
views of the system and different objectives 
to optimize. 
 
To design control algorithms that fulfill this 
potential while accounting for the large 
numbers of small but now visible and possibly 
controllable loads, it is necessary to have 
scalable, data-driven models and 
understanding that represent the primary 
elements of generation and transmission, 
distribution, and the interaction with the primary 
features of smart buildings. Despite these 
opportunities, and particularly the data deluge 
from these devices, AI has been used in a 
limited way when it comes to energy 
infrastructure. Typically, various ML techniques 
were applied to individual buildings or their 
energy systems, such as virtual sensing (e.g., 
data-driven models to estimate operational 
parameters), prediction of thermal and 
electrical loads, modeling of building energy 
systems and human-building interactions, 
detection and diagnosis system operational 
faults, optimization of control systems, and 

analyzing human mobility patterns. These 
efforts are limited to the size and quality of 
available data, certain energy end uses or 
single buildings, and single or simplified 
objective functions. For example, the CityBES 
[8] tool developed by DOE researchers allows 
for energy-saving retrofit analysis of hundreds 
of buildings in a model that considers how the 
buildings interact (Figure 8.1) [9]. Further, 
evaluating the impacts of climate change, 
extreme weather, changing energy usage 
patterns in buildings, and interactions  
of transportation and electrical grid are 
still missing. 
 
Traditionally, resilience (and, consequently, 
reliability over longer time scales) has been 
assured by capital- and staffing-intensive 
activity and massive, repeated offline and 
online analyses both before and after a major 
event has occurred. The key “before event” 
system metrics that can prevent or reduce the 
severity of an event’s impact have been safety 
margins, redundancy-by-design capacity 
(including spare generation and infrastructure), 
and intense overall situational awareness that 
includes multiple layers of sensors, external 
data streams (such as weather forecasts), and 
state/load estimators. The “after event” metrics 
have been mostly qualitative indicators of 
readiness of the local utilities that may be 
involved in restoration, such as how many 
training exercises they have participated in and 
of what type. Since existing data of major event 
outcomes are exceedingly rare, most of the 
before-event key metric evaluations and 
selection are done by means of synthetic data 
generated by simulation with standard physics 
and are optimization-based (to emulate the 
financially driven decision process that takes 
place outside emergency situations). For 
system state/load estimation, the models are 
very crude, typically classical time series 
models with very simple and often inaccurate 
models that include a large amount of 
coarsening and aggregation. The after-event 
readiness factors are done mostly in an expert-
estimated-mode rather than in any form of 
predictive fashion. 
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2. Major (Grand) Challenges 
The overarching challenge of the energy sector 
is providing safe, secure, cost-effective, and 
clean energy. In the presence of the rapid 
change drivers of increased variability of 
supply, reduced inertia, and significantly 
increased end-user complexity, this requires 
vastly superior situational awareness and novel 
tools for rapidly estimating and optimizing the 
system resilience. Moreover, the multi-
stakeholder nature of the energy infrastructure 
operation, combined with the enormous 
representation complexity (in the context of 
distributed urban assets) requires the develop-
ment of scalable virtualized computational 
energy infrastructure models (commonly 
referred to as digital twins) of multiple 
interdependent energy and consumption 
infrastructures. These models can serve as 
support for defining the stakeholder interfaces, 
help promote optimal usage policies, and 
enable exploration of scenarios for optimized 
energy operation and sustainable planning. 
 
Three key grand challenges have emerged for 
application AI in improving the resilience of the 
next-generation energy infrastructure as data 
becomes more pervasive. These grand 
challenges are: 

 
Wide-area situational awareness to enable 
energy resilience. Maintaining and increasing 
the resilience levels in the presence of 
increased variability of supply, reduced inertia, 
and novel edge-network structure (such as 
increased use of microgrids that present the 
opportunity of increasingly independent 
operation, but also the challenge of 
coordination) require much better 
understanding and prediction of system 
variability and state. This will enable predictive 
capabilities of after-event states and sharper 
awareness during the restoration process. 
Smart energy infrastructure has the potential to 
leverage a variety of disparate data sources 
with varying spatial and temporal resolution to 
enable AI-driven real-time intelligence for 
optimal situational awareness. In particular, AI 
can: a) perform information fusion from 
disparate data sources coupled with an 
integrated model of the energy infrastructure at 
a time scale pertinent to enabling proactive 
responses to improve resilience, b) enable 
predictive models for exploring smart energy 
and transportation infrastructure design, and c) 
detect and diagnose cyber and physical attacks 
and threats in real time to ensure security of 
the energy infrastructure. 
 

 
Figure 8.1 Screenshot from CityBES, a city building energy modeling and analysis tool that considers how the buildings interact 
and allows for large-scale energy retrofit analysis. 
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Reliable integration of renewable energy 
into existing infrastructure using distrib-
uted optimal control to balance supply and 
demand. Achieving energy reliability while on 
the path to clean, sustainable, secure, and 
affordable energy sources requires high-
resolution (spatial and temporal), wide-area 
distributed control and optimization to balance 
supply and generation. Simulation and 
modeling, integrated with AI, provides guidance 
for wide-area control design. The mechanisms, 
reliability, and robustness required to deploy 
control actions for a real-world demonstration 
will have to be deeply vetted with stakeholders 
that have operational roles in this sector. A 
particularly important direction at the 
intersection of the situational awareness and 
wide-area control is one of advanced, very high 
resolution modeling that can represent their 
switched dynamics without drastic 
simplification of the generation, delivery, and 
consumption models. Here AI can offer novel 
techniques, including surrogate models, 
closure models, and learning-driven compute 
acceleration of high-fidelity models and solvers. 
This research will build on current DOE 
programs, such as the Grid Modernization 
Initiative, as well as the Building Technologies 
Office’s research to develop grid interactive 
efficient building technologies [10], and the 
Vehicle Technologies Office’s Energy Efficient 
Mobility Systems [11] for affordable and 
safe mobility. 
 
Fully virtualized urban-scale infrastructure 
to co-optimize urban mobility and energy 
end-use. Creating digital replicas of urban 
mobility infrastructure over a geographic area 
that is coupled with energy infrastructures 
allows us to understand, predict, and co-
optimize efficiency of energy and mobility 
infrastructure. A geospatial visualization of 
deployed sensors feeding in real-time data, as 
well as mobile sensors that capture trajectories 
of vehicles and humans, enables the creation 
of a capability to anticipate future system state 
and evaluate the impact of control decisions 
faster than real time. Data sources include 
signals, sensors, safety information systems 

(911 and 511), and modern probe data traffic 
feed from third parties. Starting with the 
detection of threats/disruptions, the next 
frontier is to anticipate and mitigate the adverse 
effects faster than real time of future system 
states. AI provides solutions to urban-scale 
challenges, including real-time model training, 
focus on rare event prediction performance, the 
multi-stakeholder nature of the data access, 
and decision rules and procedures that are 
affected by the complexity of the “what-ifs” that 
are combinatorial and partially graph-indexed 
in nature.Opportunities for integration exist  
at multiple scales, from the drivetrain to 
vehicle-to-vehicle and vehicle-to-infrastructure 
exchanges at city and regional scales. A 
feedback loop from the real world back into the 
digital replica allows for a level of automated 
response to perturbations in the network.  
This requires a deep understanding of how 
technological disruptions affect human 
decisions and, in turn, alter demands 
on mobility. 
 
Developing digital twins of urban systems is a 
means to address these challenges and 
provides insights or solutions using AI 
methods in: 
 
1. Understanding and quantifying the inter-

dependencies between buildings, urban 
climate, transportation, and the grid at 
multi-spatial (from city block to district to 
neighborhood to a city to a region) and 
temporal (from minute to hour to day to 
month to year to decade) scales under 
typical or extreme/disrupted situations. 

2. Developing strategic pathways to address 
grid needs beyond the daily cycling and 
provide backup power for several days that 
could enhance resiliency by integration of 
long-duration distributed energy storage 
systems coupled with renewables.  

3. Creating smart operations and controls to 
integrate buildings and transportation to 
harmonize with the smart grid for maximal 
productivity, energy efficiency, demand 
flexibility, and resilience. 
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4. Predicting urban systems’ dynamic 
evolution under extreme weather events 
and understanding how the urban 
landscape interacts with the microclimate. 

5. Detecting patterns of human mobility and 
charging needs of future autonomous EV. 

6. Informing sustainable and resilient urban 
planning and policymaking, considering 
long-term population and economic growth 
as well as climate change and extreme 
weather events. 

3. Advances in the Next Decade 
More data (static and dynamic, measured and 
simulated, physical and human) at the scales 
of peta- to exabytes from diverse sources will 
become available and will be integrated into 
open and interoperable platforms to power the 
digital twins of smart energy infrastructure. 
Hardware for edge computing enables 
migrating the low-level “twin” to the edge for 
better responsiveness and uninterrupted 
operations at local devices, which feed 
information for a higher-level “twin” that 
implements predictive analytics more 
efficiently. Federated instrumentation can 
enable novel softwarization of energy devices 
to enable scalable information fusion and 
decentralized control of assets in a reliable 
fashion. Supercomputing empowered with AI 
engines will model and simulate smart energy 
and transportation infrastructure systems as a 
cyber-physical and natural-human combined 
system capturing realistic behaviors within the 
digital twin. Real-time 3D GIS-integrated 
visualization, coupled with virtual reality and 
augmented reality in the digital twin, reveals 
real-time performance of urban systems and 
pinpoints hotspots (e.g., energy, heat, air 
pollution, traffic, population, wind). Using it to 
create a virtual replica of reality would help in 
building future cities to meet challenges such 
as extreme weather events and housing and 
transport needs. 
 
Techniques and knowledge can transfer ML 
results from data-rich environments to data-

poor environments. Each city will have a digital 
twin that evolves with time, more data, 
computing power, ML algorithms, and changing 
environmental and human needs. However, to 
realize this vision, it is necessary to develop 
engineering tools, and particularly simulation 
models and data analytics, that can be used to 
understand the effects of any particular control 
strategy and operating circumstance on the 
now-coupled, parameters of consumption, 
generation, and power delivery performance. 
To enable situational awareness and solve 
resilience-oriented challenges, AI will enable a 
new paradigm of emerging technology with 
capabilities to: 
 
• Expand co-simulation tools to include 

generation, transmission, communication, 
and increasingly accurate description of the 
distribution and behind-the-meter areas for 
enabling fine-grained understanding of 
system behavior. 

• Deliver increased levels of flexibility and 
control at the lower levels of the system 
hierarchy, such as the introduction and 
coupling of microgrids and smart energy 
management systems with the ability of 
islanding in the presence of rapidly evolving 
threats, e.g., fires (see Chapter 15, AI at 
the Edge). 

• Leverage data from rapidly expanding 
networks of sensors, such as advanced 
meters, phasor measurement units (PMUs), 
F-NET, and other sensing and actuation 
technologies, to revolutionize monitoring and 
control of power grid (see Chapter 12, Data 
Life Cycle and Infrastructure). 

• Generate HPC-powered simulators of multi-
mode mobility of mixed autonomous, 
electrified vehicles and their interaction with 
the power grid. 

• Integrate multi-physics data sources, with a 
particular focus on weather measurements 
and higher resolution weather forecasts  
(see Chapter 2, Earth and Environmental 
Sciences). 

https://en.wikipedia.org/wiki/Predictive_analytics
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4. Accelerating Development 
The promise of AI addressing these critical 
challenges can be vastly improved by both 
institutional and technical accelerated 
pathways. 
 
Institutional acceleration. This domain 
features large-scale energy infrastructure and 
complex systems that will require researchers 
to establish partnerships with cities, local 
governments, electric utilities, industry, and 
others to develop research testbeds based 
around public and private partnerships. The 
emerging AI technology needs to demonstrate 
that it can provide a new understanding of 
energy infrastructure and provide actionable 
information for energy system planning, design, 
and operations. Current demonstrations in this 
area tend to focus on buildings, transportation, 
or smart grid technology, individually. 
Integrating all three of these domains is difficult 
and will require multi-disciplinary teams. 
 
Piloting fully virtualized, data-driven, computa-
tional digital twins of cities is needed to test 
and validate new technologies and the energy 
performance of integrated urban systems (see 
Chapter 15, AI at the Edge). The initial scale 
could be a city block, then expanding to a 
district and later to a small city. 
 
One early task would be to evaluate the 
availability of existing data, data gaps, new 
sensing and measurement needs, the current 
state of the art in regional demonstrations, and 
lessons learned in recent research. It is 
necessary to determine how AI can and should 
be coupled with current and future high 
performance computing simulation capabilities 
(see Chapter 10, AI Foundations and Open 
Problems). Examples of the resulting enhanced 
capabilities are providing more realistic models 
of complex agent or system behavior inside the 
models (inner loop) or discovering more 
optimal control strategies (outer loop) for the 
system through simulation. In the long run, the 
research community, in collaboration with 

stakeholders, needs to demonstrate that it has 
a vision for how this research can shape the 
understanding of technology needs, 
capabilities, priorities, integration opportunities 
and control, energy performance, and 
economic value. 
 
This research initiative should provide 
actionable intelligence to the energy industry to 
identify gaps in observability to enable 
deployment of key data sources, platforms for 
real-time situational awareness and 
understanding, and novel decentralized control 
of energy assets in real time. 
 
Technical acceleration. Improved situational 
awareness across multiple interdependent 
energy infrastructure requires increased 
accuracy and resolution of external and derived 
data streams (heat, mass, urban structures and 
surfaces, vegetation, weather, and traffic flow). 
Novel AI algorithms are needed to perform 
information fusion from disparate data sources 
coupled with integrated models of the energy 
infrastructure at a time scale pertinent to 
enable proactive responses to improve system-
wide resilience (see Chapter 10, AI 
Foundations and Open Problems). The 
availability of data imposes an increased focus 
on deployable online learning algorithms, 
particularly for the restoration process where 
new data can be extremely informative, to 
enable multi-scale simulation with AI for model 
discovery. This domain requires developing 
novel cooperative AI methods that can support 
real-time, multi-stakeholder, multi-scale 
decision-making for the national energy 
infrastructure. Key technological improvements 
are needed, with increased focus on human-
infrastructure interaction characterization and 
prediction for transforming largely reactive 
approaches in use today into proactive resilient 
operation of the future. Particular emphasis 
needs to be placed on a sharp characterization 
of the performance of AI tools for the rare event 
portion of the prediction space, as seen in 
recent major natural disasters. This requires 
development and usage of surrogate models 
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and understanding emergent behaviors of 
interacting AI agents that capture the multi-
physics of urban systems and can learn from 
the combination of measured data and physics- 
or model-based simulation data for rapid 
prediction. Real-time forecasting techniques 
have to be developed by leveraging urban 
sensing and monitoring (e.g., building energy 
use and system operation, traffic flow) to 
predict operational issues (e.g., traffic, power 
demand) and inform preventive actions. Key 
AI-driven optimization methods that are 
applicable for control deployment to operate in 
real time with deep reinforcement learning 
have to be developed to achieve optimal 
performance of the complex urban systems 
delivering multiple objectives (efficiency, 
flexibility, and resilience) under uncertain real-
world conditions. 

5. Expected Outcomes 
AI will enable the development of high-
resolution situational awareness and resilience-
focused control of smart energy infrastructure 
by combining diverse data sources and 
creating novel models and synthetic datasets 
spanning multidisciplinary sciences (building 
science, urban science, mobility science, 
sensing and communication, data science, AI, 
computing science, behavioral/decision 
science). The models and datasets will deliver 
data-driven decision support to address grand 
challenges of urban energy and environment, 
considering interconnected systems of 
buildings, climate, transportation, smart grid, 
and humans. They will also support real-time 
operations and optimization of integrated urban 
systems by means of computationally efficient 
optimization through intelligent interacting AI 
agents. The fully virtualized data-driven models 
of smart energy infrastructure will enable 
stakeholders, decision makers, and citizens to 
benefit from efficient, flexible, and resilient 
operations under normal, stressed, and 
extreme conditions. We believe that AI can 
improve the resilience significantly—possibly 
by an order of magnitude compared to a 
business-as-usual approach. 
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09. AI for Computer Science 
Artificial intelligence methods were originally 
developed to solve one of the grand challenges 
in computer science, namely the design of 
computer systems that could behave like 
humans. The most recent breakthroughs in AI 
use machine learning to address specific 
problems in computer vision, natural language 
processing, and robotics, and to outperform 
human players in games of strategy like chess 
and Go. AI has the potential to address a 
variety of computer science challenges where 
complex manual processes could be replaced 
by automation, including chip design, software 
development, and online monitoring, and 
decision making in operating and runtime 
systems, database management, and 
infrastructure management. 

The DOE Office of Science Advanced Scientific 
Computing Research (ASCR) program drives 
innovations and improvements in scientific 
understanding through its world-class research 
program and facilities—both computing and 
networking. The innovations in science user 
facilities (see Chapter 14, AI for Imaging) are 
expanding the boundaries of computing to 
include the edge (see Chapter 15, AI at the 
Edge), consisting of science instruments and 
sensor networks (see Chapter 16, Facilities 
Integration and AI Ecosystem). Traditional 
computer science will not be sufficient to 
address the complexity and scale of future 
systems and workloads arising in the DOE 
science mission described in Chapters 1 
through 8. AI will provide solutions to the 
design, development, deployment, operation, 
and optimization of all hardware (see Chapter 
13, Hardware Architectures) and software 
components (see Chapter 11, Software 
Environments and Software Research), 
ranging from individual elements to coordinated 
orchestration of the workflows over computing, 
networking, and experimental facilities. 
 
In this chapter, we identify the grand 
challenges in computer science that can be 

addressed by AI. Specifically, we identify grand 
challenges in the areas of hardware and 
software system design, programming, 
theoretical computer science, and workflow 
and infrastructure automation. We do not 
address computer science solutions to support 
AI, which is covered in other chapters (see 
Chapters 11–13).  

1. State of the Art 
AI has the potential to transform many fields of 
computer science, from low-level hardware 
design to high-level programming and from the 
most fundamental algorithmic challenges to 
day-to-day operation of user facilities.  
 
Hardware and software design. The design 
of next-generation hardware and software 
systems and mapping of application codes to 
target systems is currently a static process that 
involves human-in-the-loop design processes 
and consists of repeated experiments, 
modeling, and design space exploration. The 
design of new chips and HPC systems takes 
many years, and hardware vendors and 
application developers spend months mapping, 
porting, and tuning applications to run on new 
systems. As hardware and software get more 
complex and heterogeneous, current strategies 
will be impractical. DOE has been a leader in 
the co-design of HPC systems for science, but 
many hardware features are still driven by 
technology constraints and can be a challenge 
for programmers (see Chapter 11, Software 
Environments and Software Research). The 
DOE community has also spearheaded the use 
of automatic performance tuning (autotuning) 
using both brute force search and 
mathematical optimization [5–8]. In recent 
years, AI has been explored for the design of 
chips [1], storage management [2], hardware 
[3], optimizing compilers [6,7], and to improve 
the performance of single-node computation 
[5,8], communication, I/O [9,10], math libraries 
[15], and scheduling [11]. However, the payoffs 
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from AI-driven hardware and software co-
design are far from complete and will require 
rapid and non-intrusive data collection, 
exploration and development of methods, and 
sharing of learned models. 
 
Application development and data 
wrangling. Development, tuning, maintenance, 
and testing of software and making data ready 
for models and methods are manual, 
expensive, tedious, and error- prone processes 
(see Chapter 11, Software Environments and 
Software Research and Chapter 12, Data Life 
Cycle and Infrastructure). Existing techniques 
for developing software were mostly designed 
for logic-heavy control flow programs that run 
on a single machine with homogenous 
hardware. However, the future of software 
demands data-driven, distributed programs that 
run efficiently on heterogeneous hardware. 
Recent work in program synthesis and 
automated testing has produced tools that  
work independently to generate and test 
software or as powerful aids for human  
developers (Figure 9.1). 
 
Automated program synthesis produces 
software solutions based on either input/output 
examples, demonstrations, or high-level 
specifications, producing software from 

equations, code written in a domain-specific 
language, or a simple unoptimized version of a 
program [4,12,14]. Programmers employ 
various approaches to tackle complex coding 
tasks, including Google search and online 
communities, and use integrated development 
environments that help them to autocomplete 
code, which can be partially automated with 
natural language code search [19] and code 
recommendation [18]. Smart fuzzing 
techniques, which use random or invalid input 
to test a computer program, have shown 
promising results in helping to find semantic 
bugs in large software systems. Programming 
by optimization [16] is a design paradigm that 
allows software developers to specify a rich 
and potentially large design space of software 
components that can be used by AI to generate 
programs that perform well in a given context. 
 
Data wrangling today is largely a human-
intensive task, and AI offers unique 
opportunities to automate or simplify the task. 
For example, ActiveClean [22] provides a set of 
optimizations to select the best data to be 
cleaned for an iterative cleaning framework. 
 
Computer science foundations of AI. AI 
methods have been increasingly applied to 
solve complex science problems using codes 

 
Figure 9.1 AutoPandas uses neural-backed operators in program generators for 
program synthesis [4]. 
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with provable performance and correctness 
properties. It has been shown that certain 
smoothness and boundedness properties of 
physical and abstract system laws can be 
exploited to develop domain-specific, effective 
ML solutions with many desirable properties 
(see Chapter 10, AI Foundations and Open 
Problems). For example, they lead to 
performance optimization of data transport 
infrastructures [13] and accurate power-level 
estimation of reactors [28]. Principles of 
theoretical computer science provide a rigorous 
framework to establish critical properties of 
AI/ML codes, namely computability, 
learnability, explainability and provability, as 
illustrated in Figure 9.2. 
 
There are several known performance limits of 
ML methods, and many practical problems 
have shown to be within them. Indeed, several 
critical problems—such as zero-day computer 
virus detection [26] or assessment of code 
resilience to arbitrary hardware faults [24]—are 
non-Turing computable and hence not solvable 
by black-box ML methods. In some cases, the 
complexity of the tasks could be too great—
such as the unbounded Vapnik-Chevenenkis 
dimension [25]—so that no performance 
guarantees can be given for any ML solution, 
independent of the sophistication of its design 
or use of a supercomputer. It appears on the 
surface that limitations of “black-box” ML 
solutions can be overcome by requiring that 

they be explainable, but Tarski’s limit prevents 
a machine from generating explanations in 
some cases even if they exist [23]. More recent 
results show that learnability may be 
undecidable [29], and similar results are 
expected to appear in the future that establish 
limits of ML and its performances. 
Complementing more general considerations in 
Chapter 10, the theoretical computer science 
provides the frameworks and tools to establish 
that a given problem indeed is effectively 
solvable by AI/ML methods and is not subject 
to the above limits. 
 
Workflow and infrastructure management. 
Managing distributed infrastructure that spans 
multiple systems, domains, and organizations 
is largely achieved today by manual or ad-hoc 
methods for configuration, monitoring, and 
optimization (see Chapter 14, AI for Imaging 
and Chapter 16, Facilities Integration and AI 
Ecosystem). Challenges exist at multiple 
levels, from assuring the safe and secure 
operation of networks and systems to efficient 
resource allocation to users and optimal use of 
the distributed systems for complex scientific 
workflows. Neither individual users nor system 
operators have the global view or integrated 
control mechanisms needed to make efficient 
use of a multi-purpose, multi-facility 
infrastructure. AI provides the automation that 
can ease the burden of human-driven 
management of infrastructure at facilities.  

 
Figure 9.2 Computable, learnable, explainable, and provable AI/ML solutions. 
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Current efforts are exploring the use of 
reinforcement learning, unsupervised learning, 
and classification techniques to optimally 
control wide area network resources 
(Figure 9.3) to improve high-speed big data 
transfers and analyze the performance 
variation of applications on supercomputers to 
correlate with key users and workloads and 
leverage software-defined networking and 
related services exported in high-level 
programming interfaces, incorporating them 
into complex workflows [13]. The future will be 
automated, policy-driven management of 
distributed resources by both individual 
applications and complex-wide workflows. 

2. Major (Grand) Challenges 
We identify three grand challenges in the  
areas of hardware and software system  
design, programming, workflow and infra-
structure management, and foundational 
computer science. The grand challenges 
together attempt to optimize productivity, 
performance, reliability, and portability across 
the DOE complex. 
 
Develop hardware/software systems that 
are semi-automatically co-designed and co-
tuned. In recent years, heterogeneous 
hardware and software infrastructures have 
been deployed at DOE high performance 

computing facilities. Additionally, a number of 
different accelerators are emerging in the 
community, including neuromorphic and 
quantum computers (also see Chapter 11, 
Software Environments and Software 
Research). However, the cost and time 
required for the design of current HPC 
hardware and software is still prohibitive. AI 
can influence the co-design of hardware and 
software systems at many levels to meet 
energy, security, resilience, and performance 
requirements. For example, at the transistor 
level, it can find an optimal set of device 
parameters given a set of operating 
constraints; at the chip level it can optimize 
placement of logic blocks and configure 
architectural-level features such as the number 
of floating-point units. AI can be used at 
runtime to monitor hardware characteristics 
such as thermal densities to anticipate faults 
that deliver incorrect results or disable parts of 
chips. It can also be used in compilers, 
programming libraries, and applications to 
automatically generate and search through 
various implementations to find one optimized 
for a given hardware platform, and even adapt 
dynamically to changing performance 
characteristics at runtime. For example, AI 
could identify common parallelization of 
memory optimization strategies and transfer 
them across applications. 
 

 
Figure 9.3 The performance of data transfer infrastructure depends on all its subsystems, namely, networks, transfer hosts, file and 
I/O systems, storage systems, and data transfer. Custom ML methods have been developed to estimate throughput profiles [13]. 
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AI methods can be leveraged in operating 
systems and runtime systems. They can 
monitor applications running on large-scale 
HPC systems and learn a model of application 
performance. These models can provide 
feedback on how to best manually or 
automatically adapt the application for better 
performance. AI-based performance modeling 
can capture data flow and dynamic 
performance behaviors of parallel applications 
under various constraints; model-based 
analysis will extract concurrency, examine the 
tradeoffs among different performance factors, 
and make predictions about different 
applications on future systems. Model-based 
optimization will allow users to optimize the 
performance of applications based on target 
objectives. In addition, AI methods can be 
applied to assist model construction, facilitate 
performance analysis, accelerate optimization, 
and provide software verification. 
 
Enable automated tools for programming 
and data wrangling suited for modeling and 
data-driven science needs. Automated and 
computer-aided programming tools will be 
developed by using AI-driven program 
synthesis and code recommendation, software 
adaptation, software testing and verification, 
and code optimization. This will dramatically 
reduce or eliminate programming efforts for 
high-level applications on heterogeneous 
architectures and will support a new generation 
of programmers for data analysis and learning, 
demonstrating that HPC novices can 
accomplish tasks in a tenth of the time that 
experts spend with traditional tools, produce 
programs that are 10 times faster than expert-
written programs, and increase automated test 
coverage to 95% or more. 
 
In the future, programmers will perform 
complex programming tasks by expressing 
their intents via high-level domain-specific 
languages, input-output examples, 
demonstrations, natural language descriptions, 
and formal specifications. Program synthe-
sizers will then take such intents and search 
combinatorically large spaces of possible 

candidate programs. AI-driven program 
synthesis will learn heuristics by extracting 
probability distribution of programs from real-
world corpus of programs and by remembering 
search strategies that worked well in the past. 
AI-driven code recommendation, such as auto 
code completion, will help find the right libraries 
and APIs and synthesize or recommend new 
code using these libraries and APIs. 
Additionally, automated techniques will extract 
intents from user inputs and adapt them to 
different environments. Automated testing 
based on smart fuzzing code perturbations and 
dynamic symbolic execution will allow 
developers to efficiently test code.  
 
Enable automated and efficient execution of 
end-to-end scientific workflows processing 
experimental, observational, and simulation 
data on adaptive and resilient 
infrastructure. We envision a future in which a 
researcher at a user facility would be able to 
launch his or her experiment and seamlessly 
access the network and resources in real time 
at HPC facilities to process data, compare with 
simulation results, search other relevant data, 
and reproduce the workflow. Future novel 
workflows may include AI elements combined 
with simulation and experimental science.  
 
A recent ASCR workshop report lays out the 
challenges and approaches for using ML to 
develop distributed, fault-tolerant, energy-
efficient HPC applications [17]. An AI-driven 
autonomous workflow engine will use user 
input and prior learned knowledge of the 
system to generate optimized code, use the 
workflow through intelligent schedulers that use 
AI in addition to policies, and monitor the 
execution. AI can guide scientists in designing 
and optimizing their workflows in ways that are 
not possible today. These workflows will run 
atop a fully automated infrastructure in which 
AI will design, develop, deploy, monitor, 
diagnose, operate, and optimize computing 
elements, units, systems, complexes, 
networks, databases, and federations. The end 
user at the user facility and the facility staff at 
ASCR facilities will be notified of situations that 
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require visualization or, more generally, 
humans in the loop. The autonomous workflow 
and all data associated with it will also be 
captured and made available to be published in 
machine-readable journals. AI provides a 
unique opportunity to automate the 
management of the underlying infrastructure 
and the scientific process to accelerate the 
pace of scientific discoveries. 
 
Develop computable, provable, explainable, 
performance-guaranteed and yet practical 
AI solutions for science. AI/ML methods that 
exploit the properties and structure of 
underlying system and abstract laws lead to 
customized solutions that are computable, 
explainable, and possess proven generaliza-
tion and correctness. In particular for science 
problems, such solutions range from inferring 
new inter-relationships, efficient polynomial 
approximations to NP-hard problems, 
discovering new laws from measurements and 
simulations, and obtaining optimizing 
parameters over complex spaces. There is an 
immediate need for foundational frameworks 
and tools that enable us to assert the critical 
properties of AI/ML solutions by combining the 
rigorous theories of computing, learnability, 
expressability, inference, and provability, which 
have been developed as highly specialized 
individual technical areas. They have to be 
refined, sharpened, and combined to address 
the spectrum of science areas consisting of 
interacting physical and cyber systems, such 
as simulation-driven experiments, experiment-
steered computations, and optimal design and 
operation of smart grids and federations of 
computing systems and experimental facilities. 
The underlying laws here are hybrid in 
encompassing both systems, physical and 
cyber. Establishing that the solution is indeed 
within ML foundational limits, and exploiting the 
properties of underlying systems across the 
myriad of DOE computational tasks, are 
challenges considering the diversity of science 
areas in which ML methods are being applied. 

3. Advances in the Next Decade 
In the short term, AI can be an invaluable tool 
for analyzing observational data in computing 
systems, applications, facilities, and networks. 
Over the next decade, AI techniques will detect 
and anticipate performance anomalies due to 
hardware failures, resource overload, intrusion, 
or other interactions. It will accelerate the 
design of hardware and software through 
intelligent design space exploration and 
improve the automated tuning of high-
performance libraries and applications. Longer 
term, the analysis will be used for online 
learning and real-time control of increasingly 
sophisticated application workflows that 
cohesively tie together the facilities and other 
resources across DOE and the broader 
science complex. 
 
The grand challenges rely on innovations at 
different spatial scales, including the node, 
machine, and facility level. At the node level, 
the impact of various hardware and software 
knobs will produce learned multi-metric 
performance models for runtime, power, 
energy, memory footprint, and more. At the 
machine level, AI will learn models of 
communication, load balancing, and I/O and try 
to understand the impact of resource sharing 
across applications. Facility-level models will 
capture resource utilization, power constraints, 
user satisfaction, and time-to-solution to 
optimize job scheduling, staging phases of the 
application, and file transfers. Model-informed 
decisions will be made at every level with 
multiple coordinated feedback loops. In 
particular, the coordination will happen both 
bottom up (node to facility) and top down 
(facility to node). 
 
Reliance on ML in DOE science and energy 
applications, user facilities, and cyber-physical 
systems means there is a new part of the 
system that can be attacked, such as via 
tainted training data, false sensor data, and 
fragile AI algorithms. Any use of AI, particularly 
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AI-automated processes, is vulnerable to such 
attacks. Consequently, detecting tainted 
training data and false sensor data, and 
measuring confidence of AI algorithms in their 
output become critical as these AI-enabled 
systems are deployed. While the existing 
methods are primarily ad hoc and heuristic in 
nature, recent methods include the develop-
ment of AI-based cybersecurity methods. For 
example, adversarial training [20] is an 
approach that injects adversarial examples into 
training data to increase robustness of ML 
models. For the Cybersecurity of Cyber-
Physical Systems and DOE facilities, the 
conventional methods have become 
inadequate (for example, zero day threats), 
and new AI-based cybersecurity mechanisms 
are under active development [21].  

4. Accelerating Development 
Many ongoing efforts are using AI to address 
challenges in computer science. However, 
strategic investments and coordinated efforts at 
both technical and programmatic levels will be 
needed to realize the vision outlined in these 
grand challenges. 
 
Access to curated data from many different 
levels of hardware and software is key. Data 
analogous to ImageNet is needed to feed AI for 
computer science. This is beyond the capacity 
of the individual researcher and must capture 
various design aspects of hardware, software, 
programming, workflow, and infrastructure. 
There are a number of challenges to collecting 
this data, including applicability (i.e., using data 
from an old system for a new system might not 
result in meaningful predictions), and 
accessibility (i.e., data needs to be extracted 
and available in formats that are meaningful to 
the models). ASCR facilities already have 
organized efforts to make available more data 
and will pave the way for more autonomous 
infrastructure. AI for programming today can 
benefit from websites such as GitHub and 
Stack Overflow that offer massive amounts of 
data and metadata about programs. Efforts will 
be needed to identify data and software 

repositories that are specifically applicable for 
the scientific community.  
 
We need to develop open-source scalable 
modeling and simulation for the entire 
infrastructure to test AI algorithms. We need 
methods and algorithms that can operate at 
different scales; for instruction scheduling to 
pointer chasing, we need lightweight, low-
latency ML methods, but for system co-design 
we need ML methods that can scale to full 
exa/zetta scales to explore the vast design 
space parameters. Additionally, AI will need 
appropriate infrastructure. Cloud computing 
platforms have been a cornerstone for scaling 
ML/DL and AI methods in industry. Similarly, 
the use of HPC and other platforms to support 
AI workloads will be critical (see Chapter 13, 
Hardware Architectures). 
 
Enabling autonomous workflows on 
autonomous infrastructure will take years of 
sustained efforts across experimental, 
computing, and networking facilities. The 
realization of this vision will require a fast, 
dynamic, optimized, distributed software-
defined ecosystem, critical measurement 
streams, and powerful analytics that can 
extract information to drive allocations, 
diagnosis, and broad strategies and policies. 
Initial efforts can focus on automated, adaptive 
collection of instrumented data from many 
devices and at multiple levels as well as AI-
driven integration into dynamic composite 
state. Automating parts of the workflow (e.g., 
resource allocation) based on historical data 
will enable us to lay the foundation for 
autonomous workflows. Additionally, sustained 
performance optimization using trend 
detection, strategy adaptation, continuous 
performance monitoring, predictive diagnosis, 
and graceful task reallocation and migration 
using AI methods will provide starting points for 
this work. 
 
Programmatically, we suggest a number of 
efforts to realize the grand challenges. A 
hardware-software co-design effort that 
includes researchers, industry partners, and 

https://github.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
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the computer facilities will be needed to 
achieve the grand challenge of developing self-
improving and self-adaptive hardware-software 
systems that can be designed and operated 
without significant human involvement. Teams 
of computer science researchers working 
closely with experimental, computational, and 
networking facilities to develop autonomous 
workflows on autonomous infrastructure will 
be needed.  
 
The foundational computer science challenge 
will require a comprehensive AI/ML science 
program (across math and computing science) 
to develop and refine foundational limits and 
solvable problems and to sharpen the solutions 
for solvable classes to ensure effective 
computation, performance guarantees and 
explanations. The program would benefit from 
a SciDAC-style consortium for domain 
scientists working closely with ML scientists to 
act as a DOE-wide, central resource to be used 
to analyze the ML problems, establish their 
solvability, and develop effective solutions. 
Finally, it will be critical to retrain existing staff 
and hire and retain new talent with expertise in 
various areas of computer science, including 
distributed infrastructure, AI, and foundational 
computer science. 

5. Expected Outcomes 
The use of AI will allow us to address hard 
challenges in computer science toward 
automating human-intensive parts and 
reducing time to innovations in hardware, 
software, workflows, and infrastructure to meet 
the utilization and performance needs while 
enhancing scientific productivity. These 
innovations will directly impact scientific 
discovery, allowing users to set up federations 
and execute workflows on well-oiled 
infrastructures. AI will directly result in optimal 
facility utilization and response—self-healing, 
self-optimizing infrastructures will handle the 
predictable problems while human operators 
will have the tools to diagnose and 
fix problems. 
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10. AI Foundations and Open Problems 
Advancing the mathematical, statistical, and 
information-theoretic foundations of artificial 
intelligence is vital to realizing the potential of 
AI for science. These foundations are now a 
bottleneck for scientific discovery, and the 
practical application of AI and machine learning 
remains predominantly an art. Although 
significant progress is being made, advances in 
the foundations of AI will be required to 
complement capabilities in hardware and 
software and realize the full potential of AI in 
DOE’s science and engineering mission (see 
Chapters 1 through 9). 
 
One of the distinguishing characteristics of 
science is the existence of laws based on time-
tested observations about natural phenomena. 
How should these governing principles and 
other scientific domain knowledge be 
incorporated in an AI era? To become an 
accepted part of the toolbox of scientists and 
engineers, the validity and robustness of AI 
techniques need to be trusted. What are the 
limits of AI techniques, and what assumptions 
and circumstances can lead to establishing 
assurance of AI predictions and decisions? 
Another hallmark of science and engineering is 
that limited training data may be available in 
the most complex, dynamic, and high 
consequence of applications. Which AI 
techniques can best address different sampling 
scenarios and enable efficient AI on various 
computing and sensing environments?  
 
Addressing these and other open problems will 
advance the building blocks of the entire 
AI ecosystem. 

1. State of the Art  
Advances in algorithms and hardware have 
given scientists the tools to model and simulate 
nature at an unprecedented range of scales: 
from computing the history and fate of the 
cosmos and the explosion of supernovae to the 
evolution of the climate system and the 

properties of materials to the smallest of 
subatomic particles. These efforts have 
traditionally relied on mathematical, modeling, 
and computational building blocks whose 
properties are well established. Despite having 
access to tremendous computational 
resources, the fact remains that scientists 
cannot possibly explore all possible theories or 
simulate phenomena at the sub-grid scale. AI 
presents a unique opportunity for bridging this 
gap, but its building blocks and their 
composition are not yet sufficiently established 
for widespread scientific use [2–4]. 
 
Although the past decade has seen significant 
algorithmic and theoretical progress, work on 
the foundations of AI and ML has been far 
outpaced by the empirical exploration and use 
of these techniques [16]. With the increased 
use of AI and ML, clear trends are emerging. 
For example, residual network-based 
convolutional neural networks [10,11] are the 
standard for image processing; automatic 
differentiation and accelerated first-order 
optimization algorithms are pervasive in 
training deep networks [12–15]; and generative 
models (e.g., generative adversarial networks, 
variational autoencoders) are providing 
synthetic data far beyond traditional image 
applications [6–9,17,25]. Principles underlying 
the use and understanding of these and other 
techniques tend to be scattered across 
disciplines, from theoretical computer science 
to signal processing to statistics.  
 
Neural networks have started to be specially 
designed to incorporate some types of domain 
knowledge—such as rotational equivariance 
[1,5,21] (Figure 10.1) and statistical [18], partial 
differential equation (PDE), [19] and stochastic 
PDE [20] constraints—but these efforts are in 
their infancy. Results are also being 
established in the computability of AI-related 
problems [26] and in exploiting graph-based 
representations [22–24]. Natural language 
processing and unsupervised learning 
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techniques are beginning to be explored to 
gain additional insight from the scientific 
literature [27,28] and to pass eighth grade 
science exams [29]. 

2. Major (Grand) Challenges 
Three exemplar grand challenges are identified 
to illustrate the promise of addressing the 
foundations of AI.  
 
Incorporate domain knowledge in ML and 
AI. ML and AI are generally domain-agnostic. 
Whether studying datasets from a beamline 
scattering experiment, a physics collision, or a 
climate simulation, the training procedure 
typically treats every labeled dataset as a point 
in a high-dimensional space and proceeds to 
apply standard convolutional and nonlinear 
operations. Off-the-shelf practice treats each of 
these datasets in the same way and ignores 
domain knowledge that extends far beyond the 
raw data itself—such as physical laws, 
available forward simulations, and established 
invariances and symmetries—that is readily 
available for many systems, much in the same 
way that early knowledge on the neural vision 
system led to marked improvements in image 
processing. Better incorporation and entirely 
new methods targeting these principles will 
improve data efficiency; quality, interpretability, 
and validity of the model; and generalization, 

transfer learning, and constraint satisfaction for 
new problem regimes. Incorporating modeling 
and simulation capabilities to generate training 
data leverages decades of HPC improvements 
to accelerate learning; incorporating 
mathematical equations and scientific literature 
leverages centuries of advances in theory. 
Furthermore, to complete the scientific 
process, incorporating domain knowledge in AI 
models can be used as the basis for advances 
in experimental design, active learning, 
facilities operations, formal verification, and 
automated theorem proving to accelerate 
scientific discovery.  
 
Improving our ability to systematically incorpo-
rate diverse forms of domain knowledge can 
impact every aspect of AI, from selection of 
decision variables and architecture design to 
training data requirements, uncertainty quanti-
fication, and design optimization. Indeed, 
incorporating domain knowledge is a 
distinguishing feature of AI within the DOE 
mission, without which AI-based scientific 
progress is otherwise limited to that afforded by 
traditional AI drivers. 
 
Establish assurance for AI. Assurance 
addresses the question of whether an AI model 
has been constructed, trained, and deployed 
so that it is appropriate for its intended use, 

 
Figure 10.1 Specially designed neural networks can satisfy domain properties such as 3D rotation-equivariance, 
allowing one to train on shapes and molecules in one orientation while still identifying shapes and molecules in any 
orientation. Adapted from N. Thomas, NeurlPS18 Molecules and Materials Workshop [1].  
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and is one of the most challenging problems 
facing AI. Briefly, it addresses the question  
of whether and when an AI model can be 
trusted. Assurance is an extremely broad topic  
and includes the validity, robustness, 
reproducibility, and uncertainty quantification of 
both learned models and their use, as well as 
the topics of explainability and interpretability. It 
also includes the question of whether the data 
used in training an AI model contains sufficient 
information to train the model without 
introducing spurious correlations or bias that 
will invalidate AI-based decisions, as well as 
operational assurances in the presence of 
limited/noisy data or adversarial attacks. 
Furthermore, it includes the development of 
provable methods to assess whether a problem 
is computable, learnable, and expressible 
given the available data and other limitations. 
 
As an example, establishing assurance for a 
particular AI model would involve clarifying and 
answering questions such as: Why does the AI 
model work for a problem? What are the 
internal representations of data that the AI 
model has learned during training? How can 
the behavior of the AI model be explained? 
How confident are the AI models on their 
predictions given the different sources of 
uncertainties and inductive biases involved? 
For such an AI model to be accepted as a well-
characterized tool for science, the research 
community will need to address these 
questions and develop advanced capabilities to 
explain the behavior of the AI model form and 
map the internal representation of the model to 
domain-specific concepts.  
 
It would then follow that establishing assurance 
means determining whether an AI model is 
appropriately trained and used for the task for 
which it is intended, including whether it is 
robust against adversarial attacks or whether 
prediction errors can be meaningfully bounded. 
Explainability can also be used to provide the 
basis of trust in AI systems by communicating 
meaningful information to humans and for a 
posteriori in diagnosing AI behaviors. Unique 
challenges for AI systems revolve around a 

careful characterization of the generalization 
limits, proofs of validity, robustness, and 
assessment of confidence associated with 
predictions. Establishing assurance is 
especially vital for scientific and high-
consequence applications where AI models 
and tasks would otherwise fail to be adopted, 
including autonomous systems such as in 
advanced manufacturing, energy generation, 
storage and distribution, automated health 
diagnostics, and the control of large 
scientific facilities. 
 
Achieve efficient learning for AI systems. 
The core of any AI system is the creation of an 
abstract model and the training of that model 
based on data. Efficient learning in ML systems 
must be studied along several axes. The first is 
algorithmic. For example, deep neural 
networks routinely include hundreds of layers 
and billions of trainable parameters. Training 
these models for complex applications is 
computationally intensive, requiring large 
amounts of computing power and data, and is 
critically dependent on factors such as the 
quality and quantity of labeled training data, the 
overall type and complexity of the model, and 
the application domain. A second axis is the 
efficiency of the implementation of a learning 
system on given hardware. Achieving improved 
efficiency—in terms of power, compute, 
memory usage, and quantity of data required 
for training—is broadly essential for scientific 
applications. Included in efficient implementa-
tions is the use and impact of reduced-
precision hardware offered in current hardware, 
and novel computing hardware (quantum, 
neuromorphic) and associated programming 
paradigms in future platforms (see Chapter 13, 
Hardware Architectures).  
 
While there have been significant 
improvements in and variants of training 
algorithms, the grand challenge of an efficient, 
general-purpose algorithm for learning remains 
unsolved. Further, nested nonlinear ensembles 
of linear models are undoubtedly not the last 
great learning architecture that will emerge; 
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novel model forms may exhibit profound 
advantages in terms of data efficiency. 
 
In addition to the general learning problem, 
significant challenges remain for specific 
classes of AI models. For example, AI-based 
control systems rely on semi-supervised and 
reinforcement learning, which are inefficient, 
produce “brittle” systems, and are non-
transferable. Efficient continuous learning 
systems that handle data streams at the edge 
and remain validated must be developed. And 
it will be necessary to rethink the learning 
process—and artificial reasoning in general—
for systems, including approximate, 
neuromorphic, and probabilistic computing, to 
make them computationally tractable for many 
real-world problems. Further study of human 
neural systems and the learning process may 
yield significant insights, new abstractions, and 
complexity classes beyond those conven-
tionally in use at present.  

3. Advances in the Next Decade 
Many opportunities exist to advance the 
foundational building blocks of AI over the next 
decade. We highlight a few of the areas where 
mathematical, statistical, and information-theo-
retic advances are required to address the 
above grand challenges. These advances 
entail the development of new algorithms, 
theory, and modeling paradigms. 
 
Exploiting scientific knowledge. Approaches 
to leveraging domain knowledge include using 
custom loss functions; selecting decision or 
latent variables; applying physical constraints 
(e.g., conservation laws); leveraging Bayesian 
or probabilistic graphical models; using 
simulations to augment or generate training 
data; and exploiting known smoothness, 
sparsity, or other low-dimensional structures. 
Many of these approaches have been tested in 
particular areas of ML, but mathematical 
advances are required to establish principled 
ways for the incorporation of domain 
knowledge throughout AI and to understand 
the induced tradeoffs. Each of these 

approaches has limitations and requires 
significant foundational research.  
 
Creation of surrogates. AI presents a unique 
opportunity for creating data-driven surrogate 
models that are potentially orders of magnitude 
faster to run than first-principles simulation 
codes and can be particularly effective in the 
ability to simulate physical processes that span 
many spatial and temporal scales. Some of the 
unique challenges for AI systems revolve 
around a careful characterization of the 
generalization limits, proofs of interpolation/ 
extrapolation, robustness, assessment of 
confidence associated with predictions, and 
effects of the input data. Rigorously 
understanding these tradeoffs will impact not 
only model selection in AI systems, but also the 
creation and investigation of new classes and 
types of models. 
 
Numerical optimization. Optimization algo-
rithms, differentiation techniques, and models 
form the foundation of training in AI. Both the 
loss landscape of these models and the 
traversal of this landscape by algorithms are 
poorly understood. There is a significant 
opportunity to improve understanding about the 
effect of incorporating domain knowledge in the 
form of constraints or regularization terms. How 
do these approaches affect the solution 
manifold and the ability of fast algorithms to 
consistently find this manifold? What principles 
about network and model selection does this 
inform? What accuracy is needed in derivative 
and loss evaluations? What guarantees of 
optimality can be established? Opportunities 
exist for fundamental advances in this area to 
impact AI for science from the HPC facility to 
the edge. 
 
Uncertainty quantification (UQ). An important 
aspect in the development and application of AI 
is the quantification of uncertainties. Where AI 
and ML are used in physics-based 
applications, established approaches to UQ are 
applicable. In other cases, particularly in 
classification problems, ML models tend to be 
highly nonlinear systems that are extremely 
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sensitive to input data, and small (e.g., 
undetectable to the human eye) changes can 
lead to misclassification. Several approaches 
to dealing with uncertainty (e.g., Bayesian 
neural networks) are computationally 
intractable for many AI problems; significant 
expansion of these approaches or new, more 
efficient alternatives are needed. Known and 
emerging UQ techniques can also be used to 
detect overfitting and select the simplest 
possible model. 
 
Graph-based ML and AI. Graphs arise 
naturally in many scientific domains (e.g., 
molecules, protein interaction networks, 
community networks). Structuring data and 
knowledge representations in terms of graphs 
and exploiting the topology information 
available from a graph representation can be 
critical to realizing tractable algorithms and 
obtaining better outcomes in tasks such as 
classification, clustering, and prediction of 
missing data. Important questions need to be 
addressed, including, what is the most relevant 
graph representation obtainable from noisy 
data for a problem and how can it be computed 
efficiently? How can the topological information 
available in graphs be best exploited within an 
AI model? How can the time complexity of AI 
computations involving massive graphs be 
tamed? How can algorithms be adapted to 
work with dynamic graphs, and how can 
streaming algorithms be designed when the 
graph cannot be stored? 
 
Data/model fusion and representation. 
Current AI and ML systems tend to analyze 
one type (mode) of data. However, most 
physical systems include data of different types 
or modes. For example, environmental sensor 
input must be combined with video streams for 
effective control of manufacturing processes; 
audio and text input must be combined in 
sentiment analysis; and multispectral sensors 
must be incorporated into environmental 
monitoring systems. The different modes often 
have fundamentally different characteristics 
and represent different types of information. 
This leads to challenges in fusing data and 

models across the different modes, such as the 
encoding and representation of knowledge or 
events in ways that allow an AI model to 
establish correlations across the different 
modes, and the transferability of knowledge 
from one mode to enable more efficient 
learning in other modes. Furthermore, DOE is 
unique in the breadth of diverse datasets and 
representations produced by various 
simulations, experimental and observational 
devices, and computing and networking 
facilities. Developing and applying AI methods 
successfully will require that abstractions and 
algorithms are aware of and target the intrinsic 
properties of datasets and representations 
(e.g., big vs. small, structured vs. semi-
structured vs. unstructured, sparse vs. dense, 
space vs. time vs. space-time, graphs, 
noisy/missing/mislabeled data, multi- 
variate/-physics/-scale/-modal) to achieve 
optimal results. 
 
Interpretable and explainable AI. While the 
ultimate goal of AI research may be fully 
autonomous systems and artificial general 
intelligence, the larger potential for the near 
future is augmenting human intelligence—
including, for example, accelerated scientific 
discovery and engineering design, engineered 
safety systems, and improved medical 
diagnoses. In the context of accelerating 
science and engineering, as AI methods make 
inroads and produce state-of-the-art results for 
data analytics, surrogate modeling, inverse 
design, and control applications, advanced 
capabilities are needed to explain the  
behavior of AI models and to map the  
internal representation of AI models to domain-
specific concepts. 
 
Hypothesis generation, design of experi-
ment, and causal analysis. Validation is the 
process of determining whether an AI model is 
appropriate for the application or decision for 
which it is being used. One of the fundamental 
questions during validation is whether the AI 
model is making the right decision for the right 
reason. For example, has the AI model learned 
spurious correlations, or can the model 
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determine the control variables? In short, can 
AI be used to identify causal variables or 
distinguish between cause and effect? 
Typically this cannot be done with a single 
training dataset. Instead, the AI model needs to 
be trained to construct a hypothesis, typically a 
counterfactual one, and to design an 
experiment—including the collection of data 
(and the suitability of that data)—to test 
that hypothesis.  
 
Robustness/stability. Robustness generally 
refers to an algorithm’s ability to deal with 
errors in the input data or errors during 
execution of a program. This also includes the 
ability of AI to withstand an adversarial attack, 
as well as the ability to deal with corner cases 
and rare events that may not appear in the 
training data. Similarly, stability refers to the 
ability to deal with rounding and other errors 
that are an intrinsic part of any numerical 
algorithm. In many cases, classical numerical 
analysis approaches can quantify and control 
these errors; however, foundational research 
adapting these results to ML algorithms and 
developing AI-specific approaches to improving 
the robustness and stability is required. 
Identifying the limits of AI methods and 
models—for example, in terms of input  
or training data ranges beyond which  
errors can grow undesirably—would 
advance understanding. 
 
Reinforcement learning (RL) and beyond. 
RL forms the foundation of most AI-based 
control and policy systems. RL is the process 
of teaching an AI model to take actions based 
on a current state, an environment, and a 
reward function; it has been studied historically 
in the context of dynamic programming, 
Markov decision processes, and control theory. 
Within the context of AI, RL has been used 
successfully in many applications, most visibly 
by DeepMind for player policies for increasingly 
complex games. Despite RL’s recent success, 
many challenges must be addressed for 
scientific and engineering control applications. 
For example, action/reward shaping for control 
decisions may lead to computationally 

inefficient and costly training; there is a tradeoff 
between exploitation and exploration, which is 
similar to the tradeoff between depth-first and 
breadth-first search; and there is often a 
narrow applicability regime and a lack of 
robustness in training control systems. The 
human-computer interface and explainability 
must also be considered in the context of RL-
based control systems.  
 
Real-time learning and control. AI impacts 
are typically attributed to the availability of both 
data and computing. However, in some science 
applications one can see the dual problems of 
too much data and too little computing and 
storage. In such cases, one will not be able to 
store even a small fraction of the generated 
data, nor will one have the ability to (re)train 
models from scratch. Furthermore, the data 
may have low information content and may end 
up corrupting models if used incorrectly. Even 
today, the cost of training a single, albeit large, 
deep neural network has been estimated in the 
tens or hundreds of millions of dollars of power 
and computing capacity. Improving the ability 
to train an AI model continuously (e.g., with 
streaming data that is discarded immediately 
after use) and to deploy the model in real-time 
requires advances in areas such as adaptive 
models, event and anomaly detection, transfer 
learning, plasticity, and validation. 
 
Unsupervised learning and dimension 
reduction. Much of the data used in scientific 
and engineering ML is unlabeled. For example, 
the scientific objective may be to identify 
patterns in datasets, find clusters, estimate 
distributions, compress data, identify latent 
variables, or reduce the dimension of a large 
dataset. First-principles simulations can be 
used to offset partially the lack of labeled data 
(e.g., through the use of simulated data for 
training, generative adversarial networks 
[GANs], or direct incorporation of physical 
laws). Advances will depend on continuing 
research in areas such as matrix factorizations, 
kernel methods, GANs, and autoencoders, with 
a particular focus on incorporating physical 
knowledge and explainability (e.g., in the 
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determination of latent variables and other 
lower-dimensional representations). 

4. Accelerating Development 
Data and models are growing at an 
unprecedented scale. A business-as-usual 
approach for funding research on the 
foundations of AI for science is insufficient for 
staying ahead of this deluge, let alone to 
transform such data and models for scientific 
understanding. The use of AI in scientific and 
engineering applications is often constrained 
by the lack of good and labeled data; the 
inefficient, brittle, and unpredictable training of 
AI models; and the lack of assurance, including 
UQ, validation, and interpretability. Key invest-
ments to accelerate development along the 
above advances include the following: 
 
The use of scientific principles, modeling 
and simulation, and domain-specific knowl-
edge to inform and advance AI. Focusing 
here would spur the ability to learn effectively 
with orders of magnitude less data and/or to 
use the same data for otherwise unthinkable 
predictive power and generalizability. 
 
Addressing robustness, uncertainty quanti-
fication, and interpretability of AI systems. 
Increased understanding of the sensitivities 
and limitations of AI models and improving 
scientists’ ability to interpret AI outcomes would 
significantly accelerate the adoption of AI as a 
scientific capability. 
 
Learning for inverse problems and design 
of experiments. Inverting traditional cause-to-
effect models to learn what causes could have 
produced an effect, and then to efficiently 
generate experimental campaigns to test  
these hypotheses, would broaden the 
scientific method. 
 
Reinforcement and active learning to 
develop AI for control and data acquisition 
systems. Advances to directly address 

dynamic operations and real-time feedback 
scenarios would narrow the distance from the 
AI to the instrument, detector, lab, and facility. 

5. Expected Outcomes 
A research agenda supporting algorithmic and 
theoretical advances in AL and ML will have a 
profound impact on science, society, and 
industry. Successfully addressing the 
challenges identified above will reap huge 
rewards and enable rapid progress in areas 
such as advanced manufacturing, energy 
distribution and generation, mobility and 
transportation infrastructure, bioenergy, health 
science, and advanced materials design 
and synthesis.  
 
Primary outcomes of advancing the 
foundations of AI will be to maximize the 
understanding realized from science-informed 
AI, to increase trust in ML and AI as scientific 
techniques, and to provide efficient 
computational algorithms—for implementations 
in diverse and heterogeneous computing  
and instrument hardware—for generating 
these models. 
 
With these advances, we expect that AI and 
ML will become accepted and well-
characterized tools in the modern scientific 
computing toolbox, and the abstract models 
generated are understood for use in a variety 
of tasks. Minimizing the risks associated with 
AI uses is especially important in high-
consequence applications. Increased trust will 
also further the adoption of AI and embedded 
intelligence in everything from edge devices to 
networks to HPC facilities. Significant improve-
ment in the efficiency of ML will enable more 
accurate surrogate models of complex physical 
systems (e.g., reacting flows or failure mecha-
nisms in materials), optimization algorithms for 
inverse problems in materials characterization 
and design, and more accurate computation 
uncertainties necessary in all science and 
engineering disciplines. 
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11. Software Environments and Software Research 
The DOE Office of Science has an opportunity 
and need to research and develop software to 
address the office’s research mission. Such an 
effort would complement large investments by 
industry to develop AI software environments. 
The DOE has deep expertise in simulation, 
modeling, and large-scale data analysis, and it 
also operates the largest and broadest set of 
user facilities for experimental and 
observational science, including light sources, 
telescopes, and genomics facilities that have 
growing computing and data-analysis 
requirements (see also Chapter 16, Facilities 
Integration and AI Ecosystem). There is an 
urgent need to develop software and 
computing environments that enable AI 
capabilities to be seamlessly integrated with 
large-scale HPC models and the growing data-
analysis requirements of experimental facilities. 

1. State of the Art 
There is currently a proliferation of software 
and frameworks for data analysis and machine 
learning. Top deep learning and ML 
frameworks today include scikit-learn, 
TensorFlow, PyTorch, and Keras, but new 
software and frameworks are being released 
regularly. These new frameworks are primarily 
developed and led by industry, with some 
notable contributions from academia for 
software such as Spark and Jupyter. The 
software is open source, though not open 
governance, and is often controlled and 
sponsored by industry leaders, such as Google 
and Facebook.  
 
There are a few notable gaps between state-of-
the-art and DOE scientific requirements when it 
comes to software for AI. First, DOE 
researchers produce massive amounts of data 
from simulations and models that can benefit 
from the integration of AI capabilities. These 
are often challenging datasets with 
multidimensional data and can also include 
nonimage-based data. Second, DOE runs 

unique user facilities that produce petabytes of 
data, have no counterpart in industry, and 
require new AI software and capabilities. 
Finally, many of the DOE scientific datasets 
need the scale of HPC systems for analysis, 
and those systems can have unique 
architectural features that require software 
attention and investment, such as large-scale 
I/O subsystems and heterogeneous compute 
elements. With DOE’s challenging datasets 
and deep expertise in data analytics, 
simulation, and modeling, DOE researchers 
are well positioned to contribute unique 
enhancements to the AI software stack. 

2. Major (Grand) Challenges 
When considering the impact of AI on software 
environments and software research, three 
significant opportunities are apparent. First, the 
integration of AI into the “inner loop” can lead 
to more effective simulations (see also  
Chapter 10, AI Foundations and Open 
Problems). For example, leveraging AI within a 
simulation could lead to more efficient 
modeling by virtue of the development of digital 
twins during runtime. Second, integration of AI 
into the analysis approach could lead to faster 
generation of analytical results, automate the 
identification of anomalous behavior, and 
ultimately lead to automatic hypothesis 
generation. Finally, the integration of AI into the 
management and control of research labs, 
facilities, experiments, and workflows (i.e., the 
“outer loop”) can help achieve a variety of 
goals. Examples include adapting workflows in 
response to new hypotheses generated during 
the workflow, scheduling resources for more 
efficient use of facility hardware, and 
dramatically reducing the total cost of operating 
facilities. These three grand challenges are not 
orthogonal and would provide the greatest 
impact when examined together (see also 
Chapter 16, Facilities Integration and 
AI Ecosystem). 
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Develop software for seamless integration 
of simulations and AI. DOE is the premier 
agency for large-scale simulation and modeling 
of physical phenomena because it has deep 
institutional knowledge and expertise in 
numerical methods, solvers, and parallel 
implementations. There is an opportunity to 
improve the performance, efficiency, and 
fidelity of traditional simulations by integrating 
AI capabilities. Such a system would allow the 
integration of data from different sources, in 
different formats, and over different time 
domains into existing mathematical models and 
adapt in real time to changing model 
conditions. In addition, AI model-generated 
data can be validated against in-memory 
simulation data; by comparing results from in 
situ analyses on simulation-generated and 
model-generated data, one can also determine 
thresholds at which the model-generated data 

are sufficiently accurate and, therefore, 
determine when the trained model can replace 
the simulation kernel. Similarly, AI approaches 
could be employed to aid in mapping 
simulation workflows onto upcoming complex 
and heterogeneous platforms, revising the use 
of resources over the course of workflow 
execution through increasingly refined and 
accurate performance models. These 
approaches have the potential to significantly 
impact traditional simulation and modeling by 
improving the performance of simulations [1].  
 
This would lead to a new hybrid computation 
model, combining traditional simulation with AI 
results in a model that runs more efficiently or 
produces higher fidelity results. For example, a 
traditional mathematics-based climate model 
(i.e., a multiscale, multiphysics simulation) 
could be enhanced by replacing a 

 
Figure 11.1 Three opportunities for the integration of AI into software environments have the potential for dramatic impact 
on DOE science: (1) Within the “inner loop” of simulations and experiments, (2) to accelerate and enhance traditional 
analysis approaches, and (3) in the “outer loop” to assist in the management and control of workflows, laboratories, and 
facilities. 
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computationally intensive kernel with stochastic 
properties with a physics-informed ML 
approach. Alternatively, an AI system could 
learn the representations produced by a 
simulation kernel, and then the kernel could be 
replaced with a better-performing, lower-
complexity generative model. Furthermore, the 
output of this model could be combined with 
ML hydrology models, flooding maps, and 
evacuation routes, allowing new and more 
accurate predictions (see also Chapter 2, Earth 
and Environmental Sciences) [2].  
 
Significant investments need to be made in 
software and programming environments to 
realize this vision. Today, the coupling of 
traditional modeling and simulation codes with 
AI capabilities is largely a one-off capability, 
replicated with each experiment. The 
frameworks, software, and data structures are 
distinct, and APIs do not exist that would 
enable even simple coupling of simulation and 
modeling codes with AI libraries and 
frameworks. In situ data analysis requiring ML 
capabilities suffers from the same limitations. 
Significant software engineering investments 
are needed to enable reusability and 
composability that would reduce the integration 
overhead between simulations, data analysis, 
and AI, along with the integration of new 
foundational research advances into AI 
software. This includes addressing the need for 
composable data structures and modular 
elements that enable seamless movement 
between simulation, data analysis, and AI 
algorithms, as well as improvements in 
performance modeling and programmatic 
control of task placement in workflow systems 
to enable autonomous mapping of tasks to 
heterogeneous resources at runtime. 
 
In addition, at present, the parameters of 
models and the choice of solvers is largely 
determined by human expertise and is fixed at 
compile or runtime [1]. An integrated AI and 
simulation software environment would enable 
a model to use one method in a given time step 
and a different one in the next for a more 

optimal or faster converging system. To 
transition to a mode where simulations can 
adapt in real time, however, investments are 
needed in areas such as enabling real-time 
annotations and descriptions of schemas to 
allow the real-time adaptation of models and 
analysis. Computer scientists and software 
developers cannot do this on their own; it is 
essential that software capabilities be co-
designed in concert with algorithm developers 
and domain science experts. One sometimes-
overlooked facet of this challenge is the 
corresponding need for enhancements in data 
storage, access, and management that would 
facilitate rapid identification of relevant data, 
transformations between different data 
representations, and capture of relevant 
provenance to assist in reproducibility of results 
(see also Chapter 12, Data Life Cycle 
and Infrastructure). 
 
Develop software for knowledge extraction 
and hypothesis generation. The volume of 
data, and the knowledge that can be derived 
from data, is expanding exponentially in nearly 
every area of science. Creating next-
generation AI software that identifies gaps in 
existing knowledge and relevant data can 
enable the generation of new scientific 
hypotheses relevant to each scientific question 
and provide recommendations for knowledge 
discovery. Such intelligent software and 
frameworks will be able to investigate various 
possibilities, parameters, and models in a 
scalable manner to gain fundamentally new 
insights in specific science domains. In 
addition, as interdisciplinary research is gaining 
momentum, DOE is well-positioned with its 
breadth of both scientific and foundational 
interests to serve as the nexus for this work. 
AI-enabled software can use meta-learning 
techniques to identify potential overlaps across 
the different science domains and generate 
hypotheses that can lead to new discoveries. 
Such AI software can keep track of many 
disparate but relevant data points within and 
between different sciences as well as suggest 
next steps. 
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For example, experiments have traditionally 
been designed and conducted by humans, with 
the help of computational simulations and 
analyses to identify and constrain the design. 
This cycle of experimentation benefits from the 
body of data amassed in previous experiments. 
AI can provide further insights when trained on 
experimental data, combined with simulation 
data and analysis results, culminating in a 
more precise representation of the phenomena 
being studied that incorporates physical 
constraints, domain knowledge, and human 
expertise. On the basis of a continuously 
growing collection of validation data from 
experiment and simulation, the predictive 
power of AI models will improve over time; by 
identifying areas where the AI models fall short, 
one could call for more data and experiments 
to improve performance in the low-performing 
context. As these experiments are conducted 
and the model learns from the resulting data, 
its predictive power will improve in the poor 
areas, and it will become better able to 
generate hypotheses for subsequent 
experiments (see Chapter 4, High Energy 
Physics and Chapter 14, AI for Imaging). 
 
One of the major challenges in enabling 
knowledge discovery and hypothesis 
generation is the reuse of existing and future 
data. Both the scale and potential disparate 
modality of scientific data, be it simulation 
output or experimental observations, are 
unique when compared to other traditional, 
nonscientific AI training datasets. The amount 
of data, and the existence of different data 
types and models, requires AI software that 
can enable interoperability and knowledge 
extraction by reusing the data from different 
domains. The use of natural language 
processing in AI training will be of growing 
importance to integrate across the disparate 
data modalities, which may include scientific 
literature in addition to experimental and 
simulation data. Another critical challenge is to 
generate the right hypothesis, as research 
across all science domains has become 
incredibly complex and it is extremely hard to 
connect the relevant data points. Existing ML 

techniques do not provide substantial 
understandability of the models and the 
outcomes. Finally, scalability and performance 
will be a major challenge in knowledge 
discovery. The sheer amount of data and 
associated variables across different science 
domains need a scalable framework that can 
run HPC systems. 
 
As researchers identify gaps in data and 
generate new hypotheses, significant 
investments are needed for developing 
intelligent, scalable AI software frameworks 
that can leverage existing data, models, and 
the associated provenance about the training 
and analysis methods. Such a framework 
would provide real-time recommendations for 
understanding the data gaps and exploring the 
hypotheses. Hence, next-generation AI 
software needs a self-improving metadata layer 
that can continuously learn from the data and 
models to enable algorithmic discovery from 
data. Such AI software would use the 
provenance and metadata to describe the 
model architecture, parameters, and data. 
Investments are also needed to identify the 
unique architectures that cannot only help 
determine the right network architecture for a 
particular science domain, but also cross 
multiple domains. This will require additional 
investments in infrastructure for sharing the 
knowledge and associated data. 
 
Enable self-driving experiments with AI 
integration and controls. Computing has 
become increasingly pervasive as a tool at 
experimental science facilities, from simulating 
phenomena to controlling systems, analyzing 
experiment data, and driving hypotheses to 
explore in subsequent experiments (see 
Chapter 4, High Energy Physics and Chapter 
14, AI for Imaging). AI can be regarded as an 
embodiment of this process, touching all of 
these aspects and driving the hypothesis-
simulation-analysis cycle as a whole.  
 
There is a wide range of experimental science 
projects, and their integration with compute and 
data capabilities is varied; however, the 



 

11. SOFTWARE ENVIRONMENTS AND SOFTWARE RESEARCH  113 

direction a number of experiments are moving 
toward is more frequent online analysis and 
adaptation of experiments. For example, 
scientists at certain light sources use analysis 
of imaging for decision-making in near real 
time. These analyses are typically run at the 
experimental facilities within the constraints of 
time-to-solution and compute availability. In 
addition to employing AI in analysis and 
hypothesis generation as described above, AI 
could be used to act on these results, adapting 
to data as they emerge by adjusting the 
parameters of the experiment toward specific 
goals, such as protecting resources, 
maximizing the data gathered related to a 
specific phenomenon, or following up on 
surprising or anomalous results. By automating 
high-level decision-making, experiments could 
proceed without scientists onsite, and scientists 
would be better able to focus on high-level 
goals of the discovery process rather than 
directly monitoring individual experiments. 
Ultimately, this AI capability could also identify 
experiments that cannot be executed with 
current devices but are likely to uncover 
promising results, pointing toward promising 
new experimental capabilities. 
 
More generally, complex workflows are an 
integral part of scientific discovery, and 
increasingly these workflows are defined 
programmatically so that they may be executed 
as an integrated system. Just as in traditional 
programming, handling the wide variety of 
possible outcomes from specific tasks is 
tedious and error-prone, leading to workflows 
that often terminate in the face of unexpected 
results. By allowing scientists to describe 
workflows in terms of high-level goals, building-
block tasks (i.e., experiments, simulations), and 
rough models of the costs of those tasks, an AI 
system could instead generate a specific 
workflow, incorporating expert knowledge, to 
accomplish those tasks, adapting as results are 
uncovered or new data become available and 
refining the models of costs (e.g., in time). 
Similarly, AI can be integrated into the 
management of experimental controls and 
computational resources. An AI system could 

be allowed to observe the incoming stream of 
application workflows, the state of the 
experiment, computational and storage 
resources, and the behavior of applications that 
have been executed, adjusting the allocation of 
resources toward goals such as maximizing 
utilization of the platform; enabling rapid 
execution of priority jobs (e.g., in response to a 
national or regional emergency); or throttling 
power utilization in times of high demand (e.g., 
in response to a regional heat wave). By 
integrating AI into the management of these 
systems, the need for immediate responses 
from facility staff would be reduced, freeing 
resources to better assist application teams in 
making the best use of these resources. (See 
Chapter 15, AI at the Edge for further 
descriptions of edge computing use cases.)  
 
Numerous software advancements are needed 
to achieve this vision of AI-driven science. 
Workflow description capabilities need to be 
enhanced to allow for expert knowledge, goals, 
building-block tasks, and constraints (e.g., 
safeguards) to be described in a manner that 
can be used to automatically construct 
workflows. Telescoping language approaches, 
for example, might be beneficial in this context. 
Additionally, new tools for programmatically 
describing relationships are needed to enable 
AI systems to reason about cause and effect in 
these systems, or at least to provide a starting 
point on which improved models can be built. 
Finally, significant investments are needed in 
systems that enable programmatic control of 
instruments. 

3. Advances in the Next Decade 
The current rapid pace of development in ML 
methods is a direct consequence of the avail-
ability of open-source software frameworks, 
such as PyTorch and Tensorflow, that tightly 
integrate algorithmic and programming 
techniques (e.g., optimization and automatic 
differentiation) with modern hardware. They 
lower the barrier for entry and enable rapid 
iteration on the new domain-specific 
ML architectures.  
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Extrapolating this development trend, we can 
expect a software stack that facilitates efficient 
use of a broader range of algorithmic and 
mathematical techniques, making it as easy to 
use methods from geometry, topology, 
functional analysis, optimal transport, and 
constraint satisfaction as it is today to use 
differentiable programming. Simultaneously, 
given the current trends, data sizes, and the 
role of hardware in ML, it is reasonable to 
expect the evolved software stack to take even 
greater advantage of the new hardware 
accelerators, as well as to target distributed 
computing architectures (see also Chapter 13, 
Hardware Architectures and Chapter 16, 
Facilities Integration and AI Ecosystem). This 
presents a potential danger of more 
fragmentation into proprietary silos, as well as 
targeting architectures like the industrial 
“cloud,” rather than DOE supercomputers. 
 
There is also a clear recognition in the industry 
of the challenges of data and workflow 
management associated with the vast volumes 
of training data and complicated processing 
pipelines. There are numerous efforts to 
automate and standardize approaches to these 
challenges, and they are likely to bear fruit in 
the coming decade. It is important to note that 
these industry efforts are driven by data types 
that are often very different in terms of 
modality, dimensionality, resolution, and scale 
from those produced by DOE experimental, 
observational, and computational facilities. 

4. Accelerating Development 
Three early activities would help put efforts in 
software environments on track for success. 
First, a strong gap-analysis effort that identifies 
internal requirements and assesses existing 
tool capabilities is critical to understanding 
where investments are most needed. Initial 
work in this direction has been performed in 
specific science domains already, and reports 
are being written. 
 

Second, it is important for computer scientists, 
applied mathematicians, and domain scientists 
to work together to co-design solutions that 
integrate AI into these complex scientific 
endeavors. These types of partnerships have 
been successfully established toward other 
applications of computer science and applied 
mathematical techniques, and in many cases 
these partnerships can be launchpads for new 
AI-focused efforts. Early experiences in these 
partnerships will further inform research 
investments as well. 
 
Finally, looking outward, it is critical to 
understand how AI and associated 
technologies being developed outside the DOE 
are managed and governed to assess whether 
these tools will be viable for DOE use over the 
long term. If our strategy involves heavily 
leveraging AI software technologies from  
other sectors, then DOE must engage  
with these communities and establish itself as 
a contributor to help ensure the relevance  
and effectiveness of these packages on 
HPC systems. 

5. Expected Outcomes 
Advanced and capable software is 
indispensable for scientific discovery through 
simulation, modeling, and data analysis. With 
AI radically transforming numerous fields, it is 
crucial that investments are made in software 
to support new AI capabilities in support of the 
DOE mission. The integration of AI into 
traditional simulation and modeling will improve 
performance, efficiency, and fidelity of models 
of complex phenomena, and the ability to 
integrate models with historical and real-time 
data will improve the predictive accuracy of 
systems. Next-generation AI software 
frameworks will automatically identify gaps in 
existing knowledge and relevant data and 
explore new and unexpected scientific 
hypotheses, leading to potentially ground-
breaking discoveries already within reach of  
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DOE experiments. Experiments and workflows 
with AI augmentation will optimize use of 
premiere DOE computing and experimental 
facilities and identify key features of these 
facilities that lead to even more effective future 
platforms. Investments in software for AI will 
result in software artifacts, new or enhanced 
frameworks, models, and libraries that will 
broadly benefit the DOE user community. 
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12. Data Life Cycle and Infrastructure 
Much recent progress in AI has been fueled by 
the availability of massive data. For example, 
dramatic progress in deep neural networks for 
image understanding owes much to the 
ImageNet database of more than 14 million 
annotated and labeled images. Science, too, is 
about data, and the AI-driven transformation of 
science will require major changes in data 
generation, organization, processing, and 
sharing. This section reviews these changes 
and the research and development necessary 
to support this vision. 
 
Consider the following scenario: It is 2030. 
DOE scientists are working to develop a low-
cost, high-performance solid-state battery for 
use in vehicles. Intuiting that disordered 
materials holds promise, they task an AI 
system with identifying candidate formulations. 
Informed by 400 years of physics knowledge, 
100 years of scientific literature, and 40 years 
of experimental data from DOE labs, 
universities, and industrial collaborators, the AI 
system is able to evaluate options faster than 
any human expert. It suggests new families of 
disordered materials that may have acceptable 
stabilities, power densities, and manufacturing 
costs. However, it also shows high 
uncertainties in its predictions. 
 
To collect more data, the scientists task the AI 
system with defining and running a series of 
experimental and simulation studies in new 
autonomous laboratories and on postexascale 
conventional and quantum computing systems. 
New data integrated into the AI model motivate 
further experiments. Within weeks, the human 
expert/AI team has refined understanding to 
the point where large-scale manufacturing can 
be considered. Provenance information 
collected throughout allow for reuse and meta-
analysis of discovery processes. 
 
Central to this scenario is the existence of a 
large, well-curated, and integrated collection of 
data of many types—from point measurements 

to massive video—and from many sources, 
including the scientific literature (e.g., Chapter 
1, Chemistry, Materials, and Nanoscience), 
experiments, simulations, and vehicle fleets, 
and encompassing both public and proprietary 
elements. Each item within this data collection 
is documented with details as to where, when, 
and how it was generated. Furthermore, the 
data collection accommodates dynamic 
additions as new knowledge is created. 
 
Such data collections do not exist today, 
outside of a few narrow domains. Laboratories 
are not, in general, set up to preserve data. 
Many data are recorded in archaic formats and 
media without annotation. Descriptive 
metadata are inadequate and inconsistent. 
Data are rarely findable, accessible, 
interoperable, or reusable (FAIR) [1], whether 
by scientists or by AI systems. Data collections 
are often biased by a tendency not to publish 
negative results (i.e., the “file drawer problem”). 
Autonomous laboratories that can generate 
data at scale and under AI direction exist only 
in prototype forms. 
 
AI-driven discovery across the broad range of 
domains important to DOE science will require 
transformations in both the methods and 
infrastructure used to acquire, organize, and 
process data and the policies that govern data 
access. These advancements must proceed 
via a process of co-design, with progress in 
methods informing infrastructure and policy 
changes and vice versa. The ultimate goal is a 
system of methods and infrastructure that 
enables the coordinated creation, application, 
and update of large quantities of data and 
knowledge as well as associated models, 
workflows, computations, and experiments 
(Figure 12.1). 
 
This chapter makes the case for three priority 
research directions, or grand challenges, to 
produce the methodological advances required 
to create AI-ready data infrastructure.  
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Figure 12.1 AI-driven science requires simultaneous 
advancements in the methods, infrastructure, and policies used 
to acquire large-scale scientific data, integrate data and 
symbolic knowledge, and structure data infrastructure. 
 
Automate the large-scale creation of FAIR 
scientific data. Given data’s central role in AI-
driven science, new technologies, methods, 
and best practices are needed to scale the 
generation, capture, annotation, and organiza-
tion of data from experiments, observations, 
and simulations to produce large collections of 
FAIR data for AI-enabled discovery. 
 
Integrate data and theory to create con-
verged knowledge repositories. Realizing 
the full potential of scientific AI requires a 
convergence of data and symbolic 
representations. To this end, new methods are 
required to synthesize AI models from data and 
to integrate symbolic representations of 
scientific knowledge, to create knowledge 
collections that are similarly FAIR. 
 
Architect new infrastructure to support 
ubiquitous scientific AI. As AI methods are 
deployed ever more widely, new infrastructural 
concepts and methods are required to ensure 
that both data and the computation required to 
ingest, enhance, integrate, and interpret data 
can be accessed efficiently and reliably—
whenever, wherever, and at whatever scale 
required.  

1. State of the Art 
Despite much progress in scientific data 
acquisition and management, the datasets, 
processing methods, and infrastructure needed 

to engage fully in the development and 
application of AI methods for science are still 
lacking. Few communities have large 
collections of high-quality, curated, and labeled 
data suitable for use by AI systems. Even in 
domains where much data has been 
generated, silos and the lack of coordination 
among data collection efforts hinder 
broader access.  
 
For example, in the field of materials science 
(Figure 12.2), data collections number in the 
hundreds and are distributed worldwide. The 
Materials Data Facility [2] indexes more than 
100 data sources and operates automated data 
ingestion and metadata extraction pipelines to 
facilitate automated analyses. Nevertheless, 
most materials data remain unfindable, 
inaccessible, and noninteroperable and are 
rarely reused. 
 
As a second example, the velocity at which 
microbiome data are generated has far 
outpaced current capabilities for collecting, 
processing, and distributing these data in an 
effective, uniform, and reproducible manner, 
even at the largest data centers. The National 
Microbiome Data Collaborative (NMDC) was 
established by the Office of Science in 2019 to 
build the infrastructure needed to apply 
consistent ontologies, annotations, and 
processing to create a FAIR microbiome data 
resource. The NMDC aims to remove 
roadblocks in the development of AI methods 
for microbiome analysis by making large 
quantities of labeled, curated, interoperable 
data available to the public. Broad success in 
these areas depends on overcoming 
challenges outlined in this chapter. 
 
The Systems Biology Knowledge Base (kBase) 
[4], Earth System Grid Federation (ESGF) [5], 
and Atmospheric Radiation Measurement 
(ARM) facility [6] are further examples of DOE-
supported data infrastructures that assemble 
large volumes of important scientific data that 
offer opportunities for application of AI 
methods. 
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Overall, the infrastructure and methods needed 
to enable AI methods to access, learn from, 
and add to a broader body of knowledge are in 
their infancy. 
 
Annotation with useful metadata is an 
important prerequisite for widespread use of 
scientific data. Some communities have well-
established procedures for encoding metadata 
in datasets, such as the climate and forecast 
(CF) metadata conventions used in earth and 
atmospheric sciences. Yet even when such 
conventions exist, they often fail to capture 
detailed annotations to support searches for 
specific characteristics or features within large 
datasets. Some recent work investigates the 
use of ML to generalize metadata from a 
subset of labeled data by classifying electron 
microscopy images automatically as being 
generated by either transmission electron or 
scanning transmission electron microscopy [7]. 
Much more work is required to streamline and 
simplify the process of creating metadata for 
scientific datasets. 

2. Major (Grand) Challenges 
Successful realization of AI-driven science at 
the scales envisioned in this report requires the 
creation of large collections of FAIR, AI-ready 

science data, and the development of methods 
and technologies for manipulating those data. 
By addressing the following grand challenges, 
this vision has a stronger probability of 
being realized. 
 
Automate the large-scale creation of FAIR 
scientific data. Much scientific data today is 
still created laboriously through individual 
experiments and then organized via time-
consuming and error-prone manual data 
acquisition, movement, and annotation steps. 
Many data are discarded to alleviate transfer 
and storage costs, and descriptive metadata 
are often inadequate to enable subsequent 
reuse. Scientists need new approaches if they 
are to accumulate the volume, variety, and 
quality of science data required for AI-driven 
methods. In particular, steps must be taken to 
automate major elements of data creation. 
Automation is discussed here from the 
perspective of data and workflows (see 
Chapter 11, Software Environments and 
Software Research). See also a recent ASCR 
report [8]. 
 
While harnessing existing data flows within 
scientific laboratories is an important first step 
toward creating the rich data collections 
needed for AI-driven science, progress will 

 
Figure 12.2 Timeline and geographic distribution of selected materials data infrastructures and companies [3]. 
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remain limited if it is dependent on experiments 
defined and executed manually by human 
operators. High-throughput experimentation 
alone is not a sufficient solution, either. In 
many fields of science, the possible 
alternatives are far too numerous for 
exhaustive searches. Instead, autonomous 
laboratories are required that combine, in 
varying ways, high-throughput experimentation, 
large knowledge bases, AI methods, and 
human guidance to both generate data and 
answer questions [9,10]. The development of 
such autonomous laboratories will require 
advances in many areas, not least data 
management and analysis, so that AI agents 
can define new experiments quickly and 
effectively in light of extant knowledge. 
 
Regardless of how data are generated, the 
automation of what are currently manual data 
capture and curation tasks is key to increasing 
the quantity of data collected and the quality 
and usability of those data and associated 
metadata, as well as supporting ontologies. 
Automation must support and simplify all 
aspects of the process, from creation to use. AI 
itself should be harnessed to improve this 
process, with autonomous data curation 
capabilities working to capture provenance and 
context information required for future reuse, 
and to encode associated uncertainty ranges. 
These new methods must be adaptable to 
different applications and disciplines and be 
able to support multimodal data collection from 
multiple science domains. They need to be 
able to organize datasets for both immediate 
use and subsequent reuse, without requiring 
scientific campaigns to plan for curation and 
storage independent of data gathering.  
 
With increased automation, it can be 
anticipated that multimodality and diversity of 
data will change from being a barrier to an 
asset for AI purposes. To align a multitude of 
datasets that are collected from different 
sources, in different locations, at different  

times, and for different purposes, systems must 
be powerfully interoperable and able to 
produce data maps to guide subsequent 
human or AI consumers. Data will have value 
in unexpected ways for AI agents; when, 
where, and how a dataset may be used after 
generation are all unpredictable. Data curation 
decisions concerning, for example, what data 
to collect and what to discard, will become vital 
as larger amounts of science data become 
available. Data collections must flexibly 
accommodate notions of value and importance, 
age, and ownership to support their optimal 
use for AI. Furthermore, because data 
collection and curation decisions frequently 
incorporate ethics and bias concerns, scientists 
must have systems that expose such 
considerations early and often to facilitate 
transparency into data uses. 
 
The broader ecosystem of data, including 
human and autonomous agents, must consider 
model creation (by humans and AI agents), 
deployment of software and algorithms, and 
human oversight of these processes. Data 
repositories will hold raw and processed data, 
software, agents, models, and audit and 
oversight trails. The manner in which humans 
retrieve and interact with this ecosystem will be 
enmeshed with the data, human–AI interfaces, 
and the management and control plane that 
cuts across this ecosystem. 
 
Accelerating proliferation of AI methods and 
applications will require that the data 
infrastructure adapt to accommodate these 
transformative technologies. New software 
pipelines will come together end-to-end, pulling 
models from diverse sources (Figure 12.3). 
Advancements in the coming decades will 
require an increasingly flexible, ever-evolving 
data and software ecosystem that is 
changeable, self-tuning and explainable so  
that human overseers can provide 
appropriate oversight. 
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Figure 12.3 Bibliographic analysis shows rapid growth in the 
number of papers describing AI/ML methods in different 
physical science disciplines [11]. 
 
Integrate data and theory to create con-
verged knowledge repositories. Petabytes or 
even exabytes of data may be essential to 
progress in AI-driven science, but scientists 
cannot realistically manipulate all relevant data 
whenever they ask a question. Instead, as 
discussed also in Chapter 10, AI Foundations 
and Open Problems, methods are needed that 
can summarize large quantities of data in forms 
suitable for use in subsequent research, and 
then manipulate both such summaries and 
explicit symbolic (e.g., mathematical, but also 
qualitative and natural language–derived) 
representations of knowledge. 
 
Consider, for example, how Kepler extracted, 
from decades of observations of planetary 
motion, compact quantitative relationships 
among such quantities as orbital period and 
axis, which coalesced as his Laws of Planetary 
Motion. Consider also how Newton’s Laws of 
Motion allow for direct calculation of many 
relationships. Similarly, AI-driven science 
requires the ability to synthesize new models 
from data, so that massive data can be 
consumed effectively by scientists and AI 
methods, and assimilate symbolic representa-
tions of known relationships and physical laws. 
Technologies, methods, and best practices are 
needed for synthesizing learned models from 
scientific data via the use of AI methods, and 
for working with datasets, learned models,  
and symbolic knowledge in natural and 
efficient ways. 

The FAIR principles discussed earlier can be 
repurposed from data to models, yielding the 
following requirements and research 
challenges for learned models.  
 
• Findable: Innovations are needed to enable 

discovery of models that meet specific 
research needs, relating, for example, to 
domain of applicability, uncertainties, and 
nature of the source data used to 
generate them. 

• Accessible: New approaches to structuring 
models are needed to allow them to respond 
to a wide variety of both human- and 
machine-driven queries. It is important for 
scientific reproducibility that model outputs 
can be related to the data elements used to 
create the model, except when working with 
sensitive or proprietary data, when models 
must encode relationships without revealing 
the specifics of, for example, a single 
patient’s medical record (see Chapter 3, 
Biology and Life Sciences) or a single 
manufacturer’s drug assay.  

• Interoperable: As many models are created, 
it will become important to be able to 
combine them—to chain together, for 
example, models of materials properties and 
manufacturing processes to explore 
materials that are both nontoxic and 
manufacturable. Innovations are needed to 
create models that can be linked in 
such ways. 

• Reusable: A model that summarizes a 
certain physical phenomenon needs to be 
callable in different contexts, including from 
within simulations and other computations, 
and be deliverable to different locations 
(e.g., supercomputers, edge devices) for 
different purposes.  

 
Architect new infrastructure to support 
ubiquitous scientific AI. The infrastructure 
required to help accumulate and support FAIR 
principles must be ubiquitously available to 
support science campaigns from the start, help 
accelerate discoveries through domain science 
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advances, and promote the use of AI on the 
data. Today’s examples of autonomous 
vehicles, Internet and media data, and 
personal health data demonstrate the needs as 
well as the constraints on data acquisition, 
movement, staging, storage, and access. 
Science domains grapple with different types of 
data and impose greater constraints than are 
typically encountered in other settings. For 
example, scientific data can be several orders 
of magnitude larger than enterprise data. In 
addition, data movement needs stretch the 
limits of current connectivity, despite powerful 
tools [12]. 
 
The traditional infrastructure that supports large 
volumes of data must evolve to support AI-
friendly access. Data volumes and retrieval 
rates need to scale significantly. AI will require 
data to train predictive models, observations to 
infer steps in the process, and control data to 
modify and optimize the feedback loop of 
theory to experiment and back to 
improvements in theory (and our understanding 
of the world).  
 
Given such a need for the acceleration of AI 
with data, data access pathways must be 
scalable in both breadth (distributed) and depth 
(low latency and high-bandwidth). New search 
and retrieval techniques that extend beyond 
the capabilities of our current centralized 
approaches must be developed to support the 
ubiquitous reach of AI techniques. Under-
pinning these new data flows will need to be 
greatly enhanced computational capabilities, 
not only centralized but also co-located with 
data producers and consumers, and configured 
to support specialized AI workflows. DOE user 
facilities would serve as ideal test beds for 
prototype deployment, user testing, and 
algorithm development.  
 
The underlying data, both feeding the AI and 
growing as a result of it, must have a 
provenance and use trail. Data collections and 
the state and history of associated science 
campaigns should be easily shareable. 
Capabilities must explicitly support the 

dissemination and exchange of scientific data. 
Such tools and technologies would be central 
to the needs of scientific reproducibility, 
providing the capability to validate and trust 
experiments, improve science campaigns in 
the future, and dramatically enable the reuse of 
AI techniques for science. The goal is to 
develop systems that can collect data for AI, 
enhanced by AI—and make those data 
accessible anywhere in reusable forms. As the 
preparation, organization, and use of data for 
AI becomes streamlined and better 
understood, the value of the appropriate state 
of data (raw or reduced) will drive when and 
how data are retained within its life cycle. 

3. Advances in Next Decade 
Opportunities and challenges in AI for science 
are expected to evolve rapidly over the next 
decade due to three major factors: 
 
Dramatic increases in the volume of 
available data. The amount of data available is 
expected to result from improvements in 
scientific instrumentation, sensors, and 
computation. For example, the upgraded 
Advanced Photon Source (APS) at Argonne 
National Laboratory will produce, from 2023 
onwards, up to three orders of magnitude more 
data than in 2019.  
 
Emergence of autonomous laboratories. 
Laboratories capable of collecting data about 
scientific phenomena without human 
intervention will drive developments that have 
the potential to transform scientific AI by 
generating data with greatly increased speed 
and consistency, but they will also introduce 
new challenges relating to access and potential 
algorithmic bias in terms of data collected. 
 
Rapid improvements in AI software and 
methods. Many industries are working to 
address massive data and learning problems, 
such as for autonomous vehicle fleets with tens 
of millions of vehicles and remote sensing in 
thousands of small satellites. Work in these 
and other areas will produce continued 
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improvements in how data are acquired, 
organized, and processed, and in the overall 
data life cycle itself. Developments relating to 
the integration of symbolic knowledge and data 
and progress toward artificial general 
intelligence will produce new datasets, 
conceptions of how to use data in AI, and 
methods for manipulating data that may have 
relevance to scientific AI. DOE science must 
engage effectively with these developments. 

4. Accelerating Development 
An early priority for a scientific AI initiative must 
be to ensure sustained access to the large 
quantities of high-quality data needed to 
advance AI-driven science. This means 
prioritizing work to harness important data 
flows; to establish the machinery needed to 
collect, organize, and refine the resulting data; 
and to gain experience with the use of those 
data for AI purposes. 
 
Harnessing important data flows means 
developing and deploying machinery to collect 
AI-critical data generated by scientific 
instruments, including the descriptive metadata 
required for those data to be useful within  
AI applications. An envisioned program will 
implement such comprehensive data collection 
for a dozen different data sources within  
a year, with this experience guiding expansion 
to progressively more sources in 
subsequent years. 
 
Simultaneously, efforts should be launched to 
develop the technologies and infrastructure 
required to ingest, organize, annotate, curate, 
index, and otherwise prepare these data for 
use in AI applications. Collaborations between 
Office of Science user facilities and data 
projects (e.g., NMDC), on the one hand, and 
ASCR researchers, on the other, can help to 
accelerate method development. Efforts should 
also be started to develop AI applications 
based on the increasingly large quantities of 
data that will be collected as automated data 
collection machinery is deployed. Establishing 

governance of dataset quality, incorporating 
best practices from diverse communities, and 
providing intuitive policy and efficient 
mechanisms for data access and ownership 
will be vital for data to be available to AI. 
 
A final area of effort should focus on expanding 
the national workforce and growing the 
expertise of scientists and other professionals 
who will prepare, manage, control, deploy, and 
monitor the data backplane integral to  
AI. Science campaigns that rely on domain 
scientists must be structured to include data 
scientists early in the process. These data 
scientists and domain experts must work 
together in an interdisciplinary manner, with 
explicit cross-training to ensure that the  
data life cycle contributes to accelerating 
science goals. 

5. Expected Outcomes 
This chapter makes the case for the automated 
creation and use of rich, curated collections of 
AI-ready scientific data; the integration of large 
data collections with symbolic representations 
of scientific knowledge; and new, ubiquitous 
infrastructure to enable effective use of those 
data within AI-driven workflows. These 
developments will transform scientific discovery 
by enabling better science, faster, and at lower 
costs; drive virtuous cycles whereby better data 
produces better AI, and better AI produces 
better data; and contribute to expanded 
scientific leadership for DOE and the nation. 
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13. Hardware Architectures 
AI is a powerful force driving the design of 
computer architectures [1]. Impacts include 
both an explosion of new start-ups and 
hardware designs, and rapid evolutionary 
change in all platforms—CPUs, GPUs, and 
even mobile phones. The recent 2019 AI 
Hardware Summit in Mountain View, California, 
included nearly 40 companies; enterprise, 
semiconductor manufacturers, and AI hard-
ware start-ups from around the globe 
presented their AI architectures and systems. 
 
Although these studies and investments are 
impressive, most of these activities focus on 
consumer or enterprise areas such as 
autonomous driving, social networks, finance, 
and virtual reality [2]. The key problems for 
these areas are image and video analysis, 
language translation, and autonomous driving. 
All of these have data characteristics, real-time 
requirements, and deployable resource targets 
that are vastly different from the DOE mission. 
Specifically, these commercial AI areas have 
massive numbers of small, labeled data items 
(e.g., pictures) from which to generate their 
models. DOE mission areas include areas of 
computational science with HPC and 
experimental data, where the dataset can be 
drastically different: hundreds of simulations or 
experiments with dozens of dimensions, rather 
than millions of photos. 
 
For this reason, it is recommended that DOE 
create a focused strategy to shape AI hardware 
to serve its science mission. Key to success is 
a strategy that leverages community and 
industry investments in technology and 
scalable (see Chapter 16, Facilities Integration 
and AI Ecosystem), intermediate, and edge 
systems (e.g., field instruments, see 
Chapter 15, AI at the Edge) for AI. 

1. State of the Art 
DOE user facilities will continue to see 
increasing data volumes and rates from large 
experimental facilities such as light sources, 
nanoscience centers, and advanced computing 
facilities. As detailed by science domain teams 
(elsewhere in this document), effective 
collection and analysis of these data will be 
enhanced by adopting AI techniques, which will 
often be deployed using specialized AI 
accelerators to increase performance and 
energy efficiency (Figure 13.1). Applying AI 
techniques to process these data streams 
requires data management capabilities that can 
reach from the instrument at the edge to the 
data center. Without carefully integrated, 
orchestrated, and managed data infrastructure, 
these AI systems will not be productive for 
science. Moreover, these scenarios will 
introduce additional complexities of 
heterogeneous hardware (e.g., x86 multicore, 
GPUs, and specialized hardware like TPUs) [4] 
and associated programming systems 
(e.g., MPI and TensorFlow). 
 
Motivated by early results, algorithms and 
computer architectures for AI are quickly 
evolving and growing more diverse. These 
architectures include specialized devices at 
different scales for five use cases [3]: (1) AI 
research and development (requiring maximum 
flexibility for experimentation); (2) offline 
training of AI models in production; 
(3) inference on servers; (4) inference at the 
edge; and (5) online learning on servers and 
the edge. As other successful AI technologies 
emerge, such as graph-based ML, the 
computational challenges and deployment 
techniques will evolve naturally. 
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At one extreme, systems with thousands of 
specialized architectures (e.g., NVIDIA Volta 
and AMD MI60 GPUs, FPGAs from Intel and 
Xilinx, Google TPUs [4], SambaNova, Groq, 
Cerebras) are required to train AI models from 
immense datasets. For example, Google’s TPU 
pod has 2048 TPUs and 32 terabytes of 
memory and is used for AI model training; its 
specialized tensor processors provide 100,000 
tera-ops for AI training and inference. In 
addition, they are coupled directly to Google’s 
cloud, a massive data infrastructure 
(>100 petabytes). The progress of the Google 
TPU in its use for Alpha Go series of matches 
demonstrates that codesign—the refinement of 
hardware, software, and datasets for solving a 
specific goal—provides major benefits to 
performance, power, and quality [7]. 
 
At the other end of the spectrum, edge devices 
must often be capable of low latency inference 
at very low power. Industry has invested 
heavily in a variety of edge computing devices 
for AI including tensor calculation accelerators 
(e.g., ARM Pelion, NVIDIA T4, Google’s Edge 
TPU, and Intel’s Movidius) and neuromorphic 
devices (e.g., IBM’s TrueNorth and Intel’s 
Loihi). Experts expect dramatic improvements 
in the compute capability and energy efficiency 
of these devices over the next decade as they 
are further refined. For example, NVIDIA 
recently released its Jetson AGX Xavier 
platform, which operates at less than 30W and 
is meant for deploying advanced AI and 
computer vision algorithms at the edge using 
many specialized devices such as hardware 

 
1 Permission to use each of the pictures was granted 

by each of the respective companies. 
2 The Cerebras Wafer Scale Engine is 46,222 mm2; 

by comparison the largest GPU is 815 mm2. 

accelerators (i.e., DLAs) for fixed-function 
convolutional neural networks (CNNs) 
inference. Another example is Tesla’s FSD 
Chip, which can deliver 72 tera-ops (72x1012 
operations per second) at 72 watts and support 
capabilities that can respond in 10 milliseconds 
(driving speed response) with high reliability.  
 
In contrast, DOE’s applications can require 
responses 100,000x faster—100 nanoseconds 
for real-time experiment optimization in 
electron microscopy or APS experiments 
where the samples degrade rapidly under  
high-energy illumination (see Chapter 14, AI 
for Imaging). 
 
In terms of software, currently, many consumer 
applications of AI use software frameworks like 
Tensorflow, PyTorch, MXNet, Torch, or Caffe2 
that hide much of the complexity of the 
underlying hardware. As mentioned earlier, 
these frameworks have been developed for 
video, image, and speech recognition as well 
as language translation and natural language 
processing, but they remain in their infancy for 
processing scientific data. Furthermore, 
software integration of this AI ecosystem  
(e.g., PyTorch) with the HPC ecosystem (e.g., 
MPI and OpenACC) will be nontrivial; 
significant challenges remain in coupling  
and potentially unifying these software 
ecosystems for productivity and efficiency (see 
Chapter 11, Software Environments and 
Software Research). 

2. Major (Grand) Challenges 
Given this spectrum of architectures and their 
fast pace of change, DOE will need to be 
actively engaged with the communities of 

    
(a) (b) (c) (d) 

Figure 13.1 Examples of AI accelerators from1 (a) Groq, (b) SambaNova, (c) Habana, and (d) Cerebras Systems.2 
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applications, data management, software, and 
broader architectures to have timely impact. 
More specifically, it is recommended that DOE 
plan to co-design architectures and develop 
software for a range of heterogeneous systems 
that span from the edge to the HPC data 
center. DOE should advocate solutions for 
priority requirements for AI in science. If 
appropriate solutions do not emerge from 
industry, DOE should pursue them internally, 
leveraging the new communities in open 
source hardware and through partnerships with 
other government agencies. 
 
Along these lines, the workshop participants 
identified several challenges. 
 
Create predictive architecture design tools 
to enable rapid evolution of AI accelerators 
for science. Both AI and the use of AI to 
augment traditional DOE scientific computing 
are in their infancy. As such, AI workloads are 
rapidly changing in nearly every dimension: 
network structure, model paradigm, numerical 
precision, training approach, training dataset 
sizes, data types, and batch size (i.e., working 
set). This transformation is further intensified 
by the rapid expansion of application scenarios 
and AI software systems. PyTorch is now the 
most popular framework used by researchers 
at the NIPS conference, but it did not exist 
5 years ago! 
 
Not only are the AI software artifacts 
themselves changing, but the process of 
developing AI software is different from 
methods used for traditional software. Most 
noticeably, AI software development focuses 
much more on the curation, labeling, and 
preprocessing of training datasets than writing 
code. Deployment may also be different; AI will 
use new end-to-end workflows and specialized 
hardware as they become available. In 
addition, as AI models are integrated into 
existing systems, we will need interfaces for 
embedding those AI components in the 
traditional scientific applications seamlessly 
while hiding specialized hardware intelligently. 
 

In this regard, holistic design of AI technologies 
from server to the edge will be paramount. 
DOE will need predictive methods and tools to 
frequently characterize, model, and simulate 
the AI workflows and algorithms to co-design 
and procure the appropriate architectures for 
these mixed HPC simulation and AI workloads. 
Additionally, these combined HPC and AI 
systems should also be instrumented to 
provide rich telemetry data that will be critical 
for this purpose. Hardware should be designed 
with this requirement in mind.  
 
In fact, there are significant opportunities to co-
design heterogeneous compute nodes that 
leverage the commodity system-on-chip (SoC) 
ecosystem. Likewise, another key aspect is the 
development of the memory subsystem to 
support this heterogeneous compute node and 
the co-design of the required memory interface 
controller. Once this heterogeneous SoC 
processor is designed, system interconnection 
network fabrics that build on the momentum 
from prior DOE investments will be needed to 
create a postexascale, leadership-class, large-
scale heterogeneous system architecture.  
 
Create integrated AI workflows and use 
them to evaluate emerging AI architectures 
from the edge SoCs to HPC data centers. 
Given the broad spectrum of efficient 
specialized AI architectures expected, DOE 
scientists will need to run workflows using a 
spectrum of accelerators (including AI). This 
“extreme heterogeneity” [5] is challenging, 
requiring scientists to cobble disparate 
programming systems (e.g., MPI, CUDA, 
OpenMP), storage systems, and data formats 
to run simulations on HPC architectures. With 
the emergence of AI as a primary  
technique, contemporary AI frameworks 
(e.g., TensorFlow, PyTorch) will also need to 
be integrated. Unified frameworks are needed. 
This challenge will only get more complex in 
the coming decade as architectures and 
relevant programming models become 
specialized. These integrated workflows are a 
realistic context in which to evaluate the 
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real impact of AI architectures. The fact  
that specialization is successful in the AI 
market is an indication that hardware 
specialization as a general strategy is logical 
and could be employed for other high-value 
scientific applications. 
 
It is recommended that SoC hardware 
ecosystems be leveraged by the DOE to co-
design flexible, heterogeneous computing 
systems that better integrate AI elements with 
both scientific hardware for HPC and edge 
computing for DOE experimental facilities. 
DOE science domain teams can complement 
natural trajectories of vendor product plans that 
fail to meet DOE mission needs. These teams 
can co-design node and system architecture 
concepts that specifically address combined 
HPC and AI workloads to meet DOE mission 
needs. In addition, DOE discoveries in 
materials research may directly lend 
themselves to advanced AI computation 
(e.g., [9]), and they should be pursued directly. 
 
Furthermore, future AI architectures may 
provide new opportunities for algorithms in 
computational science applications. For 
example, AI support for sparse neural networks 
can be repurposed for high- performance 
sparse matrix computation in a conjugate 
gradient solver. DOE will need to actively 
explore these opportunities as the new 
hardware emerges.  
 
Meet the rapidly growing demand for 
memory, storage, and I/O capabilities of the 
emerging requirements of AI-enabled 
science. Current HPC memory and storage 
systems are architected for traditional HPC 
simulation-only workloads with relatively small 
inputs and large outputs, where the access 
patterns are predictable, contiguous, block-
based operations.  
 
AI training workloads, in contrast, must read 
large datasets (i.e., petabytes) repeatedly and 
perhaps noncontiguously for training. AI 
models will need to be stored and dispatched 

to inference engines, which may appear as 
small, frequent, random operations. 
 
On the server side, storage systems, such as 
those that support Lustre and burst buffers, are 
not designed for and often perform poorly for 
these read-heavy, random access workloads. 
The new designs need to include intelligent 
workflow management systems that can stage 
data appropriately using additional levels of 
storage that can facilitate high-IOPs. Likewise, 
node-local memory hierarchies are relatively 
small when compared to scientific datasets that 
will be necessary for training.  
 
At the edge, energy efficiency and performance 
of the memory system will be critical. Edge 
devices will need to perform inference 
concurrently with other tasks; memory 
capacities will need to increase to support 
these tasks. This realization has led to pursuit 
of alternative memory technologies including 
NAND flash and 3D Xpoint (e.g., Intel Optane), 
because they offer superior energy efficiency 
and density. The precise architecture and 
software system for using these new memories 
in AI systems remains an open question, given 
the change in AI architectures and applications. 
 
Enable the incorporation of explicit science 
domain knowledge into AI systems and 
hardware to improve robustness and 
capabilities. AI training typically requires huge 
quantities of input data, and system behavior 
may be fragile if it is subjected to stimuli 
outside of the original training coverage. Many 
industry applications have massive datasets 
(e.g., composed of millions of hours of 
4K video or billions of photos) that can be used 
for training, whereas simulation output and 
scientific data from experiments are much 
more expensive to produce and often have 
many more dimensions, rendering them 
untrainable due to the “sparsity” of the training 
data. Current AI systems may become fragile 
when encountering novel situations that lie 
outside of their initial training dataset, and the 
AI systems cannot guarantee that answers 
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satisfy any explicit constraints (e.g., in physics, 
AI-inferred results must adhere to the law of 
conservation of energy). For applications that 
have consequences to human life, such as 
autonomous vehicles, adding these “instincts” 
about physics and causality are an urgent 
priority for industry AI-hardware investments 
that will enable systems to manage novel 
situations and to be trained with less data (e.g., 
overcoming the challenge of “sparsity”) [6]. 
 
Industry and academia are in the early stages 
of developing approaches that instill such 
“instinct” or “physics knowledge” for future AI-
hardware offerings, and will also require deep 
changes in the underlying architectures. But 
these efforts are far from sufficient to meet 
DOE mission needs of real-time edge/sensor 
applications performance. DOE has an 
opportunity to partner with industry early to 
drive the generalization and increased 
capability (low latency) solutions to suit DOE 
science applications. 

3. Advances in the Next Decade 
Industrial investment by large-scale cloud 
companies as well as AI hardware start-ups will 
continue to drive performance and energy 
efficiency at scale and at the edge for 
commercial applications such as image/face 
recognition, natural language, logistics, voice 
assistants, and autonomous vehicles. These 
commercial drivers will infuse AI capabilities 
broadly, in the scale of data, complexity of 
function, and robustness that can be achieved. 
Within the next 10 years, we expect to see 
the following: 
 
• Introduction of novel AI algorithms, as they 

are changing quickly and it is difficult to 
predict popular algorithms for the next 
decade. Five years ago, LSTMs were new, 
ResNets were not in use, and transformer 
networks had not yet been invented. 

• Steady increase in the size of largest AI 
models trainable as well as improvements in 
training algorithms that reduce the order of 

growth in training cost per weight. If the 
largest model training costs continue their 
current growth rate of 10x/year, economic 
and environmental consequences will 
ultimately be the practical limits. 

• Steady reduction and plateau in inference 
latency and cost to commercially important 
thresholds (i.e., ~5 milliseconds for human 
and automobile response times). 

• Integration of AI acceleration hardware into 
all mobile/IoT, and server devices. 

 
These advances will be enhanced by the 
numerous electronics technology initiatives 
underway such as the IEEE Rebooting 
Computing, DARPA Electronics Resurgence 
Initiative, and SRC’s activities like JUMP.  

4. Accelerating Development 
The AI hardware industry is growing by leaps 
and bounds. It’s led by the hyperscale cloud 
providers (e.g., Google and Microsoft), but 
there is opportunity to shape the emerging 
hardware to broader utility for science. The key 
is to identify leverage points where DOE 
science applications will benefit, and industry 
can benefit from features with the generality to 
address broader markets. Understanding and 
tracking DOE’s growing AI workloads will 
enable DOE to provide incisive and actionable 
input to shape future AI architectures. 
Identification and use of leverage points will 
drive the creation of new architectures and 
systems (both software and hardware) that 
build on broader industry developments to 
meet DOE’s unique needs for sparse learning 
and the support of scientific discovery. The 
areas of highest leverage are as follows. 
 
Create new co-design capabilities in DOE to 
inform strategic action on integrated AI and 
HPC systems. Computing hardware 
architectures are evolving in a disruptive 
fashion, with important innovation coming from 
small start-ups, large vendors, and cloud 
service providers. This business ecosystem 
transformation means that DOE cannot engage 
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in the traditional fashion of long-term projects 
with a few large, known players as in existing 
Pathforward programs. Rather, DOE must 
invest and create a much larger internal 
architectural research and development 
capability. These must then be used to 
continually assess the landscape, identify 
important new breakthroughs and partnerships, 
and accelerate them rapidly into new large-
scale system capabilities and DOE facilities to 
support rapid, leading-edge exploitation of AI 
across DOE. In some cases, DOE can exploit 
new hardware to its advantage (e.g., using 
mixed-precision algorithms with low-precision 
hardware), while in other cases DOE can  
work with industry to provide specific 
new capabilities. 
 
Support AI for HPC and scientific 
experiments on the edge. Contemporary 
HPC architectures are designed to support a 
traditional simulation-only paradigm, where the 
amount of input data is relatively small when 
compared to the output, and where the output 
is not read frequently. Storage systems and 
memory hierarchies must be redesigned to 
accommodate this workload change. Moreover, 
with the addition of AI at the edge to the DOE 
portfolio, the model for computing within DOE 
may need to evolve to where specialized AI 
hardware cooperates with traditional HPC 
systems to train models before distributing 
them to low-power inference engines at the 
edge (see Chapter 15, AI at the Edge). 
 
Drive development of AI systems and 
hardware that combines explicit knowledge 
with learned function. A distinctive 
requirement for AI in DOE’s science mission is 
the need to fuse explicit knowledge with 
learned function, which is often the goal of ML. 
While useful in some commercial applications, 
the purest and strongest form of this fused 
capability is essential for scientific exploration, 
and more importantly, the creation of 
scientifically sound modeling and exploration 
computations that are the likely foundation for 
future computational science. DOE should 
establish a series of specific science-based 

challenges to drive and shape new AI 
technologies that fuse explicit knowledge and 
learned function (see Chapter 10, AI 
Foundations and Open Problems). 
 
Lead on ultra-low latency and low-power 
inference for scientific experiment control 
in experimental facilities. DOE facilities and 
experiments are multimillion- (and sometimes 
billion-) dollar investments that literally push 
forward the frontiers of knowledge in materials, 
physics, biology, and other areas of 
fundamental science. AI-based real-time 
intelligent control of these facilities cannot only 
enable more complex, intelligent experiments 
and more efficient operation, but can directly 
accelerate the advance of scientific discovery. 
DOE should charter cross-disciplinary centers 
and focus on low-latency inference challenges 
for scientific experiment control, a critical 
capability within national laboratories. 
 
Translate DOE fundamental materials–
device discoveries into new post-CMOS AI 
devices. There is an opportunity to bring more 
of the fundamental materials science advances 
from DOE to augment industry roadmaps 
through fundamentally new approaches to 
neuro-inspired AI architecture. This can lead to 
a new path for exponential growth in AI 
computational performance by overcoming the 
overheads of conventional digital hardware, 
which is the predominant approach for today’s 
AI systems, and software design, addressing 
the societal challenge of rapidly growing 
negative environmental impacts of DNN-based 
AI. This has a strong connection with the Basic 
Research Needs for Microelectronics [10] 
activity and collaboration opportunities  
that span the entire Office of Science  
(see Chapter 1, Chemistry, Materials, 
and Nanoscience). 
 
Create and adopt new operational and 
life cycle models in large-scale DOE com-
puting facilities that support sustainable AI 
computing. At 10x annual model size 
increases, the training of large AI models 
already matches the lifetime carbon emissions 



 

13. HARDWARE ARCHITECTURES  131 

of five gas-powered automobiles [7]. The rise 
of renewable energy generation creates an 
opportunity to sustain AI and HPC’s growing 
computing and energy appetite. The DOE can 
lead in convening its own cloud and academic 
centers with technology leaders to study and 
prove new operational models. These models 
can enable high levels of renewable energy in 
power grids while sustaining high-capability 
computing. Further benefits can arise from new 
life cycle models that shift compute resources 
from high-cost to low-cost (and low-carbon 
power) locations that increase the lifetime of 
hardware, reducing cost and e-waste. To 
sustain the exponential growth in computing 
capability at the heart of its scientific missions, 
the DOE should lead the community in creating 
and deploying such practices to contain or 
even reduce its environmental impact for AI 
and HPC computing (see Chapter 16, Facilities 
Integration and AI Ecosystem). 

5. Expected Outcomes 
Industry will continue its dramatic pace of 
advancement over the next decade, but those 
advances are focused on goals that will not 
lead to meeting the requirements of DOE 
computational science and experimental data 
applications. In particular, the AI use cases for 
scientific applications will differ significantly, 
requiring extreme data rates, low-latency 
response, and extensive exploitation of explicit 
knowledge. Second, the rapid growth of AI 
training costs will create sustainability 
challenges to the growing AI computing 
burdens, forcing new approaches. Scientific 
applications and experiments are likely to have 
fewer samples available and require more data 
integration for training. By working together 
with industry to augment their hardware 
platform offerings, we will be able to meet 
these critical needs for the future of AI for HPC, 
for automating control systems at DOE user 
facilities, and for creating intelligent sensors for 
the future of experimental science. 
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14. AI for Imaging 
The DOE-supported x-ray, neutron, electron 
beam, and nanoscale science research centers 
are major experimental facilities providing 
access to world-class imaging and physical 
characterization capabilities to more than 
14,000 visiting scientists and engineers 
annually. The advanced tools and instruments 
at these facilities probe complex materials and 
processes across the physical, materials, 
environmental, and life sciences, including 
those underpinning energy technologies and 
advanced manufacturing. Research done at 
these user facilities provides unique insights 
that help shape the future and ensure the 
economic competitiveness of the United 
States. Planned developments at these 
facilities over the next decade promise to 
produce vastly larger and more complex 
datasets much more quickly than today, 
making the automation of facility and 
instrument operations and data collection and 
reduction imperative.  
 
AI will be essential for ensuring continued 
technological progress and maintaining 
America’s leadership position in all branches of 
science. The application of AI at DOE user 
facilities will ultimately allow end-to-end control 
of the scientific endeavor at scale, improving 
stability in experimental equipment and 
processes and yielding superior results. Using 
AI technologies to augment and expand 
existing data analysis techniques will allow 
scientists to process data more efficiently and 
effectively than ever before. AI technologies 
could one day make fully autonomous 
decisions on measurement strategies, reducing 
experimentalists’ time while simultaneously 
enabling efficient exploration of complex 
experimental and sample configurations.  

1. State of the Art 
Modern research laboratories present 
challenges for control systems that are capable 
of meeting evolving requirements. For 

example, consider the particle accelerators 
driving large-scale research facilities, which 
consist of many interconnected subsystems of 
magnets; mechanical, vacuum, and cooling 
equipment; power supplies; and other 
components. These accelerators have many 
thousands of control points, making their 
operation a complex optimization problem. This 
is particularly true for the electron accelerators 
at DOE’s synchrotron light sources, which 
require a very high level of stability. The 
operation of these accelerators has benefited 
from AI/ML–based solutions but remains 
extremely difficult due to the lack of a priori 
models for reliable and safe control. In the 
absence of such models, learning models 
based on raw data and other AI/ML-based 
solutions have been explored, with promising 
results, beginning with the demonstration of 
artificial neural network–assisted control of ion 
sources in the early 1990s. AI/ML optimization 
methods such as genetic algorithms and 
particle swarm optimization have been 
successfully applied for several years to 
improve various aspects of facility operation, 
including electron beam lifetime, transverse 
coupling, and injection efficiency. Current 
efforts are focused on simulation of the data 
generated by accelerator physics models to 
optimize the performance of next-generation 
machine systems under development [1]. 
However, none of these advancements have 
become an integral part of today’s accelerator 
control systems. This is due to limitations  
in the available data as well as software and 
hardware infrastructure and the reluctance  
of communities to use AI as a general 
purpose tool. 
 
The high data generation rates of modern 
detectors provide additional challenges for data 
processing and management at these facilities. 
As an example, advances in neutron detector 
technology has enabled high-resolution, 3D 
tomographic reconstruction of complex, multi-
component materials as illustrated in  
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Figure 14.1. One major challenge is that the 
increasing data volumes will require 
autonomous methods for data processing. 
Several supervised and semisupervised data 
processing workflows based on different neural 
network architectures have been proposed for 
different parts of the data life cycle. For 
example, the transmission x-ray microscopy 
instrument at the Advanced Photon Source [2] 
uses DL for fully automated correlative 
segmentation of metallic alloys by classifying 
features in large nano-resolution 3D 
reconstructed volumes. Similar types of 
network architecture have also been useful for 
recognizing known features in data sets and 
completing tasks such as classifying peaks, 
working with low-resolution data or assigning 
theoretical models to reduced datasets [3–5]. 
Using such an approach can be of great help in 
interpreting the data, especially when the 
measured data is complex or when it contains 
features that are not directly related to the 
material under study. Integration of AI with 
these versatile imaging techniques can enable 
analysis of extremely large data volumes in 
relatively short time frames while exponentially 
accelerating tomographic data analysis, 
possibly opening up novel avenues for 
performing 4D characterization experiments 
with finer time steps. More progress is needed 
and will rely on the generation of curated 
datasets, robust data processing techniques, 
and sophisticated data management solutions. 
 
The management of large-scale experimental 
data will also require smart data reduction 
techniques. For example, current coherent 
diffraction imaging experiments can generate 
data at 3 GB/s, resulting in datasets containing 
tens of terabytes for a single experiment. The 
data acquisition process is typically stalled 
when data generation rates are so high that 
experimental data can be flushed to nonvolatile 
memory. This high-volume data acquisition not 
only extends the end-to-end experimentation 
time but also limits experiments with time-
sensitive phenomena. Advancements in 
synchrotron light sources, such as the APS and  
 

 
Figure 14.1 Neutron computed tomography of ultra-high 
performance concrete (UHPC) is capable of identifying three 
different phases in the samples: cementitious paste, voids, and 
H-rich components (reinforced with fibers when present). 
 
Advanced Light Source (ALS) upgrades, will 
further complicate these problems as the data 
generation rates of the detectors will increase 
by several orders of magnitude for similar 
imaging modalities. Smart data reduction 
techniques (e.g., filtering relevant data or point-
of-interest data acquisition) will be necessities 
rather than features with the upcoming light 
source advancements. Although existing 
practices work well currently, there is an acute 
awareness that this model is unsustainable in 
the long run without the development of 
additional software and hardware infrastructure 
and the continuous support of existing activities 
such as domain-specific AI-based data 
compression schemes, searchable databases 
containing both experimental data and 
metadata, on-the-chip data reduction, and 
novel algorithms and workflows to improve 
performance. Some of these tasks related to 
scientific data management are currently being 
addressed in the Data Center Pilot, a large 
collaboration of data and experimental 
scientists at all U.S. light sources that aims to 
provide a sustainable road map to the future of 
data issues at experimental facilities. Similar 
initiatives are required to develop and maintain 
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other parts of the large-scale AI ecosystem for 
research facilities. 

2. Major (Grand) Challenges 
A new era is dawning in science and 
engineering, one that promises a revolutionary 
understanding of complex materials and 
chemical processes across the entire hierarchy 
of relevant length and time scales. This 
understanding demands moving beyond 
exploration of equilibrium phenomena and 
beyond models based on idealized materials 
and systems to create new states and achieve 
extraordinary new functions [6]. The over-
arching grand challenge facing scientists at 
DOE experimental user facilities is to 
understand, predict, and ultimately design 
emergent behavior in complex materials and 
systems. This will require progress in the 
following areas. 
 
Characterize biological function across 
length scales. X-ray, neutron, and electron 
methods generate structural, organizational, 
and dynamic data across a range of length 
scales from atomic to mesoscale. Example 
applications include high-resolution imaging of 
complex neuronal networks in brains to provide 
a clearer understanding of how even the 
smallest changes to the brain play a role in the 
onset and evolution of neurological diseases, 
such as Alzheimer’s and autism, and perhaps 
lead to improved treatments or even a cure. 
Figure 14.2 illustrates the power of a machining 
learning approach that maintains signal-to-
noise ratios with shorter x-ray exposures 
minimizing damage to radiation sensitive 
mouse brain. A second example is the 
characterization of heterogeneous systems 
such as the rhizosphere, where bacterial 
communities synergistically interact with the 
soil and roots of plants, and the observation of 
the dynamic assembly of functional complexes 
interacting within living cells [7]. The neutron 
radiograph in Figure 14.3 demonstrates the 
role of water dynamics in this region. In both 
these examples, molecular interactions at the 
nanometer scale cause emergent behavior at 

the millimeter scale and ultimately govern the 
dynamics of complex biological systems and 
tissues of interest. AI/ML methods will play a 
critical role in linking multimodal observations 
across this large, dynamic range of scale and 
is needed to build a predictive understanding of 
biological function across time and space. 
 

 
Figure 14.2 An image showing individual myelin sheaths, 
highlighted with different colors, surrounding mouse brain 
axons revealed by the analysis of experimental nano-CT scans 
taken at the 32-ID beamline of the APS [11]. 
 

 
Figure 14.3 Neutron radiograph of droughted black cotton-
wood (Populus trichocarpa) root system that has been 
rehydrated to measure the water dynamics in the roots, 
rhizosphere, and bulk soil regions. Worked performed at HFIR 
CG-1D Imaging beamline. 
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Observe and control nanoscale chemical 
transformations in macroscopic systems. 
Devices currently in use or being developed for 
selective and efficient heterogeneous catalysis, 
photocatalysis, energy conversion, and energy 
storage rely heavily on diverse multiscale 
phenomena, ranging from interfacial electron 
transfer and ion transport occurring on 
nanometer and picosecond scales to 
macroscale batteries that charge in hours and 
catalytic reactors with turnover times of 
seconds. Existing and planned instrumentation 
at DOE user facilities can probe these environ-
ments with atomic, chemical, and isotopic 
contrast spanning a large spatiotemporal 
range, thereby providing unique fundamental 
information about these functioning mesoscale 
chemical devices. These “nanokinetic” 
operando measurements are essential to 
optimize complex multiscale chemical and 
electrochemical devices. The use of AI/ML 
tools will be essential in interpreting the data by 
integrating experimental observations with 
computer modeling to provide multiscale 
models of complex chemical processes of 
importance to DOE’s mission.  
 
Understand and characterize physical and 
chemical processes in extreme environ-
ments. Understanding materials and 
processes in extreme environments such as 
ultrahigh pressure or temperature is of vital 
importance to the development of fusion and 
fission materials. Furthermore, such 
understanding provides unique insights into 
planetary physics and geosciences. The study 
of these materials using spectroscopic-, 
diffraction-, and imaging-based methods is 
performed throughout the DOE experimental 
user facility complex and, with the advent of 
diffraction-limited synchrotron light sources and 
next-generation free electron lasers, will 
provide structural characterization modalities of 
matter in extreme states that are far beyond 
what is achievable today. The use of AI/ML will 
be essential in the data analysis of these 
systems for the reduction of noise, solution of 
inverse problems, and linking of observations 
to molecular simulations. 

To solve these pressing scientific problems, 
new tools need to be developed. While AI/ML 
will play an important role in achieving these 
objectives, a number of synergistic, basic 
scientific and engineering developments will 
also be needed, including high-performance 
x-ray and neutron optics; sample chamber 
environments improved electron, x-ray, and 
neutron detectors; sample handling robotics; 
and upgrades to computational infrastructure 
for the efficient movement and storage of data 
across HPC facilities.  

3. Advances in the Next Decade 
A number of advances planned for the next 
decade will necessitate the need for AI/ML 
tools. There is a need to understand and model 
the behavior of complex systems across length 
scales and modalities to transform basic 
scientific discovery into a set of engineering 
principles that allow scientists to provide 
solutions to problems such as the need for 
plentiful, safe drinking water, safe, efficient 
alternative energy sources, and therapies to 
address degenerative diseases. While AI/ML 
will provide an indispensable set of tools to 
model these systems, parallel developments in 
improving neutron and (light) sources for x-ray 
and electron microscopy and hyperspectral 
imaging are fueling a revolution in the physical 
characterization of samples, with an attendant 
need for AI/ML support. A selected set of 
developments is summarized below. 
 
The development of diffraction-limited 
synchrotron light sources. The planned 
upgrades to Argonne’s ALS and APS will yield 
hard, tender, and soft x-ray sources [8,9]  
with significantly increased brightness that  
will allow scientists to explore more complex 
and disordered samples under controlled  
and operating conditions with a precision 
unknown before now—literally approaching 
theoretical limits. 
 
The development of new hardware for 
electron microscopy. Next-generation 
detectors for electron microscopy will greatly 
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increase data rates, resulting in better 
prediction of electron strike locations. They will 
also improve the electron beam–induced 
sample motion correction that has historically 
been a resolution-limiting factor. In addition, the 
development of “phase plates” will increase the 
contrast between sample and background, 
revealing particles that traditionally have been 
too small for electron microscope imaging. 
These and additional developments in sample 
delivery will significantly increase the 
applicability of electron microscopy, as well as 
the need for data management tools. 
 
The development of ultrafast light sources. 
The development of ultrafast light sources such 
as LCLS-II will be transformative for energy 
science as it will qualitatively change the way in 
which x-ray scattering, spectroscopy, and 
imaging can be used. High-repetition-rate 
machines will enable imaging of natural and 
artificial systems, spanning multiple decades of 
time scales and multiple spatial scales. High-
repetition-rate sources will enable powerful 
new ways to capture rare chemical events, 
characterize fluctuating heterogeneous 
complexes, and reveal underlying quantum 
phenomena in matter using nonlinear, multi-
dimensional, and coherent x-ray techniques 
that are only possible with a true x-ray laser. 
 
The development of higher brightness 
neutron sources. The planned upgrade of 
ORNL’s SNS accelerator to higher power and 
the addition of a Second Target Station will 
enable more rapid, time-resolved measure-
ments of transient and out-of-equilibrium 
phenomena; exploration of matter at extreme 
conditions, such as magnetic field, temper-
ature, and pressure; and simultaneous 
measurement across broad ranges of length, 
energy, and time. 

4. Accelerating Development 
To accomplish the grand challenges listed 
above and optimally leverage the hardware 
advances planned for the next decade, the use 

of AI-based tools is an absolute necessity. The 
ability to improve the stability of the 
instrumentation, perform experiments in an 
autonomous fashion, and interpret scientific 
data in a fully automated workflow—and the 
ability to discover patterns and behaviors 
across multiple experiments—will greatly 
accelerate scientific discovery (see Chapter 10, 
AI Foundations and Open Problems and 
Chapter 12, Data Life Cycle and Infrastructure). 
To facilitate this vision, investments in scientific 
data warehousing and real-time, experimental 
steering infrastructure need to be made (see 
Chapter 12, Data Life Cycle and Infrastructure), 
facilitated by state-of-the art data streaming 
and edge computing strategies (see Chapter 
15, AI at the Edge). At present, there is a lack 
of tagged or labeled (both raw and processed) 
scientific data accessible across the DOE 
landscape, limiting the development and 
training of AI-based tools that can be deployed 
in the control and analyses of experiments at 
user facilities. While facilities are developing 
AI/ML-based approaches aimed at real-time in-
experiment decision making, they are still far 
from being used routinely. The needed 
developments are discussed below. 
 
A database that consists of raw detector 
readings, processed data, and related user 
proposals, and associated scientific 
interpretations in the form of standardized 
data formats and domain-specific metadata 
languages. Creating enough model or 
simulated data to provide useful ML training 
sets will require access to HPC resources. 
These databases can be built in coordination 
with user communities, which in turn could be 
used to train efficient data reduction algorithms, 
perform data mining operations for the 
discovery of hidden statistical relations only 
visible in large datasets, and to build a fully 
automated “raw data to final model” analysis 
pipeline. Ideally, facility staff, users, and 
research communities in the broad sense 
would aid in a “data-tagging campaign” as part 
of the execution of their experiment. 
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A database that consists of metadata, such 
as scientific instrument responses (e.g., 
flux and focus) in combination with a record 
of instrument configurations (e.g., motor 
positions, neutron chopper phases, and 
monochromator bending parameters) and 
measurable instrument and environmental 
parameters (e.g., ring current, cooling water 
flow, and temperature readings). This 
information could be used to build advanced 
predictive models of accelerators, end stations, 
and sample delivery systems and to aid in 
automated alignment and calibration of instru-
ments, stabilizing user operations, predicting 
and preventing catastrophic failures, and/or 
reducing the total downtime of the instrument. 
While it is unclear whether data from different 
facilities can directly be used to inform models, 
the ability to find common patterns could 
provide cross-cutting improvements. 
 
AI-guided real-time experimental steering 
infrastructure based on curated data and 
metadata of the sample and instrument 
state during the experimentation. Gaining 
transformative insight into dynamic materials 
processes requires identification, tracking, and 
quantification of the most relevant volumes 
within a sample under various conditions of 
applied stimuli. AI tools have been shown to be 
capable to provide this type of guidance [10] 
and should ultimately suggest alternative 
imaging modalities with which to query the 
volume of choice. This situation presents a vast 
measurement parameter space that cannot be 
exhaustively surveyed, and that is very difficult 
to navigate when seeking concrete connections 
between sparse local phenomena, such as 
dislocation motion and grain boundary stress 
concentration, and bulk properties as a function 
of environment, especially in the context of 
irreversible processes. 

5. Expected Outcomes 
Given the anticipated pace of development in 
imaging, scattering, spectroscopy, and 
associated hardware, there is a dire need to 
develop data analytics technologies that can 
aid in making the best choices in experimental 
design, data reduction, and model generation 
while reducing the overall cost of data 
transmission, annotation, and storage. 
 
Early successes in the use of AI/ML tools in 
experimental facilities indicate that AI/ML will 
enable the throughput of experiments via 
autonomous experiments, resulting in the 
ability to explore larger sample configurational 
setups in a shorter amount of time, yielding 
more complete and informative scientific 
hypotheses. This in turn will result in a reduced 
cost of discovery, bringing scientific solutions to 
industry and society at a faster pace and at a 
reduced cost. AI/ML for the control of 
equipment will significantly reduce the need for 
human intervention in tasks that are currently 
performed by hand, resulting in more stable 
experimental facilities that produce superior 
data with a lower rate of human intervention. 
Similar arguments can be made for the data 
analysis component, resulting in more scientific 
opportunities and better use of the  
in-demand resources available at major DOE 
user facilities. 
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15. AI at the Edge 
Many of the use cases outlined in previous 
chapters—Chapter 4, High Energy Physics, 
Chapter 14, AI for Imaging, and Chapter 16, 
Facilities Integration and AI Ecosystem—
describe scientific discoveries using large 
instruments such as the Large Hadron Collider, 
the Very Large Array, and the IceCube South 
Pole Neutrino Detector. Likewise, DOE 
operates many distributed facilities, such as the 
ARM Climate Research Facility, that operate 
sensors and instruments across the planet (see 
also Chapter 2, Earth and Environmental 
Sciences). For both centralized and distributed 
facilities, instruments such as these produce 
vast quantities of data that often cannot be 
efficiently moved to or stored in a central 
repository, or they include latency-sensitive 
control systems that must act promptly on the 
incoming data. Moving a portion of the data 
analysis pipeline “to the edge,” where the data 
is generated, allows the required computation 
to identify the highest value data to be saved 
and to autonomously respond and control the 
experiment. The potential benefits of edge 
computing are widely recognized, and a 
considerable amount of work to realize and 
expand upon these benefits in business and 
science is under way [2]. 
 
Advances in AI and ML, both in hardware and 
software, are among the enablers of edge 
computing. For example, edge computing 
enables a self-driving vehicle to make 
decisions within the vehicle, using AI 
techniques to interpret data from the vehicle’s 
many cameras and sensors. This is necessary 
both because of the volume of data (i.e., too 
large to transmit to central servers) and the 
real-time requirement for vehicle controls (i.e., 
answers from remote servers may arrive far too 
late). Edge computing is possible, even with 
relatively low-powered computing hardware in 
the vehicle, because a large body of training 
data has been processed on high-performance 
servers (i.e., in the center) into ML models that 

can be deployed to run in the vehicle (i.e., at 
the edge). 
 
In the DOE community, a large and growing 
number of science and engineering projects 
require edge computing to imbue sensors with 
real-time adaptive or autonomous capabilities. 
In addition to the examples mentioned in 
Chapters 4, 14, and 16, consider the following. 
There are thousands of environmental 
monitoring sensors that typically produce 
longitudinal data with latencies of minutes to 
weeks between measurement and data 
availability due to their remote locations and 
low (or intermittent) capacity network 
connectivity (see also Chapter 3, Biology and 
Life Sciences). Edge computing capabilities 
would enable such instruments to analyze data 
locally in real time and feed a lower volume of 
processed information to central computing 
services for further processing. A radar 
deployed by the DOE ARM facility in Oklahoma 
could use ML at the edge to identify important 
weather phenomena and dynamically steer the 
instrument for more precise follow-up 
observations. Such an approach would 
increase the accuracy and timeliness of 
tornado warnings, ultimately saving lives. As 
mentioned in Chapter 8, Smart Energy 
Infrastructure, monitoring electrical power 
distribution infrastructure could prevent power 
failures or predict conditions conducive to 
wildfires; monitoring subsurface vibrations from 
oil wells could improve oil production; 
autonomous soil sampling and analysis 
devices could improve crop yield; more timely 
data analysis options would enable large-scale 
accelerators and light sources to optimize their 
operations and predict (and prevent) failures.  
 
DOE is in a unique position to address these 
challenges because it supports many of the 
research facilities requiring edge computing, 
either in the near term to better operate 
existing instruments or in the longer term to 
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develop more intelligent instruments. Further-
more, DOE supports an extensive community 
of scientists working on technologies including 
high-performance sensors, detectors, ML 
techniques, new computing architectures, and 
other critical facets of AI technologies required 
to tackle the grand challenges of today and 
tomorrow. As illustrated in Figure 15.1, DOE 
has the computing resources necessary to 
develop increasingly sophisticated models to 
run at the edge, sensor capabilities to support 
its many facilities and instruments, and edge 
computing research platforms to demonstrate 
the potential for enabling new science. 
Additional details on algorithm and software 
environment research are given in Chapter 11, 
Software Environments and Software 
Research, and Chapter 10, AI Foundations and 
Open Problems. 
 

 
Figure 15.1 Illustration of edge computing, from the sensor or 
instrument to the high-performance computer or cloud and 
back. [Presented in 2018 at the DOE Advanced Scientific 
Computing Advisory Committee (https://science.osti.gov/-
/media/ascr/ascac/pdf/meetings/201809/ASCAC-EdgeAI-
Beckman.pdf.) 

1. State of the Art 
Experimental facilities such as those operated 
at national laboratories have been generating 
large amounts of data traditionally provided to 
users via removable storage media. Upgrades 
and improvements to these facilities in recent 
years have increased the data volume to the 
point where such methods are impractical. As a 
result, they have joined the unique facilities 
noted earlier in implementing edge computing 
data management and analysis services local 
to their instruments. More importantly, these 
edge computing capabilities allow experiments 

to be adaptively steered. For example, 
Figure 15.2 shows a series of images 
illustrating an automation system under 
development where an electron microscope is 
first used in a low-resolution mode, while some 
AI algorithms (running locally with the 
instrument) identify regions on the sample with 
features of interest. The electron microscope is 
then directed to scan the selected regions in a 
higher resolution mode. 
 

 
Figure 15.2 Edge computing can enable instrument steering 
using AI at the edge to identify features of interest [3]. 
 
In addition to the need for edge computing with 
centralized instruments, such as electron 
microscopes and light sources mentioned 
above, there are applications that require input 
from networks of sensors. For example, DOE 
funds a number of environmental monitoring 
projects where sensors are distributed, often in 
remote locations with limited networking 
connectivity. In these cases, edge computing is 
required both for data compression and for 
adaptive sensing. Similar to the previous 
example with electron microscopy, 
high-bandwidth measurements may only be 
necessary during events of interest, and edge 
computing could change the sensor’s sampling 
rates in the same fashion. 
 
Rapid improvement of low-cost sensors is 
creating opportunities for unprecedented 
measurement capabilities, all of which require 
edge computation. But in the absence of 
general-purpose edge computing platforms, 
most teams are creating ad hoc solutions. For 
example, in a large experiment involving 
monitoring of black carbon in the urban 
environment [4], scientists at LBNL had to limit 

https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/201809/ASCAC-EdgeAI-Beckman.pdf
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/201809/ASCAC-EdgeAI-Beckman.pdf
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/201809/ASCAC-EdgeAI-Beckman.pdf
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the sampling rate of the sensors so that the 
amount of data could be easily handled by the 
available network. In other cases, such as 
Argonne’s Waggle project [5], multiple science 
groups pooled expertise and resources to build 
a shared, general-purpose edge computing 
platform. While the resulting devices were 
more expensive than traditional sensor devices 
without edge computing, the cost was shared 
by multiple experiment teams in large-scale 
projects such as Chicago’s Array of Things [6], 
an experimental instrument with dozens of 
sensors. The platform also supports industry 
collaboration on the use of edge computing to 
create new measurement and fault prediction 
capabilities for the national electric power grid 
[7], where more precise monitoring and 
analysis of electricity generation and loads 
could enable AI-based models to forecast 
catastrophic power failures. 
 
With additional advances in sensing technology 
and AI capabilities such as Google Edge TPU 
[8], Intel Movidius [9], and IBM TrueNorth [10], 
the use of AI at the edge will continue to grow. 
Integrating these advances into DOE mission-
critical applications could dramatically improve 
scientific productivity. 

2. Major (Grand) Challenges 
While industry is certainly interested in AI at the 
edge, its focus is largely on delivering AI 
products to end users (e.g., cell phones and 
autonomous vehicles). DOE will leverage the 
technologies developed for industrial 
applications; however, it will need to address 
some unique challenges for scientific 
applications. The following sections present the 
grand challenges in the scientific arena that will 
motivate the computer science and applied 
mathematics work necessary for supporting AI 
at the edge. 
 
Improve scientific productivity with high-
speed data through AI at the edge. One 
unique challenge with scientific applications is 
that they often involve very-high-speed 

sensors. For example, devices with data rates 
of 100 TB per second are currently being 
tested in cryogenic electron microscopy. A 
number of other light sources and electron 
microscopes are expected to return similarly 
high data rates in the future. AI at the edge 
could be an effective way to process such high-
velocity data streams. 
 
Another example is distributed acoustic 
sensing (DAS), which uses fiber-optic cable to 
monitor seismic motion. It is much cheaper to 
deploy than traditional seismometers and 
captures the motion along the full length of the 
cable. It has the potential to revolutionize many 
subsurface applications but has to quickly 
analyze a large volume of data (i.e., terabytes 
per day). Fortunately, the common data 
analysis procedure illustrated in Figure 15.3 
only requires the raw sensor data in the first 
step; therefore, DAS is amenable to edge 
computing to generate interferometry. Because 
interferometry is much smaller in data volume 
than the raw data, it can be much more easily 
shipped to a central location for further 
processing. 
 

 
Figure 15.3 Steps in data analysis for distributed acoustic 
sensing. 
 
There are many high-speed data streams that 
could be similarly processed, which makes 
processing high-speed data streams the first 
challenge for AI at the edge. 
 
In addition to data velocity, AI at the edge will 
also have to deal with data quality issues 
arising from malfunctioning sensors while 
working under constraints of memory, storage, 
and electric power. 
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Enhance scientific discovery through 
integration of multiple data sources. 
Scientific applications not only analyze data 
from each high-speed sensor separately, they 
also need effective integration of up-to-date 
information from multiple, often heterogeneous, 
sensors. AI at the edge that can leverage 
heterogeneous data sources will enable real-
time optimization of these scientific applications 
and new scientific discoveries. The following 
example from agricultural land use, which has 
sweeping consequences for carbon 
sequestration, water resources, chemical 
pollution, and crop yield, illustrates the 
complexities involved [11]. 
 
The AR1K smart farming consortium [12] 
envisions integrating data from satellites, 
sensor-equipped drones, ground stations, and 
embedded sensors to understand dynamics 
such as the role of soil conditions and 
microbiomes in sequestering carbon. Analysis 
from DNA sampling and sensor data (e.g., soil 
nutrients and composition) and drone-mounted 
multispectral cameras aims to improve crop 
yield while reducing the use of chemicals and 
fertilizers. Today, many measurements rely on 
manual sampling and operation, severely 
limiting the scope and scale of measurement 
and analysis. AI at the edge would perform 
data analysis and reduction in situ and support 
a transition to autonomous, robotic soil and 
plant sampling and sensing devices. 
Furthermore, it would do so at low cost and 
small physical scale to enable deployments of 
thousands of units. This level of scale and 
automation will be essential for understanding 
and optimizing the nation’s agricultural 
resources and addressing the growing impact 
of agricultural land use, ranging from chemical 
runoff to inefficient use of water. 
 
Many other DOE-supported environmental 
applications such as the Next-Generation 
Ecosystem Experiments (Tropics and Arctic) 
have similar needs to integrate information 
from many different sensors. Other application 
areas such as cosmology are also starting to 
integrate multiple sensors, including optical 

telescopes, microwave telescopes, and 
gravitational sensors, to capture and analyze 
important events.  
 
Such large-scale data integration will likely 
primarily be used in science in the next decade 
and will require funding from agencies such as 
DOE, making it the second challenge for AI at 
the edge. 
 
Enable smart scientific infrastructures 
through AI at the edge. The challenges 
discussed so far involve discrete analysis 
operations at the edge. To manage large 
distributed systems, it will be necessary not 
only to analyze data from multiple sources, but 
also to make coordinated decisions to direct 
distributed actions. The DOE ESnet [13] 
exemplifies aspects of this challenge. 
 
DOE has invested in large, national-scale 
facilities and cyberinfrastructures. The ESnet 
that connects these DOE facilities to one 
another and to the world is central to efficient 
operations of these facilities. Over its 40-year 
history, the volume of data flowing through 
ESnet has consistently doubled every 
17 months. Over the next decade, the 
projected exponential growth of “wearables” 
and IoT devices will bring new challenges with 
respect to scale, emergent properties, and 
cybersecurity. Consequently, cyber-
infrastructure operation—from local instrument 
to facility to laboratory scale to ESnet—will 
require embedded edge AI to make intelligent 
decisions and coordinate actions across the 
globe. To facilitate this, DOE is planning to 
implement advanced telemetry on ESnet 
networking equipment and to use AI at the 
edge to digest and process telemetry 
measurements to initially recommend and 
ultimately autonomously execute the majority 
of the networking operations. These tasks 
include routing of traffic, fault detection, 
isolation, and remedy, as well as identifying 
and addressing cybersecurity threats. This 
autonomous self-managing, self-tuning, and 
self-healing scientific cyberinfrastructure, like 
the mobility ecosystem, will rely on edge AI for 
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such optimizations. It will also rely on edge AI 
to forecast, detect, and resolve system-level 
interactions leading to unforeseen global 
system behavior, while aiming to optimize for 
system-wide performance goals. 
 
Other large DOE resources may require similar 
smart technology to integrate different types of 
computing resources, sensors, and actuators. 
In particular, we anticipate a computer center 
would include a collection of computing 
resources of different types and sizes  
(e.g., traditional HPC systems augmented with 
specialized AI processors and quantum 
processors). Such a computing facility might be 
closely linked to nearby experimental facilities, 
such as light sources and particle accelerators. 
 
Integrate systems of systems using AI at 
the edge. The next level of challenge for AI at 
the edge involves near-real-time interactions of 
multiple large distributed systems. For 
example, industry is working on autonomous 
vehicles, while the research community is 
thinking about a future with smart vehicles fully 
integrated with smart transportation 
infrastructure and smart cities [14]. Additional 
mobility players are on the horizon, from 
autonomous aerial and ground devices to 
interactions with wearables associated with 
pedestrians and cyclists. Indeed, AI at the edge 
will be ubiquitous in cities and mobility 
systems, making it extremely difficult to 
centralize the necessary information from tens 
of thousands of independent AI-controlled 
devices to understand their emergent 
behaviors. A distributed AI-at-the-edge 
approach is the only feasible solution to 
address this need to integrate multiple 
distributed systems. Each of the participating 
systems needs to be open and interoperable, 
and sophisticated edge AI capabilities will 
perform tasks such as negotiation and 
optimization across many interacting AI 
devices and services, as well as detection and 
prevention of failures due to system 
interactions, natural events, or intentional 
attacks—all the while balancing necessary data 
exchange with personal privacy. Such 

distributed AI capability would also be critical 
for improving the reliability of the nation’s 
electric power grid, oil production, and other 
energy-related systems. 

3. Advances in the Next Decade 

As AI further permeates everyday life over the 
next decade, industry will turn to low-power 
edge devices for AI computation. The current 
paradigm of sending data back to a data center 
for analysis will no longer be tractable as the 
volume of data being collected becomes too 
large and the speed upon which it needs to 
acted increases with the need for real-time 
control. Industry has invested heavily in a 
variety of edge computing devices for AI, 
including tensor calculation accelerators  
(e.g., Google’s Edge TPU and Intel’s Movidius) 
and neuromorphic devices (e.g., IBM’s 
TrueNorth and Intel’s Loihi). There will be 
dramatic improvements in the power 
consumption and compute capability of these 
devices over the next decade.  
 
Industries are also at the forefront of 
developing streaming data analysis systems 
and data standards. For example, many 
companies such as Waymo [15], Tesla [16], 
and Uber [17] are developing various versions 
of the self-driving software platform to go with 
their own vehicles. Many of the general-
purpose ML systems are also creating 
streaming versions for mobile and embedded 
applications (e.g., Google TensorFlow has 
TensorFlow Lite, and PyTorch has a number of 
distributed backend systems that could support 
embedded applications). 
 
It is anticipated that the commercial 
technologies will progress quickly in the next 
decade; however, these advancements are 
unlikely to meet the needs of the grand 
challenges mentioned in the previous sections. 
Various scientific applications will create data 
much faster than commercial applications. For 
example, monitoring the environment and the 
electric power grid will require data integration 
on a much larger scale than any commercial 
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enterprise. The connected mobility systems 
may have data rate, data volume, and data 
variety challenges not seen in commercial 
uses. Even for hydraulic fracturing applications, 
where there is clear commercial interest, there 
might still be the need for DOE or some other 
agencies to fund the initial development of the 
data analysis technology as in the case of the 
drill head used for hydraulic fracturing [18,19]. 
Funding the underlying data analysis research 
will benefit many applications, directly or 
indirectly, with far-reaching impacts. 

4. Accelerating Development 
Supporting AI at the edge will be very important 
to many future DOE efforts. Much as AI is 
permeating everyday life, it is also permeating 
nearly every field of science. This often takes 
place as an analysis of static data sets 
collected in advance. However, the ability to 
analyze data as it is collected or to exert real-
time control over experiments presents an 
incredible opportunity to achieve discoveries 
that otherwise would not be possible. 
 
The grand challenges mentioned previously 
may be able to leverage industrial development 
to a certain extent. For example, the challenge 
of handling data from high-speed sensors may 
be resolved by leveraging the new AI hardware 
and more computing capability per watt. 
However, the need to integrate systems of 
systems is unlikely to be addressed by 
industry. Therefore, to accelerate development, 
the following key algorithmic and mathematical 
challenges, derived from distinct application 
requirements, will have to be addressed. (Note 
that some of these topics overlap with those 
described in Chapters 7–9.) 
 
Learning under limited resources. Edge 
computing is expected to operate under a 
number of resource limitations. For example, 
the computing resources at the edge are likely 
to be much smaller than could be available at a 
cloud data center or HPC center. Because of 
this, AI at the edge is going to work with limited 
data, presumably only the most recent data 

records. Under such limitations, the AI model is 
likely to be relatively small in size and will have 
to be updated periodically to accommodate 
new trends. New algorithms will be needed to 
cope with such resource constraints. 
 
Understanding errors, failures, and 
correctness. Devices at the edge are often 
unreliable, and the data collected could be 
noisy or otherwise imperfect. Correctly 
understanding the impact of the noise, errors, 
and failures on data analysis operations and 
control actions will be another challenging 
issue. More broadly, improving reliability, 
robustness, and interpretability is a key 
fundamental research topic for AI. 
 
Dealing with all aspects of the computing 
continuum. To bring the promise of AI at the 
edge to DOE science domains, there is a need 
to smoothly connect the edge and the core. 
Currently, there is no unified programming 
framework for the “computing continuum”—
storage, networking, and computing resources 
from edge to fog to cloud. A better way to 
describe, model, and program the computing 
continuum from components and behaviors to 
systems, objectives, and intents is needed. 
 
Modeling interactions. For edge devices to 
properly interact with the core and other edge 
devices, information and AI models have to be 
exchanged and understood by all parties 
involved. Modeling the interactions is critical to 
allow larger systems to be composed from 
individual components and smaller systems. 
Limited work is currently available on this topic. 
 
Managing dynamic resources and 
interacting systems. AI at the edge requires 
new edge-focused resource management and 
support for multitenancy. Current edge 
computing systems, such as Waggle, 
concentrate on a single device; future edge 
nodes must be able to support multiple AI 
workloads scheduled to match sampling rates 
or operational needs. Additionally, the diverse 
nature of edge computing requires 
heterogeneity of edge computing hardware. 
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Research on how to design and optimize these 
heterogeneous computing nodes in a 
systematic and scientific manner is needed.  

5. Expected Outcomes 
DOE’s mission demands high-performance AI 
at the edge to harness the power of large 
experiments and supercomputers. The 
anticipated work will allow data collection and 
analyses at scales not possible in the absence 
of edge computing. By investing in highly 
capable, robust, and versatile edge devices, 
DOE will enable scientists to perform large-
scale experiments in harsh environments. AI at 
the edge will empower scientists to modify their 
experiments in real time based on the data 
being collected and thus drive them toward 
discoveries that would not be achievable 
otherwise. High-performance AI at the edge will 
fundamentally change the way DOE scientists 
work. 
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16. Facilities Integration and AI Ecosystem 
Recent advances in AI have been driven by 
the ability to collect, store, and process large 
labeled datasets using large HPC and HPN 
facilities. DOE HPC facilities represent some of 
the world’s largest computational and data 
ecosystems for generating, moving, and 
analyzing experimental and simulation data. 
These facilities are uniquely positioned to be 
centers for advances in AI research and 
applications and must therefore be prepared to 
fully support these capabilities in the next 
decade. Improving integration among DOE 
user facilities will ensure scientists have  
what is needed to apply AI methods in 
their research.  

1. State of the Art 
Data Management and Movement: Access 
to Data. AI derives its effectiveness from 
statistical generalizations gleaned from large 
volumes of often high-dimensional data. Within 
the scientific community, such data can be 
found at experimental, observational, and 
computational facilities, and the path forward 
requires making it readily available for use with 
AI applications. Most data management 
challenges have been described by what are 
known as the FAIR data principles. However, 
the infrastructure for managing, curating, 
publishing, and cataloging datasets that 
adhere to these principles has yet to reach the 
same level of maturity as the storage, 
compute, and network infrastructures. 
 
Resource Orchestration: Co-scheduling 
and Co-designing. Practically all scientific 
domains are undergoing paradigm shifts due 
to explosions in the volume, variety, and 
velocity of datasets. Effective exploration of 
data via AI methods necessitates the tight 
coupling of experimental, observational, 
computational, and data facilities within and 
beyond the DOE complex. The tight coupling 
includes seamless access (i.e., authorization, 
authentication) and consistent interfaces to 

facilities regardless of location, HPNs to 
connect facilities, and co-scheduling of 
resources. Much of the work to date has been 
at the prototype level and additional 
functionality, including resource modeling, 
resource scheduling, and trust models, is 
still needed. 
 
Smart Facilities: AI to Enable AI. HPC and 
HPN are capable of generating a 
comprehensive range of operational statistics 
with potential to leverage AI capabilities for 
facility control, monitoring, and management. 
For example, the scientific community is 
exploring the use of AI models on operational 
and application data generated by facilities to 
identify and proactively predict hardware 
failures before they occur. Standards for data 
collection, data and metadata representation, 
and data curation have not yet been 
established, presenting opportunities to exploit 
AI capabilities and increase the operational 
efficiency of the large HPC ecosystems 
deployed by DOE. 

2. Major (Grand) Challenges 
The overarching challenge for realizing the full 
potential of data-driven science is the 
development of the infrastructure required to 
facilitate AI applications. At least three major 
challenges have emerged in the quest for 
comprehensive facilitation of AI workloads. 
 
Enable greater access to data. For years, 
scientists have decried the rate of growth of 
scientific information (estimated in one recent 
study to double roughly every 9 years*). Thus, 
data management will present a major 
challenge to the application of AI for science 
research (see Chapter 12, Data Life Cycle and 

 
* Richard Van Noorden, “Global scientific output 

doubles every nine years,” Nature News Blog, 
May 7, 2014, (http://blogs.nature.com/news/2014/ 
05/global-scientific-output-doubles-every-nine-
years.html). 

http://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html
http://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html
http://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html
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Infrastructure). This includes developing a 
broad range of capabilities, such as software 
and services for accessing, sharing, managing, 
searching, discovering, publishing, cataloging, 
and curating data, in addition to tracking 
provenance and community-driven best 
practices for representing, storing, and 
exchanging data. 
 
Facilities will need to collaborate to develop a 
unified scientific data management system that 
simplifies routine operations like searching, 
organizing, sharing, moving, and annotating 
data via an uncomplicated user interface. 
Simplified access to data from a 
heterogeneous collection of facilities, through 
technologies such as federated identities, will 
be key. Such a system will need to account 
for—and, if necessary, abstract—different 
security and authentication protocols used at 
various facilities and be able to offer necessary 
security for handling sensitive data associated 
with national security or health applications. 
Users should not be concerned with which file 
system or repository will be used to host their 
newly published data. The system will need  
to interface with software environments, 
computational workflows, and scientific 
instruments to extract relevant parameters, 
calibration information, and source datasets 
relevant to downstream consumers of the  
data products (see Chapter 11, Software 
Environments and Software Research). 
 
A central data management system needs to 
be closely linked with ancillary services that 
would handle specific operations such as 
publishing, cataloging, and curating datasets. 
While many such stand-alone capabilities exist 
today, these systems do not communicate well 
with each other to form an integrated, strongly 
knit family of services. These data systems 
need to be designed with long-term storage 
and routine movement of petabyte-sized 
datasets in mind. The ability to index millions 
to billions of data records across a facility or 
combination of facilities will also be required. 
The division of larger scientific data 
repositories into smaller data silos may be 

inevitable due to differences in how they are 
generated including programmatic 
expectations. These silos, however, will need 
to interoperate with the central data 
management service in a way that provides a 
consistent interface to users. 
 
In addition to developing the necessary data 
infrastructure, facilities, publishers, and 
sponsors will need to collaboratively develop 
policies to encourage best practices. These 
include publishing and referencing datasets 
used for journal publications, the use of 
community-driven and open source file formats 
to exchange data, and the use of community-
standard schema and vocabulary to express 
rich metadata that describes and provides 
context to published data. Scientific domains 
will need to agree on data standards that 
include documentation on community access 
to facility data archives. Facilities may be able 
to play a role in organizing scientific domain–
oriented workshops where experts develop 
domain-specific metadata and data standards 
that are compliant with the underlying 
data services. 
 
In 10 to15 years, an ecosystem of connected 
facilities and networks will be needed to host, 
curate, and share domain training datasets 
and current state-of-the-art trained models for 
the scientific community. At the core of this 
ecosystem will be facility-specific, metadata-
rich data catalogs with programmatic 
interfaces that enable the automation of data 
discovery, data movement, and AI training. 
 
Develop AI-focused HPC hardware. 
Facilitating AI application science will be a 
substantial change for all facilities as they will 
need to broaden support beyond traditional 
modeling and simulation work to include 
observational and experimental components. 
This will include complex data interactions that 
lead to new scientific opportunities. 
Specifically, future HPC facility architectures 
will need to be better optimized to handle more 
complex data traffic, both within the facility and 
with external facilities of all types (see 
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Chapter 13, Hardware Architectures). HPC 
centers will need to pay special attention to 
high-performance networking for routinely 
moving the petabyte-scale datasets required 
for AI training tasks that will include file system 
I/O performance. The architectural details 
touch all parts of the computing ecosystem 
and will need to be systematically optimized to 
deliver the highest scientific impact. 
 
In contrast to traditional simulation-only 
workloads whose data footprints typically have 
small inputs but large structured outputs, AI 
workloads will need to access large volumes of 
unstructured data, sometimes repeatedly, with 
a need to also write relatively modest 
checkpoint and output files. File systems can 
better support these workloads with faster 
random read speeds while compute nodes 
would benefit from fast burst buffers to 
maintain a local cache of frequently used input 
data. High-speed interconnects will need to 
facilitate fast periodic ALL-to-ALL random 
exchange of training data and gradient 
synchronization. AI workloads may also have 
large memory footprints. Because AI models 
can be trained with single and even half-
precision arithmetic (unlike simulations, which 
often need double precision), CPU 
architectures capable of supporting operations 
with varying precisions will help maximize 
throughput in AI workloads. Similarly, future 
high-performance computers could use 
next-generation accelerators such as TPUs or 
neuromorphic computing units that are better 
suited for AI workloads as extensions for more 
conventional CPU and GPU architectures. 
 
On a broader scale, data may need to be 
transferred across the ESnet HPN and may 
need to leverage computing and specialized AI 
hardware close to the instrument or sensor 
distributed across the network. This edge 
computing need could apply to data streamed 
directly through multiple stages of a network 
where it is used and then discarded. Every link 
in this chain—data portals, networks, edge 
computation, HPCs, and I/O systems—needs 
to be architected with AI applications in mind to 

efficiently exploit the huge potential gains in 
distributed computational performance. 
 
Facilitate resource orchestration. Ensuring 
that data can be brought to a heterogeneous, 
distributed compute infrastructure needed for 
AI-based science requires new levels of cross-
facility coordination and orchestration. AI 
workflows can include a variety of compo-
nents, such as experimental data, multiple 
data repositories, local and nonlocal computing 
platforms, LANs and WANs, storage, and 
people in the loop. Policies at facilities will 
need to be restructured to allow seamless co-
scheduling of these heterogeneous resources 
for scientific productivity. The federation of 
disparate or geographically distant facilities will 
need to be overcome through the development 
of standardized protocols and cross-facility 
identity management to allow movement of 
computational workloads and data. For 
example, these advancements will be critical 
for enabling “self-driving experimental facilities” 
(see Chapter 14, AI for Imaging). 
 
Additionally, the orchestration of resources 
varies at different time scales and may be 
neither aligned nor readily predictable. 
Experiments may need quasi-real-time, 
AI-powered data analyses that depend on 
experimental operating and downtime 
schedules. In contrast, multiple runs of an AI 
training algorithm to find optimal network 
hyperparameters may tolerate a multiday 
turnaround period. Resource orchestration 
across multiple facilities will need to account 
for the urgency of the request, which may 
require high-priority, on-demand computing for 
some cases. 
 
A global, AI-driven resource orchestrator will 
need to account for the heterogeneous 
computing landscape, as each computing site 
will have unique capabilities. The AI resource 
orchestrator could direct data and 
computational resources based on the optimal 
path and location for hardware, availability, 
energy costs, and the specific scientific 
application. Not only would this result in a 
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more efficient workload for the scientist, but 
there is potential to make more efficient use of 
network and computational facilities, avoiding 
bottlenecks and maintaining high use of all 
resources. Such an orchestrator could provide 
continuous feedback on how to improve 
efficiency and performance. 
 
Leverage AI to enable AI with smart 
facilities. The increasing complexity of HPC 
and HPN workloads will require innovations in 
facility operations, and AI will play a critical role 
in driving this evolution. AI workloads present 
unique challenges because of their data 
movement patterns and uncommon mix of 
compute intensity and I/O (e.g., training vs. 
inference). In the short term, it will be important 
to develop representative AI benchmarks to 
characterize AI workflows and understand the 
optimizations required to efficiently support 
workflows associated with these use cases. 
This will involve developing AI benchmarks 
that expose operational data from the facilities 
through exemplar training and inference 
workloads. This information can then be used 
to build the tools and infrastructure to support 
AI at scale across the DOE complex, where 
these AI benchmarks should become an 
integral part of those currently used by 
computational and networking facilities. 
 
A long-term goal for facility operations would 
be to drive operational decision-making using 
AI methods. A truly automated, optimized 
facility will be able to predict faults, detect 
anomalies or performance degradation, and 
balance the computational workload 
accordingly. However, for this grand challenge 
to be met, the right operational data need to be 
identified and collected. Identifying the dataset 
of telemetry that can be used by researchers 
to design autonomous behavior is not a trivial 
task—facilities currently produce numerous 
terabytes of telemetry data per day on 
everything from network statistics to power 
consumption. Identifying, curating, cleaning, 
and sharing these data are vital to designing a 
truly automated facility, as well as to 
developing a smart resource orchestrator. AI 

could also be used to simplify or automate 
access to software modules, input datasets, 
validate computational or experimental runs 
against previous runs, recommend new 
parameters for runs to avoid duplication, and 
study unexplored phenomena. 
 
Meeting this challenge will enable AI to tune 
the ecosystem to create a more effective 
environment for AI applications. This will be of 
general benefit to users of such facilities due to 
the more flexible and performance-based 
environment. In addition, this will be of huge 
value to the facilities themselves, empowering 
them to predict usage patterns, identify trends 
in resource use, and make more informed 
decisions about future architectures (see 
Chapter 9, AI for Computer Science).  

3. Advances in the Next Decade 
The next three years will see the deployment 
of ESnet6 and NERSC-9 (Perlmutter), and the 
first generation of exascale machines (Aurora 
at ALCF and Frontier at OLCF) across the 
DOE complex (Figure 16.1). 
 
All of these facilities already support the most 
popular AI frameworks, and it is expected that 
DOE will support the development of additional 
HPC-focused AI frameworks in the next 
decade, along with platforms that facilitate 
sharing and publishing AI networks, 
hyperparameters, and weights in a 
framework-agnostic and architecture-agnostic 
manner. The DOE ASCR facilities are all 
developing programs to increase support of AI. 
These programs will foster burgeoning AI 
applications in HPC ecosystems and need to 
be folded into generalized allocation programs. 
The deployment of scalable scientific data 
management systems that will form the 
foundation for curating high-quality datasets 
will also be necessary. This work will continue 
with the deployment of data gateways that 
facilitate the transfer of data from a variety of 
sources to computational facilities. It is  
also expected that AI will be extended  
to support rapid data processing at HPC 
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facilities to enable quasi-real-time feedback on 
experiments and observations. The data 
gateway and the scientific data management 
system will be critical components expected to 
substantially reduce the accumulation  
of “dark” (i.e., unpublished) data and 
accelerate the accumulation of well-annotated 
and standardized data for AI in the 
upcoming decade. 
 
Looking further ahead, the ASCR facilities will 
continue to design complex, technically 
advanced networking and computing facilities 
for future science generations where the needs 
of the AI ecosystem will be an integral part of 
any initial design. Given the pace of change in 
AI technology and techniques, these future 
facilities will also need to be designed with 
flexibility in mind to take advantage of the 
advances that will inevitably come from 
application work over the next decade. 

4. Accelerating Development 
An AI agent is only as capable as the quality of 
data used to train it. Currently, we lack the 
infrastructure and policies to facilitate curation 
of the high-quality datasets critical to fully 
realizing the potential of AI. The FAIR data 
principles provide ample guidelines for 
reaching this goal. Facilitating AI necessitates 
additional manpower for the further 
development of data management, movement, 
curation, publication, standardization, and 
streaming software/services (see Chapter 12, 
Data Life Cycle and Infrastructure). Some work 
has already begun along these lines at every 
DOE facility. However, a highly coordinated 
effort across the DOE complex will be  

necessary for rapid progress in this area. 
Software and services can facilitate good data 
practices that will feed AI agents, but actual 
accumulation of high-quality datasets is 
contingent on researchers using the 
aforementioned data software stack to 
populate data repositories. Policies must be 
developed to minimize generation of dark data 
and maximize generation of well-annotated 
data. AI efforts will be necessary to draw 
insights from the collected data, but facilities 
need to first train their researchers on ML, 
including DL, techniques. Furthermore, 
facilities will need to foster AI development 
through dedicated research programs. Given 
the data explosion in practically all scientific 
domains, facilities will need to train 
researchers on using high-performance 
computers for developing, scaling, and 
deploying AI agents that can leverage the 
ballooning body of data. 

5. Expected Outcomes 
Without the support of DOE facilities, the 
scientific community will struggle to take 
advantage of the promise of AI. The 
processing power of DOE supercomputers, 
including the forthcoming exascale systems, is 
vital to train AI algorithms using the huge 
amounts of data being produced and curated 
by the scientific community. However, simply 
building these computing facilities does not 
guarantee that they will be accessible and 
useful for AI research. The infrastructure 
described in this chapter will be essential to 
allow scientists to take full advantage of the 
compute resources DOE offers. AI will itself be 
essential to creating such an infrastructure. 
 

 
Figure 16.1 Over the next three years, DOE will stand up its first generation of exascale machines. These systems, along with the 
upcoming ESnet high-performance network, present a unique opportunity to leverage HPC in the development of AI for science. 
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With appropriate direction, funding, and the 
cross-facility cooperation described in this 
chapter, the goal of a seamlessly 
interconnected DOE complex can be achieved 
in 10 years. Such a reality will allow scientists 
to build AI-driven experimentation and 
discovery workflows, optimized and controlled 

by embedded AI in a transparent facility 
infrastructure spanning the DOE complex, 
allowing data and compute resources to be 
directed according to the needs of the 
scientists and the availability of resources, 
without a human in the loop. 
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AB. Agendas 
AI for Science Town Hall 

Argonne National Laboratory 
Advanced Photon Source (APS), Building 402 

July 22–23, 2019 

Monday, July 22, 2019 
8:30 a.m.  Registration…………………………………………………………..APS Main Lobby 
 
9:00 a.m.  Welcome………………………………………………………………APS Auditorium 
  Kim Sawyer 
 
9:10 a.m.  Introductory Remarks………………………………………………APS Auditorium 
  Congressman Bill Foster 
 
9:20 a.m. Opening Statement………………………………………………….APS Auditorium 
  Barbara Helland 
 
9:30 a.m. AI for Science Opportunities………………………………………APS Auditorium 
  Rick Stevens 
 
10:30 a.m. Morning Break 
 
10:45 a.m. AI at Scale 1: Cosmology…………………………………………..APS Auditorium 
  Salman Habib 
 
11:05 a.m. AI at Scale 2: Materials……………………………………………..APS Auditorium 
  Ian Foster 
 
11:25 a.m. AI at Scale 3: Climate………………………………………………APS Auditorium 
  Rao Kotamarthi 
 
11:45 a.m. Breakout Session Charge Questions…………………………...APS Auditorium 
  Rick Stevens 
 
12:00 p.m. Collect Lunch and Proceed to Application Breakout Sessions 
 
  Materials, Chemistry and Nanoscience…………………………..TCS 1404/1405 

Co-leads: Cynthia Jenks, Tim Germann 
Session scribe: Chris Knight 
 
Materials, Chemistry and Nanoscience………………………..…TCS 1406/1407 
Co-leads: Steve Plimpton, Pieter Swart 
Session scribe: Huihuo Zheng 

 
Imaging and Scientific User Facilities……………………………….APS Gallery 
Co-leads: Nicola Ferrier, Shinjae Yoo 
Session scribe: Nicholas Schwarz 
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Imaging and Scientific User Facilities……………………..….APS E1100/E1200 
Co-leads: Barry Chen, Christine Sweeney 
Session scribe: Justin Wozniak 

 
Environment, Climate and Earth Science…………………………….APS A1100 
Co-leads: Rao Kotamarthi, Haruko Wainwright 
Session scribe: Scott Collis 
 
Biology and Life Science………………………………………….APS Auditorium 
Co-leads: Thomas S. Brettin, Ben Brown 
Session scribe: Gyorgy Babnigg 

 
Fundamental Physics………………………………………………….…TCS 1416a 
Co-leads: Katrin Heitmann, Paolo Calafiura 
Session scribe: Corey Adams 

   
Engineering and Technology……………………………………..Bldg. 241 D172 
Co-leads: Santanu Chaudhuri, Stuart Slattery 
Session scribe: Shashikant Aithal 

   
Energy (wind, solar, fossil, etc.)……………………………………….TCS 1416b 
Co-leads: Mihai Anitescu, Bill Tang 
Session scribe: Julie Bessac 

 
2:40 p.m. Breakout Sessions End 
 
3:00 p.m. Breakouts Report Out (10 minutes each)…………………..…APS Auditorium 
 
4:30 p.m. Day One Close-out Summary…………………………………...APS Auditorium 
  Rick Stevens 
 
5:00 p.m. Adjourn 

Tuesday, July 23, 2019 
8:30 a.m.  Registration………………………………………………………..APS Main Lobby 
 
9:00 a.m.  Summary of Day 1 and Day 2 Cross-cut Charge…………....APS Auditorium 
  Rick Stevens 
 
9:30 a.m. Technological and Cross-cut Breakout Sessions 
 

Optimization / UQ / Statistics……………..……………………..TCS 1404/1405 
Co-leads: Stefan Wild, Clayton Webster 
Session scribe: Bethany Lusch 
 
Optimization / UQ / Statistics……………..……………………..TCS 1406/1407 
Co-leads: Ana Kupresanin, Earl Lawrence 
Session scribe: Vishwas Rao 
 
Convergence of Simulation and Data Methods…………………...TCS 1416a 
Co-leads: Emil Constantinescu, Frank Alexander 
Session scribe: Taylor Childers 
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Convergence of Simulation and Data Methods…………………...TCS 1416b 
Co-leads: Justin Newcomer, Cory Hauck 
Session scribe: Hong Zhang 
 
Data Infrastructure and Life Cycle……………………………PS E1100/E1200 
Co-leads: Ian Foster, Kerstin Kleese van Dam 
Session scribe: Youssef Nashed 
 
Hardware and Architecture…………………………………………APS Gallery 
Co-leads: Andrew Chien, Jeffrey Vetter 
Session scribe: Murali Emani 
 
Software Environments and Software Research………….APS Auditorium 
Co-leads: Prasanna Balaprakash, Devarshi Ghoshal 
Session scribe: Tom Uram 
 
Facilities Integration………………………………………………….APS A1100 
Co-leads: Michael E. Papka, Arjun Shankar 
Session scribe: Ryan Milner 

 
11:40 a.m. Collect Lunch and Proceed to Report Out Session 
 
12:00 p.m.  Breakouts Report Out (10 minutes each)…………………..APS Auditorium 
 
1:30 p.m. Town Hall Close-out with Next Steps……………………….APS Auditorium 
  Rick Stevens 
 
3:00 p.m.  Town Hall Concludes 
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AI for Science Town Hall 
Oak Ridge National Laboratory 

ORNL Conference Center 
August 20–21, 2019 

Tuesday, August 20, 2019 
8:00 a.m.  Registration and Working Continental Breakfast……...….ORNL Conference Center 
 
8:30 a.m. Welcome and Introduction………………………………….…ORNL Conference Center 

Jeffrey Nichols 
 
8:35 a.m.  ORNL Opening Remarks ………………….…………………..ORNL Conference Center 

Jeff Smith 
 

8:45 a.m. DOE HQ Opening Remarks………………………….……...…ORNL Conference Center 
Steve Binkley 

 
9:00 a.m. Keynote: AI for Science Opportunities…………………......ORNL Conference Center 

David Womble 
 
9:40 a.m. Plenary Session…………………………………………………ORNL Conference Center 

Session Chair: Doug Kothe 
 
AI at Scale 1: Microscopy 
Sergei Kalinin 
 
AI at Scale 2: Advanced Manufacturing 
Tom Kurfess 
 
AI at Scale 3: Health 
Georgia Tourassi 

 
10:40 a.m. Breakout Session Charge Questions……………………...ORNL Conference Center 

Jeffrey Nichols 
 
11:00 a.m. Collect Lunch and Proceed to Application Breakout Sessions 

 
  Materials, Chemistry and Nanoscience………………………………..…Tennessee B 

Co-Leads: Bobby G. Sumpter, Markus Eisenbach, Wibe de Jong 
 

Data Collection, Reduction, Analysis, and Imaging for  
Scientific User Facilities……………………………….……………….…..Tennessee C 
Co-Leads: Hans Christian, Sean Hearne, Christine Sweeny, Jack Wells,  
Thomas Proffen 
 
Environment, Climate and Earth Science…………………………….…Tennessee A 
Co-Leads: Forrest M. Hoffman, Alison Boyer, Velimir (Monty) V. Vesselinov 
 
Biology and Life Science…………………………………………………….….…Emory 
Co-Leads: Julie Mitchell, Jacob Hinkle, Ben Brown 

   
Fundamental Physics………………………………………………….……Cumberland 
Co-Leads: Marcel Demarteau, Bronson Messer, Torre Wenaus 
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Fusion Energy……………………………………..……….Building 5700, Room F234 
Co-Leads: Phil Ferguson, Mike Churchill, John Canik 
 
Transportation and Mobility……………………………….5700, CASL Room B302a 
Co-Leads: Robert Wagner, Jibo Sanyal, Stanley Young 
 
Advanced Manufacturing…………………………..Building 5600, EVEREST (B228) 
Co-Leads: Stuart Slattery, Vincent Paquit, Jim Belak 
 
Energy Generation & Distribution……………….………Building 5700, Room L204 
Co-Leads: Teja Kuruganti, Tara Pandya, Mike Sprague 
 

3:00 p.m. Breakout Reports Out (10 minutes each) ......................ORNL Conference Center 
 
4:30 p.m. Day One Close-out Summary..........................................ORNL Conference Center 

Jeffrey Nichols 
 
5:00 p.m. Reception .............................................................ORNL Conference Center Lobby 

Wednesday, August 21, 2019 
8:00 a.m.  Registration and Working Continental Breakfast……..ORNL Conference Center 
 
8:30 a.m. Day 2 Welcome ………………………………………….…..ORNL Conference Center 

Thomas Zacharia 
 
8:45 a.m. Summary of Day 1 and Day 2 Cross-cut Charge………ORNL Conference Center 

Jeffrey Nichols 
 
9:00 a.m. Technological and Cross-cut Breakout Sessions  

 
Numerical Aspects of Learning………………….……...Building 5700, Room F234 
Co-Leads: Clayton Webster, Stefan Wild, Sandeep Madireddy 
 
Model Applicability and Characterization………………………………Tennessee B 
Co-Leads: Blair Christian, Dan Lu, Justin Newcomer  
 
Decision Support …………………………………………….5700, CASL Room B302a 
Co-Leads: Rick Archibald, Tom Potok, Cynthia Phillip 
 
Science Informed Learning ……………………..……………………...…Tennessee C 
Co-Leads: Scott Klasky, Cory Hauck, Jeff Hittinger 
 
Software Environments and Software Research….…………………………...Emory 
Co-Leads: Robert Patton, Judith Hill, Eric Cyr 
 
Data Infrastructure & Life Cycle…………………………………………..Tennessee A 
Co-Leads: Arjun Shankar, Katie Knight, Brad Settlemyer 
 
Hardware and Architecture……..…………………..Building 5600, EVEREST (B228) 
Co-Leads: Katie Schuman, Travis Humble, Kenneth Alvin 
 
Facilities Integration and AI Ecosystem …………….............................Cumberland 
Co-Leads: James Hack, Michael E. Papka, Inder Monga 
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12:00 p.m. Collect Lunch and Head Back to Breakout Session 
 
1:00 p.m.  Final Report Out from Breakout Session (10 minutes each) 
 
2:30 p.m. Town Hall Close-out with Next Steps…………….…..….ORNL Conference Center 

Jeffrey Nichols 
 
3:00 p.m.  Town Hall Concludes 
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AI for Science Town Hall 
Lawrence Berkeley National Laboratory 

Building 50 Auditorium 
September 11–12, 2019 

Wednesday, September 11, 2019 
7:15 a.m. Registration…………………………………………….Building 50 Auditorium Lobby 
 
7:30 a.m. Networking Breakfast 
 
8:30 a.m. Welcome and Introduction……………………….……….….Building 50 Auditorium 
 Mike Witherell 
 
8:40 a.m. Opening Remarks……………………………………………...Building 50 Auditorium 
 Barbara Helland 
 
8:50 a.m. AI for Science Opportunities and Meeting Objectives 
 Katherine Yelick 
 
9:40 a.m. Break 
 
9:55 a.m. Examples of AI at Scale……………………………………....Building 50 Auditorium 
 Session Chair: David Brown 
 
 AI, Machine Learning, and Experimental Facilities 
 James Sethian 
 
 AI at Scale: Astrophysics 
 Josh Bloom 
 
 AI at Scale in Biology  
 Ben Brown 
 
11:25 a.m. Breakout Logistics…………………………………………….Building 50 Auditorium 
 Katherine Yelick 
 
11:30 a.m. Collect Lunch and Proceed to Application Breakout Sessions 
 
11:45 a.m. Application Breakout Sessions 
 

 Physical Sciences 
 Coordinator: Paolo Calafiura 

 
Cosmology and Astrophysics ................................................................... 59-4016 
Co-leads: Uros Seljak, Salman Habib 
 
Particle Physics .......................................................................................... 59-4022 
Co-leads: Steve Farrell, Ariel Schwartzman 
 
Accelerator Science ................................................................................... 50-4058 
Co-leads: Remi Lehe, Daniel Ratner 
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Fusion .......................................................................................................... 59-4102 
Co-leads: CS Chang, Mike Zarnstorff 
 

 Energy Sciences  
 Coordinator: Jonathan Carter 

 
Materials and Chemistry Modeling .............................................................. 66-316 
Co-leads: Anubhav Jain, Jeff Hammond, Shyam Dwaraknath 
 
Materials Synthesis and Chemistry ............................................................. 62-203 
Co-leads: Carolin Sutter-Fella, Emory Chan, Ethan Crumlin 
 
Light Sources  .............................................................................................. 66-Aud 
Co-leads: Alex Hexemer, Petrus Zwart, Chris Jacobsen 
 
Electron Microscopy Imaging .................................................................... 67-3111 
Co-leads: Mary Scott, Eva Nogales, Marcus Hanwell 

 
Earth and Environmental Sciences 

 Coordinator: Trever Keenan, Dipankar Dwivedi 
 
Climate and Carbon ...................................................................................... 84-318 
Co-leads: Trevor Keenan, Nathan Urban, Esmond Ng 

 
Subsurface and Geoscience ........................................................................ 74-104  
Co-leads: Martin Schoenball, Piotr Zarzycki, Andrew Stack 
 
Water ............................................................................................................. 74-324  
Co-leads: Dipankar Dwivedi, Hoshin Gupta, Grey Nearing 
 
Biological and Life Sciences 
Coordinator: Ben Brown 
 
Microbiome and Environmental Biology ................................................... 59-3049 
Co-leads: Paramvir Dehal, Jennifer Clarke 
 
Synthetic Biology ....................................................................................... 59-3042 
Co-leads: Hector Garcia Martin, Peter St. John 

 
Health .......................................................................................................... 59-3025 
Co-leads: Kris Bouchard, Tina Hernandez-Boussard 
 
Engineering and Infrastructure  
Coordinator: Peter Nugent 

 
Engineering and Manufacturing .............................................................. 70A-3377 
Co-leads: Stuart Slattery, Tarek Zohdi 

  
Transportation / Mobility ............................................................................ 59-3104 
Co-leads: Cy Chan, Timothy Berg 
 
Urban ........................................................................................................... 59-3104 
Co-leads: Mary Ann Piette, Peter Graf 
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SmartGrid .................................................................................................... 59-3104 
Co-leads: William Hart, Russell Bent 

 
Computer Science 
Coordinator: Katherine Yelick 

 
AI Networking and Computing Facilities ................................................... 59-3101 

 AI for anomaly detection, cybersecurity, networking management, etc. 
Co-leads: Mariam Kiran, Nageswara Rao, Lavanya Ramakrishnan 

 
AI for Computer Hardware and Software .................................................. 59-3101 

 AI for architecture design, programming, etc. 
Co-leads: Georgios Michelogiannakis, Koushik Sen 

 
2:30 p.m. Breakout Sessions End .................................................... Building 50 Auditorium 
 
3:00 p.m. Lightning Breakouts Report Out (5 minutes each) ......... Building 50 Auditorium 
 
5:00 p.m. Networking Reception ................................................................ Building 59 Plaza 
 
6:00 p.m. Adjourn 

Thursday, September 12, 2019 
7:15 a.m. Registration .......................................................... Building 50 Auditorium Lobby 
 
7:30 a.m. Networking Breakfast 
 
8:30 a.m. Summary of Day 1 and Day 2 Cross-cut Charge ........... Building 50 Auditorium 
 Katherine Yelick 
 
8:45 a.m. Travel to breakout locations 
 
9:00 a.m. Technological and Cross-cut Breakout Sessions  

 
 Math Foundations for AI  

 Coordinator: Tamara Kolda (SNL) 
 
Performance Optimization of Deep Learning .......................................... 59-3054 
Numerical and stochastic optimization, network design, hyperparameter 
search, network compression, parallelization 
Co-leads: Aydin Buluc, Sherry Li 
 
Foundations and Challenges of Deep Learning ...................................... 59-3049 
Numerical properties of DL, problems with generalization, understanding 
how it works and failure modes, theoretical considerations 
Co-leads: Tamara Kolda, Tess Smidt 
 
Opportunities and Foundations of Traditional ML .................................. 59-3025 
Regression, random forests, support vector machines, principal 
component analysis, clustering, optimization methods 
Co-leads: Justin Newcomer, Ali Pinar 
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Reinforcement/Streaming learning for Decision Support / Control ....... 59-3070 
 Real-time control and decision-making, incorporating feedback 

Co-leads: Mike Mahoney, Prabhat 
 
ML for science problems with limited data .............................................. 59-4101 

 Bayesian methods, matrix completion, statistical sampling design 
Co-leads: Jeremy Templeton, Janine Bennett 
 
Science-informed learning ........................................................................ 59-4102 

 Physics/chemistry/biology-constrained, data integration 
Co-leads: Juliane Mueller, Stefan Wild 

 
Uncertainty Quantification ........................................................................ 59-3104 
Co-leads: Habib Najm, David Barajas-Solano 
 
Use of AI with Simulation  .............................................................. 50 Auditorium 
Co-leads: Marcus Day, Katherine Lewis 
 

 Software Environments and Research .............................. 54-Perseverance Hall 
How will we write AI software? Tensorflow, Pytorch, etc., and DOE-developed 
alternatives or improvements for science? What OS services, workflows, etc. are 
needed? 

 Co-leads: Dmitriy Morozov, Charles Tripp 
 
 Data Lifecycle ............................................................................................ 59-3101 

 Data preparation, data sets, traditional analytics, de-noising, provenance, etc. 
 Co-leads: Wes Bethel, John Wu 
 
 Hardware Technology ............................................................................ 50B-4205 

 Centralized HPC, Edge Devices… 
 Co-leads: John Shalf, James Ang 
 
 Facilities Infrastructure and Integration; the AI Ecosystem ................ 70A-3377 

 I/O balance, on-demand computing, science gateways, networking 
 Co-leads: Inder Monga, Deborah Bard, Michael E. Papka 
 
 Cybersecurity and Privacy ........................................................................ 59-4016 

 Security of Cyber-physical systems, data privacy 
 Lead: Sean Peisert 

 
11:30 a.m. Collect Lunch and Proceed in to Report Out Session .. Building 50 Auditorium 
 
11:45 a.m. Breakouts Report Out (5 minutes each) ......................... Building 50 Auditorium 
 
1:45 p.m. Town Hall Close-out with Next Steps ............................. Building 50 Auditorium 
 Katherine Yelick 
 
2:00 p.m. Town Hall Concludes 
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AI for Science Town Hall 
Washington, DC 

Renaissance DC - Downtown Hotel 
October 22–23, 2019 

Tuesday, October 22, 2019 
7:30 a.m.  Registration and Working Continental Breakfast………...Ballroom Level Lobby 
 
8:30 a.m.  Welcome and Introduction……………………………………Grand Ballroom North 

Barbara Helland 
 
8:45 a.m. DOE HQ Opening Remarks…………………………………...Grand Ballroom North 

Chris Fall 
 
9:00 a.m. Summary from 3 Town Halls.…………….…………………..Grand Ballroom North 

Katherine Yelick, Rick Stevens, Jeffrey Nichols 
 
10:00 a.m. Break 
 
10:30 a.m. How Significant will AI be for the Energy Sector?.……….Grand Ballroom North 

Quantifying progress and outlining signposts 
Claire Curry, Bloomberg New Energy Finance 

 
11:15 a.m. AI Research Update: What’s Going On Around ………….Grand Ballroom North 

The World and Our Research Plans for Studying AI For Science 
Earl Joseph, Hyperion Research 

 
11:45 a.m. Break for Working Lunch 

Networking and Preparation for Breakout Sessions 
 
1:30 p.m. Breakout Sessions 

 
Machine Learning Foundations and Open Problems……Grand Ballroom North 
Co-Leads: David Womble, Stefan Wild, Prabhat 
 
Facilities Integration and AI Ecosystem…………………………...Meeting Room 3 
Co-Leads: James Hack, Michael E. Papka, Sudip Dosanjh, Inder Monga 
 
Earth and Environmental Sciences………………………….……..Meeting Room 6 
Co-Leads: Forrest M. Hoffman, Rao Kotamarthi, Haruko Wainwright 
 
Chemistry, Materials, and Nano Science………………………….Meeting Room 7 
Co-Leads: Cynthia Jenks, Bert deJong 
 
Engineering and Manufacturing…………………………………….Meeting Room 8 
Co-Leads: John Turner, Santanu Chaudhuri, Peter Nugent 
 
Nuclear Physics……………………………………………………......Meeting Room 9 
Co-Leads: David Dean, Zein-Eddine Meziani, Brian Quiter 
 
Data Life Cycle and Infrastructure…………………………………Meeting Room 10 
Co-Leads: Arjun Shankar, Nicola Ferrier, Wes Bethel 
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Support for AI for Experimental Facilities……………………….Meeting Room 16 
Co-Leads: Kenneth Herwig, Dogan Gursoy, Petrus Zwart 

 
3:15 p.m. Break 
 
3:30 p.m. Startup Innovations in AI Hardware……………………..….Grand Ballroom North 

Moderator: Rick Stevens 
Andy Hock 
Kunle Olukotun 
Dale Southard 

 
4:30 p.m. Breakout Summary………………………………..…………..Grand Ballroom North 

Valerie Taylor, Arthur Barney Maccabe, David Brown 
 
5:00 p.m. Close-out for the Day………………………………….………Grand Ballroom North 

Barbara Helland 

Wednesday, October 23, 2019 
7:30 a.m.  Registration and Working Continental Breakfast 
 
8:30 a.m.  Day 2 Welcome……………………………………………….Grand Ballroom North 

Barbara Helland 
 
8:45 a.m. Breakouts 

AI for Computer Science……………………………………Grand Ballroom North 
Co-Leads: Nageswara Rao, Prasanna Balaprakash. Lavanya Ramakrishnan 
 
Biology and Life Sciences…………………………………..……..Meeting Room 3 
Co-Leads: Georgia Tourassi, Thomas S. Brettin, Ben Brown 
 
High Energy Physics…………………………………………..…...Meeting Room 6 
Co-Leads: Salman Habib, Paolo Calafiura 
 
Smart Energy Infrastructure………………………………………Meeting Room 8 
Co-Leads: Teja Kuruganti, Mihai Anitescu, Tianzhen Hong 
 
Software Environments and Software Research………………Meeting Room 9 
Co-Leads: Judith Hill, Rob Ross, Katerina Antypas 
 
Support for AI at the Edge………………………………………..Meeting Room 10 
Co-Leads: Steven Young, Pete Beckman, John Wu 
 
Hardware Architectures………………………………………......Meeting Room 16 
Co-Leads: Jeffrey Vetter, Andrew Chien, John Shalf 

 
10:15 a.m. Break 
 
10:30 a.m. DOE Headquarters Remarks…………………………..……Grand Ballroom North 

Paul Dabbar 
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10:45 a.m. Cross Agency AI Strategies…………………………..…….Grand Ballroom North 
  Moderator: Lynne Parker (OSTP)  
  DOE – Steve Binkley 
  DOD NSA Research – Adam Cardinal-Stakenas 
  NSF - Erwin Gianchandani  
  NIH - Susan Gregurick  
 
11:45 a.m. Breakout Summary………………………………….………..Grand Ballroom North 

Valerie Taylor, Arthur Barney Maccabe, David Brown 
 
12:15 p.m. AI Killer Applications…………………………………….…..Grand Ballroom North 

Rick Stevens, Katherine Yelick, Jeffrey Nichols 
 
1:00 p.m. Wrap Up…………………………………………………….…..Grand Ballroom North 

Barbara Helland 
 
1:15 p.m. Working Lunch………………………………………….…….Ballroom Level Lobby 

Networking and Coordination of Town Hall Report 
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AC. Combined Town Hall Registrants 

First Name Last Name Institution 
Brook Abegaz Loyola University of Chicago 
Gina Adam George Washington University 
Corey Adams Argonne National Laboratory 
Marc Adams  NVIDIA Corporation 
Ryan Adamson Oak Ridge National Laboratory 
Adetokunbo Adedoyin Los Alamos National Laboratory 
Vivek Agarwal Idaho National Laboratory 
Greeshma Agasthya Oak Ridge National Laboratory 
Jeffery Aguiar Idaho National Laboratory 
Lars Ahlfors Microsoft Corporation 
James Ahrens Los Alamos National Laboratory 
Sachin Ahuja CNH Industrial 
James Aimone Sandia National Laboratories 
Shashi Aithal Argonne National Laboratory 
Adeel Akram Uppsala University 
Maksudul Alam Oak Ridge National Laboratory 
Frank Alexander Brookhaven National Laboratory 
Boian Alexandrov Los Alamos National Laboratory 
Yuri Alexeev Argonne National Laboratory 
Stephanie Allport Bloomberg 
Srikanth Allu Oak Ridge National Laboratory 
Jeff Alstott Intelligence Advanced Research Projects 

Activity 
Ilkay Altintas University of California, San Diego 
Kenneth Alvin Sandia National Laboratories 
James Amundson Fermi National Accelerator Laboratory 
Valentine Anantharaj Oak Ridge National Laboratory 
James Ang Pacific Northwest National Laboratory 
Mihai Anitescu Argonne National Laboratory 
Dionysios Antonopoulos Argonne National Laboratory 
Katerina Antypas Lawrence Berkeley National Laboratory 
Chid Apte IBM Research 
Rick Archibald Oak Ridge National Laboratory 
Whitney Armstrong Argonne National Laboratory 
Richard Arthur General Electric Research 
Srinivasan Arunajatesan Sandia National Laboratories 
Paul Atzberger University of California, Santa Barbara 
Brian Austin Lawrence Berkeley National Laboratory 
Ariful Azad Indiana University 
Gyorgy Babnigg Argonne National Laboratory 
Tyler Backman Lawrence Berkeley National Laboratory 
Drew Baden Department of Energy, High Energy 

Physics 
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First Name Last Name Institution 
David Bader New Jersey Institute of Technology 
Jermon Bafaty Department of Energy, Artificial Intelligence 

and Technology Office 
Zhe Bai Lawrence Berkeley National Laboratory 
Ray Bair Argonne National Laboratory 
Vamshi Balanaga Sandia National Laboratory/UC Berkeley 
Prasanna Balaprakash Argonne National Laboratory 
Jan Balewski Lawrence Berkeley National Laboratory 
Mark Bandstra Lawrence Berkeley National Laboratory 
Feng Bao Florida State University 
David Barajas-Solano Pacific Northwest National Laboratory 
Giuseppe Barbalinardo University of California, Davis 
Deborah Bard Lawrence Berkeley National Laboratory 
Jaydeep Bardhan GlaxoSmithKline 
Ashley Barker Oak Ridge National Laboratory 
Richard Barnes Lawrence Berkeley National Laboratory 
Kipton Barros Los Alamos National Laboratory 
Edward Barry Argonne National Laboratory 
Robert Bartolo Transformational Liaisons (TRL), LLC 
Bipul Barua Argonne National Laboratory 
Jennifer Bauer National Energy Technology Laboratory 
Alex Bayen University of California, Berkeley 
Matthew Becker Argonne National Laboratory 
Pete Beckman Argonne National Laboratory 
Bo Begole AMD Research 
James Belak Lawrence Livermore National Laboratory 
Matt Bement Los Alamos National Laboratory 
Douglas Benjamin Argonne National Laboratory 
Janine Bennett Sandia National Laboratories 
Russell Bent Los Alamos National Laboratory 
Timothy Berg Sandia National Laboratories 
Joshua Bergerson Argonne National Laboratory 
Anne Berres Oak Ridge National Laboratory 
Michael Berube Department of Energy 
Julie Bessac Argonne National Laboratory  
Wes Bethel Lawrence Berkeley National Laboratory 
Budhu Bhaduri Oak Ridge National Laboratory 
Wahid Bhimji Lawrence Berkeley National Laboratory 
Debsihdu Bhowmik Oak Ridge National Laboratory 
Sirui Bi Oak Ridge Institute for Science and 

Education 
Tekin Bicer Argonne National Laboratory 
Sandra Biedron Element Aero 
Hassina Bilheux Oak Ridge National Laboratory 
Jean Bilheux Oak Ridge National Laboratory 
Jay Jay Billings Oak Ridge National Laboratory 
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First Name Last Name Institution 
Adam Bingston Oak Ridge National Laboratory 
Steve Binkley Department of Energy 
Jens Birkholzer Lawrence Berkeley National Laboratory 
Larry Birnbaum Northwestern University 
Ayan Biswas Los Alamos National Laboratory 
Laura Biven Department of Energy, Advanced Scientific 

Computing Research 
Rocco Blais National Intelligence University 
Arthur Bland Oak Ridge National Laboratory 
Willem Blokland Oak Ridge National Laboratory 
Josh Bloom Lawrence Berkeley National Laboratory 
Swen Boehm Oak Ridge National Laboratory 
Amber Boehnlein Jefferson Laboratory 
John Boger Department of Energy 
Dorian Bohler SLAC National Accelerator Laboratory 
Trudy Bolin University of New Mexico 
Lynn Borkon Frederick National Laboratory 
Nikolay Borodinov Oak Ridge National Laboratory 
Kristofer Bouchard Lawrence Berkeley National Laboratory 
Charles Bouman Purdue University 
Alison Boyer Oak Ridge National Laboratory 
Mark Boyer Princeton Plasma Physics Laboratory 
Selen Bozkurt Stanford University 
Tom Brady Dell Technologies 
Jim Brandt Sandia National Laboratories 
Justin H. S. Breaux Argonne National Laboratory 
Peer-Timo Bremer Lawrence Livermore National Laboratory 
Thomas S. Brettin Argonne National Laboratory 
Ron Brightwell Sandia National Laboratories 
Michael Brim Oak Ridge National Laboratory 
Grant Bromhal National Energy Technology Laboratory 
David Bross Argonne National Laboratory 
Ben Brown Department of Energy, Advanced Scientific 

Computing Research 
David Brown Lawrence Berkeley National Laboratory 
J. Ben Brown Lawrence Berkeley National Laboratory 
Acacia Brunett Argonne National Laboratory 
Mark Buckner Oak Ridge National Laboratory 
Aydin Buluc Lawrence Berkeley National Laboratory 
Keith Burghardt University of Southern California 
Shawn Burns Sandia National Laboratories 
Ralph Butler Argonne National Laboratory/Middle 

Tennessee State University 
Suren Byna Lawrence Berkeley National Laboratory 
John Byrd Argonne National Laboratory 
Viveck Cadambe Pennsylvania State University 
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First Name Last Name Institution 
Helen Cademartori Lawrence Berkeley National Laboratory 
Hao Cai Argonne National Laboratory 
Zhonghou Cai Argonne National Laboratory 
Paolo Calafiura Lawrence Berkeley National Laboratory 
Kelly Callison Information International Associates, Inc 
John Canik Oak Ridge National Laboratory 
Shane Canon Lawrence Berkeley National Laboratory 
Yue Cao Argonne National Laboratory 
Jian Cao Northwestern University 
Adam Cardinal-Stakenas National Security Agency, Research 
Suma Cardwell Sandia National Laboratories 
Altaf Carim Department of Energy, High Energy 

Physics 
Richard Carlson Department of Energy 
Jonathan Carter Lawrence Berkeley National Laboratory 
Emily Casleton Los Alamos National Laboratory 
Vic Castillo Lawrence Livermore National Laboratory 
Charlie Catlett Argonne National Laboratory 
Christine Chalk Department of Energy 
Maria Chan Argonne National Laboratory 
Emory Chan Lawrence Berkeley National Laboratory 
Cy Chan Lawrence Berkeley National Laboratory  
Hau Chan University of Nebraska, Lincoln 
Jin Chang California Institute of Technology 
Shing Chang Kansas State University 
Hang Chang Lawrence Berkeley National Laboratory 
CS (Choongseok) Chang Princeton Plasma Physics Laboratory 
Lali Chatterjee Department of Energy, High Energy 

Physics 
Arghya Chatterjee Oak Ridge National Laboratory 
Santanu Chaudhuri Argonne National Laboratory 
Julio Jonas Chaves Montero Argonne National Laboratory 
Saurabh Chawdhary Argonne National Laboratory 
Weiyang Chen Argonne National Laboratory 
Jinsong Chen Lawrence Berkeley National Laboratory 
Barry Chen Lawrence Livermore National Laboratory 
Wei Chen Northwestern University 
Jieyang Chen Oak Ridge National Laboratory 
Jacqueline Chen Sandia National Laboratories 
Jian Chen The Ohio State University/Interactive Visual 

Computing Lab 
Shunda Chen University of California, Davis 
Alvin Cheung University of California, Berkeley 
Andrew Chien Argonne National Laboratory 
Taylor Childers Argonne National Laboratory 
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First Name Last Name Institution 
Eric Chisolm Department of Energy, National Nuclear 

Security Administration 
Jong Youl Choi Oak Ridge National Laboratory 
Swati Choudhary Calysta 
Alok Choudhary Northwestern University  
Souma Chowdhury University at Buffalo 
Marshall Choy SambaNova Systems 
Hans Christen Oak Ridge National Laboratory 
Blair Christian Oak Ridge National Laboratory 
Giri Chukkapalli NVIDIA Corporation 
Sudheer Chunduri Argonne National Laboratory 
Michael Churchill Princeton Plasma Physics Laboratory 
Jennifer Clarke University of Nebraska 
Ian Cloet Argonne National Laboratory 
Daniel Clouse Department of Defense 
Ryan Coffee SLAC National Accelerator Laboratory 
Susan Coghlan Argonne National Laboratory 
Mark Coletti Oak Ridge National Laboratory 
Jim Collins Argonne National Laboratory 
William Collins Lawrence Berkeley National Laboratory  
Scott Collis Argonne National Laboratory 
Samuel Collis Sandia National Laboratories 
Guojing Cong IBM Research 
Emil Constantinescu Argonne National Laboratory 
Simon Corrodi Argonne National Laboratory 
Andrea Cortis Belmont Technology 
Chip Cotton General Electric Research 
Sarah Cousineau Oak Ridge National Laboratory 
Stephen Crago University of Southern California, ISI 
Claire Cramer Department of Energy 
Valentino Crespi University of Southern California, ISI 
Jody Crisp Oak Ridge Institute for Science and 

Education 
Ethan Crumlin Lawrence Berkeley National Laboratory 
Claire Curry Bloomberg 
Matthew Curry Sandia National Laboratories 
Larry Curtiss Argonne National Laboratory 
Christine Custis NewPearl, Inc. 
Christine Cutillo National Institutes of Health, NCATS 
Eric Cyr Sandia National Laboratories 
Ed D’Azevedo Oak Ridge National Laboratory 
Paul Dabbar Department of Energy 
Jamison Daniel Oak Ridge National Laboratory 
Payel Das IBM Research 
Debolina Dasgupta Argonne National Laboratory 
Ganesh Dasika AMD Research 
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First Name Last Name Institution 
Warren Davis Sandia National Laboratories 
Marcus Day Lawrence Berkeley National Laboratory 
Maarten de Hoop Rice University 
Wibe de Jong Lawrence Berkeley National Laboratory 
Cees de Laat Lawrence Berkeley National Laboratory 
Sebastian De Pascuale Oak Ridge National Laboratory 
David Dean Oak Ridge National Laboratory 
Victor Decaria Oak Ridge National Laboratory 
Gemechis Degaga Oak Ridge National Laboratory 
Anthony DeGennaro Brookhaven National Laboratory 
Paramvir Dehal Lawrence Berkeley National Laboratory 
Payman Dehghanian George Washington University 
Diego del Castillo Negrete Oak Ridge National Laboratory 
Phillip DeLeon New Mexico State University 
Marcel Demarteau Oak Ridge National Laboratory 
James Demmel University of California, Berkeley 
Patric Den Hartog Argonne National Laboratory 
Anton Dereventsov Oak Ridge National Laboratory 
Riccardo Dettori University of California, Davis 
Sheng Di Argonne National Laboratory 
Zichao Wendy Di Argonne National Laboratory 
Alexa Di Paolo Bloomberg 
Lori Diachin Lawrence Livermore National Laboratory 
Jorge Diaz Cruz University of New Mexico\ SLAC 
Emily Dietrich Argonne National Laboratory 
Spiros Dimolitsas Georgetown University 
Chao Ding Lawrence Berkeley National Laboratory 
Nan Ding Lawrence Berkeley National Laboratory 
Remi Dingreville Sandia National Laboratories 
Stanley Dodds University of Hawaii/Institute for Astronomy 
Emily Donahue Sandia National Laboratories 
Sijia Dong Argonne National Laboratory 
Ge Dong Princeton Plasma Physics Laboratory 
Jack Dongarra University of Tennessee 
Jana Doppa Washington State University 
Max Dornfest Lawrence Berkeley National Laboratory 
Sudip Dosanjh Lawrence Berkeley National Laboratory 
Mathieu Doucet Oak Ridge National Laboratory 
Ye Duan University of Missouri 
Javier Duarte Fermi National Accelerator Laboratory 
Nicolas Dube Hewlett Packard Enterprise 
Vincent Dumont Lawrence Berkeley National Laboratory 
Daniel Dunlavy Sandia National Laboratories 
Soumya Dutta Los Alamos National Laboratory 
Shyam Dwaraknath Lawrence Berkeley National Laboratory 
Dipankar Dwivedi Lawrence Berkeley National Laboratory 
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First Name Last Name Institution 
Carol Eddy-Dilek Savannah River National Laboratory 
Romain Egele Argonne National Laboratory 
Markus Eisenbach Oak Ridge National Laboratory 
Muammar El Khatib Lawrence Berkeley National Laboratory 
V. Daniel Elvira Fermi National Accelerator Laboratory 
Wael Elwasif Oak Ridge National Laboratory 
Murali Emani Argonne National Laboratory 
Sujata Emani Department of Energy, BER 
Eirik Endeve Oak Ridge National Laboratory 
Christian Engelmann Oak Ridge National Laboratory 
Sarah Eno University of Maryland 
Peter Ercius Lawrence Berkeley National Laboratory 
Ali Erdemir Argonne National Laboratory 
Stephane Ethier Princeton Plasma Physics Laboratory 
David Etim Department of Energy, National Nuclear 

Security Administration 
Kate Evans Oak Ridge National Laboratory 
Tom Evans Oak Ridge National Laboratory 
VJ Ewing Oak Ridge National Laboratory 
Farah Fahim Fermi National Accelerator Laboratory 
Fariba Fahroo Air Force Office of Scientific Research 
Chris Fall Department of Energy 
George Fann Oak Ridge National Laboratory 
Paolo Faraboschi Hewlett Packard Enterprise 
Amro Farid Dartmouth College 
Steven Farrell Lawrence Berkeley National Laboratory 
Pooyan Fazli San Francisco State University 
Tingzhou Fei Argonne National Laboratory 
Frank Felder Rutgers University 
Yan Feng Argonne National Laboratory 
Wu Feng Virginia Tech 
Phil Ferguson Oak Ridge National Laboratory 
Nicola Ferrier Argonne National Laboratory 
Emily Fetter Boston University 
Hal Finkel Argonne National Laboratory 
Nicole Fisk Cray, Inc. 
Mary Fitzpatrick Argonne National Laboratory 
Aaron Fluitt Argonne National Laboratory 
Thomas Flynn Brookhaven National Laboratory 
David Fobes Los Alamos National Laboratory 
Fernanda Foertter NVIDIA Corporation 
Ian Foster Argonne National Laboratory 
Guillaume Fouche Bloomberg 
Geoffrey Fox Indiana University 
Kelly Gaither The University of Texas at Austin 
Alexey Galda Argonne National Laboratory 
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First Name Last Name Institution 
Alfredo Galindo-Uribarri Oak Ridge National Laboratory 
Jack Gallant University of California, Berkeley 
Yu Gan University of Alabama 
Baskar Ganapathysubramanian Iowa State University 
Rishi Ganeriwala Lawrence Livermore National Laboratory 
Hector Garcia Martin Lawrence Berkeley National Laboratory 
Marta Garcia Martinez Argonne National Laboratory 
Arti Garg Cray, Inc. 
Krishna Garikipati University of Michigan 
Christopher Garland Argonne National Laboratory 
Andrew Gaspar Los Alamos National Laboratory 
Gerald Geernaert Department of Energy 
R.Stuart Geiger University of California, Berkeley 
Al Geist Oak Ridge National Laboratory 
Ann Gentile Sandia National Laboratories 
Cole Gentry Oak Ridge National Laboratory 
Martina Gerbino Argonne National Laboratory 
Tim Germann Los Alamos National Laboratory 
Berk Geveci Kitware, Inc. 
Mehran Ghafari University of Tennessee at Chattanooga 
Devarshi Ghoshal Lawrence Berkeley National Laboratory 
Erwin Gianchandani National Science Foundation 
Tom Gibbs NVIDIA Corporation 
Scott Gibson Oak Ridge National Laboratory 
Michael Giering United Technologies/Pratt & Whitney 
Roscoe Giles Boston University 
Roberto Gioiosa Pacific Northwest National Laboratory 
Shawn Gleason Oak Ridge National Laboratory 
David Gleich Purdue University 
Sergei Gleyzer University of Alabama/Fermilab 
Jennifer Glore SambaNova Systems 
Eric Goodman Sandia National Laboratories 
Daniel Gopman National Institute of Standards and 

Technology 
Ben Gould Dell EMC 
Marco Govoni Argonne National Laboratory 
Peter Graf National Renewable Energy Laboratory 
Carlo Graziani Argonne National Laboratory 
Emily Greenspan National Cancer Institute 
Susan Gregurick National Institutes of Health 
Annette Greiner Lawrence Berkeley National Laboratory 
Michael Grosskopf Los Alamos National Laboratory 
Allan Grosvenor Microsurgeonbot Inc. 
Ray Grout National Renewable Energy Laboratory 
Taylor Groves Lawrence Berkeley National Laboratory 
Amy Gryshuk Lawrence Livermore National Laboratory 
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First Name Last Name Institution 
Qiang Guan Kent State University/Los Alamos National 

Laboratory 
Mamikon Guillan Sandia National Laboratories 
Donna Guillen Idaho National Laboratory 
Max Gunzburger Oak Ridge National Laboratory 
Hanqi Guo Argonne National Laboratory 
Haobo Guo University of Tennessee at Chattanooga 
Chin Guok Lawrence Berkeley National Laboratory 
Geetika Gupta NVIDIA Corporation 
Hoshin Gupta University of Arizona 
Dogan Gursoy Argonne National Laboratory 
Tejas Guruswamy Argonne National Laboratory 
Benjamin Gutierrez-Garcia Argonne National Laboratory 
Salman Habib Argonne National Laboratory 
James Hack Oak Ridge National Laboratory 
Kawtar Hafidi Argonne National Laboratory 
Aric Hagberg Los Alamos National Laboratory 
Shima Hajimirza Texas A&M University 
Mahantesh Halappanavar Pacific Northwest National Laboratory 
Jason Hales Idaho National Laboratory 
Charlotte Haley Argonne National Laboratory 
Scot Halverson Los Alamos National Laboratory 
Kathleen Hamilton Oak Ridge National Laboratory 
Jeff Hammond Intel Corporation 
Steve Hammond National Renewable Energy Laboratory 
T. Yong Han Lawrence Livermore National Laboratory 
Briana Hanafin Accenture 
Marcus Hanwell Kitware, Inc. 
Zhao Hao Lawrence Berkeley National Laboratory 
Bruce Hardy Savannah River National Laboratory 
Rachel Harken Oak Ridge National Laboratory 
Kevin Harms Argonne National Laboratory 
Peter Harrington Lawrence Berkeley National Laboratory 
William Hart Sandia National Laboratories 
Cory Hauck Oak Ridge National Laboratory 
Nancy Hayden Sandia National Laboratories 
Andrew Hearin Argonne National Laboratory 
Sean Hearne Oak Ridge National Laboratory 
Matt Heavner Los Alamos National Laboratory 
Alexander Heifetz Argonne National Laboratory 
Nils Heinonen Argonne National Laboratory 
Olle Heinonen Argonne National Laboratory 
Alan Heirich SLAC National Accelerator Laboratory 
Katrin Heitmann Argonne National Laboratory 
Barbara Helland Department of Energy, Office of Science 
Bruce Hendrickson Lawrence Livermore National Laboratory 
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First Name Last Name Institution 
Nicolas Hengartner Los Alamos National Laboratory 
Marc Henry de Frahan National Renewable Energy Laboratory 
Tina Hernandez-Boussard Stanford University 
Michael Heroux Sandia National Laboratories 
Kenneth Herwig Oak Ridge National Laboratory 
Joel Hestness Cerebras Systems 
Alexander Hexemer Lawrence Berkeley National Laboratory 
Tony Hey SciML Group, Rutherford Appleton Lab, UK 
Judith Hill Oak Ridge National Laboratory 
Lindsey Hillesheim Cray, Inc. 
Jacob Hinkle Oak Ridge National Laboratory 
Jeffrey Hittinger Lawrence Livermore National Laboratory 
Justin Hnilo Department of Energy 
Phay Ho Argonne National Laboratory 
Thuc Hoang Department of Energy, National Nuclear 

Security Administration 
Andy Hock Cerebras Systems 
Torsten Hoefler ETH Zurich 
Forrest M. Hoffman Oak Ridge National Laboratory 
Sabine Hollatz Stanford University 
Brian Homerding Argonne National Laboratory 
Vasant Honavar Pennsylvania State University 
Tianzhen Hong Lawrence Berkeley National Laboratory 
Walter Hopkins Argonne National Laboratory 
Chet Hopp Lawrence Berkeley National Laboratory 
Paul Hovland Argonne National Laboratory 
Stephan Hoyer Google Research 
Elizabeth Hsu National Cancer Institute 
Lucy Hsu National Institutes of Health, NHLBI 
Michael Hu Argonne National Laboratory 
Rui Hu Argonne National Laboratory 
Bin Hu Los Alamos National Laboratory 
Xiang Huang Argonne National Laboratory 
Yu Huang Argonne National Laboratory 
Xiaobiao Huang SLAC National Accelerator Laboratory 
Eliu Huerta University of Illinois at Urbana-Champaign 
Ashley Huff Oak Ridge National Laboratory 
David Hughes Oak Ridge National Laboratory 
Travis Humble Oak Ridge National Laboratory 
Sean Hurley California Polytechnic State University 
Lorraine Hwang University of California, Davis 
Hoon Hwangbo University of Tennessee 
Costin Iancu Lawrence Berkeley National Laboratory 
Khaled Ibrahim Lawrence Berkeley National Laboratory 
Matthew Igel University of California, Davis 
Gabriel Ilevbare Idaho National Laboratory 
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First Name Last Name Institution 
Nwike Iloeje Argonne National Laboratory 
Ilse C.F. Ipsen North Carolina State University  
Ehsan Sabri Islam Argonne National Laboratory 
Robert Jackson Argonne National Laboratory 
Robert Jacob Argonne National Laboratory 
Chris Jacobsen Argonne National Laboratory/Northwestern 

University 
Dan Jacobson Oak Ridge National Laboratory 
Anubhav Jain Lawrence Berkeley National Laboratory 
Ralph James Savannah River National Laboratory 
Kathy Jang University of California, Berkeley 
Michael Jarrett Argonne National Laboratory 
Cynthia Jenks Argonne National Laboratory 
Elise Jennings Argonne National Laboratory 
Vince Jesaitis Arm Inc 
Shantenu Jha Brookhaven National Laboratory 
Yi Jiang Argonne National Laboratory 
Zhenhua Jiang University of Dayton Research Institute 
Meng Jiang University of Notre Dame 
Xiao-Yong Jin Argonne National Laboratory 
Mingzhou Jin University of Tennessee 
Marcin Joachimiak Lawrence Berkeley National Laboratory 
Eugene John University of Texas at San Antonio 
Fred Johnson Department of Energy, Retired 
Travis Johnston Oak Ridge National Laboratory 
Eric Jonas University of Chicago 
Gregory Jones Oak Ridge National Laboratory 
Katie Jones Oak Ridge National Laboratory 
Scott Jones Oak Ridge National Laboratory 
Terry Jones Oak Ridge National Laboratory 
Doug Joseph Arm Inc 
Renu Joseph Department of Energy 
Earl Joseph Hyperion Research 
Wayne Joubert Oak Ridge National Laboratory 
Gary Jung Lawrence Berkeley National Laboratory 
Andrew Kail Savannah River National Laboratory 
Rajiv Kalia University of Southern California 
Sergei Kalinin Oak Ridge National Laboratory 
Mingon Kang University of Nevada, Las Vegas 
Ramakrishnan Kannan Oak Ridge National Laboratory 
Mahmut Karakaya University of Central Arkansas 
Ulas Karaoz Lawrence Berkeley National Laboratory 
Ian Karlin Lawrence Livermore National Laboratory 
Alisha Kasam-Griffith Argonne National Laboratory 
Karthik Kashinath Lawrence Berkeley National Laboratory 
Aggelos Katsaggelos Northwestern University 
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Kimberly Kaufeld Los Alamos National Laboratory 
Brian Kaul Oak Ridge National Laboratory 
Aditya Kaushal Bank of Montreal 
Henry Kautz National Science Foundation, CISE 
Trevor Keenan Lawrence Berkeley National Laboratory 
Ken Kemner Argonne National Laboratory 
Kelly Kessler Bloomberg 
Rajkumar Kettimuthu Argonne National Laboratory 
Foaad Khosmood California Polytechnic State University 
Kathy Kincade Lawrence Berkeley National Laboratory 
Ryan King National Renewable Energy Laboratory 
Jeffery Kinnison Argonne National Laboratory/University of 

Notre Dame 
Mariam Kiran Lawrence Berkeley National Laboratory 
Uma Klaassen Oak Ridge National Laboratory 
Hilda Klasky Oak Ridge National Laboratory 
Scott Klasky Oak Ridge National Laboratory 
Kerstin Kleese van Dam Brookhaven National Laboratory 
Stanley Klein University of California, Berkeley 
Tim Kneafsey Lawrence Berkeley National Laboratory 
Christopher Knight Argonne National Laboratory 
Katie Knight Oak Ridge National Laboratory 
Ryan Knox Lawrence Berkeley National Laboratory 
Tamara Kolda Sandia National Laboratories 
Egemen Kolemen Princeton University 
Kadidia Konate Lawrence Berkeley National Laboratory 
Urs Koster Cerebras Systems 
Rao Kotamarthi Argonne National Laboratory 
Olivera Kotevska Oak Ridge National Laboratory 
Doug Kothe Oak Ridge National Laboratory 
John  Koudelka Idaho National Laboratory 
William Kramer University of Illinois/NCSA 
James Kress Oak Ridge National Laboratory 
Harinarayan Krishnan Lawrence Berkeley National Laboratory 
Ralph Kube Princeton Plasma Physics Laboratory 
Paul Kuberry Sandia National Laboratories 
Michelle Kuchera Davidson College 
Suhas Kumar Hewlett Packard Laboratory 
Dinesh Kumar Lawrence Berkeley National Laboratory 
Jitu Kumar Oak Ridge National Laboratory 
Praveen Kumar University of Illinois 
Vinod Kumar University of Texas at El Paso/Calysta Inc.- 

Menlo Park 
Ana Kupresanin Lawrence Livermore National Laboratory 
Tom Kurfess Oak Ridge National Laboratory 
Teja Kuruganti Oak Ridge National Laboratory 
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Joshua Ladau Lawrence Berkeley National Laboratory 
Yue Shi Lai Lawrence Berkeley National Laboratory 
M. Paul Laiu Oak Ridge National Laboratory 
Matthew Lanctot Department of Energy, Office of Science 
TJ Lane SLAC National Accelerator Laboratory 
Michael Lang Los Alamos National Laboratory 
James Laros Sandia National Laboratories 
Jeffrey Larson Argonne National Laboratory 
Randall Laviolette Department of Energy, Advanced Scientific 

Computing Research 
Earl Lawrence Los Alamos National Laboratory 
Craig Lawrence University of Maryland 
Nam Le Johns Hopkins University Applied Physics 

Lab 
Jacqueline Le Moigne NASA Earth Science Technology Office 
Damien Lebrun-Grandie Oak Ridge National Laboratory 
Timothy Ledlow Missile Defense Agency 
Eungje Lee Argonne National Laboratory 
Steven Lee Department of Energy, Advanced Scientific 

Computing Research 
Victor Lee Intel Corporation 
Seyong Lee Oak Ridge National Laboratory 
Ti Leggett Argonne National Laboratory 
Remi Lehe Lawrence Berkeley National Laboratory 
Margaret Lentz Department of Energy, Artificial Intelligence 

and Technology Office 
Vitus Leung Sandia National Laboratories 
Dawn Levy Oak Ridge National Laboratory 
Katherine Lewis Lawrence Livermore National Laboratory 
Katie Lewis Lawrence Livermore National Laboratory 
Sven Leyffer Argonne National Laboratory 
Meimei Li Argonne National Laboratory 
Ying Li Argonne National Laboratory 
Sherry Li Lawrence Berkeley National Laboratory 
Ying Wai Li Los Alamos National Laboratory 
Zhaojian Li Michigan State University 
Ang Li Pacific Northwest National Laboratory 
Dong Li University of California, Merced 
Bo Li University of Illinois at Urbana-Champaign 
Dmitry Liakh Oak Ridge National Laboratory 
Dong Liang University of Maryland Center for 

Environmental Science 
Chen Liao Argonne National Laboratory 
Sean Liddick Michigan State University, NSCL 
Meifeng Lin Brookhaven National Laboratory 
Yuewei Lin Brookhaven National Laboratory 
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Youzuo  Lin Los Alamos National Laboratory 
Eric Lin National Institute of Standards and 

Technology 
Guang Lin Purdue University 
Zhihong Lin University of California, Irvine 
Travis Linderman Innovation DuPage - NIU/COD 
Robert Link Pacific Northwest National Laboratory 
Yung Liu Argonne National Laboratory 
Cong Liu Argonne National Laboratory  
Zhengchun Liu Argonne National Laboratory  
Miaoyuan Liu Fermi National Accelerator Laboratory 
Yan Liu Oak Ridge National Laboratory 
Frank Liu Oak Ridge National Laboratory/CSMD 
Jing Liu Stanford University 
Bill Livezey Microsoft Corporation 
Li-Ta Lo Los Alamos National Laboratory 
Jeremy Logan Oak Ridge National Laboratory 
Wolfgang Losert University of Maryland, College Park 
Pavel Lougovski Oak Ridge National Laboratory 
Dan Lu Oak Ridge National Laboratory 
Xiaobin Lu Oak Ridge National Laboratory 
Zarija Lukic Lawrence Berkeley National Laboratory 
Dalton Lunga Oak Ridge National Laboratory 
Feng Luo Clemson University 
Lixiang Luo IBM Research 
Xuan Luo Lawrence Berkeley National Laboratory 
Bethany Lusch Argonne National Laboratory 
Piotr Luszczek University of Tennessee 
Joseph Lykken Fermi National Accelerator Laboratory 
Steven Lyness Cray, Inc. 
Adam Lyon Fermi National Accelerator Laboratory 
Charles Macal Argonne National Laboratory 
Arthur Barney Maccabe Oak Ridge National Laboratory 
Michael MacNeil Lawrence Berkeley National Laboratory 
Siddharth Maddali Argonne National Laboratory 
Ravi Madduri Argonne National Laboratory 
Sandeep Madireddy Argonne National Laboratory 
Ramana Madupu Department of Energy 
Gina Magnotti Argonne National Laboratory 
Ketan Maheshwari Oak Ridge National Laboratory 
Michael Mahoney University of California, Berkeley 
Michael Majurski National Institute of Standards and 

Technology 
Nicholas Malaya Advanced Micro Devices Company 
Carlos Maltzahn University of California, Santa Cruz 
Andrea Manning Argonne National Laboratory 
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Arun Kumar Mannodi Kanakkithodi Argonne National Laboratory 
Jiafu Mao Oak Ridge National Laboratory 
Don March Oak Ridge National Laboratory 
Phil Markham Southern Company 
David Martin Argonne National Laboratory 
Victoria Martin Argonne National Laboratory 
Daniel Martin Lawrence Berkeley National Laboratory 
Mark Martin Oak Ridge National Laboratory 
Carianne Martinez Sandia National Laboratories 
Ghoncheh Mashayekhi University of Wisconsin, Milwaukee 
Zachary Matheson Department of Energy, National Nuclear 

Security Administration 
Michael Matheson Oak Ridge National Laboratory 
Romit Maulik Argonne National Laboratory 
Yury Maximov Los Alamos National Laboratory 
Ed May Argonne National Laboratory 
Jessica Mazerik National Institutes of Health 
Matt McConnell Dell EMC 
Dana McCoskey Water Power Tech Office 
Dylan McDowell Idaho National Laboratory 
Cynthia McMurray Lawrence Berkeley National Laboratory 
Hugh Medal University of Tennessee 
Shafigh Mehraeen University of Illinois at Chicago 
Apurva Mehta National Accelerator Laboratory\ SLAC 
Kshitij Mehta Oak Ridge National Laboratory 
Veronica Melesse Vergara Oak Ridge National Laboratory 
Matt Menickelly Argonne National Laboratory 
Bronson Messer Oak Ridge National Laboratory 
Zein-Eddine Meziani Argonne National Laboratory 
Georgios Michelogiannakis Lawrence Berkeley National Laboratory 
Anitescu Mihai Argonne National Laboratory 
Mark Miller Lawrence Livermore National Laboratory 
David Miller National Energy Technology Laboratory 
Richard Mills Argonne National Laboratory 
Ryan Milner Argonne National Laboratory 
Michael Minion Lawrence Berkeley National Laboratory 
Sandeep Miryala Fermi National Accelerator Laboratory 
Konstantin Mischaikow Rutgers University 
Umakant Mishra Argonne National Laboratory 
Utkarsh Mital Lawrence Berkeley National Laboratory 
John Mitchell Argonne National Laboratory 
Julie Mitchell Oak Ridge National Laboratory 
John Mitchell Sandia National Laboratories 
Susan Mniszewski Los Alamos National Laboratory 
Daniel Moberg Argonne National Laboratory 
Bashir Mohammed Lawrence Berkeley National Laboratory 
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Subhasish Mohanty Argonne National Laboratory  
Linda Mohanty Dell EMC 
William Monday Oak Ridge National Laboratory 
Inder Monga Lawrence Berkeley National Laboratory 
Laura Monroe Los Alamos National Laboratory 
Luis Montero Argonne National Laboratory 
Allison Montroy Department of Defense, Air Force Research 

Laboratory 
Elisabeth (Lissa) Moore Los Alamos National Laboratory 
Juston Moore Los Alamos National Laboratory 
Shirley Moore Oak Ridge National Laboratory 
Mark Moraes D. E. Shaw Research 
Kenneth Moreland Sandia National Laboratories 
Hannah Morgan Argonne National Laboratory 
Dmitriy Morozov Lawrence Berkeley National Laboratory 
James Morris Ames Laboratory 
Juliane Mueller Lawrence Berkeley National Laboratory 
Terrell Mundhenk Lawrence Livermore National Laboratory 
Todd Munson Argonne National Laboratory 
Robert Murray Microsoft Corporation 
Mustafa Mustafa Lawrence Berkeley National Laboratory 
Srideep Musuvathy Sandia National Laboratories 
Balu Nadiga Los Alamos National Laboratory 
Ambarish Nag National Renewable Energy Laboratory 
Habib Najm Sandia National Laboratories 
Aiichiro Nakano University of Southern California 
Hai Ah Nam Los Alamos National Laboratory 
Brad Nance Oak Ridge National Laboratory 
Youssef Nashed Argonne National Laboratory 
Thomas Naughton Oak Ridge National Laboratory 
Gary Navrotski Argonne National Laboratory 
Thomas Ndousse-Fetter  Department of Energy 
Kyle Neal Sandia National Laboratories 
Grey Nearing University of Alabama 
Benjamin Nebgen Los Alamos National Laboratory 
Tommy Nelson Oak Ridge National Laboratory 
Denise Neudecker Los Alamos National Laboratory 
Michelle Newcomer Lawrence Berkeley National Laboratory 
Justin Newcomer Sandia National Laboratories 
Harvey Newman California Institute of Technology 
Ben Newton Sandia National Laboratories 
Esmond Ng Lawrence Berkeley National Laboratory 
Brenda Ng Lawrence Livermore National Laboratory 
Marcus Nguyen Argonne National Laboratory/University of 

Chicago 
Jeffrey Nichols Oak Ridge National Laboratory 
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Bogdan Nicolae Argonne National Laboratory 
Marcus Noack Lawrence Berkeley National Laboratory 
Jorge Nocedal Northwestern University 
Eva Nogales Lawrence Berkeley National Laboratory 
Brian Nord Fermi National Accelerator Laboratory 
Peter Nugent Lawrence Berkeley National Laboratory 
Hoot O’Connor My Math Cloud 
Patrick O’Leary Kitware, Inc. 
Daniel O’Malley Los Alamos National Laboratory 
Aleksandr Obabko Argonne National Laboratory 
Ceferino Obcemea National Cancer Institute 
Ron Oldfield Sandia National Laboratories 
Lenny Oliker Lawrence Berkeley National Laboratory 
Kunle Olukotun SambaNova Systems 
Olufemi Omitaomu Oak Ridge National Laboratory 
Raymond Osborn Argonne National Laboratory 
Jim Ostrowski University of Tennessee 
Sarah  Owens Argonne National Laboratory  
John Owens University of California, Davis 
Opeoluwa Owoyele Argonne National Laboratory 
Diane Oyen Los Alamos National Laboratory 
Ozgur Ozmen Oak Ridge National Laboratory 
Aaron Packman Northwestern University/Argonne National 

Laboratory 
David Page Oak Ridge National Laboratory 
Pinaki Pal Argonne National Laboratory 
Dhabaleswar K (DK) Panda The Ohio State University 
Achalesh Kumar Pandey General Electric Research 
Tara Pandya Oak Ridge National Laboratory 
Theo Papamarkou Oak Ridge National Laboratory 
Michael E. Papka Argonne National Laboratory 
Vincent Paquit Oak Ridge National Laboratory 
Gilchan Park Brookhaven National Laboratory 
Ji Hwan Park Brookhaven National Laboratory 
Yoonho Park IBM Research 
Eun Jung Park Los Alamos National Laboratory 
Byung Hoon Park Oak Ridge National Laboratory 
Lynne Parker Office of Science and Technology Policy 
Valerio Pascucci University of Utah 
Gilberto Pastorello Lawrence Berkeley National Laboratory 
Deep Patel Oak Ridge National Laboratory 
Abani Patra Tufts University 
Christina Patricola Lawrence Berkeley National Laboratory 
Robert Patton Oak Ridge National Laboratory 
Robert Pavel Los Alamos National Laboratory 
Chuck Pavloski Pennsylvania State University 
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Roger Pawlowski Sandia National Laboratories 
Kevin Pedro Fermi National Accelerator Laboratory 
Sean Peisert Lawrence Berkeley National Laboratory 
Amra Peles Pacific Northwest National Laboratory 
Swann Perarnau Argonne National Laboratory 
Talita Perciano Lawrence Berkeley National Laboratory 
Gabriel Perdue Fermi National Accelerator Laboratory 
Mauro Perego Sandia National Laboratories 
Kalyan Perumalla Oak Ridge National Laboratory 
Nick Peters Oak Ridge National Laboratory 
Norm Peterson Argonne National Laboratory 
Matt Peterson Sandia National Laboratories 
Armenak Petrosyan Oak Ridge National Laboratory 
Charudatta Phatak Argonne National laboratory 
Bobby Philip Los Alamos National Laboratory 
Caleb Phillips National Renewable Energy Laboratory 
Cynthia Phillips Sandia National Laboratories 
Mary Ann Piette Lawrence Berkeley National Laboratory 
Ali Pinar Sandia National Laboratories 
Robinson Pino Department of Energy 
Steve Plimpton Sandia National Laboratories 
Matthew Plumlee Northwestern University 
Norbert Podhorszki Oak Ridge National Laboratory 
Raphael Pooser Oak Ridge National Laboratory 
Alex Pothen Purdue University 
Thomas Potok Oak Ridge National Laboratory 
Carol Pott Lawrence Berkeley National Laboratory 
Line Pouchard Brookhaven National Laboratory 
Sarah Powers Oak Ridge National Laboratory  

Prabhat Lawrence Berkeley National Laboratory 
Thomas Proffen Oak Ridge National Laboratory 
Andrey Prokopenko Oak Ridge National Laboratory 
James Proudfoot Argonne National Laboratory 
Fernanda Psihas Fermi National Accelerator Laboratory/The 

University of Texas at Austin 
Dave Pugmire Oak Ridge National Laboratory 
Laura Pullum Oak Ridge National Laboratory 
Ji Qiang Lawrence Berkeley National Laboratory 
Hong Qin University of Tennessee at Chattanooga 
Judy Qiu Indiana University 
Alejandro Queiruga Lawrence Berkeley National Laboratory 
John Quigley Dell EMC 
Jofrey Quintanar Argonne National Laboratory 
Mihaela Quirk Department of Energy, National Nuclear 

Security Administration 
Brian Quiter Lawrence Berkeley National Laboratory 
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Sudarsan Rachuri Department of Energy 
Maryam Rahnemoonfar University of Maryland, Baltimore County 
Gulshan Rai Department of Energy, Office of Nuclear 

Physics 
Pankaj Rajak Argonne National Laboratory 
Siva Rajamanickam Sandia National Laboratories 
Hridesh Rajan Ames Laboratory/Iowa State University 
Vinay Ramakrishnaiah Los Alamos National Laboratory 
Lavanya Ramakrishnan Lawrence Berkeley National Laboratory 
Arvind Ramanathan Argonne National Laboratory 
Jini Ramprakash Argonne National Laboratory 
Pradeep Ramuhalli Oak Ridge National Laboratory 
Huzefa Rangwala George Mason University 
Vishwas Rao Argonne National Laboratory 
Nageswara Rao Oak Ridge National Laboratory 
William Ratcliff National Institute of Standards and 

Technology 
Daniel Ratner SLAC National Accelerator Laboratory 
Jaideep Ray Sandia National Laboratories 
Justin Reese Lawrence Berkeley National Laboratory 
Ernst Rehm Argonne National Laboratory 
Yihui Ren Brookhaven National Laboratory 
Viktor Reshniak Oak Ridge National Laboratory 
Randal Rheinheimer Los Alamos National Laboratory 
James Ricci Department of Energy, Advanced Scientific 

Computing Research 
Daniel Ricciuto Oak Ridge National Laboratory 
Jasmin Richard University of Rochester 
Elias Rigas CCDC Army Research Laboratory 
Hugo Riggs Florida International University 
Todd Ringler Rep. Ben Ray Luján 
Benjamin Robbins Cray, Inc. 
Mike Robinson Department of Energy, Wind Energy 

Technology Office 
Verónica Rodríguez Tribaldos Lawrence Berkeley National Laboratory 
Dmitry Romanov Jefferson Laboratory 
Elisa Romero Romero University of Tennessee 
Mohammad Roni Idaho National Laboratory 
Kelly Rose National Energy Technology Laboratory 
Derek Rose Oak Ridge National Laboratory 
Michael Rosenfield IBM Research 
Elizabeth Rosenthal Oak Ridge National Laboratory 
Robert Ross Argonne National Laboratory 
Fred Rothganger Sandia National Laboratories 
Lindsay Roy Savannah River National Laboratory 
Ahmad Rushdi Sandia National Laboratories 
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Thomas Russell Department of Energy, Basic Energy 

Sciences 
Florin Rusu Lawrence Berkeley National Laboratory 
Gary Saavedra Sandia National Laboratories 
Ella Saccon National Cancer Institute 
Sonia Sachs Department of Energy, Office of Science 
Cosmin Safta Sandia National Laboratories 
Alec Sandy Argonne National Laboratory 
Ramanan Sankaran Oak Ridge National Laboratory 
Daniel Santiago Argonne National Laboratory 
Fadil Santosa University of Minnesota 
Jibo Sanyal Oak Ridge National Laboratory 
Vivek Sarkar Georgia Institute of Technology 
Mina Sartipi University of Tennessee at Chattanooga 
Arif Sarwat Florida International University 
Bhima Sastri Office of Fossil Energy 
Paul Saxe Virginia Tech, MolSSI 
Michael Schatz Georgia Institute of Technology 
Ben Schiltz Argonne National Laboratory 
John Schlueter National Science Foundation 
Martin Schoenball Lawrence Berkeley National Laboratory 
Malachi Schram Pacific Northwest National Laboratory 
Robert Schreiber Cerebras Systems 
Katie Schuman Oak Ridge National Laboratory 
Michelle Schwalbe National Academies of Sciences, 

Engineering, and Medicine 
Ann Schwartz Drobnis Computing Community Consortium 
Ariel Schwartzman SLAC National Accelerator Laboratory 
Nicholas Schwarz Argonne National Laboratory 
Mary Scott Lawrence Berkeley National Laboratory 
Sudip Seal Oak Ridge National Laboratory 
Pablo Seleson Oak Ridge National Laboratory 
Uros Seljak Lawrence Berkeley National Laboratory 
Daisy Flora Selvaraj University of North Dakota 
Satyabrata Sen Oak Ridge National Laboratory 
Koushik Sen University of California, Berkeley 
Sergio Servantez Argonne National Laboratory/Northwestern 

University  
Robert Service Science Magazine 
Jamie Sethian Lawrence Berkeley National Laboratory 
Bradley Settlemyer Los Alamos National Laboratory 
Gökhan Sever Argonne National Laboratory 
William Severa Sandia National Laboratories 
Volkan Sevim Lawrence Berkeley National Laboratory 
James Sexton IBM Research 
Elizabeth Sexton-Kennedy Fermi National Accelerator Laboratory 
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John Shalf Lawrence Berkeley National Laboratory 
Hairong Shang Argonne National Laboratory 
Arjun Shankar Oak Ridge National Laboratory 
susmit shannigrahi Tennessee Technological University 
Himanshu Sharma Argonne National Laboratory 
Akshay Sharma Lawrence Berkeley National Laboratory 
Karlie Sharma National Institutes of Health, NCATS 
Emily Shemon Argonne National Laboratory 
Chaopeng Shen Pennsylvania State University 
Huanjie Sheng University of California, Berkeley 
Wei Shi National Energy Technology Laboratory/ 

LRST/Battelle 
Xiaoying Shi Oak Ridge National Laboratory 
Xinghua Shi Temple University 
Galen Shipman Los Alamos National Laboratory 
Cyna Shirazinejad University of California, Berkeley 
Shalki Shrivastava University of North Carolina at Chapel Hill, 

RENCI 
Forrest Shriver Oak Ridge National Laboratory 
Maulik Shukla Argonne National Laboratory 
Christopher Siefert Sandia National Laboratories 
Andrew Siegel Argonne National Laboratory 
Horst Simon Lawrence Berkeley National Laboratory 
Sean Simoneau Oak Ridge National Laboratory 
Rajneesh Singh US Army Research Lab 
Ganesh Sivaraman Argonne National Laboratory 
Adam Slagell Lawrence Berkeley National Laboratory 
Stuart Slattery Oak Ridge National Laboratory 
Tess Smidt Lawrence Berkeley National Laboratory 
Barry Smith Argonne National Laboratory 
Jeff Smith Oak Ridge National Laboratory 
Michael Smith Oak Ridge National Laboratory 
David Smith University of Wisconsin, Madison 
Oleg Sobolev Lawrence Berkeley National Laboratory 
Lynda Soderholm Argonne National Laboratory 
Sibendu Som Argonne National Laboratory 
Suhas Somnath Oak Ridge National Laboratory 
Siamak Sorooshyari University of California, Berkeley 
Salvador Sosa Guitron University of New Mexico 
Carlos Soto Brookhaven National Laboratory 
Dale Southard Groq Inc. 
Brian Spears Lawrence Livermore National Laboratory 
Maria Spiropulu California Institute of Technology 
William Spotz Department of Energy 
Michael Sprague National Renewable Energy Laboratory 
Sarat Sreepathi Oak Ridge National Laboratory 
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Niranjan Sridhar Verily Life Sciences 
Srilok Srinivasan Argonne National Laboratory 
Jay Srinivasan Lawrence Berkeley National Laboratory 
Gowri Srinivasan Los Alamos National Laboratory 
Peter St. John National Renewable Energy Laboratory 
Andrew Stack Oak Ridge National Laboratory 
Marius Stan Argonne National Laboratory 
Vitalii Starchenko Oak Ridge National Laboratory 
Janice Steckel National Energy Technology Laboratory 
Chad Steed Oak Ridge National Laboratory 
Carl Steefel Lawrence Berkeley National Laboratory 
Carolyn Steele Argonne National Laboratory 
Rick Stevens Argonne National Laboratory 
Jim Stewart Sandia National Laboratories 
Panos Stinis Pacific Northwest National Laboratory 
Miroslav Stoyanov Oak Ridge National Laboratory 
Tjerk Straatsma Oak Ridge National Laboratory 
David Stracuzzi Sandia National Laboratories 
Stephen Streiffer Argonne National Laboratory 
Frederick Streitz Department of Energy, HQ 
Forrest Striver Oak Ridge National Laboratory 
Erich Strohmaier Lawrence Berkeley National Laboratory 
Jan Strube Pacific Northwest National Laboratory 
Abby Stylianou Saint Louis University 
Eric Suchyta Oak Ridge National Laboratory 
Sreenivas Sukumar Cray, Inc. 
Bobby G. Sumpter Oak Ridge National Laboratory 
Yipeng Sun Argonne National Laboratory 
Chengjun  Sun Argonne National Laboratory  
Zhao Sun Hampton University 
Yu Sun  Stony Brook University  
Shivshankar Sundaram Lawrence Livermore National Laboratory 
Ceren Susut Department of Energy, Office of Science 
Kamlesh Suthar Argonne National Laboratory 
Carolin Sutter-Fella Lawrence Berkeley National Laboratory 
Amy Swain Department of Energy 
Pieter  Swart Los Alamos National Laboratory  
Christine Sweeney Los Alamos National Laboratory 
Laura  Swiler Sandia National Laboratories 
Madhava Syamlal Department of Energy 
Adam Szymanski Argonne National Laboratory 
Michael Tamillow NICO 
Jifu Tan Northern Illinois University 
Yu-Hang Tang Lawrence Berkeley National Laboratory 
Deepti Tanjore Lawrence Berkeley National Laboratory 
Alexandre Tartakovsky Pacific Northwest National Laboratory 
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Marc Taubenblatt IBM Research 
Michela Taufer University of Tennessee 
Valerie Taylor Argonne National Laboratory 
Aniket Tekawade Argonne National Laboratory 
Jeremy Templeton Sandia National Laboratories 
Chris Tennant Jefferson Laboratory 
Alan Tennant Oak Ridge National Laboratory 
Kazuhiro Terao SLAC National Accelerator Laboratory 
Guilhem Tesseyre Google Research 
Rajeev Thakur Argonne National Laboratory 
Jayakar Thangaraj Fermi National Accelerator Laboratory 
Nicholas Thompson Oak Ridge National Laboratory 
Aidan Thompson Sandia National Laboratories 
Suzy Tichenor Oak Ridge National Laboratory 
Ken Tobin Oak Ridge National Laboratory 
Peter Tonner National Institute of Standards and 

Technology 
Roberto Torelli Argonne National Laboratory 
Georgia Tourassi Oak Ridge National Laboratory 
Nhan Tran Fermi National Accelerator Laboratory 
Hoang Tran Oak Ridge National Laboratory 
Nathaniel Trask Sandia National Laboratories 
Charles Tripp National Renewable Energy Laboratory 
Andrew Tritt Lawrence Berkeley National Laboratory 
Aristeidis Tsaris Oak Ridge National Laboratory 
Bill Turenne Department of Energy, Artificial Intelligence 

and Technology Office 
John Turner Oak Ridge National Laboratory 
Sean Turner Pacific Northwest National Laboratory 
Victor Udeowa General Services Administration 
Thomas Uram Argonne National Laboratory 
Nathan Urban Los Alamos National Laboratory 
Meltem Urgun-Demirtas Argonne National Laboratory 
Ahmet Uysal Argonne National Laboratory 
Brian Van Essen Lawrence Livermore National Laboratory 
Peter van Gemmeren Argonne National Laboratory 
William Vanderlinde Department of Energy, Advanced Scientific 

Computing Research 
Dirk VanEssendelft National Energy Technology Laboratory 
Charuleka Varadharajan Lawrence Berkeley National Laboratory 
Laurie Varma Oak Ridge National Laboratory 
Robert Varner Oak Ridge National Laboratory 
Natalia Vasileva Cerebras Systems 
Dilip Vasudevan Lawrence Berkeley National Laboratory 
Ashish Vaswani Google Research 
Sudharshan Vazhkudai Oak Ridge National Laboratory 
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Carolyn Vea Lauzon Department of Energy, HQ 
Singanallur Venkatakrishnan Oak Ridge National Laboratory 
Becky Verastegui Oak Ridge National Laboratory 
Matthew Verber University of North Carolina at Chapel Hill 
Rafael Vescovi Argonne National Laboratory 
Velimir Vesselinov Los Alamos National Laboratory 
Jeffrey Vetter Oak Ridge National Laboratory 
Michael Vildibill Hewlett Packard Enterprise 
Venkatram Vishwanath Argonne National Laboratory 
Lukas Vlcek University of Tennessee 
Charlie Vollmer Sandia National Laboratories 
James von Oehsen Rutgers University 
Dave Vorhaus Schmidt Futures 
Greg Wagner Northwestern University 
Robert Wagner Oak Ridge National Laboratory 
Haruko Wainwright Lawrence Berkeley National Laboratory 
Jay Walsh Northwestern University 
Matthew Walter Toyota Technological Institute at Chicago 
Cheng Wang Argonne National Laboratory 
Haoyu Wang Argonne National Laboratory 
Jiali Wang Argonne National Laboratory 
Jin  Wang Argonne National Laboratory 
Bin Wang Lawrence Berkeley National Laboratory 
Zhe Wang Lawrence Berkeley National Laboratory 
Dali Wang Oak Ridge National Laboratory 
Lipeng Wang Oak Ridge National Laboratory 
Felix Wang Sandia National Laboratories 
Zhang Wanni Lawrence Berkeley National Laboratory 
Karl Warburton Iowa State University 
Logan Ward Argonne National Laboratory 
Sharlene Weatherwax Department of Energy, Biological and 

Environmental Research 
Rosina Weber Drexel University 
Gunther Weber Lawrence Berkeley National Laboratory 
Clayton Webster Oak Ridge National Laboratory 
Michael Wehner Lawrence Berkeley National Laboratory 
Xishuo Wei University of California, Irvine 
Patricia Weikersheimer Argonne National Laboratory 
Jack Wells Oak Ridge National Laboratory 
Haiden Wen Argonne National Laboratory 
Torre Wenaus Brookhaven National Laboratory 
Gerry White Federal Emergency Management Agency 
Julia White Oak Ridge National Laboratory 
Stephen Whitelam Lawrence Berkeley National Laboratory 
Eric Whiting Idaho National Laboratory 
Justin Whitt Oak Ridge National Laboratory 
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Patrick Widener Sandia National Laboratories 
Stefan Wild Argonne National Laboratory 
George Wilkie Princeton Plasma Physics Laboratory 
Sean Wilkinson Oak Ridge National Laboratory 
Timothy Williams Argonne National Laboratory 
Samuel Williams Lawrence Berkeley National Laboratory 
Dan Wilmot Department of Energy, Artificial Intelligence 

and Technology Office 
Peter Winter Argonne National Laboratory 
Robert Wisniewski Intel Corporation 
Laura Wolf Argonne National Laboratory 
Matthew Wolf Oak Ridge National Laboratory 
Michael Wolf Sandia National Laboratories 
Phillip Wolfram Los Alamos National Laboratory 
Gayle Woloschak Northwestern University 
David Womble Oak Ridge National Laboratory 
Geoff Womeldorff Los Alamos National Laboratory 
Justin Worrilow Microsoft Corporation 
Justin Wozniak Argonne National Laboratory 
Nicholas Wright Lawrence Berkeley National Laboratory 
Xuli Wu Argonne National Laboratory 
Xingfu Wu Argonne National Laboratory/University of 

Chicago 
Kesheng (John) Wu Lawrence Berkeley National Laboratory 
Wei Wu Los Alamos National Laboratory 
Sau Lan Wu University of Wisconsin, Madison 
Margie Wylie Lawrence Berkeley National Laboratory 
Max Wyman Argonne National Laboratory 
Hai Xiao Clemson University 
Lianghua Xiong Argonne National Laboratory 
Yilun Xu Lawrence Berkeley National Laboratory 
Zexuan Xu Lawrence Berkeley National Laboratory 
Xueqiao Xu Lawrence Livermore National Laboratory 
Min Xu Oak Ridge National Laboratory 
Wenwei Xu Pacific Northwest National Laboratory 
Yexiang Xue Purdue University 
Chunhua Yan National Cancer Institute 
Da Yan University of Alabama at Birmingham 
Chao Yang Lawrence Berkeley National Laboratory 
Da Yang Lawrence Berkeley National Laboratory 
Zechun Yang Missile Defense Agency 
Lexie Yang Oak Ridge National Laboratory 
Qian Yang University of Connecticut 
Ke-Thia Yao University of Southern California 
Katherine Yelick Lawrence Berkeley National Laboratory 
Orcun Yildiz Argonne National Laboratory 
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Junqi Yin Oak Ridge National Laboratory 
Shinjae Yoo Brookhaven National Laboratory 
Kazutomo Yoshii Argonne National Laboratory 
Linda Young Argonne National Laboratory/University of 

Chicago 
Stanley Young National Renewable Energy Laboratory 
Steven Young Oak Ridge National Laboratory 
Andrew Younge Sandia National Laboratories 
Shiqi Yu Argonne National Laboratory 
Dantong Yu New Jersey Institute of Technology 
Rose Yu Northeastern University 
Thomas Zacharia Oak Ridge National Laboratory 
Federico Zahariev Ames Laboratory  
Nestor Zaluzec Argonne National Laboratory 
Michael Zarnstorff Princeton Plasma Physics Laboratory 
Piotr Zarzycki Lawrence Berkeley National Laboratory 
Liat Zavodivker Lawrence Berkeley National Laboratory 
Zuotao Zeng Argonne National Laboratory 
Ruijie Zeng Utah State University 
Hong Zhang Argonne National Laboratory 
Xiaoyi Zhang Argonne National Laboratory 
Yuepeng Zhang Argonne National Laboratory 
Xiangyu Zhang National Renewable Energy Laboratory 
Guannan Zhang Oak Ridge National Laboratory 
Jiaxin Zhang Oak Ridge National Laboratory 
Ying Zhang University of Rhode Island 
Zhao Zhang University of Texas, TACC 
Emma Zhao Argonne National Laboratory 
Liang Zhao George Mason University 
Huihuo Zheng Argonne National Laboratory 
Zhi Zheng University of Wisconsin, Milwaukee 
Mingxia Zhou Argonne National Laboratory 
Maxim Ziatdinov Oak Ridge National Laboratory 
Sue Zillman Argonne National Laboratory 
Tarek Zohdi Lawrence Berkeley National Laboratory 
Xiaobing  Zuo Argonne National Laboratory 
Petrus Zwart Lawrence Berkeley National Laboratory 
Matthias Zwicker University of Maryland, College Park 
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AD. Abbreviations and Terminology 

Abbreviations Terminology 
3D three-dimensional 
AGN active galactic nucleus 
AI artificial intelligence 
ALCF Argonne Leadership Computing Facility 
ALS Advanced Light Source 
AMIGA All Modular Industry Growth Assessment 
AMR adaptive mesh refinement 
ANNs artificial neural networks 
AOGCM Atmosphere-ocean general circulation model 
API application programming interface 
APS appearance potential spectroscopy, Advanced Photon Source 
Argonne Argonne National Laboratory 
ARM atmospheric radiation monitoring 
ARM Atmospheric Radiation Measurement Climate Research Facility 
ASCR Advanced Scientific Computing Research 
ASDEX-UG Axially Symmetric Diverter Experiment Upgrade 
BBH binary black hole 
Berkeley Lab Lawrence Berkeley National Laboratory 
BES Basic Energy Sciences 
BESAC Basic Energy Sciences Advisory Committee 
BG Blue Gene 
BHNS black hole and neutron star 
BNS binary neutron star 
CAF Co-Array Fortran 
CF climate and forest 
CGE computable general equilibrium 
CGRO Compton Gamma-Ray Observatory 
CMOS complementary metal-oxide-semiconductor 
CMS Compact Muon Solenoid 
CNNs convolutional neural networks 
CPU central processing unit 
CRISPR clustered regularly interspaced short palindromic repeats 
DAE differential algebraic equation 
DARPA Defense Advanced Research Projects Agency 
DAS distributed acoustic sensing 
DBA design basis accident 
DETF Dark Energy Task Force 
DFT density functional theory 
DL deep learning 
DLA deep learning accelerator 
DNN deep neural network 
DOE United States Department of Energy 
DVM dynamic vegetation model 
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Abbreviations Terminology 
E3 Simulation and Modeling at the Exascale for Energy and the Environment 
EAST Experimental Advanced Superconducting Tokamak 
ECoG electrocorticography 
EIC Electron-Ion Collider 
ELM edge-localized mode 
EMF Energy Modeling Forum 
EMSL Environmental Molecular Sciences Laboratory 
EOS equation of state 
ESGF Earth System Grid Federation 
ESM Earth System Model 
ESnet Energy Sciences Network 
ESS-DIVE Environmental System Science Data Infrastructure for a Virtual Ecosystem 
EVLA Enhanced Very Large Array 
EXIST Energetic X-ray Imaging Survey Telescope 
FAIR findable, accessible, interoperable, reusable 
FES Fusion Energy Sciences 
FFT fast Fourier transform 
flops floating point operations per second 
fMRI functional magnetic resonance imaging 
FPGA field programmable gate array 
FRIB Facility for Rare Isotope Beams 
FUSE Far Ultraviolet Spectroscopic Explorer 
GAN generative adversarial network 
Gbps gigabits per second 
GIS geographic information system 
GK gyrokinetic 
GRETA Gamma-Ray Energy Tracking Array 

GLAST Gamma-ray Large Area Space Telescope 
GMT Giant Magellan Telescope 
GNEP Global Nuclear Energy Partnership 
GPU graphics processing unit 
GRB gamma-ray burst 
GTC Gyrokinetic Toroidal Code 
HCCI homogeneous charge compression ignition 
HEP high energy physics 
HPC high-performance computing 
HPN high-performance network 
IEEE Institute of Electrical and Electronics Engineers 
I/O Input/output 
IOP input/output processor 
IoT Internet of Things 
Jefferson Lab Thomas Jefferson National Accelerator Facility 
JET Joint European Torus 
JUMP Joint University Microelectronics Program 
KBase Systems Biology Knowledge Base 
LAN local area network 
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Abbreviations Terminology 
LBNL Lawrence Berkeley National Laboratory 
LCF Leadership Computing Facility 
LCLS-II second-generation Linac Coherent Light Source 
LSTM long short-term memory 
MD molecular dynamic (simulations) 
ML machine learning 
MPI message passing interface 
NERSC National Energy Research Scientific Computing Center 
NGEEs Next-Generation Ecosystem Experiments 
NIPS Conference on Neural Information Processing Systems 
NMDC National Microbiome Data Collaborative 
OLCF Oak Ridge Leadership Computing Facility 
ORNL Oak Ridge National Laboratory 
PLD pulse laser deposition 
QCD quantum chromodynamics 
QIS quantum information sciences 
RF radio frequency 
RHIC Relativistic Heavy Ion Collider 
RL reinforcement learning 
ROSM reduced order surrogate model 
SNS Spallation Neutron Source 
SoC system-on-chip 
SRF superconducting radiofrequency 
TB terabyte 
TPU tensor processing unit 
UHPC ultra-high performance concrete 
UQ uncertainty quantification 
WAN wide area network 
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