
CoreFlow: Enriching Bro security events using network traffic monitoring data

Ralph Koninga,b,∗, Nick Buragliob, Cees de Laata,b, Paola Grossoa

aUniversiteit van Amsterdam, Science Park 904, Amsterdam, The Netherlands
bEnergy Sciences Network, Lawrence Berkeley Lab. Berkeley, CA, USA

Abstract

Attacks against network infrastructures can be detected by Intrusion Detection Systems (IDS). Still reaction to these events are often
limited by the lack of larger contextual information in which they occurred. In this paper we present CoreFlow, a framework for the
correlation and enrichment of IDS data with network flow information. CoreFlow ingests data from the Bro IDS and augments this
with flow data from the devices in the network. By doing this the network providers are able to reconstruct more precisely the route
followed by the malicious flows. This enables them to device tailored countermeasures, e.g. blocking close to the source of the
attack. We tested the initial CoreFlow prototype in the ESnet network, using inputs from 3 Bro systems and more than 50 routers.

Keywords: Security, Network, IDS, netflow, flow, detection, IPFIX, DDoS, Carrier networks, Transit networks

1. Introduction

As society becomes more reliant on cyber-infrastructures and
computer networks, securing this infrastructure becomes in-
creasingly more important. Large scale cyber attacks might be
directed toward critical infrastructure components such as the
DNS root servers [1]; against commercial network providers
such as end-user ISPs [2]; or against educational and research
networks serving academia [3]. All these attacks show how
fragile computer networks can be.

Given these continuous attacks carefully monitoring Inter-
net systems and components for suspicious activities becomes
imperative. There are many developments in monitoring and
intrusion detection systems (IDS) that enable them to trigger
alerts when such activities are present [4, 5]. When such an
episode occurs it is the responsibility of the security and in-
cident response teams that monitor this information to further
investigate these events; this often requires them to look up and
combine information from multiple sources to make a more in-
formed judgment. In this paper we describe CoreFlow, a pro-
totype framework to enrich IDS data with network flow data;
this enhancement provides more context to security events and
this in turn creates more targeted alerts and more advanced re-
sponses. This is in particular important for carrier networks
that due to their characteristics require to correlate information
coming from distant elements in the network.

In section 2 we will briefly review the different challenges
carrier networks face to secure their networks, and we intro-
duce ESnet, the network where we tested CoreFlow; in sec-
tion 3 we discuss the information sources used in this research.

∗Corresponding author
Email addresses: r.koning@uva.nl (Ralph Koning),

buraglio@es.net (Nick Buraglio), delaat@uva.nl (Cees de Laat),
pgrosso@uva.nl (Paola Grosso)

Section 4 and Section 5 describe CoreFlow architecture and im-
plementation. In section 6 we reflect on the functionality of the
framework and discuss what can be improved. Section 7 covers
related work and section 8 contains the conclusion and future
work.

2. Carrier network security

Carrier networks present different challenges than enterprise
or campus networks due to their different characteristics. In ta-
ble 1 we list five aspects in which carrier networks differ from
enterprise and campus networks when we consider them from
a security perspective: external connectivity, application secu-
rity, restrictions and policies, impact of countermeasures and
network capacity. For example, in carrier networks it’s unfea-
sible to run all traffic through a single or a set of security ap-
pliance devices due to very high data rates, as well as the large
or numerous data flows and multiple ingress and egress points.
Additionally, carrier networks are often tasked with adhering
to network neutrality laws or policies which prevent filtering or
otherwise altering traffic in any way other than to protect the
infrastructure of the network.

2.1. ESnet

Our CoreFlow development and validation has taken place
at ESnet. ESnet is a national research and education network
(NREN) that interconnects multiple national labs in the US to
each other, to super computing facilities, as well as other other
research networks in the world. Figure 1 shows the topology
of the ESnet backbone network that spans the US and a part of
Europe. The backbone consists mainly of 100Gbps links and
allows sites to connect to ESnet at various speeds.

ESnet primarily transits data within the connected institu-
tions and to other connected research facilities and resources

Aspect Enterprise/Campus Carrier/Transit
external connectivity limited (single or redundant uplink) many connected networks
application security security can be tailored to application need to allow everything
restrictions and policies can be applied anywhere subject net neutrality laws
impact of countermeasure may affect users of a host or system can affect many users and other networks
network capacity accommodates one organization accommodates many institutions

Table 1: Major differences between Enterprise/Campus networks and Carrier/Transit networks that are relevant from a security point of view

Department of Energy Office of Science National Labs
Ames
ANL
BNL
FNAL
JLAB

Ames Laboratory (Ames, IA)
Argonne National Laboratory (Argonne, IL)
Brookhaven National Laboratory (Upton, NY)
Fermi National Accelerator Laboratory (Batavia, IL)
Thomas Jefferson National Accelerator Facility (Newport News, VA)

LBNL
ORNL
PNNL
PPPL
SLAC

Lawrence Berkeley National Laboratory (Berkeley, CA)
Oak Ridge National Laboratory (Oak Ridge, TN)
Pacific Northwest National Laboratory (Richland, WA)
Princeton Plasma Physics Laboratory (Princeton, NJ)
SLAC National Accelerator Laboratory (Menlo Park, CA)

15-CS-1035

HOUSTON

ALBUQUERQUE

El PASO

SUNNYVALE

BOISE

SEATTLE

KANSAS CITY

NASHVILLE

WASHINGTON DC

NEW YORK

LONDON

GENEVA
CERN

AMSTERDAM

BOSTON

CHICAGO

DENVER

SACRAMENTO

ATLANTA

PNNL

SLAC

AMES PPPL
BNL

ORNL

JLAB

ANL

LBNL
FNAL

Figure 1: ESnet network. Source: http://www.es.net

and therefore operates as a carrier or transit networks for scien-
tific traffic.

Given their architectures NRENs like ESnet fall in the cate-
gory of carrier or transit networks and are therefore a suitable
testing ground for CoreFlow.

3. Information sources

Different information sources can be used to identify and
counteract network attacks.

IDS systems are able to perform in depth inspection of pack-
ets to detect security problems, yet they only have a limited
end perspective of the network. NetFlow and other flow-based
tools provide detailed network traffic information. This infor-
mation can be collected from all routers over the entire extent
of the network and can provide a global view and the origin of
the traffic that transits a network. Correlating data from both
of these information sources may give a more detailed view on
the origin of the malicious traffic and thus provide more context
to act upon, this detailed multi-source view makes countermea-
sure less sensitive to spoofed traffic information.

This is particularly useful when an attack is volume based
such as in the case of a Distributed Denial of Service (DDoS)
attack. In this case instead of blocking traffic at the end systems,
it may be preferable to prevent the malicious data from entering
the network at the entry point, or contact an upstream provided
to block the specific traffic. This reaction at the network edges
is complicated by the fact that this attack traffic is often spoofed
to cover its origin, causing it to have another entry point into the
network than presented. Since the addressing information can-
not be relied upon, one has to determine the origin by checking
presence of this traffic pattern on all routers on the path.

In our development of CoreFlow we relied specifically on
Bro data, on NetFlow information, on Splunk for data aggrega-
tion and on Route Explorer for path calculation.

3.1. Bro

Bro [6] is an open source network analysis framework devel-
oped at the International Computer Science Institute in Berke-
ley, CA and the National Center for super computing Applica-
tions in Urbana-Champaign, IL. Bro focuses on network secu-
rity monitoring and offers functionality beyond traditional in-
trusion detection systems. It includes an event engine and a
policy module in which one can write custom policies. Due to
clustering capabilities, Bro can scale to 100Gbps links [7]. Bro
has an extensive policy system that can be used to react on or
to trigger events. Events can thus also be correlated within the
Bro framework itself as part of a policy. To implement policies
Bro uses its own scripting language. This language is limited
but it could in principle be used to implement the CoreFlow
functionality as a plugin in the C language. This would require
knowledge of two languages, the Bro domain specific language
and C; for this reason it seemed more practical to us to imple-
ment CoreFlow as a stand-alone system using Python.

Building a stand-alone system makes CoreFlow more flexi-
ble since we are able to use multiple input sources or replace
out Bro in favor of a different IDS. Python is a widely used
and easy to learn language which became very popular among
data scientists, therefore by using it we try to lower accessibil-
ity for potential collaborators that can help to extend CoreFlow
with new features. Additionally, Python has a large large set
of libraries and tools available that are specifically useful for
analysis and working with large data sets, these libraries can be
used to aid the correlation and enrichment process.

3.2. NetFlow and IPFIX

NetFlow, originally developed by Cisco Systems, but now
present on most modern routers is a protocol that allows routers
and other network devices to export flow information. Accord-
ing to [8], Cisco traditionally distinguishes a flow based on 7
properties, two of which are not required:

• IP source address
• IP destination address
• source port
• destination port
• L3 protocol type
• Class of service (optional)

2

http://www.es.net

• Router or switch ingress port (optional)

These properties are extended in subsequent versions such that
NetFlow supports IPv6, vlans, and MPLS labels.

IPFIX (IP Flow Information eXport) described in
RFC5153[9] is a protocol developed by IETF that super-
sedes NetFlow v9. The major tools and collectors used to work
with netflow information are adapted to also accept the IPFIX
format. In this paper we use the term NetFlow to refer to both
the NetFlow and IPFIX protocols. In CoreFlow the data we
import from the routers uses the nfdump1 format.

3.3. Splunk

Splunk[10] is a search and analysis system for big data that
is often used as a security information and event management
(SIEM) system. It can be used to import logs from multiple
sources for analysis. It provides a web interface that can be
used to search and to make visualizations of the data for easy
analysis. If needed, Splunk can also trigger and present security
alerts. ESnet uses Splunk to aggregate and visualize log data,
therefore we set up CoreFlow to consume the already aggre-
gated Bro data in Splunk via a REST interface.

3.4. Packet Design Route Explorer

Route Explorer[11] is a route analysis system developed by
Packet Design. The appliance provides visibility into routing
behavior for IGP and BGP routing protocols and VPNs. By
peering with the routers it is able to track real-time changes in
the network; it monitors routing tables and can store them for
historical analysis. It can then be used by network adminis-
trators to debug problems in a complex network infrastructure.
CoreFlow can use Route Explorer to perform path calculation
(see Sec.5.1).

4. CoreFlow Architecture

The architecture of CoreFlow is composed of three distinct
phases: input, enrichment, and output. This is shown in Fig-
ure 2.

The CoreFlow development was driven by a number of de-
sign requirements:

• support the Bro data format. The system needs to ingest
and process Bro data;

• allow for multiple input sources. We wanted to be able to
accept Bro data from different sources, for example read-
ing from file or gathering it in real-time;

• process large amounts of NetFlow data. The system needs
to process data from multiple routers;

1nfdump website: https://github.com/phaag/nfdump

Input:
Bro events CoreFlow

Enricher:
Packet Design Route Analyzer

Enriched Events

Enricher: netflow data

Input OutputEnrichment

Figure 2: CoreFlow correlates input data from Bro to NetFlow and uses the
enriched data to query the route analyzer. Finally, it outputs the security event
with additional data from both enrichers.

4.1. Input phase
We support multiple ways to import the Bro data into Core-

Flow:

file operates on Bro log files in either text or gzip format

stdin operates on output from the standard input in Bro log
format

splunk opens a socket to the Splunk server and starts a real
time search for incoming events

elasticsearch reads Bro data that has been imported into Elas-
ticsearch using an included import tool

The stdin and splunk input methods support streaming of real
time data. The file and splunk methods support reading histori-
cal data from within specified time window. We will elaborate
on these two different uses in Sec. 4.2.

As main input we use the Bro notice log; this log file contains
(security) events that are interesting enough to require further
investigation. The fields relevant for correlation are listed in
Table 2.

field type description
ts datetime timestamp
uid string unique id to correlate to conn log
id.orig h string ip address source
id.orig p string source port
id.resp h string ip address destination
id.resp p string destination port
proto string protocol (TCP,UDP,ICMP)
...

Table 2: Bro notice.log field necessary for the correlation process

The uid field contains a unique identifier which is a hash
based on various properties of the event. This can be used to
correlate the event between multiple Bro log files. To corre-
late Bro events to NetFlow data we cannot use this uid and we
are required to match on the flow data contained in the event.

3

https://github.com/phaag/nfdump

Not all Bro events contain the required flow data and the events
without this data are passed to the output queue without further
enrichment.

We chose to represent the flow information in CoreFlow with
a tuple consisting of 5 elements: protocol, source ip, source
port, destination ip and destination port. These elements cor-
respond to the mandatory NetFlow properties we discusses in
Sec.3. Each one of these properties correspond to a specific
Bro field. Table 3 shows the mapping. Since we are working
with data from multiple nodes, event time stamps may not be
the same everywhere and it is not be used in the initial matching
process.

CoreFlow proto ip1 port1 ip2 port2
Bro proto orig h orig p resp h resp p
NetFlow pr sa sp da dp

Table 3: The CoreFlow flow tuple and the equivalent fields in Bro and NetFlow
data

4.2. Enrichment phase

We distinguish two modes of correlation: historical and real
time.

Historical correlation specifies a time window in which to
match the flows. CoreFlow first processes the Bro data, corre-
lates it with the NetFlow data and then exits. The sizes of the
log files can easily exceed gigabytes; the data workflow is cus-
tomized to minimize memory utilization and random IO and to
retain reasonable speeds.

Real time correlation works by streaming the latest events
from the Bro notice log. Since we are using nfdump files for
NetFlow processing and do not have a source that was able
to stream real time NetFlow information, there is a time de-
lay introduced in processing the events. CoreFlow periodically
sends out NetFlow searches and queues events until the pre-
vious search is completed, this approach prevents slowdown
caused by many searches blocking on disk I/O.

After the matching process the Bro event is enriched with one
or more NetFlow records, one for every router it was seen on.
When combined with sufficient topology information one can
now estimate the exact path of the event flow and the ingress
and egress router and ports (see Sec. 5.1).

4.3. Output phase

When the NetFlow and path information is merged with the
Bro events summary output is written to stdout. Additionally,
CoreFlow provides a simple output module that exports en-
riched output as json to a log file. There is also experimental
output support to Elasticsearch. Other outputs are being con-
sidered, for example, a Bro output such that the enriched output
can be used to create new alerts. This idea is discussed in Sec. 6.

5. Implementation

The first prototype of CoreFlow is implemented in Python
3.5 using the Python requests and Elasticsearch libraries. Core-
Flow has a main loop that routes messages from input to the
output via the NetFlow enricher.

read bro
events

assign
event id
or EOF

start

create()

extract
flow
data

Search
flows

nfdu
mp

nfdu
mp
nfdu
mpnfdu
mpnfdu
mp

map
netflow

to
events

add flow
data to
event

Queue

Estimate
route

export
results

poolsize = 20

nfdump

sleep

Queue

Queue

event_id, flow
event_id, bro_alert event_id, [netflow, …]

stop

Figure 3: Execution flow of CoreFlow, with its three threads: main loop (or-
ange), input thread (blue), search thread (cyan/green).

Figure 3 shows the execution flow of CoreFlow. There are
three threads: a main loop, an input thread and a search thread.

The input modules run in a separate thread that is being
watched and when necessary restarted by CoreFlow. CoreFlow
receives the data from the import thread via an event queue
which contains the bro alert and the event id.

CoreFlow reads the events queue and when it finds new
events it extracts the flow tuple. This together with the event id
is inserted in a queue for the NetFlow enricher. When the Net-
Flow enricher is idle it picks up all items in the queue at once;
it creates a filter for all the flows and their reverse that can be
passed to nfdump. A reverse flow is simply the flow detected
by Bro with source and destination IP/port swapped. We need
both flow and its reverse given that we want to have visibility
in the bidirectional traffic. Creating such a bulk request, a filter
with multiple flows/reverse, is significantly faster than passing
each event one by one because now we have to search through
the flow data only once. Depending on the amount of routers in
the network the NetFlow enricher will spawn one search thread
per router that runs nfdump with the previously compiled filter.
The results of the bulk request come back out of order, and we
need to mapped them back onto the original Bro data.

Now the NetFlow data is mapped back to the event id’s and
it put into another queue to CoreFlow. CoreFlow now adds the
NetFlow data to the existing events and passes them on to the
output module that logs the enriched data.

The enriched event data contains multiple occurrences of the
flow reported by multiple routers and together with topology
information CoreFlow tries to reconstruct the path of the flow
with a route estimation procedure (see Sec.5.1). For more de-
tailed route estimation CoreFlow can interface with products
such as Route Explorer by Packet Design.

4

Finally, after the routes have been identified, CoreFlow ex-
ports the results.

5.1. route estimation

ESnet uses OSCARS [12] for provisioning links across its
network and OSCARS therefore maintains a database with
topology information. To create the required topology infor-
mation for CoreFlow, we extract the topology information from
the OSCARS topology publisher. The extracted information
does not contain policy information or any routing metrics used
to select preference. Therefore, we decided upon finding the
shortest path with the constraint of traversing all the routers for
a single flow as an approximation. We designed Algorithm 1
with the following requirements in mind:

• the input list may have missing routers; for example a flow
may traverse a router but may not be recorded due to the
sample rate.

• the path may traverse a router multiple times; flows may
be observed on a router twice for example using different
vlan/mpls label.

The algorithm works as follows.
We take as a starting point the first router in list D, start (line

5); then we use the topology to build a tree from start limited to
a depth and return the paths as an array P (line 6). To include all
possibilities the depth should be set to the maximum spanning
tree distance of the network graph.

We reverse all the paths (lines 7-9) and then we concatenate
the result R with the original paths in P (lines 10-14). This gives
us list A of all paths that traverse the start node. We then filter
A to only include paths that contain all routers in D and store
this as F (lines 15-18). We select the minimum length paths in
F and return this list as value O (lines 20-23).

The output of this algorithm can be illustrated with a simple
example. Figure 4 shows a topology with nodes r1 − r12; a
flow entered the network at r2 and exited at r10. The routers
that observed the flow are D = [r1, r12, r3]. Our algorithm
is able to interpolate that r4 and r9 are part of the path and it
returns [r1, r4, r3, r9, r12] as estimated route together with its
reverse. Note that r2 and r10, the ingress and egress nodes, are
not part of the reconstructed path as they had not observed the
flow themselves directly. A current limitation of the algorithm
is that is not capable to determine which one was the actual
ingress and egress router; this is because the topology informa-
tion we rely upon does not distinguish edge routers.

6. Evaluation and Discussion

We tested the prototype on the ESnet infrastructure by en-
riching incoming events from three different Bro nodes with
NetFlow data collected by over 50 routers. Figure 5 shows the
latest set-up we used for CoreFlow at ESnet. There were two
specific limitations in ESnet that we had to deal with.

We had 3 Bro detectors sending their logs to Splunk.
CoreFlow was reading the logs from Splunk and performing
searches on NetFlow data of all routers. The NetFlow data was

Algorithm 1 route estimation algorithm
1: topology← topology graph of the network
2: depth← max search depth
3: D← detected routers in the path
4: procedure estimate path(D)
5: start ← D[0]
6: P← all paths up to depth from start in topology
7: for each p ∈ P do
8: R← add reverse(path)
9: end for

10: for each p ∈ P do
11: for each r ∈ R do
12: A← add r + p[1 :])
13: end for
14: end for
15: for each p ∈ A do
16: if D ⊆ p then
17: F ← add p
18: end if
19: end for
20: for each p ∈ F do
21: O← min(lenght(p))
22: end for
23: return O
24: end procedure

r1

r2 r5

r3
r9

r6
r4

r11

r7

r8

r12

r10

Figure 4: Route estimation: given a list with routers [r1 r12 r3] the algorithm is
able to interpolate that r4 and r9 must also be included in the path resulting in
[r1, r4, r3, r9, r12]. However with the current information the algorithm cannot
deduct the edge routers r2 and r10.

exposed to CoreFlow via an NFS share. Every 5 minutes a new
NetFlow log of a router gets saved and gets copied to the NFS
server. Under normal circumstances this copy time took less
than 3 minutes. This meant that we had to delay the retrieval of
incoming events from Splunk by 5 + 3 = 8 minutes.

When the flow is detected on multiple routers CoreFlow per-
formed route estimation as described in Sec. 5.1 and prepared
queries for the Route Explorer to further refine the found route.
Due to access restrictions we could not query the Route Ex-
plorer directly, so we verified this functionality by sending the
query from another host.

5

Bro
cluster 2

Bro
cluster 1

Bro
cluster 3

Splunk CoreFlow

NFS share

Netflow
collector 1

Netflow
collector n

Packet Design
Route Analyzer

Output file

nfdump

Figure 5: CoreFlow set-up at ESnet

6.1. Route estimation

The route estimation can be optimized in multiple ways. The
data structures contains redundant information and for large
networks this data structure may get too big. The algorithm
does not deal with metrics and routing policies and any traffic
engineering that can manipulate the flow of traffic because this
information was not available at the time. Improvements to the
route estimation can be made by calculating paths based on live
routing tables of the network. For historical paths we can rely
on products such as Packet Designs Route Explorer that records
changes in the routing table over time. By recording this infor-
mation Route Explorer can provide paths from an ingress router
to a destination prefix at any point in time. However, this re-
quires us to determine the ingress router of the specific flow and
when NetFlow traffic is sampled we may not be able to because
see the flow on the ingress router. If we find the flow on one or
more routers in some situations we can use the route estimation
explained in section 5.1 to extrapolate a potential ingress router
that we can use for the full path calculation.

Adding reconstructed paths and NetFlow information to se-
curity events allows for more targeted monitoring or mitigation
techniques, e.g. blocking at the source or redirecting the traf-
fic somewhere along the path for further analysis. Additionally,
one can feed the enriched data back into the IDS to enhance
filtering on relevant alerts. e.g. by lowering the threshold for
data going to CoreFlow and create more specific event filters
on CoreFlows output.

6.2. Sample rate

An another point of attention is the sample rate of NetFlow.
In ESnet, for example, the sample rate of the data was set to
1:1000 on each router. The unfortunate side effect of a low sam-
ple rate is that the probability to find flows related to the IDS
alerts is also very low, since the sample rate needs to be mul-
tiplied by rate of malicious flows to all traffic on each router.

This can be improved by increasing the sample rate on all the
routers. In ESnet this was not possible since we were running
this on a production network and higher sample rates may re-
sult in degraded network performance because more samples
require more processing on the production routers. Another
way to improve the chance of finding flows which can have
less impact on the network is using high sample rates at the
edges. This approach may be feasible in carrier networks since
the bulk traffic streams are located in the core. Additionally,
this approach also increases the chance of finding the flow on
the ingress router which benefits path estimation and can help
to apply counter measures at the point of entry. Methods de-
scribed in [13] can also help improve the sampling algorithms
in to detect smaller flows.

One might argue whether is necessary to increase the sample
rate to detect small flows on the network in the context of cyber-
security. Volume based attacks such as DDoS attacks will for
example be clearly visible in sampled data. Yet, given the right
circumstances, an attacker can do much damage using only a
few packets. Moreover, there are instances on attackers using
volume based attacks to distract the victim from the real at-
tack [14]. Therefore, it is important to provide as much context
to every event that the intrusion detection system marks as ma-
licious.

6.3. Other use cases

CoreFlow can also be used in multi-domain defense strate-
gies. When it is possible to establish the ingress point of the
spoofed malicious traffic it is possible to contact the neighbor-
ing domain to take action. If the neighbor also has such a sys-
tem it can subsequently contact its neighbors, eventually tracing
the traffic back to the source. Taking action closer to the source
of the problem can unburden networks of large volume based
attacks.

During Super Computing 2015, the University of Amster-
dam demonstrated SARNET (Secure Autonomous Response
Networks) using an interactive demo[15]. Users had to had to
defend a network under attack by applying countermeasures at
points in the network to recover the throughput to the services.
The demo showed that responses can become complex and even
counter intuitive when networks increase in size and when in-
formation is limited. SARNET can greatly benefit from Core-
Flow since it provides richer information and more context to
enhance the decision making leading to autonomous response.

7. Related work

Much work is done on applying statistical methods and ma-
chine learning approaches to NetFlow data in order to detect
anomalous behavior on computer networks. These anomalies
can be caused by network changes, outages, content changes or
security related events. Sperotto et al. published a comprehen-
sive overview of flow based intrusion detection in [16].

CoreFlow goal is not to identify security threats. CoreFlow
does not do any intrusion detection. It assumes there are already
facilities in place that generate these security events. CoreFlow

6

uniqueness is that it focuses on the correlation and enrichment
of already identified events, by using multiple data sources such
as NetFlow to create a more comprehensive view of what oc-
curred in order to enhance decision making.

Xu et al. describe a system that can group low level events
from several inputs based on similarities or relations[17]. When
the low level events trigger at the same time, as a group, a more
meaningful high level event (alert) can be created to act upon.
Our approach is different since we correlate the triggered events
to data sources that may not have triggered events themselves,
in order to expose more contextual information for further anal-
ysis. If we would accept multiple input sources, then grouping
triggered events becomes relevant for CoreFlow, yet this is con-
sidered future work.

8. Conclusion and future work

Enriching IDS data with NetFlow information gives a better
view of an attack. CoreFlow provides a correlation framework
that can combine these data sources based on the flow tuples.
The successfully enriched data can be used for more advanced
attack detection and reaction.

We determined that the success of the NetFlow correlation
largely depends on the sampling rate of the NetFlow data. We
showed how to use the enriched information to do route estima-
tion; this in turn can be the starting point for sophisticated coun-
termeasures close to the origin needed when the attack traffic is
spoofed and for carrier networks to determine where the traffic
entered their network.

CoreFlow needs to be evaluated using different sample rates
(1:1) and other sampling algorithms to see what settings are
most beneficial, while not affecting the performance of a pro-
duction network.

CoreFlow can be extended to allow multiple in and output
plugins for other data sources such as PerfSonar2 and syslog
and to include analysis methods that can help to interpret the
information and improve the context of an event.

This new context can lead to improved and more advanced
alerts, research needs to be done on how to act upon this new
information by for example feeding this back into the IDS sys-
tem to reduce false positives; it may even be beneficial to lower
the threshold for IDS events sent into CoreFlow to discover ma-
licious events that previously went undetected.

9. Acknowledgments

This work is funded by the Dutch Science Foundation project
SARNET (grant no: CYBSEC.14.003 / 618.001.016) and by
the Dutch project COMMIT (WP20.11). Special thanks go to
our research partners CIENA, TNO and KLM.

Ralph is grateful for the financial support given by ESnet dur-
ing his stay at LBNL, and he thanks the ESnet team for the
interesting discussions during the CoreFlow development.

2PerfSonar website: https://www.perfsonar.net/

[1] K. McArtney, Internet’s root servers take hit in DDoS attack,
http://www.theregister.co.uk/2015/12/08/internet_root_

servers_ddos/, 2015. Accessed on 2016/09/15.
[2] P. Mishra, Internet in Mumbai Goes Slow As ISPs Suf-

fer Massive DDoS Attacks, https://www.hackread.com/

ips-in-mumbai-suffer-ddos-attacks/, 2016. Accessed on
2016/09/15.

[3] K. Hall, Academic network Janet clobbered with DDoS attacks
again, http://www.theregister.co.uk/2016/04/18/janet_

clobbered_with_ddos_attacks_again/, 2016. Accessed on
2016/09/15.

[4] H. Debar, M. Dacier, A. Wespi, Towards a taxonomy of intrusion-
detection systems, Computer Networks 31 (1999) 805–822.

[5] M. V. Mahoney, A machine learning approach to detecting attacks by
identifying anomalies in network traffic, Ph.D. thesis, Florida Institute of
Technology, 2003.

[6] V. Paxson, Bro: a system for detecting network intruders in real-time,
Computer networks 31 (1999) 2435–2463.

[7] S. Campbell, J. Lee, Intrusion detection at 100g, in: State of the Practice
Reports, ACM, p. 14.

[8] NetFlow, Cisco IOS, Introduction to cisco ios netflow a techni-
cal overview, http://www.cisco.com/c/en/us/products/

collateral/ios-nx-os-software/ios-netflow/prod_white_

paper0900aecd80406232.html, 2012. Accessed on 2016/09/15.
[9] E. Boschi, L. Mark, J. Quittek, M. Stiemerling, P. Aitken, RFC 5153: IP

flow information export (IPFIX) implementation guidelines, IETF, April
(2008).

[10] D. Carasso, Exploring splunk, published by CITO Research, New York,
USA, ISBN (2012) 978–0.

[11] Packet Design, Route Explorer, http://www.packetdesign.com/

products/route-explorer/, 2016. Accessed on 2016/09/15.
[12] C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney, W. Johnston,

Intra and interdomain circuit provisioning using the oscars reservation
system, in: 2006 3rd International Conference on Broadband Communi-
cations, Networks and Systems, IEEE, pp. 1–8.

[13] G. Androulidakis, V. Chatzigiannakis, S. Papavassiliou, Network
anomaly detection and classification via opportunistic sampling, IEEE
network 23 (2009) 6–12.

[14] S. Mansfield-Devine, Under the radar, Network Security 2015 (2015)
14–18.

[15] R. Koning, B. de Graaff, C. de Laat, R. Meijer, P. Grosso, Interactive anal-
ysis of sdn-driven defence against distributed denial of service attacks,
in: 2016 IEEE NetSoft Conference and Workshops (NetSoft), IEEE, pp.
483–488.

[16] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, B. Stiller, An
overview of ip flow-based intrusion detection, IEEE communications sur-
veys & tutorials 12 (2010) 343–356.

[17] D. Xu, P. Ning, Alert correlation through triggering events and common
resources, in: Computer Security Applications Conference, 2004. 20th
Annual, IEEE, pp. 360–369.

7

https://www.perfsonar.net/
http://www.theregister.co.uk/2015/12/08/internet_root_servers_ddos/
http://www.theregister.co.uk/2015/12/08/internet_root_servers_ddos/
https://www.hackread.com/ips-in-mumbai-suffer-ddos-attacks/
https://www.hackread.com/ips-in-mumbai-suffer-ddos-attacks/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.packetdesign.com/products/route-explorer/
http://www.packetdesign.com/products/route-explorer/

	Introduction
	Carrier network security
	ESnet

	Information sources
	Bro
	NetFlow and IPFIX
	Splunk
	Packet Design Route Explorer

	CoreFlow Architecture
	Input phase
	Enrichment phase
	Output phase

	Implementation
	route estimation

	Evaluation and Discussion
	Route estimation
	Sample rate
	Other use cases

	Related work
	Conclusion and future work
	Acknowledgments

