Determining the effectiveness of countermeasures against cyber attacks

Ralph Koning

Ben de Graaff, Paola Grosso, Robert Meijer, Cees de Laat

System and Network Engineering research group Universiteit van Amsterdam

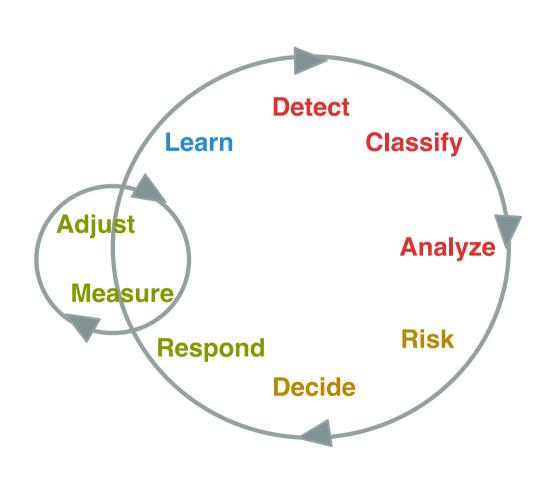
Context

SARNET Alliance Strategic Level Tactical Level Operational Level SARNET

Ameneh Deljoo (PhD):

Why create SARNET Alliances?
Model autonomous SARNET
behaviors to identify risk and benefits
for SARNET stakeholders

Gleb Polevoy (PD):


Determine best defense scenario against cyberattacks deploying SARNET functions (1) based on security state and KPI information (2).

Ralph Koning (PhD) Ben de Graaff (SP):

- 1. Design functionalities needed to operate a SARNET using SDN/NFV
- 2: deliver security state and KPI information (e.g cost)

Control loop

Detection phase: Detect,

Classify, Analyze

Decision phase:

Risk, Decide

Response phase:

Respond, Adjust,

Measure

Learn phase: Learn (with

input form other phases)

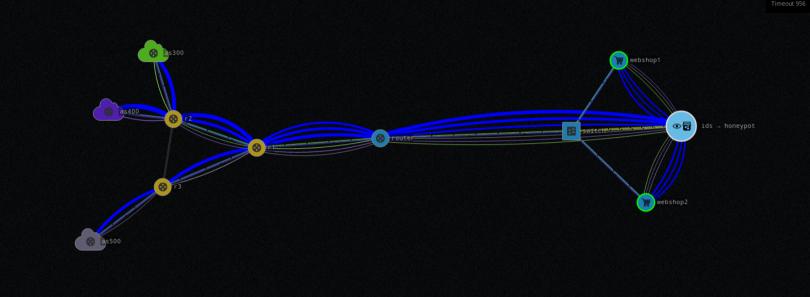
Environment

Scenario

SARNET demo

Control loop delay:

By using SDN and containerized NFV, the SARNET agent can resolve network and application level attacks.


From this screen, you can choose your attack and see the defensive response.

Traffic layers

Toggle the visibility of the traffic layers:

Physical links

Traffic flows

Choose your attack

Start a Distributed Denial of Service attack from all upstream ISP networks:

UDP DDoS

Start a specific attack originating from one of the upstream ISP networks:

Origin: UNSELECTED -- CLICK ON A CLOUD

CPU utilization

Password attack

Normal operation

Object information

nfv.services.as100

KIND nfv
COMPUTE#DISKINAGE 8d8d8a23-c112-421b-baba-49383679dc0b#img-nfv
COMPUTE#SPECIFICCE exogeni#XOLarge
EC2#WORKERNODEID uva-nl-w1
REQUEST#HASRESER... request#Active
REQUEST#INDOMAIN uvanlymsite.rdf#uvanlymsite/Domain/vm
HONEYPOT.PWS
IDS.CPU
IDS.PW [10.100.4.100 10.100.4.101 10.100.4.102]
Ids honeypot:4.100:4.101:4.102]
CPU-PCT 13

Observables

Secure Autonomous Response Network SARNET agent metrics **Network metrics Application metrics** Control loop CPU: Bandwidth: Detect Analyze DETECT Successful transactions: ANALYZE Known crackers: 10.100.4.100, 10.100.4.101, 10.100.4.102 Flows: Latest password attempts: * star * little TCP: 1663 * chevy UDP: 0 DECIDE Deploy IDS to gather additional data Deploy honeypot to divert and capture attack Login attempts: Successful: 140 RESPOND Deployed NFV chain:

* honeypot:4.100:4.101:4.102

Effectiveness and Impact

Effectiveness and Impact (2)

Future work

Metrics

• Cost

Learning

- Dynamic baseline
- Adaptive observable thresholds

Multi domain

• Cooperative vs non-cooperative domains

University of Amsterdam

https://sarnet.uvalight.net/

mailto: r.koning at uva.nl

AIRFRANCE KLM

