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Abstract—To address increasing problems caused by cyber
attacks, we leverage Software Defined networks and Network
Function Virtualisation governed by a SARNET-agent to en-
able autonomous response and attack mitigation. A Secure
Autonomous Response Network (SARNET) uses a control loop
to constantly assess the security state of the network by means of
observables. Using a prototype we introduce the metrics impact
and effectiveness and show how they can be used to compare
and evaluate countermeasures. These metrics become building
blocks for self learning SARNET which exhibit true autonomous
response.

I. INTRODUCTION

Computer networks are constantly being attacked. Cyber
crime directed to network infrastructures and network proto-
cols is increasing. The economic and societal consequences
of such attacks are reaching front pages in the news leading
to diminished trust in the Internet. In the era of the new
Software Defined Networks (SDN), the crucial and interesting
question is: To which level, can we rely on software based
solutions for providing defence services? In this paper we
will use our architecture for Secure Autonomous Response
Networks (SARNET) [1]. We will show how SDN-based
countermeasures can be adopted for protection of networks
and ultimately for guaranteed delivery of services. We argue
that the most useful element of our, or for that matter any
other SDN-based network solution, is a proper characterisation
of the countermeasures effectiveness. In this article we will,
therefore, lay the foundation for a standardised manner to
define and measure effectiveness of SDN-based cyber attack
mitigation measures.

II. SECURE AUTONOMOUS RESPONSE NETWORKS

In the SARNET project we are researching how to en-
able autonomy of network response to attacks. SDN-based
mitigation techniques are one of the essential components
in this vision, as they allow to create networks that are
able to autonomously respond and recovery when attacked.
A SARNET uses control loops to monitor and maintain the
desired state required by the security observables.

The SARNET control loop traverses the following steps:
Detect – the default state of a SARNET during normal op-

eration. Whenever the SARNET detects an anomaly
on the network it triggers the control loop.

Analyse– analyses the characteristics of the particular at-
tack. Analyse determines where the attacks originate,

Fig. 1. The SARNET control loop

which path they take in the network and what the
target is.

Decide– evaluates past decisions and policies and deter-
mines the suitable countermeasure for the attack.

Respond– executes the countermeasure.
Learn – stores data containing results and execution param-

eters for future reference.

A. Attack detection and analysis

Several techniques exist to detect known attacks. The first
technique relies on intrusion detection systems. Flow analysis
is another established way of detecting anomalies in the
network. Finally, machine learning can be applied for attack
detection, as presented by Sommer et. al [2]. In all cases, false
positives can be reduced by correlating events in the dataset
to events from other detection methods. These events can be
collected and correlated in Security Information and Event
Management (SIEM) systems or correlated using an attack
correlation pipeline such as CoreFlow [3].

Existing methods, such as the one described in [4], can
be used to classify an attack. The author proposes to use a
cascading chain of elements to formally describe an attack,
starting from the tools used by the attackers, the vulnerability
they exploit, the action they perform, the intended target and
the results they accomplish. This approach seems promising
and we will investigate its suitability in the SARNET context.
When the attack is classified, the exact characteristics of the
attack need to be analysed. Analyse obtains the additional
information such as: origin, target, entry points, traffic type
and other characteristics. Analyse also provides information
on the scale of the attack which can then be used to calculate
the risk of the attack.



B. Decide

Decide looks at the cost and effectiveness of the possible
reactions. To make a decision Decide takes the following
aspects into account: attack class; attack characteristics; risk of
applying the countermeasure; knowledge of the network; costs
of executing responses and effectiveness of the countermeasure
in similar situations (previous results from Learn)

Effective reaction depends on the flexibility of the SARNET
under attack, e.g. whether the SARNET is redundant or multi-
homed, and depends on the location in the network to apply the
countermeasures. In some cases machines or network elements
can be added and link capacity can be increased. Dynamically
changing link properties are possible thanks to NFV and the
cloud services available to the SARNET. A modification will
have monetary costs, dependent on the service provider the
infrastructure is running on, as well as costs in implementation
times, e.g. VM startup times. These costs are parameters that
Decide accounts for.

C. React and Learn

Software defined networks give the required flexibility
required for SARNET to change traffic flows and re-route
important traffic away from overloaded parts of the network
towards other parts dedicated to traffic analysis. Combining the
flexibility of SDNs with both Network Function Virtualisation
and machine virtualisation is an even more powerful solution.
Service Function Chaining (SFC), an emerging standard for
network control plane operations [5], provides a suitable
solution to connect these NFVs together.

The Learn step records the effect of the chosen actions. The
data recorded by learn can be used to respond more quickly
to similar attacks in the future. When the attack characteristics
and its effectiveness values are recorded and learned by
an algorithm they will be used next time to optimise the
Respond phase. Nevertheless, it may be desirable to override
the automatic execution of a specific countermeasure from
the ones recorded previously. Therefore, we provide a way
to override learned behaviour and implement a self defined
response during Respond.

III. TOWARDS AN ESTIMATE OF EFFECTIVENESS

Given a system like SARNET the interesting part is to de-
termine the effectiveness of countermeasures. When focusing
on the time dimension of a countermeasure we define three
main intervals:

1) The time to detect, td, is the time from the moment
the attack starts (tsa) until the moment the attack is
detected (tthr−up), that is the time when the service
metrics threshold(s) is crossed: td = tthr−up − tsa.

2) The time to implement, ti, is the time elapsed from
the moment the attack is detected until the moment
the implementation of the countermeasure is completed
(tcm−impl): ti = tcm−impl − tthr−up.

3) The time to recover, tr, is the time elapsed from the
moment the countermeasure is implemented to to the
moment until the service metrics are recovered, and the

threshold is passed in the other direction (tthr−down)
threshold is recovered: tr = tthr−down − tcmimpl.

In terms of the control loop, td is the time it takes in the
Detect phase from the moment there is a trigger to the moment
the control loop moves to the next phase. ti is the time that
the control loop spends in the Analyze and the Decide phases
plus the time spent in the Respond phase until the moment
the countermeasure is in effect. Finally tr is the time spent in
the Respond phase until the moment the attack is stopped or
mitigated.

Effectiveness of a countermeasure is given by taking the
sum of the normalized impact of the attack and the normalized
costs of the reaction to it.

The impact of an attack can be seen as the integral of
the lost revenue between the detection time and the recovery
time. Fig.2 shows a simplified graphical representation of this
concept.
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Fig. 2. Impact: the amount of lost revenue between the recovery time and
the detection time (blue)

Once the thresholds are passed at the detection time the
revenue might continue to decrease until the moment the
countermeasures are in place; after that time the revenue starts
to move toward the baseline until it reaches full recovery at
the recovery time. The shape of the loss of revenue depends
on the attacks characteristics.

The cost of a reaction can be determined using a similar
approach. If cost is the integral of the (monetary) investments
made to counter attack the same reasoning can be applied, yet
cost increases in contrast to e.g. revenue that decreases when
an attack occurs.

Two possible countermeasures are then comparable by look-
ing at their respective values in terms of impact and costs. The
solution with the lowest values is the most effective.

In realistic scenarios the effectiveness evaluation might
be more complicated than just described. For instance, it is
possible that even after the implementation of countermeasures
there is no full recovery. In that case one could decide to
finetune or change the response, until again the recovery is
achieved. However, there are cases in which the thresholds
will not be passed again, and thus the system will not fully
recover. Even in these cases our effectiveness metric can be
used to compare countermeasures if one also considers the
difference between maximum recovery and the full recovery.
The effectiveness considerations are not relevant purely for our
SARNET architecture; the results are generalizable in other
SDN-based systems. They, in essence can provide the basis for
a standardised and agreed upon set of metrics when comparing
different SDN-based response systems.



IV. THE SARNET PROTOTYPE

To evaluate our framework we further developed our VNET
prototype [6]. VNET provides an orchestration and visual-
isation system for a SARNET which we currently deploy
as an overlay network. It displays network topology infor-
mation, flows and application metrics in an intuitive way.
Additionally, it allows the creation of observables based on the
current state of the network. The major components of VNET
are depicted in Fig. 3. The Infrastructure controller talks
to the IaaS platform to instantiate the virtual infrastructure,
in this case ExoGENI [7]. The Monitoring system receives
monitoring information from the virtual infrastructure. The
Network controller controls the network and hosts in the
virtual infrastructure. The VNET-agent collects monitoring
data on the network elements and sends them to the monitoring
system and to the network controller for dynamic configuration
of the elements. VNET coordinates the interaction between
the different components; while UI controller and VNET
visualisation UI display the network information and handle
user interactions with VNET.

uva-nl 

ExoGENI 
rack

VNET

Multitouch Table

Virtual 
machines

VNET-agent

Network 
Functions

VNET-agent

UI controller

Infrastructure 
controller Monitoring system Network

controller

VNET-visualization UI

S
2

SARNET UI

SARNET
agent

Fig. 3. Software components in the VNET prototype.

We introduced a number of new elements:
• support for virtual network functions and the infrastruc-

ture (SDN switch and a NFV host) to create VNFs that
perform certain countermeasures.

• support the processing of network flow information. Net-
work flow information is collected by all network routers
and SDN switches in the virtual infrastructure using host-
sflow1 and subsequently sent to the VNET monitoring
system.

• the SARNET-agent (Sec. IV-D) that receives real-time
monitoring data and observable states from VNET and
instructs VNET to alter the virtual network infrastructure
when action is required. VNET provides SARNET-agent

1host-sflow: https://github.com/sflow/host-sflow

the information and the tools it requires for autonomous
network defence.

A. SDN switch

The VNET prototype uses software defined networking in
order to apply virtual network functions on traffic entering
the domain it protects. The network component that provides
the SDN functionality is a Linux host that provides switching
through a Linux Ethernet bridge. In order to redirect traffic
flows on this switch, ebtables2 is used to rewrite destination
MAC addresses on incoming packets. For example: The des-
tination MAC address on all traffic coming from the switch
interface connected to the local router can be rewritten to be
destined for a virtual network function, cluster, or host, for
processing. After processing the packets can then be returned
to the switch with the original destination MAC address
restored. This results in ‘external’ packets being redirected
through the NFV host, while leaving all other local area
network communication unmodified.

B. Network function virtualisation

The network function virtualisation host is currently imple-
mented as a Linux host with a number of Docker3 containers.
Each container implements a specific network function. A
Docker Registry instance is used to store a catalog of container
images. All containers on the NFV host are attached to a
Linux bridge. Using ebtables traffic to rewrite the destination
MAC address, traffic can be forced into a specific container.
By redirecting traffic leaving a container towards a next
container various network functions can be chained together.
This chaining can be limited to specific IP addresses or IP
ranges, allowing only specific traffic to be manipulated.

C. virtual network functions

Three different containers were made to run on the Docker
host: an intrusion detection system (IDS), a CAPTCHA in-
jector, and a honeypot. The IDS container performs packet
inspection using PCAP to capture packets. A rule-based engine
reports back attacker IP addresses based on known attack
signatures. The CAPTCHA network function acts as a proxy
between the external user and the web service. It will inject
a web page containing a mandatory challenge which needs
to be solved before the session is allowed through to the
web service it protects. This challenge prevents automated
clients from submitting a potentially malicious request. These
CAPTCHAs are normally easy to solve by humans but expen-
sive to solve by automated processes. This effectively blocks
automated requests such as attacks to pass through. Because
in the proof of concept all clients are fully automated, only
non-malicious clients can solve the challenge. The honeypot
function simulates a legitimate version of the web service.
However, any interaction with this honeypot will not affect the
actual service. The honeypot can be used to capture additional
details during an attack. For example, in the case of a password

2ebtables: http://ebtables.netfilter.org
3docker: http://www.docker.io

https://github.com/sflow/host-sflow
http://ebtables.netfilter.org
http://www.docker.io


brute force attack, the honeypot can capture information on the
accounts being attacked and the passwords being tried.

D. SARNET-agent

The SARNET-agent implements the SARNET control loop
described in Sec. II. To show the state of the SARNET-agent
and the information it uses to make its decisions we use an
extra visualisation UI besides the one that is provided by
VNET. With this visualization we present various network
metrics such as network flows and total bandwidth usage. We
show application metrics such as CPU usage, transaction rate,
and successful versus failed login attempts; and we display the
control loop itself. Each stage of the control loop is highlighted
as it is executed, and any decision or result produced by such
a phase is displayed in an information block.

V. SCENARIOS

To illustrate the SARNET operation of our prototype we
have identified three attack scenarios and executed them in a
virtual network: UDP DDoS attack; CPU utilisation attack and
password attack.
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Fig. 4. Topology of the virtual network: Three domains (D1–D3) are
connected via multiple routers (R1–R4) and a switch (S2) to two web services
(W1–W2). NFV is a host that runs our security VNFs.

Fig. 4 shows the topology of the virtual network on which
we execute the attack scenarios. On the virtual network,
traffic passes the virtual routers R1–R4 and the SDN switch
S2 switch described in the previous section. Under normal
circumstances simulated users in the network domains D1–D3
send regular requests to the web services W1–W2. The amount
of successful requests will generate the Revenue value we use
in our measurements. In our attack scenarios, attacks originate
from the external domains D1–D3 and target the web services
W1–W2.

In the UDP attack a number of attackers residing in the
same domains (D1–D3) as legitimate users send large amounts
of UDP traffic toward the servers in order to starve the
legitimate connections. The SARNET-agent recognises the
type of attack due to the excessive amount of UDP traffic the
simultaneous drop in revenue. The SARNET has two possible
countermeasures to apply: increasing the bandwidth of the core
links or filtering the malicious traffic at the edges (routers R2–
R3).

In the CPU utilisation attack malicious users in one of
the domains D1–D3 request content from the servers W1–
W2 which requires computation on the server’s side before
the request can be satisfied. By requesting computationally
expensive pages at a high frequency the CPU utilisation on the

servers is increased. The increase in turn affects the capability
to answer legitimate requests. Since these resource requests
happen at the application layer, the network layer will not
clearly show indication of an attack. Therefore, SARNET will
first deploy an IDS that performs Deep Packet Inspection
in the same domain as the servers to classify and further
analyse the requests and to identify attack sources. As second
step, it redirects all requests from the domains where the
bad traffic originates, i.e. IP ranges, to a container running
a CAPTCHA. In this case, as countermeasure, the traffic is
redirected by S2 to the NFV host NFV which in this case has
started both the IDS and CAPTCHA VNFs. After filling in
the CAPTCHA regular traffic is redirected to the web servers
while the automated malicious traffic is blocked.

In the Password attack malicious users are trying to log in
on the servers by attempting logins with dictionary generated
passwords. This again takes place on the application layer. In
this case the SARNET again responds by first deploying an
IDS on the NFV host to identify the attackers in D1. However,
in this case, the SARNET starts a honeypot VNF and unlike
the CPU attack scenario, the SARNET-agent now uses the
intel gathered from the IDS to let the SDN switch S2 only
redirect the identified malicious users to the honeypot that is
deployed dynamically on the container host.

Now that the attackers are routed to the honeypot, the web
servers W1-W2 can resume normal operations.

VI. RESULTS

A UDP DDoS attack can be described as a function of
the injected malicious traffic, resulting in varying degrees of
stress on the system. We looked at how our SARNET system
responds as a function of the attack traffic. In our emulation
the three attackers can produce a different rate of UDP traffic,
ranging from 20mbps each to a maximum of 80mbps. The
time to detect the attack is purely dependent on the amount
of attack traffic. This is to be expected since the time when
the alarm is triggered, i.e.. the time in which the threshold is
passed, occurs at an earlier time as the attack has a stronger
incept. What we can see is that among various network runs
there is very little variability among this detection time: this
means that as long as the threshold is well tuned to the desired
sensitivity level the time to identify that an attack is occurring,
will be fairly constant.

When we instead look at the recovery time in this same
scenario we have the first indication that the type of software-
defined response we apply in the overlay network has an
influence. Fig. 5 presents this time for the two types of
responses we had implemented, namely the increase of the
available bandwidth in the core links or the application of
filters at the edges close to the attackers. In the first case (rate
change) we observe that at a certain point there is no recovery
possible, indicated in the figure with the missing boxplot. This
means that this type of solution efficiency has a strong relation
to the attacker footprint. On the other hand, the application
of filters provides a speedy recovery and fairly predictable
recovery time.
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Fig. 5. Time to recover after the implementation of a countermeasure (in
seconds) as a function of each individual attacker UDP rate. Top plot hows
the results when applying a rate increase in the core; bottom plot refers to
the application of filters

In the CPU attack scenario we simulate a varying the
number of attackers; we start with 3 and we move on to 5, 10
and 15 respectively. The time to detect a CPU attack does not
have a dependency on the number of attackers.

The implementation of the countermeasure has two steps:
first we deploy an IDS to classify the requests and secondly
we redirect all suspicious connections to a container running
a CAPTCHA function. The duration of these two steps is also
independent of the number of attackers. This is because these
steps are purely related to the software execution times and
they take on average 1.73 seconds in our set-up.

Differently from the DDoS attack in this case there is clear
dependency in the recovery time as function of the number
of attackers. Fig. 6 shows that the recovery time goes from
an average of 6.55 seconds for 3 attackers to 23.5 seconds
when there are 15 malicious nodes. This can be explained
by observing that a larger number of attackers will bring the
amount of successful transactions much further down from the
threshold, consequently it will take longer to reach and pass
the threshold again once the countermeasure is in place.

When we analysed the performance of our system under a
password attack we see that the detection time is independent
of the number of attackers. Also, we see that the mean time to
detect an attack in this case is lower than the time it took us
to detect a CPU attack, namely 1.65 seconds versus 5.26. This
depends on the way we evaluate the value for the thresholds:
a CPU attack requires a separate process that polls the CPU
usage on a specified interval while a password attack relies on
a counter that is continuously updates as failed logins occur.

The time the system takes to recover after the successful
implementation of the countermeasures in a password attack
has no dependency on the number of attackers. This is because
the redirect to the honeypot happens instantly.
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Fig. 6. Time to recover from a CPU attack (in seconds) as function of the
number of attackers.

VII. DISCUSSION

There are three main elements that affect the impact, as it
can be seen from Fig.2 and derived from our results. Firstly,
the thresholds set to identify attacks will determine the time at
which we start to evaluate the integral; second, the scale and
characteristics of the attacks themselves might influence the
shape of the revenue curve in time; and finally, the measures
that are used to safeguard the network will determine the value
of the implementation time and the recovery time.

The three attack scenarios we evaluated show that the
detection time and the response time can depend on the attack
characteristics, i.e. the number of attackers or the amount of
data they transmit. The implementation of a countermeasure
in our system is currently constant, because 1) we determined
how to react a priori, 2) there is no risk analysis done, and
3) we fully control the devices on which we deploy our
countermeasure. The implementation time will start to vary
once the risk analysis is more complex and even more so
when the implementation steps require coordination with other
domains. Latency will increase, thus automatically increase the
impact.

The approach to determine effectiveness is crucial when
deciding how to respond to an attack. As we had shown in
Fig.1 our system comprised a Learn phase that will store
effectiveness information and use at subsequent time to take
the most appropriate decisions.

VIII. RELATED WORK

Defence mechanisms against network attacks have been
thoroughly compared against each other in the literature. In
particular approaches for the mitigation of DDoS attacks have
received significant attention. Surveys have been conducted,
for example by Chang et al. [8] or more recently by Zargar
et al. [9]. These surveys provide an extensive evaluation of
various techniques but they do not provide quantitative ways to
define effectiveness as we do in this paper. Such definitions are
crucial to support the learning and decision making required
an autonomously reacting systems, and our approach provides
that.

Recent work focuses on the role of SDNs in both providing
countermeasures to attacks as well as identifying unexplored



vulnerabilities in SDNs and SDN techniques themselves. Yan
et al. [10] address these aspects, and point to the need to ex-
tensive evaluation of SDN-based solutions and SDN networks
themselves. We believe that our proposal to evaluate coun-
termeasures by effectiveness, will facilitate the assessment of
software based responses.

Existing work so far has mainly focused on the survey of
VNFs techniques and discussing their applicability in various
scenarios, particularly in data centres [11] and mobile envi-
ronments [12] [13]. Our application and use of containerised
VNFs in a real network that is driven by autonomous responses
is, to the best of our knowledge, a first step to show the actual
usability and the effect of such techniques.

Autonomy of responses will ultimately rely on machine
learning techniques. It has been argued by Sommer and
Paxson [14](2010) that machine learning could be successfully
applied to the area of intrusion detection. Recent patents such
as the one from Google on botnet detection [15] show the
applicability of this type approach for identifying attacks. Our
intent is to use machine learning to assess effectiveness and
adopt the most effective set of countermeasures.

IX. CONCLUSIONS AND FUTURE WORK

This paper shows the first steps toward autonomous re-
sponse to cyber attacks using SDN and NFV. We introduce the
SARNET control loop, elaborated on the phases of the control
loop and discussed how to implement them. We also showed
a first implementation of this control loop as a continuation
of the VNET work, which after including SDN and NFV
capabilities was able to exhibit autonomous response to a
selection of attacks. We define impact and effectiveness and
show how these metrics to can be used to evaluate different
solutions. Finally, our measurements show that detection and
response time are dependent on the attacks characteristics and
we argue that though we don’t see variation in implementation
time, it will increase and vary when complex risk assessments
are required. We conclude that metrics for impact of the attack
and effectiveness of a countermeasure are necessary inputs for
learning and choosing the best suitable responses to achieve
more advanced autonomous responses.

The actual assessment of relative effectiveness is the focus
of our future work. We are interested in using our evaluation
system to compare multiple SDN measures and to select the
best option, and on determining where to apply such measures
in the network when there are multiple options. Furthermore,
we think that containers have the potential to share security
VNFs such as detection mechanisms, and possible counter-
measures in a reusable manner. Therefore, we want to continue
to investigate intelligence sharing using containers in multi
domain collaborations such as SARNET Alliances [16].
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