AUTONOMOUS SECURITY RESPONSE ORCHESTRATION FOR PROGRAMMABLE NETWORKS

Vibha R Goutham (MSc)

Dr. Piotr Zuraniewski Ir. Frank Fransen

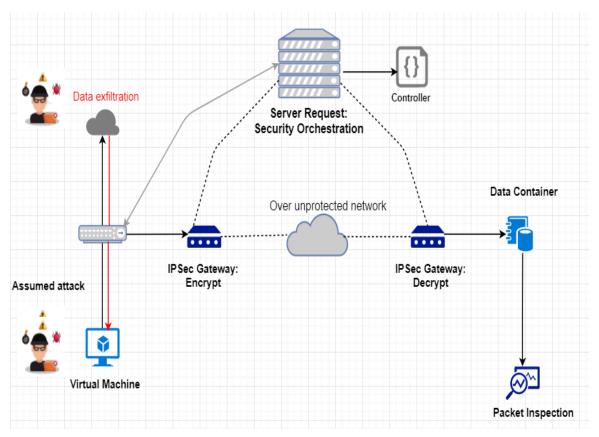
OUTLINE

- Master Thesis proposal background
- > Use Cases
- > TNO Research Cloud
- Research questions
- Implementation methods
- > Preliminary results

MASTER THESIS PROPOSAL

Background:

- Nature & complexity of cyber attacks are growing and tackling them beyond human capabilities is essential
- > This necessitates design of an automated security function that can be orchestrated
- Today's networks focus on accelerated deployment of new network functions. Also the aim is to reduce hardware constraints greatly
- > This leads to imploring principles of *Network Function Virtualization* (NFV)
- The research is a combination of Automated Security function + NFV to deal with cyber attacks

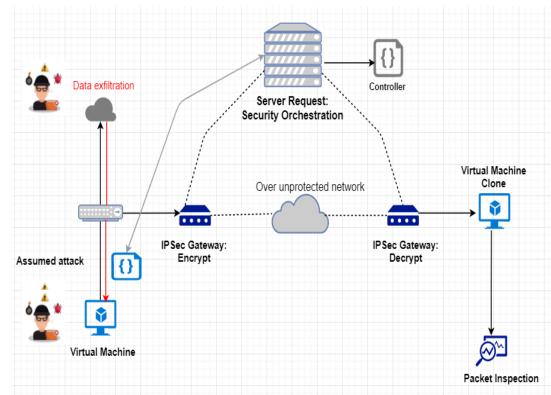


USE CASE I

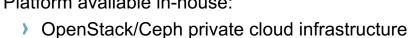
Assumption: Data exfiltration attack

 Clone/divert suspicious traffic over dynamically established secure gateways (IPSec/GRE tunnel)

Packets stored in container
Security monitoring: Packet
inspection, security logging and
analysis capability



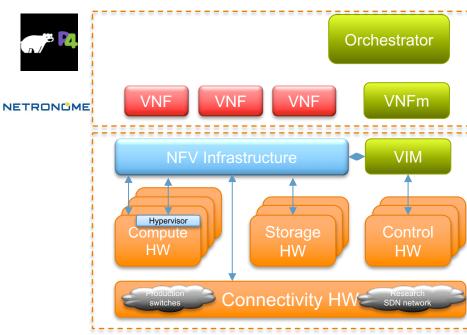
USE CASE II


Assumption: Exfiltration attack

- Cloning VM and its evacuation over public network
- Re-route suspicious traffic over dynamically established secure gateways (IPSec/GRE tunnel)
- Security monitoring: Packet inspection, security logging and analysis capability environment for cloned VM

TNO RESEARCH CLOUD

Platform available in-house:



- 10 physical servers (high-availability design) openstack. 2 top-of-the-rack switches
 - Programmable NICs, several SDN switches
 - Used for prototyping and experimentation
 - Management and orchestration (MANO)
 - 5G

ceph

open5Gcore

Post-quantum crypto, Blockchain, ICN,...

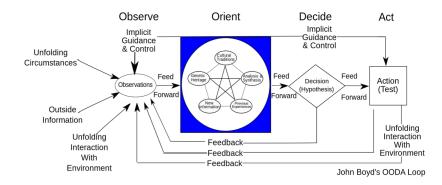
RESEARCH QUESTIONS

How will the deployment of the security function be done via an Orchestrator?

Is it possible to initiate and re-configure the security function via Orchestrator? If yes, how will it be done?

Which security function method is better in terms of ease of set-up, robustness, performance & scalability?

The response window for the security function and its optimization.


IMPLEMENTATION

Background - OODA Control loop

> The OODA loop decision cycle of

Observe, Orient, Decide, and Act,

developed by military strategist and United States Air Force Colonel John Boyd

Proposed methods for Secure transfer

Method 1:

Experiment on building an encapsulated IPSec-GRE tunnel over Open vSwitch

- On an unprotected public network, suspicious traffic or an instance of a VM may be transported over the encapsulated tunnel.
- IPSec encryption with AES-SHA shall ensure the secure transfer.

Method 2:

Employ hardware-accelerated data plane function on a smart NIC.

- Smart NICs perform role of secure gateways for transfer over unprotected public network.
- IPSec encryption shall be tested on vendor-specific NICs (ex: hardware accelerated OVS, P4 enabled)

PRELIMINARY RESULTS

Baseline IPSEC without NIC acceleration

- VMs hosted on same Hypervisor environment
- Further Investigation: Available bandwidth for IPSec-GRE tunnel mode

			60	10.000.00	0			
		u@ipsec1:~\$ ip						
		cting to host						
[4]	local 10.100.	1.13	port 42872 co	nnected to 10.10	0.1.10	port	5201
I	ID]	Interval		Transfer	Bandwidth	Retr	Cwnd	
1	4]	0.00-1.00	sec	1.45 GBytes	12.5 Gbits/sec	4	3.02	MBytes
ľ	41	1.00-2.00	sec	1.77 GBytes	15.2 Gbits/sec	Θ	3.02	MBytes
					15.3 Gbits/sec			
ľ	41	3.00-4.00	sec	1.49 GBvtes	12.8 Gbits/sec	Θ	3.02	MBvtes
Ì	4]				15.0 Gbits/sec			
ì	4]		sec		15.1 Gbits/sec			MBytes
ì	4]		sec		15.1 Gbits/sec			MBytes
ì	4]				14.0 Gbits/sec			MBytes
ì		8.00-9.00			14.7 Gbits/sec			
ì	4]				13.6 Gbits/sec			MBytes
r	TD1	Interval		Transfer	Bandwidth	Retr		
ł	41				14.3 Gbits/sec	4		sender
	41		sec		14.3 Gbits/sec			
	41	0.00-10.00	360	10.7 Obytes	14.5 001(3/360			IECETAEL
	nanf	Dana						
	perr	Done.						

Without tunnelling

			9.0.1, port 5	201 nected to 192.19	0 1 5	ort 5	001
	nterval				Retr	Cwnd	.01
							MD
				524 Mbits/sec			MBytes
[4]	1.00-2.00	sec	67.9 MBytes	570 Mbits/sec	Θ	1.23	MBytes
[4]	2.00-3.00	sec	67.4 MBytes	565 Mbits/sec	Θ	1.30	MBytes
[4]	3.00-4.00	sec	67.4 MBytes	565 Mbits/sec	Θ	1.39	MBytes
[4]	4.00-5.00	sec	66.9 MBytes	561 Mbits/sec	Θ	1.39	MBytes
[4]	5.00-6.00	sec	64.9 MBytes	544 Mbits/sec	Θ	1.39	MBytes
[4]	6.00-7.00	sec	67.8 MBytes	569 Mbits/sec	Θ	1.39	MBytes
[4]	7.00-8.00	sec	61.9 MBytes	519 Mbits/sec	Θ	1.39	MBytes
[4]	8.00-9.00	sec	69.7 MBytes	585 Mbits/sec	Θ	1.65	MBytes
[4]	9.00-10.00	sec	69.2 MBytes	581 Mbits/sec	Θ	1.65	MBytes
[ID] I	nterval		Transfer	Bandwidth	Retr		
[4]	0.00-10.00	sec	666 MBytes	558 Mbits/sec	Θ		sender
[4]	0.00-10.00	sec	662 MBytes	555 Mbits/sec			receiver

With GRE tunnelling

	cting to host						
				nnected to 192.1			5201
ID]	Interval		Transfer	Bandwidth	Retr	Cwnd	
4]	0.00-1.00	sec	67.3 MBytes	565 Mbits/sec	0	1.96	MBytes
4]	1.00-2.00	sec	76.2 MBytes	638 Mbits/sec	0	2.98	MBytes
4]	2.00-3.00	sec	72.5 MBytes	609 Mbits/sec	Θ	3.00	MBytes
4]	3.00-4.00	sec	73.8 MBytes	619 Mbits/sec	0	3.00	MBytes
4]	4.00-5.00	sec	70.0 MBytes	587 Mbits/sec	0	3.00	MBytes
4]	5.00-6.00	sec	72.5 MBytes	608 Mbits/sec	0	3.00	MBytes
4]	6.00-7.00	sec	73.8 MBytes	619 Mbits/sec	0	3.00	MBytes
4]	7.00-8.00	sec	72.5 MBytes	608 Mbits/sec	0	3.00	MBytes
4]	8.00-9.00	sec	73.8 MBytes	619 Mbits/sec	Ο	3.00	MBytes
4]	9.00-10.00	sec	73.8 MBytes	619 Mbits/sec	Ο	3.00	MBytes
ID]	Interval		Transfer	Bandwidth	Retr		
4]	0.00-10.00	sec	726 MBytes	609 Mbits/sec	0		sender
4]	0.00-10.00	sec	723 MBytes	607 Mbits/sec			receive

THANK YOU FOR YOUR ATTENTION

122813

for life

Take a look: TIME.TNO.NL