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Structural Variation
We have graphs from social networks, road networks, 
biology. They are different in structure and properties. 

Parallelisation Strategies
Vertex-centric push/pull, edge-centric, Gather-Apply-
Scatter (GAS), virtual warps. Many possible variations of 
these, such as using warp and/or block reductions.

Performance Variation
The  performance  of  different  parallelisation  strategies  
varies by an order of magnitude or more across graphs.

Performance Modelling
Can we learn to predict implementation performance from 
previously observed results?

Variation Within a Single Run
For  dynamic  computations  like  BFS,  we  even  see  these 
huge  performance  differences  between  implementation 
across different steps computed on the same graph.
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The Problem: We want the fastest graph processing! 
• High-performance graph processing is very interesting for data science
• High-performance computing is increasingly GPU/accelerator based
• Mapping irregular (graph) algorithms to GPU is hard
• Performance of irregular algorithms is data-dependent

Thesis Goals
• Quantify performance impact of data dependence
• Model how performance relates to structural properties of the input graph
• Predict best parallelisation strategy for a given graph and algorithm
• Create an automated pipeline to repeat this work for new algorithms and parallelisation strategies
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Dynamic Algorithms
For dynamic algorithms, where the relevant data changes  
over time, such as BFS, this effect is even stronger.

Graph Classification?
Graph structure affects performance for most algorithms, 
yet  there  is  no  consensus  on  any  form of  classification 
based  on  structural  properties  to  aid  implementation 
selection.

Prediction Feasibility
For simple algorithms we can use this model as an oracle to 
select the best performing implementation for a specific graph. 
For algorithms whose behaviour changes at runtime, like BFS, 
we  can  do  better.  We can  keep  multiple  representations  in 
memory and switch between implementations  at runtime for a 
classic time-space trade-off.

In Summary 
We show that  using  models  trained  on  previously  observed 
graph processing  results  lets  us  predict  the  best  performing 
implementation of an algorithm for a given input graph.

We provide  a  framework  for  training  such  models  and  are 
investigating how much data is required to train an accurate 
and portable model for graph algorithms.

BFS Prediction Results
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Decision Trees

The new BFS is fast! 

Prediction works! 

Min. BFS Step: 20 ms

Avg. Evaluation: 144 ns (σ = 165 ns)

∼98%Accuracy:

Vertex Push/Pull

parallel for v ∈ Vertices do
    f(v.neighbours)
endfor

Edge-centric

parallel for e ∈ Edges do
    f(e.origin, e.destination)
endfor
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