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Abstract

In this paper we consider preference over objects. We show how this preference
can be derived from priorities, properties of these objects, a concept which is initially
from optimality theory. We do this both in the case when an agent has complete
information and in the case when an agent only has beliefs about the properties. After
the single agent case we also consider the multi-agent case. In each of these cases, we
construct preference logics, some of them extending the standard logic of belief. This
leads to interesting connections between preference and beliefs. We strengthen the
usual completeness results for logics of this kind to representation theorems. The
representation theorems describe the reasoning that is valid for preference relations
that have been obtained from priorities. In the multi-agent case, these representation
theorems are strengthened to the special cases of cooperative and competitive agents.
We study preference change with regard to changes of the priority sequence, and
change of beliefs. We apply the dynamic epistemic logic approach, and in consequence
reduction axioms are presented. We conclude with some possible directions for future
work.

1 Motivation

The notion of preference occurs frequently in game theory, decision theory, and many other
research areas. Typically, preference is used to draw comparison between two alternatives
explicitly. Studying preference and its general properties has become a main logical concern
after the pioneering seminar work by [Hal57] and [Wri63], witness [Jen67], [Cre71], [Tra85],
[DW94], [Han01], [BRG07] etc., and more recently work on dynamics of preference e.g.
[Han95] and [BL07]. Let us single out immediately the two distinctive characteristics of
the approach to preference we take in this paper.

• Most of the previous work has taken preference to be a primitive notion, without
considering how it comes into being. We take a different angle here and explore both
preference and its origin. We think that preference can often be rationally derived
from a more basic source, which we will call a priority base. In this manner we have
two levels: the priority base, and the preference derived from it. We hope this new
perspective will shed light on the reasoning underlying preference, so that we are
able to discuss why we prefer one thing over another. There are many ways to get
preference from such a priority base, a good overview can be found in [CMLLM04].
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• In real life we often encounter situations in which no complete information is avail-
able. Preference will then have to be based on our beliefs, i.e. do we believe cer-
tain properties from the priority base to apply or not? Apparently, this calls for
a combination of doxastic language and preference language. We will show a close
relationship between preference and beliefs. To us, both are mental attitudes. If we
prefer something, we believe we do (and conversely). In addition, this paper is also
concerned with the dynamics of preference. By means of our approach, we can study
preference changes, whether they are due to a change in the priority base, or caused
by belief revision.

Depending on the actual situation, preference can be employed to compare alternative
states of affairs, objects, actions, means, and so on, as listed in [Wri63]. One requirement
we impose is that we consider only mutually exclusive alternatives. In this paper, we
consider in first instance preference over objects rather than between propositions (compare
[DW94]). Objects are, of course, congenitally mutually exclusive. Although the priority
base approach is particularly well suited to compare preference between objects, it can
be applied to the study of the comparison of other types of alternatives as well. When
comparing objects, the kind of situation to be thought of is:

Example 1.1 Alice is going to buy a house. For her there are several things to consider:
the cost, the quality and the neighborhood, strictly in that order. All these are clear-cut
for her, e.g. the cost is good if it is inside her budget, otherwise it is bad. Her decision is
then determined by the information whether the alternatives have the desirable properties,
and by the given order of importance of the properties.

In other words, Alice’s preference regarding houses is derived from the priority order of
the properties she considers. This paper aims to propose a logic to model such situations.
When covering situations in which Alice’s preference is based on incomplete information
belief will enter into the logic as an operation.

There are several points to be stressed beforehand, in order to avoid misunderstandings:
First, our intuition of priority base is linked to graded semantics, e.g. spheres semantics
by [Lew73]. We take a rather syntactical approach in this paper, but that is largely a
question of taste, one can go about it semantically as well. We will return to this point
several times. Second, we will mostly consider a linearly ordered priority base. This is
simple, giving us a quasi-linear order of preference. But our approach can be adapted to
the partially ordered case, as we will indicate in Section 3. Third, when we add a belief
operator to the preference language (fragment of FOL), it may seem that we are heading
into doxastic predicate logic. This is true, but we are not going to be affected by the
existing difficult issues in that logic. What we are using in this context is a very limited
part of the language. Finally, although we start with a two level perspective this results
on the preference side in logics that are rather like ordinary propositional modal logics.
The bridge between the two levels is then given by theorems that show that any models
of these modal logics can be seen as having been constructed from a priority base. These
theorems are a kind of completeness theorems, but we call them representation theorems
to distinguish them from the purely modal completeness results.

The following sections are structured as follows: In Section 2, we start with a simple
language to study the rigid case in which the priorities lead to a clear and unambiguous
preference ordering. In Section 3 we review some basics about ordering. In Section 4,
a proof of a representation theorem for the simple language without beliefs is presented.
Section 5 considers what happens when the agent has incomplete information about the
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priorities with regard to the alternatives. In Section 6 we will look at changes in preference
caused by two different sources: changes in beliefs, and changes of the sequence of priorities.
Section 7 is an extension to the multi-agent system. We will prove representation theorems
for the general case, and for the special cases of cooperative agents and competitive agents.
Finally, we end up with a few conclusions and remarks about possible future work.

2 From priorities to preference

As we mentioned in the preceding, there are many ways to derive preference from the
priority base. We choose one of the mechanisms, the way of Optimality Theory (OT,
cf. [PS93]), as an illustration because we like the intuition behind this mechanism. Along
the way, we will discuss other approaches to indicate how our method can be applied to
them just as well.

Here is a brief review of some ideas from optimality theory that are relevant to the
current context. In optimality theory a set of conditions is applied to the alternatives
generated by the grammatical or phonological theory, to produce an optimal solution.
It is by no means sure that the optimal solution satisfies all the conditions. There may
be no such alternative. The conditions, called constraints, are strictly ordered according
to their importance, and the alternative that satisfies the earlier conditions best (in a
way described more precisely below) is considered to be the optimal one. This way of
choosing the optimal alternative naturally induces a preference ordering among all the
alternatives. We are interested in formally studying the way the constraints induce the
preference ordering among the alternatives. The attitude in our investigations is somewhat
differently directed than in optimality theory.1

Back to the issues of preference, to discuss preference over objects, we use a first or-
der logic with constants d0, d1 . . . ; variables x0, x1, . . . ; and predicates P,Q,P0, P1, . . . . In
practice, we are thinking of finite domains, monadic predicates, simple formulas, usually
quantifier free or even variable free. The following definition is directly inspired by opti-
mality theory, but to take a neutral stance we use the words priority sequence instead of
constraint sequence.

Definition 2.1 A priority sequence is a finite ordered sequence of formulas (priorities)
written as follows:

C1 ≫ C2 · · · ≫ Cn (n ∈ N),

where each of Cm (1 ≤ m ≤ n) is a formula from the language, and there is exactly one
free variable x, which is a common one to each Cm.

We will use symbols like C to denote priority sequences. The priority sequence is
linearly ordered. It is to be read in such a way that the earlier priorities count strictly
heavier than the later ones, e.g. C1∧¬C2∧· · ·∧¬Cm is preferable over ¬C1∧C2∧· · ·∧Cm
and C1∧C2∧C3∧¬C4∧¬C5 is preferable over C1∧C2∧¬C3∧C4∧C5. A difference with
optimality theory is that we look at satisfaction of the priorities whereas in optimality
theory infractions of the constraints are stressed. This is more a psychological than a
formal difference. However, optimality theory knows multiple infractions of the constraints

1Note that in optimality theory the optimal alternative is chosen unconsciously; we are thinking mostly
of applications where conscious choices are made. Also, in optimality theory the application of the con-
straints to the alternatives lead to a clear and unambiguous result: either the constraint clearly is true
of the alternative or it is not, and that is something that is not sensitive to change. We will loosen this
condition and consider issues that arise when changes do occur.
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and then counts the number of these infractions. We do not obtain this with our simple
objects, but we think that possibility can be achieved by considering composite objects,
like strings.

Definition 2.2 Given a priority sequence of length n, two objects x and y, Pref(x,y) is
defined as follows:

Pref1(x, y) ::= C1(x) ∧ ¬C1(y),
Prefk+1(x, y) ::= Prefk(x, y) ∨ (Eqk(x, y) ∧Ck+1(x) ∧ ¬Ck+1(y)), k < n,

Pref(x, y) ::= Prefn(x, y),

where the auxiliary binary predicate Eqk(x, y) stands for (C1(x) ↔ C1(y))∧· · ·∧(Ck(x) ↔
Ck(y)).

2

In Example 1.1, Alice has the following priority sequence:

C(x) ≫ Q(x) ≫ N(x),

where C(x), Q(x) and N(x) are intended to mean ‘x has low cost’, ‘x is of good quality’
and ‘x has a nice neighborhood’, respectively. Consider two houses d1 and d2 with the
following properties: C(d1), C(d2),¬Q(d1),¬Q(d2), N(d1) and ¬N(d2). According to the
above definition, Alice prefers d1 over d2, i.e. Pref(d1, d2).

Unlike later, in Section 5, belief does not enter into this definition. This means that
Pref(x, y) can be read as x is superior to y, or under complete information x is preferable
over y.

Remark 2.3 Our method easily applies when the priorities become graded. Take the
Example 1.1, if Alice is more particular, she may split the cost C into C1 very low cost,
C2 low cost, C3 medium cost, similarly for the other priorities. The original priority
sequence C(x) ≫ Q(x) ≫ N(x) may change into

C1(x) ≫ C2(x) ≫ Q1(x) ≫ C3(x) ≫ Q2(x) ≫ N1(x) ≫ . . . .

As we mentioned at the beginning, we have chosen a syntactic approach expressing
priorities by formulas. If we switch to a semantical point of view, the priority sequence
translates into pointing out a sequence of n sets in the model. The elements of the model
will be objects rather than worlds as is usual in this kind of study. But one should see
this really as an insignificant difference. If one prefers, one may for instance in Example
1.1 replace house d by the situation in which Alice has bought the house d.

When one points out sets in a model, Lewis’ sphere semantics ([Lew73] p.98-99) comes
to mind immediately. The n sets in the model obtained from the priority base are in
principle unrelated. In the sphere semantics the sets which are pointed out are linearly
ordered by inclusion. To compare with the priority base we switch to a syntactical variant
of sphere semantics, a sequence of formulas G1, . . . , Gm such that Gi(x) implies Gj(x) if
i ≤ j. These formulas express the preferability in a more direct way, G1(x) is the most
preferable, Gm(x) the least. The two approaches are equivalent in the sense that they can
be translated into each other.

2This way of deriving an ordering from a priority sequence is called leximin ordering in [CMLLM04].
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Theorem 2.4 A priority sequence C1 ≫ C2 · · · ≫ Cm gives rise to a G-sequence of
length 2m. In the other direction a priority sequence can be obtained from a G-sequence
logarithmic in the length of the G-sequence.

Proof. Let us just look at the case that m= 3. Assuming that we have the priority
sequence C1 ≫ C2 ≫ C3, the preference of objects is decided by where their properties
occur in the following list:

R1 : C1 ∧ C2 ∧ C3;
R2 : C1 ∧ C2 ∧ ¬C3;
R3 : C1 ∧ ¬C2 ∧ C3;
R4 : C1 ∧ ¬C2 ∧ ¬C3;
R5 : ¬C1 ∧ C2 ∧ C3;
R6 : ¬C1 ∧ C2 ∧ ¬C3;
R7 : ¬C1 ∧ ¬C2 ∧C3;
R8 : ¬C1 ∧ ¬C2 ∧ ¬C3.

The Gis are constructed as disjunctions of members of this list. In their most simple
form, they can be stated as follows:

G1 : R1;
G2 : R1 ∨R2;
...
G8 : R1 ∨ R2 · · · ∨R8.

On the other hand, given a Gi-sequence, we can define Ci as follows,

C1 = R1 ∨R2 ∨R3 ∨R4;
C2 = R1 ∨R2 ∨R5 ∨R6;
C3 = R1 ∨R3 ∨R5 ∨R7.

And again this can be simply read off from a picture of the G-spheres. The relationship
between Ci, Ri, and Gi can be seen from the Figure 1. �

R1

R2

R3

R4

R5

R6

R7 R8

C1 C2

C3

R1R2R3R4R5R6R7R8

Figure 1: Ci, Ri, and Gi

Remark 2.5 In applying our method to such spheres, the definition of Pref(x, y) comes
out to be ∀i(y ∈ Gi → x ∈ Gi). The whole discussion implies of course that our method
cannot only be applied to sphere models but also to any other approach which can be
reduced to sphere models.
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Remark 2.6 As we pointed out at the beginning, one can define preference from a priority
sequence C in various different ways, all of which we can handle. Here is one of these ways,
called best-out ordering in [CMLLM04], as an illustration. We define the preference as
follows:

Pref(x, y) iff ∃Cj ∈ C(∀Ci ≫ Cj ((Ci(x) ∧ Ci(y)) ∧ (Cj(x) ∧ ¬Cj(y))).

Now we only continue along the priority sequence as long as we receive positive infor-
mation. Returning the Example 1.1, this means that under this option we only get the
conclusion that Pref(d1, d2) and Pref(d2, d1): d1 and d2 are equally preferable, because
after observing that ¬Q(d1),¬Q(d2), Alice won’t consider N at all.

3 Order

In this section we will just run through the types of order that we will use. A relation <

is a linear order if < is irreflexive, transitive and asymmetric (x < y → ¬(y < x)), and
satisfies totality:

x < y ∨ x = y ∨ y < x

More precisely, < is called a strict linear order. A non-strict linear order ≤ is a reflexive,
transitive, antisymmetric (x ≤ y ∧ y ≤ x → x= y), and total relation. It is for various
reasons useful to introduce both variants of orderings.

Mathematically, strict and non-strict linear orders can easily be translated into each
other:

(1) x < y ↔ x ≤ y ∧ x 6= y, or
(2) x < y ↔ x ≤ y ∧ ¬(y ≤ x),
(3) x ≤ y ↔ x < y ∨ x= y, or
(4) x ≤ y ↔ x < y ∨ (¬(x < y) ∧ ¬(y < x)).

Optimality theory only considers linearly ordered constraints. These will be seen to
lead to a quasi-linear order of preferences, i.e. a relation 4 that satisfies all the require-
ments of a non-strict linear order but antisymmetry. A quasi-linear ordering contains
clusters of elements that are ‘equally large’. Such elements have the relation ≤ to each
other. Most naturally one would take for the strict variant ≺ an irreflexive, transitive,
total relation. If one does that, strict and non-strict orderings can still be translated into
each other (only by using alternatives (2) and (4) above though, not (1) and (3)).

However, Pref is normally taken to be a strict order, i.e. an asymmetric relation, and
we agree with that, so we take the option of ≺ as an irreflexive, transitive, asymmetric
relation. Then ≺ is definable in terms of 4 by use of (2), but not 4 in terms of ≺ .
That is clear from the picture below, an irreflexive, transitive, asymmetric relation cannot
distinguish between the two given orderings.

One needs an additional equivalence relation x ∼ y to express that x and y are elements
in the same cluster; x ∼ y can be defined by

(5) x ∼ y ↔ x ≤ y ∧ y ≤ x.

Then, in the other direction, x ≤ y can be defined in terms of < and ∼:

(6) x ≤ y ↔ x < y ∨ x ∼ y.
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Figure 2: Incomparability and indifference.

It is certainly possible to extend our discussion to partially ordered sets of priorities.
We will not really pursue this in thos paper, but let us spend a few words on the issue.
The preference relation will no longer be a quasi-linear order, but a so-called quasi-order :
in the non-strict case a reflexive and transitive relation, in the strict case an asymmetric,
transitive relation. One can still use (2) to obtain a strict quasi-order from a non-strict
one and (6) to obtain a non-strict quasi-order from a strict one and ∼. However, we will
see in Section 5 that in some contexts involving beliefs these translations no longer give
the intended result. In such a case one has to be satisfied with the fact that (5) still holds
and that ≺ as well as ∼ imply 4 .

One will in practice meet partially ordered priority sequences when there are several
priorities of incomparable strength. Take the Example 1.1 again, where now instead of
just three properties to consider, Alice also takes the ‘transportation convenience’ into
account. But for her neighborhood and transportation convenience are really incompara-
ble. Abstractly speaking, this indeed means that the priority sequence is now partially
ordered. We show in the following how to define preference based on such a partially
ordered priority sequence. We consider a set of priorities C1..., Cn with the relation ≫
between them a partial order.

Definition 3.1 We define Prefn(x, y) by induction, where {n1, ..., nk} is the set of
immediate predecessors of n.

Prefn(x, y) ::=
Prefn1

(x, y) ∧ ... ∧ Prefnk
(x, y) ∧ ((Cn(y) → Cn(x)) ∨ (Prefn1

(x, y) ∨ ... ∨ Prefnk
(x, y)))

where as always Prefm(x, y) ↔ Prefm(x, y) ∧ ¬Prefm(y, x).

This definition again has the inductive form we favor. Moreover, we regard finite
partial orders as the most important, and restricted to those, the definition is equivalent
to the one in [Gro91] and [ARS95]. This connection has been investigated in [Liu08a] too.
For more discussion on the relation between partially ordered priorities and G-spheres, see
[Lew81], for the important special case that the set of priorities is completely unordered
(which is also a partial order of course), we refer to [Kra81].

4 A representation theorem

In the following we will write Pref for the strict version of preference, Pref for the non-
strict version, and let Eq correspond to ∼, expressing two elements are equivalent. Clearly,
no matter what the priorities are, the non-strict preference relation has the following
general properties:
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(a) Pref(x, x),
(b) Pref(x, y) ∨ Pref(y, x),
(c) Pref(x, y) ∧ Pref(y, z) → Pref(x, z).

(a), (b) and (c) express reflexivity, totality and transitivity, respectively. Thus, Pref is a
quasi-linear relation; it lacks antisymmetry.

Unsurprisingly, (a), (b) and (c) are a complete set of principles for preference. We will
put this in the form of a representation theorem as we announced in the introduction. In
this case it is a rather trivial matter, but it is worthwhile to execute it completely as an
introduction to the later variants. We reduce the first order language for preference to its
core:

Definition 4.1 Let Γ be a set of propositional variables, and D be a finite domain of
objects, the reduced language of preference logic is defined in the following,

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Pref(di, dj),

where p, di respectively denote elements from Γ and D.

The reduced language contains the propositional calculus. From this point onwards we
refer to the language with variables, quantifiers, predicates as the extended language. In
the reduced language, we rewrite the axioms as follows:

(a) Pref(di, di),
(b) Pref(di, dj) ∨ Pref(dj , di),
(c) Pref(di, dj) ∧ Pref(dj , dk) → Pref(di, dk).

We call this axiom system P.

Theorem 4.2 (representation theorem). ⊢ P ϕ iff ϕ is valid in all models obtained from
priority sequences.

Proof. The direction from left to right is obvious. Assume formula ϕ(d1, . . . ,

dn, p1, . . . , pk) is not derivable in P. Then a non-strict quasi-linear ordering of the d1, . . . , dn
exists, which, together with a valuation of the atoms p1, . . . , pk in ϕ falsifies ϕ(d1, . . . , dn).
Let us just assume that we have a linear order (adaptation to the more general case of
quasi-linear order is simple), and also, w.l.o.g. that the ordering is d1 > d2 > · · · > dn.
Then we introduce an extended language containing unary predicates P1, . . . , Pn with a
priority sequence P1 ≫ P2 · · · ≫ Pn and let Pi apply to di only. Clearly then the prefer-
ence order of d1, . . . , dn with respect to the given priority sequence is from left to right.
We have transformed the model into one in which the defined preference has the required
properties. 3 �

Remark 4.3 It is instructive to execute the above proof for the reduced language con-
taining some additional predicates Q1, . . . , Qk. One would like then to obtain a priority
sequence of formulas in the language built up fromQ1 toQk. This is possible if in the model
M each pair of constants di and dj is distinguishable by formulas in this language, i.e. for
each i and j (i 6= j), there exists a formula ϕij such that M |= ϕij(di)and M |= ¬ϕij(dj).

3Note that, although we used n priorities in the proof to make the procedure easy to describe, in general
log2(n) + 1 priorities are sufficient for the purpose.
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In such a case, the formula ψi =
∧
i6=j ϕij satisfies only di. And ψ1 ≫ · · · ≫ ψn is the

priority sequence as required. It would be necessary to introduce new predicates when
two constants are indistinguishable. A trivial method to do this is to allow identity in the
language, x = d1 obviously distinguishes d1 and d2.

Let us at this point stress once more what the content of a representation theorem is.
It tells us that the way we have obtained the preference relations, namely from a priority
sequence, does not affect the general reasoning about preference, its logic. The proof
shows this in a strong way: if we have a model in which the preference relation behaves in
a certain manner, then we can think of this preference as derived from a priority sequence
without disturbing the model as it is.

5 Preference and belief

In this section, we discuss the situation that arises when an agent has only incomplete
information, but she likes to express her preference. The language will be extended with
belief operators Bϕ to deal with such uncertainty, and it is a small fragment of doxastic
predicate logic. It would be interesting to consider what more the full language can bring
us, but we will leave this question to other occasions. We will take the standard KD45 as
the logic for beliefs (cf. [MvdH95]), though we are aware of the philosophical discussions
on beliefs and the options of proper logical systems.

Interestingly, the different definitions of preference we propose in the following spell out
different “procedures” an agent may follow to decide her preference when processing the
incomplete information about the relevant properties. Which procedure is taken strongly
depends on the domain or the type of agents. In the new language, the definition of priority
sequence remains the same, i.e. a priority Ci is a formula from the language without belief
operators.

Definition 5.1 (decisive preference). Given a priority sequence of length n, and two
objects x and y, Pref(x,y) is defined as follows:

Pref1(x, y) ::= BC1(x) ∧ ¬BC1(y),
P refk+1(x, y) ::= Prefk(x, y) ∨ (Eqk(x, y) ∧BCk+1(x) ∧ ¬BCk+1(y)), k < n,

Pref(x, y) ::= Prefn(x, y),

where Eqk(x, y) stands for (BC1(x) ↔ BC1(y)) ∧ · · · ∧ (BCk(x) ↔ BCk(y)).

To determine the preference relation, one just runs through the sequence of relevant
properties to check whether one believes them of the objects. But at least two other
options of defining preference seem reasonable as well.

Definition 5.2 (conservative preference). Given a priority sequence of length n, two
objects x and y, Pref(x,y) is defined below:

Pref1(x, y) ::= BC1(x) ∧B¬C1(y),
P refk+1(x, y) ::= Prefk(x, y) ∨ (Eqk(x, y) ∧BCk+1(x) ∧B¬Ck+1(y)), k < n,

Pref(x, y) ::= Prefn(x, y)

where Eqk(x, y) stands for (BC1(x) ↔ BC1(y))∧(B¬C1(x) ↔ B¬C1(y))∧· · ·∧(BCk(x) ↔
BCk(y)) ∧ (B¬Ck(x) ↔ B¬Ck(y)).
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Definition 5.3 (deliberate preference). Given a priority sequence of length n, two
objects x and y, Pref(x,y) is defined below:

Supe1(x, y)
4 ::= C1(x) ∧ ¬C1(y),

Supek+1(x, y) ::= Supek(x, y) ∨ (Eqk(x, y) ∧ Ck+1(x) ∧ ¬Ck+1(y)), k < n,

Supe(x, y) ::= Supen(x, y),
P ref(x, y) ::= B(Supe(x, y)),

where Eqk(x, y) stands for (C1(x) ↔ C1(y)) ∧ · · · ∧ (Ck(x) ↔ Ck(y)).

To better understand the difference between the above three definitions, we look at the
Example 1.1 again, but in three different variations:

A. Alice favors Definition 5.1: She looks at what information she can get, she reads
that d1 has low cost, about d2 there is no information. This immediately makes
her decide for d1. This will remains so, no matter what she hears about quality or
neighborhood.

B. Bob favors Definition 5.2: The same thing happens to him. But he reacts differently
than Alice. He has no preference, and that will remain so as long as he hears nothing
about the cost of d2, no matter what he hears about quality or neighborhood.

C. Cora favors Definition 5.3: She also has the same information. On that basis Cora
cannot decide either. But some more information about quality and neighborhood
helps her to decide. For instance, suppose she hears that d1 has good quality or is in
a good neighborhood, and d2 is not of good quality and not in a good neighborhood.
Then Cora believes that, no matter what, d1 is superior, so d1 is her preference.
Note that such kind of information could not help Bob to decide.

Speaking more generally in terms of the behaviors of the above agents, it seems that
Alice always decides what she prefers on the basis of the limited information she has.
In contrast, Bob chooses to wait and require more information. Cora behaves somewhat
differently, she first tries to do some reasoning with all the available information before
making her decision. This suggests yet another perspective on diversity of agents than
discussed in [BL04] and [Liu08b].

Apparently, we have the following fact.

Fact 5.4

- Totality holds for Definition 5.1, but not for Definition 5.2 or 5.3;

- Among the above three definitions, Definition 5.2 is the strongest in the sense that
if Pref(x, y) holds according to Definition 5.2, then Pref(x, y) holds according to
Definition 5.1 and 5.3 as well.

It is striking that, if in Definition 5.3, one plausibly also defines Pref(x, y) as
B(Supe(x, y)), then the normal relation between Pref and Pref no longer holds: Pref
is not definable in terms of Pref , or even Pref in terms of Pref and Eq.

For all three definitions, we have the following theorem.

Theorem 5.5 Pref(x, y) ↔ BPref(x, y).

4Superiority is just defined as preference was in the previous section.
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Proof. In fact we prove something more general in KD45. Namely, if α is a propositional
combination of B-statements, then ⊢KD45 α↔ Bα. Since Pref(x, y) is in all three cases
indeed a propositional combination of B-statements, and since we assume the principles
of KD45 to hold, this is sufficent.

From left to right, since α is a propositional combination of B-statements, it can be
transformed into conjunctive normal form: β1 ∨ · · · ∨ βk. It is clear that ⊢KD45 βi → Bβi
for each i, because each member γ of the conjunction βi implies Bγ. If A = β1 ∨ · · · ∨ βk
holds then some βi holds, so Bβi, so Bα. Then we immediately have: ⊢KD45 ¬α→ B¬α
(*) as well, since ¬α is also a propositional combination of B-statements if α is.

From right to left: Suppose Bα and ¬α. Then B¬α by (*), so B⊥, but this is
impossible in KD45, therefore α holds. �

Corollary 5.6 ¬Pref(x, y) ↔ B¬Pref(x, y).

Actually, we think it is proper that Theorem 5.5 and Corollary 5.6 hold because we
believe that preference describes a state of mind in the same way that belief does. Just as
one believes what one believes, one believes what one prefers.

We can generalize the representation result (Theorem 4.2) if we stick to Definition 5.1
(decisive preference). This definition is most congenial to us in any case. Let us consider
the reduced language built up from standard propositional letters plus Pref(di, dj), by
the connectives and belief operators B. Again we have the normal principles of KD45 for
B.

Definition 5.7 The KD45-P system includes the principles below, plus Modus po-
nens(MP ), as well as Generalization for the operator B.

(a) Pref(di, dj),
(b) Pref(di, dj) ∨ Pref(dj , di),
(c) Pref(di, dj) ∧ Pref(dj , dk) → Pref(di, dk),
(1.) ¬B⊥,
(2.) Bϕ→ BBϕ,
(3.) ¬Bϕ→ B¬Bϕ,
(4.) Pref(di, dj) ↔ BPref(di, dj).

Definition 5.8 A model of KD45-P is a tuple 〈W,D,R, {�w}w∈W , V 〉, where W is a
set of worlds, D is a set of constants, R is a euclidean and serial accessibility relation on
W . Namely, it satisfies ∀xyz((Rxy ∧ Rxz) → Ryz) and ∀x∃yRxy. For each w, �w is a
quasi-linear order on D, which is constant throughout each euclidean class, i.e., if wRw′,
then a �w b iff a �w′ b. V is an evaluation function in the ordinary manner.

We remind the reader that the set of worlds in a KD45-model is partitioned into
what we will call euclidean classes. In most respects euclidean classes are like equivalence
classes, but a number of points may be irreflexive and then have R relations just towards
all the reflexive members (the equivalence part) of the class. The equivalence part is an
equivalence class in the ordinary sense. It is also easy to see that, if w is a world in such
a model, then the euclidean class in which w resides is the set {w′′ | ∃w′(w′′Rw′ ∧wRw′)}.
The reader can easily check that the principles of KD45-P are valid in the KD45-P-
models.

Theorem 5.9 The KD45-P system is complete.
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Proof. The canonical model of this logic KD45-P has the required properties given in
Definition 5.8: The belief accessibility relation R is euclidean and serial. This means that
with regard to R the model falls apart into euclidean classes. In each node Pref is a
quasi-linear order of the constants. Note that, for totality, we rely on the fact that we
are using Definition 5.1. Within a euclidean class the preference order is constant, by
BPref ↔ Pref . This suffices to prove completeness. �

Theorem 5.10 The logic KD45-P has the finite model property.

Proof. By standard methods. �

Theorem 5.11 (representation theorem). ⊢ KD45−P ϕ iff ϕ is valid in all models ob-
tained from priority sequences.

Proof. Suppose that 0KD45−P ϕ(d1, ..., dn, p1, ..., pm). Theorem 5.9, there is a model
with a world w in which ϕ is falsified. We restrict the model to the euclidean class where
w resides. (Note that, by the remarks above, this is a generated submodel.) Since the
ordering of the constants is the same throughout euclidean classes, the ordering of the
constants is now the same throughout the whole model. We can proceed as in Theorem
4.2 defining the predicates P1, . . . , Pn in a constant manner throughout the model. Since
we have a generated submodel, ϕ is still falsified in w. �

Remark 5.12 The three definitions above are not the only definitions that might be
considered. For instance, we can give a variation (∗) of Definition 5.2. For simplicity, we
just use one predicate C.

Pref(x, y) ::= ¬B¬C(x) ∧B¬C(y). (∗)

This means the agent can decide on her preference in a situation in which on the one hand
she is not totally ready to believe C(x), but considers it consistent with what she assumes,
on the other hand, she distinctly believes ¬C(y). Compared with Definition 5.2, (∗) is
weaker in the sense that it does not require explicit positive beliefs concerning C(x).

We can even combine Definition 5.1 and (∗), obtaining the following:

Pref(x, y) ::= (BC(x) ∧ ¬BC(x)) ∨ (¬B¬C(x) ∧B¬C(y). (∗∗)

Contrary to (∗), this gives a quasi-linear order.

6 Preference changes

So far we have given different definitions for preference in a stable situation. Now we direct
ourselves to changes in this situation. In the definition of preference in the presence of
complete information, the only item subject to change is the priority sequence. In the case
of incomplete information, not only the priority sequence, but also our beliefs can change.
Both changes in priority sequence and changes in belief can cause preference change. In
this section we study both. Note that priority change leads to a preference change in a
way similar to entrenchment change in belief revision theory (see [Rot03]), but we take
the methodology of dynamic epistemic logic in this context.

12



6.1 Preference change due to priority change

Let us first look at a variation of Example 1.1:

Example 6.1 Alice won a lottery prize of ten million dollars. Her situation has changed
dramatically. Now she considers the quality most important.

In other words, the ordering of the priorities has changed. We will focus on the priority
changes, and the preference changes they cause. To this purpose, we start by making the
priority sequence explicit in the preference. We do this first for the case of complete
information in language without belief. Let C be a priority sequence with length n as in
Definition 2.1. Then we write PrefC(x, y) for the preference defined from that priority
sequence. Let us write C

⌢C for adding C to the right of C, C⌢C for adding C to the
left of C, C

− for the sequence C with its final element deleted, and finally, C
i⇆i+1 for the

sequence C with its i-th and i+1-th priorities switched. It is then clear that we have the
following relationships:

PrefC⌢C(x, y) ↔ PrefC(x, y) ∨ (EqC(x, y) ∧C(x) ∧ ¬C(y)),
PrefC⌢C(x, y) ↔ (C(x) ∧ ¬C(y)) ∨ ((C(x) ↔ C(y)) ∧ PrefC(x, y)),
P refC−(x, y) ↔ PrefC,n−1(x, y),
PrefCi⇆i+1(x, y) ↔ PrefC,i−1(x, y) ∨ (EqC,i−1(x, y) ∧ Ci+1(x) ∧ ¬Ci+1(y)) ∨
(EqC,i−1(x, y) ∧ (Ci+1(x) ↔ Ci+1(y)) ∧ Ci(x) ∧ ¬Ci(y)) ∨ (EqC,i+1(x, y) ∧
PrefC(x, y)).

These relationships enable us to describe preference change due to changes of the prior-
ity sequence in the manner of dynamic epistemic logic (DEL). In DEL, the relationships
between epistemic states under consideration before and after a change are represented by
operators. These operators convert the state into its new form. Typically, the new state
can be given completely in terms of the old state. This is captured by so called reduction
axioms. We consider the operations [+C] of adding C to the right, [C+] of adding C to
the left, [−] of dropping the last element of a priority sequence of length n, [i↔ i+1] of
interchanging the i-th and i+1-th elements. Then we have the following reduction axioms:

[+C]Pref(x, y) ↔ Pref(x, y) ∨ (Eq(x, y) ∧ C(x) ∧ ¬C(y)),
[C+]Pref(x, y) ↔ ((C(x) ∧ ¬C(y)) ∨ ((C(x) ↔ C(y)) ∧ Pref(x, y))),
[−]Pref(x, y) ↔ Prefn−1(x, y),
[i ↔ i + 1]Pref(x, y) ↔ Prefi−1(x, y) ∨ (Eqi−1(x, y) ∧ Ci+1(x) ∧ ¬Ci+1(y)) ∨
(Prefi(x, y) ∧ (Ci+1(x) ↔ Ci+1(y))) ∨ (Eqi+1(x, y) ∧ Pref(x, y)).

Of course, the first two are the more satisfactory ones, as the right hand side is con-
structed solely on the basis of the previous Pref and the added priority C. Note that
one of the first two, plus the third and the fourth are sufficient to represent any change
whatsoever in the priority sequence. Noteworthy is that operator [C+] has exactly the
same effects on a model as the operator [♯C] in [BL07].

In the context of incomplete information when we have the language of belief, we can
obtain similar reduction axioms for Definition 5.1 and 5.2. For instance, for Definition
5.1, we need only replace C by BC and ¬C by ¬BC. For Definition 5.3, the situation
is very complicated, reduction axioms are simply not possible. To see this, we return to
the Example of Cora. Suppose Cora has a preference on the basis of cost and quality,
and she also has the given information relating quality and neighborhood. Then her new
preference after ‘neighborhood’ has been adjoined to the priority sequence is not a function
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of her previous preference and her beliefs about the neighborhood. The beliefs relating
quality and neighborhood are central for her reasoning, but they are neither contained in
the beliefs supporting her previous preference, nor in the beliefs about the neighborhood
per se.

6.2 Preference change due to belief change

Now we move to the other source which causes preference change, namely, a change in
belief. Such a thing often occurs in real life, new information comes in, one changes one’s
beliefs. Technically, the update mechanisms of [BS06] and [Ben07] can immediately be
applied to our system with belief. As preference is defined in terms of beliefs, we can
calculate preference changes from belief change. We distinguish the two cases that the
belief change is caused by an update with so-called hard information and that it is caused
by an update with soft information.

6.2.1 Preference change under hard information

Consider a simpler version of the Example 1.1:

Example 6.2 This time Alice only considers the houses’ cost (C) and their neighborhood
(N) with C(x) ≫ N(x). There are two houses d1 and d2 available. The real situation is
that C(d1), N(d1), C(d2) and ¬N(d2). First Alice prefers d2 over d1 because she believes
C(d2) and N(d1). However, now Alice reads that C(d1) in a newspaper. She accepts this
information, and accordingly changes her preference.

Here we assume that Alice treats the information obtained as hard information. She simply
adds new information to her stock of beliefs. Figure 3 shows the situation before Alice’s
reading.

C(d1)

C(d2), N(d1)

not C(d1)

C(d2), N(d1)

Figure 3: Initial model.

The figure can be read as as a KD45-model. As usual, the dotted line denotes that
Alice is uncertain about the two situations. In particular, she does not know whether
C(d1) holds or not. After she reads that C(d1), the situation becomes Figure 4. The
¬C(d1)-world is eliminated from the model: Alice has updated her beliefs. Now she
prefers d1 over d2.

We have assumed that we are using the elimination semantics (e.g. [Ben06], [FHMV95],
etc.) in which public announcement of the sentence A leads to the elimination of the ¬A
worlds from the model. We have the reduction axiom:

[!A]PrefC(x, y) ↔ A→ PrefA→C(x, y),

where, if C is the priority sequence C1 ≫ · · · ≫ Cn, A→ C is defined as A→ C1 ≫ · · · ≫
A→ Cn.
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C(d1)

C(d2), N(d1)

Figure 4: Updated model.

We can go even further if we use conditional beliefs Bψϕ as introduced in [Ben07],
with the meaning that ϕ is believed under the condition ψ. This immediately leads to the
opportunity to introduce conditional preference Prefψ(x, y) as well, by replacing B in the
definitions in Section 5 by Bψ. Assuming A is a formula without belief operators, an easy
calculation gives us another form of the reduction axiom:

[!A]Pref(x, y) ↔ A→ PrefA(x, y).

6.2.2 Preference change under soft information

When one meets information that is less solid, one needs a more subtle reaction to the
information than simply adding it to one’s stock of beliefs. One tends to believe the
incoming information without discounting the possibility that it might be false. Let us
switch to a semantical point of view for a moment. To discuss the impact of such so-called
soft information on beliefs, the models are graded by a plausibility ordering ≤. For the
one agent case one may just as well consider the model to consist of one euclidean class.
The ordering of this euclidean class is such that the worlds in the equivalence part are
the most plausible worlds. This means that for all the worlds w in the equivalence part
and all the worlds u outside it, w < u. Otherwise v < v′ can only obtain between worlds
outside the equivalence part. To be able to refer to the elements in the model, instead
of only to the worlds accessible by the R-relation, we introduce the universal modality U
and its dual E.

For the update by soft information, there are various nonequivalent approaches
available, we choose the lexicographic upgrade ⇑A introduced by [Vel96] and [Rot06],
adopted by [Ben07] for this purpose. After the incoming information A, the ¬A-worlds
are not deleted as in the case of hard information, one just updates the ordering ≤ by
making all A-worlds strictly better than all ¬A-worlds, keeping among the A-worlds the
old orders intact and doing the same for the ¬A-worlds. After the update the R-relations
just point to the best A-worlds. The reduction axiom for belief proposed on this basis in
[Ben07] is:

[⇑A]Bϕ↔ (EA ∧ BA([⇑A]ϕ)) ∨ (¬EA ∧ B([⇑A]ϕ)).

Applying this to formulas ϕ which do not contain belief operators, one obtains for this
restricted case a simpler form:

[⇑A]Bϕ↔ (EA ∧ BAϕ) ∨ (¬EA ∧ Bϕ).

Realizing that preference formulas are propositional combinations of this simple form one
easily derives the reduction axiom for preference:
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[⇑A]Pref(x, y) ↔ (EA ∧ PrefA(x, y)) ∨ (¬EA ∧ Pref(x, y)).

Or in a form closer to the one for hard information:

[⇑A]Pref(x, y) ↔ (EA→ PrefA(x, y)) ∧ (¬EA→ Pref(x, y)).

The reduction axiom for conditional preference is:

[⇑A]Prefψ(x, y) ↔ (E(A ∧ ψ) → PrefA∧ψ(x, y)) ∧ (¬E(A ∧ ψ) → Prefψ(x, y)).

As always in dynamic epistemic/doxastic logic the fact that we now have reduction
axioms here implies that the completeness result in [Ben07] for dynamic belief logic can
be extended to a dynamic preference logic. We will not spell out the details here.

7 Extension to the many agent case

This section extends the results of Section 5 to the many agent case. This will generally
turn out to be more or less a routine matter. But at the end of the section, we will see that
the priority base approach gives us a start of an analysis of cooperation and competition
of agents. We consider agents here as cooperative if they have the same goals (priorities),
competitive if they have opposite goals. This is of course rather rudimentary because
there are no actions in our models, but an important matter will be noticed immediately.
That two agents have the same priority sequence does in no way imply that they agree on
everything. Take for example two party members who agree exactly on the qualifications
the candidate of their party should have (priorities). Still, they may not agree at all on
how (they believe) a particular candidate satisfies these qualifications. Or, if Alice and
her husband Bob are in perfect union about the requirements their new house should
satisfy, still they may have a vehement disagreement whether a particular house satisfies
these requirements: Alice may believe it is of good quality, but Bob doesn’t. Even in
this rudimentary approach the complexities of cooperation become clear. The way we
define the concept of opposite goals for competetive agents (see just before Theorem 7.9)
foreshadows the direction one may take to apply our approach to games. The language
we are using is defined as follows.

Definition 7.1 Let Γ be a set of propositional variables, G be a group of agents, and D

be a finite domain of objects, the reduced language of preference logic for many agents is
defined in the following,

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Prefa(di, dj) | B
aϕ

where p, a, di respectively denote elements from Γ, G, and D.

Similarly to Prefa expressing non-strict preference, we will use Prefa to denote the strict
version. When we want to use the extended language, we add variables and the statements
P (di).

Definition 7.2 A priority sequence for an agent a is a finite ordered sequence of formulas
written as follows: C1 ≫a C2 · · · ≫a Cn (n ∈ N), where each Cm (1 ≤ m ≤ n) is a
formula using the predicates of the extended language of Definition 7.1, with one single
free variable x, but without Pref and B.
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Here we take decisive preference to define an agent’s preference. But the results of this
section apply to other definitions as well. It seems quite reasonable to allow in this defi-
nition of Prefa formulas in the priority sequnce that contain Bb and Pref b for agents b
other than a. But we leave this for a future occasion.

Definition 7.3 Given a priority sequence of length n, two objects x and y, Prefa(x, y)
is defined as follows:

Prefa1 (x, y) ::= BaC1(x) ∧ ¬BaC1(y),
P refak+1(x, y) ::= Prefak (x, y) ∨ (Eqk(x, y) ∧B

aCk+1(x) ∧ ¬BaCk+1(y)), k < n,

Prefa(x, y) ::= Prefan(x, y),

where Eqk(x, y) stands for (BaC1(x) ↔ BaC1(y)) ∧ · · · ∧ (BaCk(x) ↔ BaCk(y)).

Definition 7.4 The preference logic for many agents KD45-PG is defined as follows,

(a) Prefa(di, di),
(b) Prefa(di, dj) ∨ Pref

a(dj , di),
(c) Prefa(di, dj) ∧ Pref

a(dj , dk) → Prefa(di, dk),
(1.) ¬Ba⊥,
(2.) Baϕ→ BaBaϕ,
(3.) ¬Baϕ→ Ba¬Baϕ,
(4.) Prefa(di, dj) ↔ BaPrefa(di, dj).

As usual, it also includes Modus ponens(MP ), as well as Generalization for the operator
Ba. It is easy to see that the above principles are valid for Prefa extracted from a priority
sequence.

Theorem 7.5 The preference logic for many agents KD45-PG is complete.

Proof. The canonical model of this logic KD45-PG has the required properties: The
belief accessibility relations Ra are euclidean and serial. This means that with regard to
Ra the model falls apart into a-euclidean classes. Again, in each node Prefa is a quasi-
linear order of the constants and within an a-euclidean class the a-preference order is
constant. This quasi-linearity and constance are of course the required properties for the
preference relation. Same for the other agents. This shows completeness of the logic. �

Theorem 7.6 The logic KD45-PG has the finite model property.

Proof. By standard methods. �

A representation theorem can be obtained by showing that the model could have been
obtained from priority sequences C1 ≫a C2 · · · ≫a Cm(m ∈ N) for all the agents.

Theorem 7.7 (representation theorem). ⊢ KD45−PG ϕ iff ϕ is valid in all models with
each Prefa obtained from a priority sequence.

Proof. Let there be k agents a0, . . . , ak−1. We provide each agent aj with her own
priority sequence Pn×j+1 ≫aj

Pn×j+2 ≫aj
... ≫aj

Pn×(j+1). From the previous proofs of
representation theorems it is clear that it is sufficient to show that any model for KD45-
PG for the reduced language can be extended by valuations for the Pj(di)’s in such a
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way that the preference relations are preserved. For each aj-euclidean class, we follow the
same procedure for d1, . . . , dn w.r.t. Pn×j+1, Pn×j+2, ..., Pn×(j+1) as in Theorem 4.2 w.r.t.
P1, . . . , Pn. The preference orders obtained in this manner are exactly the Prefaj relations
in the model. �

In the above case, the priority sequences for different agents are separate, and thus
very different. Still stronger representation theorems can be obtained by requiring that
the priority sequences for different agents are related, e.g. in the case of cooperative agents,
that they are equal. We will consider the two agent case in the following.

Theorem 7.8 (for two cooperative agents). ⊢ KD45−PG ϕ iff ϕ is valid in all models
obtained from priority sequences shared by two cooperative agents.

Proof. The two agents are a and b. We now have the priority sequence P1 ≫a P2 ≫a

... ≫a Pn, same for b. It is sufficient to show that any model M with worlds W for
KD45-PG for the reduced language can be extended by valuations for the Pj(di)’s in
such a way that the preference relations are preserved. But, it is clear that in this case we
cannot hope to do this purely on the model as it is because then from their shared priority
sequence a and b would get the same preferences. We will get around this difficulty by
enlarging the model, and obtaining what we want on the original part.

We start by making all Pj(di)’s true everywhere in the model. Next we extend the
model as follows. For each a-euclidean class E in the model carry out the following
procedure. Extend M with a complete isomorphic copy ME = {vE | v ∈ W} of M for
all of the reduced language i.e. without the predicates Pj . Add Ra relations from any of
the w in E to the copies vE such that wRa v. Now carry out the same procedure as in
the proof of Theorem 4.2, just in E’s copy EE . What we do with regard to the P ’s in
the rest of ME is completely irrelevant. Now, in any w in M, a will believe in Pj(di)
exactly as in the model in the proof of Theorem 7.7: the overall truth of the Pj(di) in the
a-euclidean class E in the original model has been made irrelevant. Thus, the preference
orders obtained in this manner are exactly the Prefa relations in the model.

Next, do the same thing for b: add for each b-euclidean class F in M a whole new copy
MF , and repeat the procedure followed for a. Both a and b will have preferences with
regard to the same priority sequence. (But as noted before these preferences may be quite
different.)

Finally, one notes that all formulas in the reduced language keep their original valuation
on w in M, because the model M is bisimilar for the reduced language to the new model
consisting of M plus all the ME and MF . The bisimulation simply consists of all pairs
(v,w) where w = v, or w = vE or w = vF for some E or F . �

For competitive agents we assume that if agent a has a priority sequence D1 ≫a D2 ≫
· · · ≫a Dm(m ∈ N), then the opponent b has priority sequence ¬Dm ≫b ¬Dm−1 ≫ · · · ≫b

¬D1. These two priority sequences are such that under complete information they will
order a set of objects in exactly the opposite manner.

Theorem 7.9 (for two competitive agents). ⊢KD45−PG ϕ iff ϕ is valid in all models
obtained from priority sequences for competitive agents.

Proof. Let’s assume two agents a and b. For a we take a priority sequence P1 ≫a

P2 ≫a · · · ≫a Pn ≫a Pn+1 ≫a · · · ≫a P2n, and for b, we take ¬P2n ≫b ¬P2n−1 ≫b

· · · ≫b ¬Pn ≫b ¬Pn−1 ≫b · · · ≫b ¬P1 . It is sufficient to show that any model M with
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worlds W for KD45-PG for the reduced language can be extended by valuations for the
Pj(di)’s in such a way that the preference relations are preserved. We start by making all
P1(di) . . . Pn(di) true everywhere in the model and Pn+1(di) . . . P2n(di) all false everywhere
in the model. Next we extend the model as follows.

For each a-euclidean class E in the model carry out the following procedure. Extend M
with a complete copy ME of M for all of the reduced language i.e. without the predicates
Pj . Add Ra relations from any of the w in E to the copies vE such that wRa v. Now define
the values of the P1(di) . . . Pn(di) in EE as in the previous proof and make all Pm(di) true
everywhere for m > n. The preference orders obtained in this manner are exactly the
Prefa relations in the model.

For each b-euclidean class F in the model carry out the following procedure. Extend M
with a complete copy MF of M for all of the reduced language i.e. without the predicates
Pj . Add Rb relations from any of the w in F to the copies vF such that wRb v. Now define
the values of the ¬P2n(di) . . .¬Pn+1(di) in FF as for P1(di) . . . Pn(di) in the previous proof
and make all Pm(di) true everywhere for m ≤ n. The preference orders obtained in this
manner are exactly the Pref b relations in the model.

Finally, one notes that all formulas in the reduced language keep their original valuation
on w in M, because the model M is bisimilar for the reduced language to the new model
consisting of M plus all the ME and MF . �

Remark 7.10 These last representation theorems are both a sign of strength and a sign
of weakness of our systems. The weakness here is that they show that cooperation and
competition cannot be differentiated in this language. On the other hand, the theorems
are not trivial. To take a very simple example, one might think that if a and b cooperate,
BaPrefb(c, d) would imply Prefa(c, d). This is of course completely false, a and b can even
when they have the same priorities have quite different beliefs about how the priorities
apply to the constants. But the theorems show that no principles of this kind can be
found that are valid only for cooperating agents. Moreover, they show that if one wants to
prove that a formula like BaPrefb(c, d) → Prefa(c, d) is not valid for cooperative agents
a counterexample to it in which the agents do not cooperate suffices.

8 Conclusions and future work

In this paper, we have defined preference in terms of a priority sequence. In case agents
only have incomplete information, beliefs are introduced. We have proposed three
definitions to describe different procedures agents may follow to get a preference relation
using the incomplete information. Changes of preference are explored w.r.t. their sources:
changes of the priority sequence, and changes in beliefs. The multi-agent case has been
investigated as well. For further study, we are aware that a large amount of research on
preference has been done in social choice theory and computer science, we would like to
compare our approach with this work. As mentioned earlier other types of priority are
used in such research, often with weights. We do think our methods are applicable quite
generally. Also, if only for comparison’s sake, we will study preference between states (or
propositions). Finally, preference is a key notion in game theory, we would like to see how
our framework can be applied there.
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