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This paper is dedicated to my longtime friend and colleague Roel de Vrijer
on the occasion of his sixtieth birthday. With its subject I have tried to go a
little in his direction by taking a very syntactic subject.

The work is part of a project in progress in cooperation with Rosalie Iemhoff
and Nick Vaporis. It concerns the disjunction property in intermediate logics,
i.e. logics extending the intuitionistic propositional logic IPC, and in particular
the method to prove such statements due to [8]. It is well-known that IPC has
the disjunction property:

If `IPC A ∨ B, then `IPC A or `IPC B.

 Lukasiewicz [10] conjectured this property to be characteristic for IPC in
the sense that no stronger logic has this property. In 1957, G. Kreisel and H.
Putnam [8] disproved this conjecture by showing hat the logic, now called KP,
obtained by adding the scheme

(¬A → B ∨ C) → (¬A → B) ∨ (¬A → C)

to IPC has the disjunction property: If `KP A ∨ B, then `KP A or `KP B.

Their method has not been much used since and it gives stronger results
than the methods in use nowadays. Their result has a connection to my thesis
as well. My adviser S.C. Kleene asked me to show that a stronger disjunction
property does characterize IPC and I successfully executed that project ([5, 6]).

Noteworthy is that at the time the disjunction property was not advertised so
much as a positive property (which of course has some connection to the BHK-
interpretation of intuitionistic logic), but as a refutation rule.  Lukasiewicz had
hoped to obtain a very compact and neat system of refutation rules for intu-
itionistic logic in this manner. The title of the Kreisel-Putnam paper: “Eine Un-
ableitbarkeitsbeweismethode für den Intuitionistischen Aussagenkalkül”, clearly
shows how one felt about this.

Of course, they could not use Kripke models for their result because these
did not exist, Saul Kripke was 16 years old. And even though H.B. Curry writes
to E.W. Beth on January 24, 1957 (see [7]),

I have recently been in communication with a young man in

Omaha, Nebraska, named Saul Kripke.. . . This young man is a mere

boy of 16 years; yet he has read and mastered my Notre Dame lectures

and writes me letters which would do credit to many a professional logician.
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Kripke’s first abstract on modal logic [9] only appeared in 1959. Not surpris-
ingly, their method was the application of cutfree proofs but in fact it does not
matter so much since the basic result they use, and after which they proceed
purely syntactically, can be proved in various ways, also using Kripke models.
This basic result is in its simple form:

If ` (A → B) → C ∨ D, then
` (A → B) → C or
` (A → B) → D or
` (A → B) → A,

This is a generalization of Harrop’s rule [2]:

If ` ¬A → B ∨ C, then ` ¬A → B or ` ¬A → C.

Equivalently (modulo the disjunction property), Harrop’s rule can be stated as
a so-called admissible rule:

If ` ¬A → B ∨ C, then ` (¬A → B) ∨ (¬A → C),
abbreviated as ¬A → B ∨ C/(¬A → B) ∨ (¬A → C).

The basic result in its extended form is:

If ` (A1 → B1) ∧ · · · ∧ (Ak → Bk) → C ∨ D, then
` (A1 → B1) ∧ · · · ∧ (Ak → Bk) → C or
` (A1 → B1) ∧ · · · ∧ (Ak → Bk) → D or
` (A1 → B1) ∧ · · · ∧ (Ak → Bk) → Ai for some i ≤ k.

This rule (which can of course be given as an infinite sequence of admissible
rules for IPC) is nowadays often called Visser’s rule, V R for short. Of course,
at that time it was still many years before A. Visser even began his logic stud-
ies, but he gave an extended version of the rule in provability logic of which
R. Iemhoff has made extensive use ([3, 4]). Among other things she proved
(roughly stated) that all admissible rules for IPC can be derived form these.

The disjunction property will now be proved for some logics in the following
manner. If the logic L is axiomatized by the scheme A one uses the fact that
`L C∨D iff `IPC A1∧. . . Ak → C∨D for some substitution instances A1∧. . . Ak

of A. One proves, by induction on k, that for such sequences of substitution
instances indeed `IPC A1 ∧ . . . Ak → C ∨ D iff `IPC A1 ∧ . . . Ak → C or
`IPC A1 ∧ . . . Ak → D.

If one succeeds in doing this one gets a very strong result. If `L C ∨ D,
then not only `L C or `L D, but C or D is provable using beyond IPC only
the same instances of L′s axioms that were used to prove C ∨D. Among other
things one has proved the disjunction property not only for the logic itself but
also for any logic axiomatized by substitution instances of the axioms of the
logic in question. We will apply this later in some examples.
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1 The proof for KP

Teaching an intuitionistic logic class this spring I rediscovered essentially the
proof that Kreisel and Putnam gave1. Let us introduce some notation first. For
any formulas A, B, C we write KP(A, B, C)) for

(¬A → B ∨ C) → (¬A → B) ∨ (¬A → C)

We leave the A, B, C off and write KP if it is clear what we mean and we
write KP1 for KP(A1, B1, C1) etc. We will write KP(n) for KP1 ∧ · · · ∧ KPn.
Also, we will write ` without further ado if we mean `IPC. We prove

Theorem 1.1 If `KP(A1, B1, C1) ∧ · · · ∧ KP(An, Bn, Cn)→X ∨ Y, then

`KP(A1, B1, C1) ∧ · · · ∧ KP(An, Bn, Cn)→ X or

`KP(A1, B1, C1) ∧ · · · ∧ KP(An, Bn, Cn)→Y.

Proof. We prove this by induction on n. The characteristic point of the proof
is that to be able to execute the induction step we prove something stronger:

• If ` KP1∧· · ·∧KPn ∧¬D1∧· · ·∧¬Dk → X∨Y, then ` KP1∧· · ·∧KPn∧

¬D1 ∧ · · · ∧ ¬Dk → X or ` KP1 ∧ · · · ∧ KPn ∧ ¬D1 ∧ · · · ∧ ¬Dk → Y

Actually, in the above, we can assume k to be 1, since conjunctions of negations
are equivalent to negations in IPC.

BASIS. n = 0. This is Harrop’s rule.

INDUCTION STEP. Assume the claim for n, and assume ` KP1∧· · ·∧KPn+1∧

¬D → X ∨ Y. By Visser’s rule there are three possibilities. The first two give
the result immediately. So, we can assume w.l.o.g.:

• ` KP1 ∧ · · · ∧ KPn+1 ∧ ¬D → (¬An+1 → Bn+1 ∨ Cn+1). Since

• ` ¬An+1 → KPn+1 we get

• ` KP1 ∧ · · · ∧KPn ∧¬D∧¬An+1 → Bn+1 ∨Cn+1. Applying the induction
hypothesis we get

• ` KP1 ∧ · · · ∧ KPn ∧ ¬D ∧ ¬An+1 → Bn+1 or

• ` KP1 ∧ · · · ∧ KPn ∧ ¬D ∧ ¬An+1 → Cn+1. In both cases

• ` KP1 ∧ · · · ∧ KPn ∧ ¬D → KPn+1 follows.

We can now apply the induction hypothesis to get the desired result. a

The result immediately applies to some weaker logics which have been only
under investigation more recently.

• NDk = IPC + (¬A → ¬C1∨· · ·∨¬Ck) → (¬A → ¬C1)∨· · ·∨(¬A → ¬Ck)

• ND is the union of all NDk.

ND is not finitely axiomatizable. Note that if one defines KP2 in the same
manner as ND2, KP2 derives KP.

Corollary 1.2 ND and NDk, for each k, have the disjunction property.

1I have to thank the students in my class for pushing me in the right, syntactic, direction.
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2 The proof for Scott’s logic

Kreisel and Putnam mention in their paper that D. Scott has shown that with
a similar method the logic

Sc = IPC + ((¬¬A → A) → A ∨ ¬A) → ¬A ∨ ¬¬A,

since then called Scott’s logic, can be proved to have the disjunction property.
Let us now prove the disjunction property of Scott’s logic by the method. We
first give the proof for the basic case to get in the right mood. We write Sc(A)
(or Sc for short if the A is clear) for ((¬¬A → A) → A∨¬A) → ¬A∨¬¬A and
Ant for the antecedent of Sc etc.

Lemma 2.1 If ` Sc → X ∨ Y, then ` Sc → X or ` Sc → Y.

Proof. Assume ` Sc → X ∨ Y. To prove is: ` Sc → X or ` Sc → Y.

Then, the Visser rule gives us three possibilities of which the first two immedi-
ately give the desired result. So, we assume that the third possibility applies.

• ` Sc → Ant, i.e.

• ` Sc → ((¬¬A → A) → A ∨ ¬A). It is obvious that

• ` (¬¬A → A) → Sc, so we have

• ` (¬¬A → A) → A ∨ ¬A. By applying the Visser rule, we obtain

• ` (¬¬A → A) → A or ` (¬¬A → ¬A) → ¬A or ` (¬¬A → A) → ¬¬A.

This gives us ` ¬A or ` ¬¬A. In both cases we have ` Sc, and hence ` X ∨ Y .
By the simple disjunction property for IPC the desired result now follows. a

For the induction step we first prove a lemma. We also introduce the notation
Sc(n) for Sc1 ∧ · · · ∧ Scn.

Lemma 2.2 If ` Sc(n)
∧ (¬¬B1 → B1) ∧ . . . (¬¬Bk → Bk) → C ∨ ¬C, then

` ¬C or ` ¬¬C, or ` ¬¬Bi for some i ≤ k, or ` Scj for some j ≤ n.

Proof. By induction on n.

BASIS n = 0. Asssume ` (¬¬B1 → B1) ∧ . . . (¬¬Bk → Bk) → C ∨ ¬C. Then,
by V R, C,¬C or some ¬¬Bi will be provably implied by a classical tautology.
So, respectively, ` ¬¬C, ` ¬C, ` ¬¬Bi follows.

INDUCTION STEP Assume ` Sc(n+1)
∧ (¬¬B1 → B1) ∧ . . . (¬¬Bk → Bk) →

C ∨ ¬C. Apply the Visser rule. We run through the relevant possibilities.

• ` Sc(n+1)
∧ (¬¬B1 → B1) ∧ . . . (¬¬Bk → Bk) → C. Since all the an-

tecedents are classical tautologies we get ` ¬¬C.

• ` Sc(n+1)
∧ (¬¬B1 → B1) ∧ . . . (¬¬Bk → Bk) → ¬C. As above we get

` ¬C.
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• ` Sc(n+1)
∧ (¬¬B1 → B1) ∧ . . . (¬¬Bk → Bk) → ¬¬Bi for some i. Again

we get ` ¬¬Bi.

• ` Sc(n)
∧ (¬¬B1 → B1) ∧ . . . (¬¬Bk → Bk) ∧ (¬¬A → A) → A ∨ ¬A

(w.l.o.g.). Then the induction hypothesis applies, and in the cases ¬An+1

and ` ¬¬An+1 obtained from its application ` Scn+1 follows. The other
cases are obvious.

a

Theorem 2.3 If ` Sc(n)
→ X ∨ Y, then ` Sc(n)

→ X or ` Sc(n)
→ Y.

Proof. By induction on n. The basis is given by Lemma 2.1. Assume the
result for n, and assume

` Sc(n+1)
→ X ∨ Y.

Using the Visser rule, and reasoning as before we get w.l.o.g. the relevant pos-
sibility

• ` Sc(n+1)
→ ((¬¬An+1 → An+1) → An+1 ∨ ¬An+1) and from that

• ` Sc(n)
→ ((¬¬An+1 → An+1) → An+1 ∨ ¬An+1).

Now apply Lemma 2.2. In all cases we obtain Scj for some j. We can then
apply the induction hypothesis. a

Let us call GR the logic that is axiomatized by Sc(¬B ∨ ¬C) after Gene Rose,
who proved that this formula is always realizable [12], and thereby started the
still continuing quest for the realizability logic, the logic of all formulas that are
always realizable. It is of course an immediate corollary that the logic GR has
the disjunction property. This applies as well to the logic axiomatized by the
infinitely many axiom schemata Sc(¬B1 ∨ · · · ∨ ¬Bn) for any n.

3 Some Thoughts

Although we have no proof of this it seems out of the question that the method
can be used to prove the disjunction property for any intermediate logic that
has the property. Another important point is that what one proves here is not
a property of the logic but of its axiomatization. One axiomatization of a logic
may have the property and another one might not. A trivial example is easy
to find. For example add to Scott’s logic the axiom Sc(A, B, C) ∨ D. One still
has Scott’s logic. Obviously by means of the new axiom one can prove now
`Sc Sc(A, B, C) ∨ p. And it is equally obvious that one cannot hope to prove
Sc(A, B, C) or p in IPC from this axiom alone.

A much nicer way of showing that it is not the logic that has the Kreisel-
Putnam property but the axiomatization would be by giving two serious ax-
iomatizations of a logic, one of which has the property, but the other one does
not. We tried one obvious candidate but the attempt failed. We will show this
failure.
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If one has an axiomatization of a logic by a scheme of the form Z → X ∨ Y ,
then an equivalent axiomatization is given by Z ∧ (X → C) ∧ (Y → C) → C.
(From left to right this is just a logical consequence of IPC, from right to left
just substitute X ∨ Y for C.) If we apply this idea to Scott’s logic, we obtain
the new axiomatization:

Sc′(A) = ((¬¬A → A) → A ∨ ¬A) ∧ (¬A → C) ∧ (¬¬A → C) → C.

Somewhat unexpectedly, the Kreisel-Putnam method does apply. Let us do the
basic case in detail.

Lemma 3.1 If ` Sc′ → X ∨ Y, then ` Sc′ → X or ` Sc′ → Y.

Proof. Assuming ` Sc′ → X ∨ Y, as usual we can disregard the first two
alternatives given by V R and concentrate on the third one:

• ` Sc′ → Ant. We just need:

• ` Sc′ → ((¬¬A → A) → A ∨ ¬A). As usual, but in a slightly different
manner,

• ` (¬¬A → A) → A∨¬A follows. Again as usual this gives three possibil-
ities. The first one is

• ` (¬¬A → A) → A. Then ` ¬¬A and thus, since ¬¬A → C is one
of the antecedents, ` Sc′. This is of course sufficient; we can apply the
disjunction property of IPC itself to ` X ∨ Y .

The other two cases ` (¬¬A → A) → ¬A and ` (¬¬A → A) → ¬¬A are
similar. a

The lemma that provides the induction step is essentially the same as in the
proof for Sc itself and is proved by induction in a similar way.

Lemma 3.2 If ` Sc′
(n)

∧ (¬¬B1 → B1) ∧ · · · ∧ (¬¬Bk → Bk) → C ∨ ¬C, then

` ¬C or ` ¬¬C, or ` ¬¬Bi for some i ≤ k, or ` Sc′j for some j ≤ n.

As stated in the beginning of this section, it seems extremely likely that there
are intermediate logics for which no axiomatization with the right property can
be found. To make this into a theorem could be hard. It seems that the need
is for a semantic or other characterization of such axiom systems.

4 Other Logics

Can the method be applied to other logics? Two obvious candidates (actually
sequences of candidates) have resisted attempts so far. Whether the method
really does not apply only time will tell. One sequence of systems is formed by
the the elements of the Rieger-Nishimura lattice higher than Scott’s formula, the
first one of which is (((¬¬A → A) → A∨¬A) → ¬A∨¬¬A) → ¬¬A∨ (¬¬A →

A). The other is the sequence Tn of the Gabbay-deJongh logics [1], starting
with the logic T2 that characterizes the finite frames with only splittings of 2
or less (no node has more than 2 immediate successors). Its axiomatization is:
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((A → B∨C) → B∨C)∧((B → A∨C) → A∨C)∧((C → A∨B) → A∨B) → A∨B∨C.

In both cases the result applies up to two axioms but the induction step has
evaded us up to now. Note that the result for one axiom always has the form
of a rule admissible for IPC. In the case of KP this is Harrop’s rule:

¬A → B ∨ C/(¬A → B) ∨ (¬A → C)

In the case of Scott’s logic this is the rule:

(¬¬A → A) → A ∨ ¬A/¬A ∨ ¬¬A.

And in the case of T2 it is the curious rule:

(A → B∨C) → B∨C, (B → A∨C) → A∨C, (C → A∨B) → A∨B / A∨B∨C.

However, there is a sequence of logics Bn, which is somewhat close to Tn, and
has been studied by H. Ono ([11]), which is susceptible to the Kreisel-Putnam
method. I will show this for the first one of these logics with the disjunction
property, B3:

(¬A ↔ B ∨ C) ∧ (¬B ↔ A ∨ C) ∧ (¬C ↔ A ∨ B) → A ∨ B ∨ C.

Our notation for this formula will be O(A, B, C) with its obvious variants. The
proof resembles the one for KP.

Theorem 4.1 If ` O(n) → X ∨ Y, then ` O(n) → X or ` O(n) → Y.

Proof. We prove again, by induction on n, that if ` O(n) ∧¬D → X∨Y, then
` O(n) ∧ ¬D → X or ` O(n) ∧ ¬D → Y.

BASIS n = 0. This is Harrop’s rule.

INDUCTION STEP Assume the result holds for n and

• ` O(n+1) ∧ ¬D → X ∨ Y. Applying V R

and ignoring the first two cases gives

• ` O(n+1) ∧ ¬D → Antn+1, which again implies

• ` O(n) ∧ ¬D → Antn+1. In particular

• ` O(n) ∧ ¬D ∧ ¬An+1 → Bn+1 ∨ Cn+1. By induction hypothesis, w.l.o.g.

• ` O(n) ∧ ¬D → (¬An+1 → Bn+1). Also

• ` O(n) ∧ ¬D → (Bn+1 → ¬Cn+1). So,

• ` O(n) ∧ ¬D → (¬An+1 → ¬Cn+1). But, we have also

• ` O(n) ∧ ¬D → (¬¬An+1 → ¬Cn+1) from
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• ` O(n) ∧ ¬D → (Cn+1 → ¬An+1). So,

• ` O(n) ∧ ¬D → (¬A ∨ ¬¬An+1 → ¬Cn+1) from which

• ` O(n) ∧ ¬D → ¬Cn+1 follows. This gives us

• ` O(n) ∧ ¬D → An+1 ∨ Bn+1 and finally

• ` O(n) ∧ ¬D → On+1. So,

• ` O(n) ∧ ¬D → X ∨ Y,

and we can apply the induction hypothesis once more. a
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[8] G. Kreisel and H. Putnam, Eine Unableitbarkeitsbeweismethode für den
Intuitionistischen Aussagenkalkül, Zeitschrift für Mathematische Logik and

Grundlagen der Mathematik, 3:74-78, 1957.

[9] S.A. Kripke, A completeness theorem in modal logic, J.S.L. 24:1-14, 1959.

[10] J.  Lukasiewicz. On the intuionistic theory of deduction, Indagationes Math-

ematicae, 14: 202-212, 1952.

[11] H. Ono, Some results on the intermediate logics, Publications of the Re-

search Institute for Mathematical Science, Kyoto University, 8: 117-130,
1972.

[12] G.F. Rose, Propositional calculus and realizability, Trans. Amer. Math.

Soc., 75: 1-19, 1953.

8


