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Intuitionism is one of the main points of view in the philosophy of mathemat-
ics, nowadays usually set opposite formalism and Platonism. As such intuition-
ism is best seen as a particular manner of implementing the idea of construc-
tivism in mathematics, a manner due to the Dutch mathematician Brouwer and
his pupil Heyting. Constructivism is the point of view that mathematical ob-
jects exist only in so far they have been constructed and that proofs derive their
validity from constructions; more in particular, existential assertions should be
backed up by effective constructions of objects. Mathematical truths are rather
seen as being created than discovered. Intuitionism fits into idealistic trends
in philosophy: the mathematical objects constructed are to be thought of as
idealized objects created by an idealized mathematician (IM), sometimes called
the creating or the creative subject. Often in its point of view intuitionism skirts
the edges of solipsism when the idealized mathematician and the proponent of
intuitionism seem to fuse.

Much more than formalism and Platonism, intuitionism is in principle nor-
mative. Formalism and Platonism may propose a foundation for existing math-
ematics, a reduction to logic (or set theory) in the case of Platonism, or a
consistency proof in the case of formalism. Intuitionism in its stricter form
leads to a reconstruction of mathematics: mathematics as it is, is in most cases
not acceptable from an intuitionistic point of view and it should be attempted
to rebuild it according to principles that are constructively acceptable. Typi-
cally it is not acceptable to prove 3z ¢(z) (for some z, ¢(z) holds) by deriving
a contradiction from the assumption that Vx - ¢(z) (for each x, ¢(z) does not
hold): reasoning by contradiction. Such a proof does not create the object that
is supposed to exist.

Actually, in practice the intuitionistic point of view hasn’t lead to a large
scale and continuous rebuilding of mathematics. For what has been done in this
respect, see e.g. [1]. In fact, there is less of this kind of work going on now even
than before. On the other hand, one might say that intuitionism describes a
particular portion of mathematics, the constructive part, and that it has been
described very adequately by now what the meaning of that constructive part
is. This is connected with the fact that the intuitionistic point of view has been
very fruitful in metamathematics, the construction and study of systems in which



parts of mathematics are formalized. After Heyting this has been pursued by
Kleene, Kreisel and Troelstra (see for this, and an extensive treatment of most
other subjects discussed here, and many other ones [13]). Heyting’s [7] will
always remain a quickly readable but deep introduction to the intuitionistic
ideas. In theoretical computer science many of the formal systems that are of
foundational importance are formulated on the basis of intuitionistic logic.

L.E.J. Brouwer first defended his constructivist ideas in his dissertation of
1907 ([4]). There were predecessors defending constructivist positions. Mathe-
maticians like Kronecker, Poincaré, Borel. Kronecker and Borel were prompted
by the increasingly abstract character of concepts and proofs in the mathemat-
ics of the end of the 19th century, and Poincaré couldn’t accept the formalist or
Platonist ideas proposed by Frege, Russell and Hilbert. In particular, Poincaré
maintained in opposition to the formalists and Platinists that mathematical in-
duction (over the natural numbers) cannot be reduced to a more primitive idea.
However, from the start Brouwer was more radical, consistent and encompassing
than his predecessors. The most distinctive features of intuitionism are:

1. The use of a distinctive logic: intuitionistic logic. (Ordinary logic is then
called classical logic.)

2. Its construction of the continuum, the totality of the real numbers, by
means of choice sequences.

Intuitionistic logic was introduced and axiomatized by A. Heyting, Brouwer’s
main follower. The use of intuitionistic logic has most often been accepted by
other proponents of constructive methods, but the construction of the contin-
uum much less so. The particular construction of the continuum by means of
choice sequences involves principles that contradict classical mathematics. Con-
structivists of other persuasion like the school of Bishop often satisfy themselves
in trying to constructively prove theorems that have been proved in a classical
manner, and shrink back from actually contradicting ordinary mathematics.

We shall first discuss in this article intuitionistic logic, then spend some
time on intuitionistic (natural) number theory and analysis. We then treat the
notion of realizability, after which we return to intuitionistic logic in connection
with some theories formalized in it. We end up with a discussion of a recently
developed game for intuitionistic propositional logic [9].

Intuitionistic logic. We will indicate the formal system of intuitionistic propo-
sitional logic by IPC and intuitionistic predicate logic by IQC; the correspond-
ing classical systems will be named CPC and CQC. Formally the best way to
characterize intuitionistic logic is by a natural deduction system a la Gentzen.
(For an extensive treatment of natural deduction and sequent systems, see [14].)
In fact, natural deduction is more natural for intuitionistic logic than for classical
logic. A natural deduction system has introduction rules and elimination rules
for the logical connectives A (and), vV (or) and — (if ..., then) and quantifiers
V (for all) and 3 (for at least one). The rules for A, vV and — are:

o I A: From ¢ and 9 conclude ¢ A1,



o EA: From ¢ Ay conclude ¢ and conclude 1,
e F—: From ¢ and ¢ — 9 conclude 9,

e ] —: If one has a derivation of ¢ from premise ¢, then one may conclude
to ¢ — 9 (simultaneously dropping assumption ¢),

e [V: From ¢ conclude to ¢ V1, and from + conclude to ¢V 1,

e Ev: If one has a derivation of y from premise ¢ and a derivation of y
from premise 1, then one is allowed to conclude x from premise ¢V
(simultaneously dropping assumptions ¢ and 1),

e JV: If one has a derivation of ¢(z) in which x is not free in any premise,
then one may conclude Vzé(z),

e EY: If one has a derivation of Vz@(x), then on may conclude ¢(t) for any
term ¢,

e I3: From ¢(t) for any term ¢t one may conclude dx¢(z),

e E3: If one has a derivation of 9 from ¢(z) in which z is not free in in 1
itself or in any premise other than ¢(x), then one may conclude ¢ from
premise dx¢(z), dropping the assumption ¢(x) simultaneously.

One usually takes negation = (not) of a formula ¢ to be defined as ¢ implying
a contradiction (). One adds then the ez falso sequitur quodlibet rule that

e anything can be derived from 1.

If one wants to get classical propositional or predicate logic one adds the rule
that

e if | is derived from —¢, then one can conclude to ¢, simultaneously drop-
ping the assumption —¢.

Note that this is not a straightforward introduction or elimination rule as the
other rules.

The natural deduction rules are strongly connected with the so-called BHK-
interpretation (named after Brouwer, Heyting and Kolmogorov) of the con-
nectives and quantifiers. This interpretation gives a very clear foundation of
intuitionistically acceptable principles and makes intuitionistic logic one of the
very few non-classical logics in which reasoning is clear, unambiguous and all
encompassing but nevertheless very different from reasoning in classical logic.

In classical logic the meaning of the connectives, i.e. the meaning of complex
statements involving the connectives, is given by supplying the truth conditions
for complex statements that involve the informal meaning of the same connec-
tives. For example:

e dpA is true if and only if ¢ is true and ¥ is true,



e ¢V is true if and only if ¢ is true or ¥ is true,

o —¢ is true iff ¢ is not true

The BHK-interpretation of intuitionistic logic is based on the notion of proof
instead of truth. (N.B! Not formal proof, or derivation, as in natural deduction
or Hilbert type axiomatic systems, but intuitive (informal) proof, i.e. convincing
mathematical argument.) The meaning of the connectives and quantifiers is then
just as in classical logic explained by the informal meaning of their intuitive
counterparts:

e A proof of ¢ Ay consists of a proof of ¢ and a proof of ¥ plus the conclusion

A,

A proof of ¢ Vv consists of a proof of ¢ or a proof of 9 plus a conclusion

PV,

A proof of ¢ — 1 consists of a method of converting any proof of ¢ into a
proof of v,

No proof of L exists,

A proof of 3z ¢(z) consists of a name d of an object constructed in the
intended domain of discourse plus a proof of ¢(d) and the conclusion

3z ¢ (),

A proof of Vz ¢(x) consists of a method that for any object d constructed
in the intended domain of discourse produces a proof of ¢(d).

For negations this then means that a proof of = ¢ is a method of converting any
supposed proof of ¢ into a proof of a contradiction. That L — ¢ has a proof
for any ¢ is based on the intuitive counterpart of the ex falso principle. This
may seem somewhat less natural then the other ideas, and Kolmogorov did not
include it in his proposed rules.

Together with the fact that statements containing negations seem less con-
tentful constructively this has lead Griss to consider doing completely without
negation. Since however it is often possible to prove such more negative state-
ments without being able to prove more positive counterparts this is not very
attractive. Moreover, one can do without the formal introduction of L in natu-
ral mathematical systems, because a statement like 1 =0 can be seen to satisfy
the desired properties of L without making any ex falso like assumptions. More
precisely, not only statements for which this is obvious like 3 =2, but all state-
ments in those intuitionistic theories are derivable from 1 =0 without the use
of the rules concerning 1. If one nevertheless objects to the ex falso rule, one
can use the logic that arises without it, called minimal logic.

The intuitionistic meaning of a disjunction is only superficially close to the
classical meaning. To prove a disjunction one has to be able to prove one of
its members. This makes it immediately clear that there is no general support



for ¢V - ¢: there is no way to invariably guarantee a proof of ¢ or a proof of
— ¢. However, many of the laws of classical logic remain valid under the BHK-
interpretation. Various decision methods for IPC are known, but it is often
easy to decide intuitively:

e A disjunction is hard to prove: for example, of the four directions of the
two de Morgan laws only = (¢ A1) — ¢V —p is not valid, other examples
of such invalid formulas are

— ¢V ¢ (the law of the excluded middle)
— (@=¢)>ovy
- (@=2Yvx) > (0= V(e—X)
— ((¢=9) =)= (V)
e An existential statement is hard to prove: for example, of the four direc-

tions of the classically valid interactions between negations and quantifiers
only = Vx ¢ — 3x— ¢ is not valid,

e statements directly based on the two-valuednes of truth values are not
valid, e.g. == ¢ — ¢ or ((¢ =) — @) = ¢ (Peirce’s law), and contraposi-
tion in the form (—) — —¢) = ¢ — ),

e On the other hand, many basic laws naturally remain valid, commutativity
and associativity of conjunction and disjunction, both distributivity laws,
and

— (@=9Ax) & (0= ¢) A (9= X),
—(@=20)A@—=x) e (0VY) = X)),

— (9= (@ =x) & (9rd) = x.

— (¢VY) A~ — 1)) (needs ex falso!),

=~ (¢=29) =2 (¢ =x) = (9= X)),

— (¢ =) = (—p > —9) (the converse form of contraposition),
- ¢_)_'_'¢7

— =g ¢ —¢ (triple negations are not needed).

Slightly less obvious is that double negation shift is valid for A and — but not
for V, at least in one direction. Valid are:

o " (PAY) A,
o« 2=(@=9) &g,

o - Vap(z) = Yz —¢(z) (but not its converse).



The BHK-interpretation was independently given by Kolmogorov and Heyting,
with Kolmogorov’s formulation in terms of the solution of problems rather than
in terms of executing proofs. Of course, both extracted the idea from Brouwer’s
work. In any case, it is clear from the above that, if a logical schema is (formally)
provable in IPC (say, by natural deduction), then any instance of the scheme
will have an informal proof following the BHK-interpretation.

Clearly, in the most direct sense intuitionistic logic is weaker than classical
logic. However, from a different point of view the opposite is true. By Godel’s
so-called negative translation classical logic can be translated into intuitionistic
logic. To translate a classical statement one puts —— in front of all atomic
formulas and then replaces each subformula of the form ¢V by = (=dA—)
and each subformula of the form 3z ¢(z) by —Vz - ¢(z) in a recursive manner.
The formula obtained is provable in intuitionistic logic exactly when the original
one is provable in classical logic. Some examples are:

e pV-p becomes in translation —(=—pA—=—-p),
e (=g — —p) = (p— q) becomes (== —g——===p) = (==p—=—-q),
o = Vz Ax — Jz— Az becomes ~Vx——Ax — - V- —Azx

Thus, one may say that intuitionistic logic accepts classical reasoning in a
particular form and is therefore richer than classical logic.

Kripke models. A semantics for intuitionistic logic along the lines of the
well-known possible worlds models developed by Kripke for modal logic has
been extremely useful to obtain very many results about intuitionistic logic,
even though in itself it is not faithful to the BHK-interpetation. Actually, this
semantics was developed immediately to a high extent by Kripke himself. He
proved completeness for both IPC and IQC with respect to his models, and
the finite model property and thus decidability for IPC (see [8]). He employed
semantic tableaux for this since the Henkin-type completeness proofs for modal
logics stem from a later day.

As always one has a set of worlds and a valuation on them. One can imagine
uRv between the worlds v and v to mean that v is a possible later state of
knowledge as seen from w. It is natural then, contrary to the usual models of
modal logic, that, once a formula is true it stays true, i.e. if ¢ is true in v and
uRv, then ¢ is true in v (this is called persistency).

The rules for satisfaction of the formulas are:

1. wepAY iff wE ¢ and wEY,
2. weoVvy iff we@ or wEY,
3. wE¢— iff, for all w' such that wRw', if w' E ¢, then w' 1,

4. wi 1.



(a) (b) (c) (d)

Figure 1: Counter-models for the propositional formulas

Tt is helpful to note that w | ——¢ iff, for each w’ such that wRw’, there exists
w' with w' Rw" and w" £ ¢. For finite models this simplifies to w  =—¢ iff for
all maximal nodes w’ above w, w' E ¢.

Usually, Kripke models will be rooted models, they have a least node (often
wp), a root. For the predicate calculus each node w of a model is equipped with
a domain D,, in such a way that, if wRw', then D, C D,,. Persistency comes
in this case down to the fact that D,, is a submodel of D, in the normal sense
of the word. The clauses for the quantifiers are (adding names for the elements
of the domain to the language):

1. wE3zé(z) iff, for some de D, w kE ¢(d).
2. wEVzg(zx) iff, for each w' with wRw' and all d€ D, w' E ¢(d).

One of the earliest theorems proved about intuitionistic logic is Glivenko’s theo-
rem which states that Fcpc ¢ iff F1pc ——1¢. The reader will be able to prove
this for himself, either by means of finite Kripke models, or by induction on the
length of a proof in a natural deduction or other proof system. The result im-
plies for example that Fpc ——(pV —p). This does not extend to the predicate
calculus or arithmetic. As we will see, ¥ 1pc ——Va(AzV —Az).

The following models invalidate respectively pV —p, ——p—p (both Fig-
ure la), (—m—p—p)—pv-p) (Figure 1d), (p—qvr)—=(p—=qV(p—r)
(Figure 1b), (-p—qVr)—= (-p—=q)V(-p—r) (Figure 1lc), -—Vz(Az v -Azx)
(Figure 2a, constant domain IN), Vz(A vV Bx) - AvVaBz (Figure 2b).

Arithmetic. Classical arithmetic of the natural numbers is formalized in PA
by the so-called Peano azioms (the idea of which is originally due to Dedekind).
These axioms

o x+1+#0,
ez +l=y+1l—=zx=y,

e x+0=u,

r+@w+1)=(z+y)+1,
e £.0=0,
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Figure 2: Counter-models for the predicate formulas

ez.(y+l)=z.y+uz,
and the induction scheme
e For each ¢(z), ¢(0) AVz(p(z) = ¢(z + 1)) = Vao(z).

together with using intuitionistic logic instead of classical logic can also be used
to axiomatize the intuitionistic version HA of natural number theory, Heyting’s
arithmetic. Of course an intuitionist does not simply accept these axioms face
value but checks their (intuitive) provability from the basic idea of what natural
numbers are (Brouwer in his inaugural address: “... This intuition of two-
oneness, the basal intuition of mathematics, creates not only the numbers one
and two, but also all finite ordinal numbers, inasmuch as one of the elements of
the two-oneness maybe thought of as a new two-oneness, which process may be
repeated indefinitely ...”).
Worth while noting is that the scheme

e For each ¢(z), Izd(z) = I (d(z) AVy <z = (y))

is classically but not intuitionistically equivalent to the induction scheme. (Here
y <z is defined as Iz(y + (2 + 1) =x).)

Godels’ negative translation is applicable to HA/PA. Of course, also
Godel’s incompleteness theorem applies to HA: there exists a ¢ such that
neither Fga ¢, nor Fma—¢, and this ¢ can be taken to have the form Vzi(x)
for some ¢(x) such that, for each n, Fyga ¥ (7). (Here i stands for 1+ ... +1
with n ones, a term with the value n.)

Free choice sequences. A great difficulty in setting up constructive versions
of mathematics is the continuum. It is not difficult to reason about individual
real numbers via for example Cauchy sequences, but one loses that way the
intuition of the totality of all real numbers which does seem to be a primary
intuition. Brouwer based the continuum on the idea of choice sequences. For



example, a choice sequence a of natural numbers is viewed as an ever unfinished,
ongoing process of choosing natural number values a(0), a(1),a(2),--- by the
ideal mathematician IM. At any stage of IM’s activity only finitely many values
have been determined by IM, plus possibly some restrictions on future choices.
This straightforwardly leads to the idea that a function f giving values to all
choice sequences can do so only by having the value f(«) for any particular
choice sequence « determined by a finite initial segment «(0),...,a(m) of that
choice sequence, in the sense that all choice sequences g starting with the same
initial segment a(0),...,a(m) have to get the same value under the function:
f(B) = f(a). This idea will lead us to Brouwer’s theorem that every real function
on a bounded closed interval is necessarily uniformly continuous. Of course, this
is in clear contradiction with classical mathematics.

Before we get to a characteristic example of a less severe distinction between
classical and intuitionistic mathematics, the intermediate value theorem, let us
discuss the fact that counterexamples to classical theorems in logic or math-
ematics can be given as weak counterexamples or strong counterexamples. A
weak counterexample to a statement just shows that one cannot hope to prove
that statement, a strong counterexample really derives a contradiction from the
general application of the statement. For example, to give a weak counterexam-
ple to p Vv — pit suffices to give a statement ¢ that has not been proved or refuted,
especially a statement of a kind that can always be reproduced if the original
problems is solved after all. A strong counterexample to ¢V — ¢ cannot consist
of proving — (¢ V = ¢) for some particular ¢, since = (¢V = ¢) is even in intuition-
istic logic contradictory (it is directly equivalent to = ¢ A——¢). But a predicate
¢(z) in intuitionistic analysis can be found such that —=Vz (¢(z) V- é(x)) can
be proved, which can reasonably be called a strong counterexample.

For weak counterexamples Brouwer often used the decimal expansion of
7. For example consider the number a =0, agaias ... for which the decimal
expansion! defined as follows:

As long as no sequence 1234567890 has occurred in the decimal expansion
of 7, a, is defined to be 3. If a sequence 1234567890 has occcurred in the dec-
imal expansion of 7 starting at some m with m <n, then, if the first such m
is even a, is 0 for all n>m, if it is odd, a,, =4 and a, =0 for all n>m. As
long as the problem has not been solved whether such a sequence exists it is
not known whether a< i or a=3% or a>3%. That this is time bound is shown
by the fact that in the meantime this particular problem has been solved, m
does exist and is even, so a<§ [2]. But that does not matter, such problems
can, of course, be multiplied endlessly, and (even though we don’t take the
trouble to change our example) this shows that it is hopeless to try to prove
that, for any a, a<iva=3va>%. Note that, also a cannot be shown to

p

be rational, because for that, p and ¢ should be given such that a= L which

1To make arguments easier to follow, we discuss these problems regarding real numbers
with arguments pertaining to their decimal expansions. This was not Brouwer’s habit, he even
showed with a weak counteraxmple that not all real numbers have a decimal expansion (how
to start the decimal expansion of a if one does not know whether it is smaller than, equal to,
or greater than 07).




clearly cannot be done without solving the problem. On the other hand, ob-
viously, = —(a < % Va= % Va> %) does hold, a is not not rational. In any case,
weak counterexamples are not mathematical theorems, but they do show which
statements one should not try to prove. Later on, Brouwer used unsolved prob-
lems to provide weak and strong counterexamples in a stronger way by making
the decimal expansion of a dependent on the creating subjects’ insight whether
he had solved a particular unsolved problem at the moment of the construc-
tion of the decimal in question. Attempts to formalize these so-called creative
subject arguments have lead to great controversy and sometimes paradoxical con-
sequences. For a reconstruction more congenial to Brouwer’s ideas that avoids
such problematical consequences, see [10].

Let us now move to using a weak counterexample to show that one cannot
hope to prove the so-called intermediate value theorem. A continuous function
f that has value —1 at 0 and value 1 at 1 reaches the value 0 for some value
between 0 and 1 according to classical mathematics. This does not hold in the
constructive case: a function f that moves linearly from value —1 at 0 to value

a— 3 at g, stays at value a —  until 2 and then moves linearly to 1 cannot

3 3
be said to reach the value 0 at a particular place if one does not know whether
1

a> %, a=gz ora< % Since there is no method to settle the latter problem in
general, one cannot determine a value x where f(z)=0. (See Figure 3.)

Constructivitsts of the Russian school did not accept the intuitionistic con-
struction of the continuum, but neither did they shrink from results contradict-
ing classical mathematics. They obtained such results in a different manner
however, by assuming that effective constructions are recursive constructions,
and thus in particular when one restricts functions to effective functions that
all functions are recursive functions. Thus, in opposition to the situation in
classical mathematics, accepting the so-called Church-Turing thesis that all ef-
fective functions are recursive does influence the validity of mathematical results
directly.

Let us remark finally that, no matter what ones standpoint is, the resulting
formalized intuitionistic analysis has a more complicated relationship to
classical analysis than the one between HA and PA, the negative translation

does no longer apply.

Realizability. Kleene used recursive functions in a different manner than the
Russian constructivists. Starting in the 1940’s he attempted to give a faithful
interpretation of intuitionistic logic and (formalized) mathematics by means of
recursive functions. To understand this, we need to know two basic facts. The
first is that there is a recursive way of coding pairs of natural numbers by a single
one, j is a bijection from IN? to IN: j(m,n) codes the pair (m,n) as a single
natural number. Decoding is done by the functions () and ()1: if j(m.n)=p,
then (p)o =m and (p); =n. The second insight is that all recursive functions,
or easier to think about, all the Turing machines that calculate them can be
coded by natural numbers as well. If e codes a Turing machine, then {e} is the
function that is calculated by it, i.e. for each natural number n, {e}(n) has a
certain value if on input n the Turing machine coded by e delivers that value.
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Figure 3: Counter-example to the intermediate value theorem
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Now Kleene defines how a natural number realizes an arithmetic statement (in
the language of HA):

e Any neIN realizes an atomic sentence iff the statement is true,
e n realizes ¢ A1) iff (n)o realizes ¢ and (n); realizes 1,

e n realizes ¢ Vo iff (n)o =0 and (n); realizes ¢, or (n)o =1 and (n); realizes

¥,

o n realizes ¢ — 1 iff, for any m € IN that realizes ¢, {n}(m) has a value that
realizes 1,

o n realizes Vzg(z) iff, for each meIN, {n}(m) has a value that realizes

¢(m),

o n realizes Jzg(z) iff, (n); realizes ¢((n)o).

One cannot say that realizability is a faithful interpretation of intuitionism, as
Kleene later realized very well. For example, it turns out that at least from
the classical point of view there exist in IPC unprovable formulas all of whose
arithmetic instances are realizible. But realizability has been an enormously
successful concept that has multiplied into countless variants. One important
fact Kleene was immediately able to produce by means of realizability is that,
if HA proves a statement of the form Vz3y¢(z,y), then ¢ is satisfied by a
recursive function {e}, and even, for each n e IN, HA proves ¢(7, {e}(n)).

Intuitionistic logic in intuitionistic formal systems. Intuitionistic logic,
in the form of propositional logic or predicate logic satisfies the so-called dis-
junction property: if ¢V is derivable, then ¢ is derivable or . This is very
characteristic for intuitionistic logic: for classical logic pV —p is an immediate
counterexample to this assertion. The property also transfers to the usual for-
mal systems for arithmetic and analysis. Of course, this is in harmony with the
intuitionistic philosophy. If ¢ v ¢ is formally provable, then if things are right it
is informallly provable as well. But then, according to the BHK-interpretation,
¢ or 1) should be provable informally as well. It would at least be nice if the for-
mal system were complete enough to provide this formal proof, and in the usual
case it does. For existential statements something similar holds, an existence
property, if Ax ¢(z) is derivable in Heyting’s arithmetic, then ¢(7) is derivable
for some 7. Statements of the form Vy3z ¢(y, z) express the existence of func-
tions, and, for example for Heyting’s arithmetic, the existence property then
transforms in: if such a statements is derivable, then also some instantiation of
it as a recursive function as was stated above already. In classical Peano arith-
metic such properties only hold for particularly simple, e.g. quantifier-free, ¢. In
fact, with regard to the latter statements, classical and intuitionistic arithmetic
are of the same strength.

Some formal systems may be decidable (e.g. some theories of order) and then
one will have classical logic in most cases. However, in Heyting’s arithmetic
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one has de Jongh’s arithmetic completeness theorem stating that its logic is
exactly the intuitionistic one: if a formula is not derivable in intuitionistic
logic an arithmetic substitution instance can be found that is not derivable in
Heyting’s arithmetic (see e.g. [6], [11]). For the particular case of pVv —p this is
easy to see, it follows immediately from Goédel’s incompleteness theorem and
the disjunction property: by Godel a sentence ¢ exists which HA can neither
prove nor refute, by the disjunction property HA will then not be able to prove
¢V ¢ either.

Mezhirov’s game for IPC. We like to end up with something that has re-
cently been developed: a game that is sound and complete for intuitionistic
propositional logic announced in [9]. In this last section we will also give full
details of the mathematical proofs.

The games played are ¢-games with ¢ being a formula of the propositional
calculus. The game has two players P (proponent) and O (opponent). The
playing field is the set of subformulas of ¢. A move of a player is marking a
formula that has not been marked before. Only O is allowed to mark atoms.
The first move is made by P, and consists of marking ¢. Players do not move in
turn; whose move it is is determined by the state of the game. The player who
has to move in a state where no move is available loses. The state of the game is
determined by the markings and by a classical valuation Val that is developed
along with the markings. The rules for this valuation are at each stage

e for atoms that Val(p) =1 iff p is marked,

e for complex formulas v o x that, if ¢ o x is unmarked, Val(y o x) =0, and
if 1 o x is marked, Val(v o x) =Val(y) o g Val(x) where op is the Boolean
function associated with o.

If a player has marked a formula that gets the valuation 0, then that is considered
to be a fault by that player. If P has a fault and O doesn’t then P moves, in
all other cases (i.e. if O has fault and P does or doesn’t, or if neither player has
a fault) O moves. The completeness theorem can be stated as follows.

Theorem 1. Fipc @ iff P has a winning strategy in the ¢-game.
We will first prove

Theorem 2. If ¥ipc ¢, then O has a winning strategy in the ¢-game.

Proof. We write the sequences of formulas marked by O and P respectively
as O and P. O keeps in mind a minimal counter-model for ¢, i.e., in the root
wp, ¢ is not satisfied, but in all other nodes of the model ¢ is satisfied. The
strategy of O is as follows. As long as P does not choose formulas false in
nodes higher up in the model O just picks formulas that are true in wgy. As
soon as P does choose a formula ¢ that is falsified at a higher up in the model,
O keeps in mind the submodel generated by a maximal node w that falsifies
1. O keeps repeating the same tactic with respect to the node where the game
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has lead the players. It is sufficient to prove the following:

Claim. If there are no formulas left for O to choose when following this
strategy, i.e. all formulas that are true in the w that is fixed in O’s mind have
been marked, then it is P’s move.

This is sufficient because it means that in such a situation P can only move
onwards in the model, or, in case w is a maximal node, P loses.

Proof of Claim. We write ||, for the truth value of # in w. As we will see
it is sufficient to show that, if the situation in the game is as in the assump-
tions of the claim, then |0], =Val(f) for all . We prove, by induction on 6,
|0]w =1 < Val(8)=1.

o If A is atomic, then O has marked all the atoms that are forced in w and
no other, so those have become true and no other.

e Induction step =: Assume |0 o 9|, =1. Then 6 o ¢ is marked, because
otherwise O could do so, contrary to assumption. We have |0|,,0p|1)|, =1.
By IH, Val(0) og Val(y) =1, so Val(f o) =1.

e Induction step <:

e Val(OAy)=1=Val(0)=1and Val(¥)=1= 1y
[0lw=1and |[¢|y, =1= |0 At|,=1.

e V is same as A.

o Val(@—¢)=1=Val(§)=0 or Val(yy) =1, and thus by IH, |8|, =0 or
||w=1. Also, 8 =1 is marked, hence in O or P. In the first case
|6 = 9|, =1 immediate, in the second, |# =], =1 for all s>w (P has
marked no formulas false higher up, otherwise O would have shifted at-
tention another node) and hence |8]; =0 or |¢|s =1 for all s >w. Indeed,
|0 = |y =1.

We are now faced with the fact that O has only chosen formulas true in the
world in O’s mind and those stay true higher up in the model. So, Val(6) =1 for
all € O. On the other hand, P has at least one fault, the formula £ chosen by P
that landed the game in w in the first place: Val(£§) =0. Indeed, it is P’s move.O

We now turn to the second half:

Theorem 3. If Fipc ¢, then P has a winning strategy in the ¢-game.

Proof. P’s strategy is to choose only formulas that are provable from O. Note
that P’s first forced choice of ¢ is in line with this strategy. For this case it is
sufficient to prove the following claim.
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Claim If all formulas that are provable from O are marked, then it is O’s move.

This is sufficient because it means that in such a situation O can only mark
a completely new formula, and when there are no such formulas left loses.

Proof of Claim. Create a model in the following manner. Assume X1, ..., Xk
are the formulas unprovable from O and hence the unmarked ones. By the com-
pleteness of IPC there are k models making O true and falsifying respectively
X1,---,Xk in their respective roots. Adjoin to these models a new root r veri-
fying exactly the O -atoms (this obeys persistency). As in the other direction
we will prove: |8], =V al(6) for all 8, or, equivalently, |0|, =1 <= Val(f) =1.

e Atoms are forced in r iff marked by O and then have Val 1, otherwise 0.

e Induction step = : Assume |6 o 9|, =1. Then 0 o 1) is marked, because if
it wasn’t it would be one of the y;, falsifying persistency. We can reason
on as in the other direction.

e Induction step <«:
Vv and A as in the other direction.

Val(@—y)=1=Val(0)=0 or Val(¢)=1, and thus by IH, 6|, =0 or
[¢|» =1. Also, 8§ — 1 is marked, hence in O or P, and so |§# = ¢|; =1 and
hence |0|s =0 or |[¢|s=1 for all s>r. Indeed, |0 = |, =1.

We are now faced with the fact that P has only marked formulas provable from
O and those will remain provable from O. So, Val(§) =1 for all e P. So, P
has no fault. By the rules of the game it is O’s move. |
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