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A Spatially Constrained Generative Model and an
EM Algorithm for Image Segmentation
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Abstract—In this paper, we present a novel spatially constrained
generative model and an expectation–maximization (EM) algo-
rithm for model-based image segmentation. The generative model
assumes that the unobserved class labels of neighboring pixels
in the image are generated by prior distributions with similar
parameters, where similarity is defined by entropic quantities
relating to the neighboring priors. In order to estimate model pa-
rameters from observations, we derive a spatially constrained EM
algorithm that iteratively maximizes a lower bound on the data
log-likelihood, where the penalty term is data-dependent. Our
algorithm is very easy to implement and is similar to the standard
EM algorithm for Gaussian mixtures with the main difference that
the labels posteriors are “smoothed” over pixels between each E-
and M-step by a standard image filter. Experiments on synthetic
and real images show that our algorithm achieves competitive
segmentation results compared to other Markov-based methods,
and is in general faster.

Index Terms—Bound optimization, expectation–maximization
(EM) algorithm, hidden Markov random fields (MRFs), image
segmentation, spatial clustering.

I. INTRODUCTION

I N [1] and [2], Markov random field (MRF) models were
introduced for image analysis. Subsequently, they have

been used by many researchers for the solution of a number of
important problems in image analysis such as image restora-
tion, segmentation, edge-preserving filtering to name a few
(see, e.g., [3]–[5] and references therein). MRF models provide
a powerful and formal way to account for spatial dependencies
between image pixels. A drawback of the aforementioned
models is that it is typically very expensive to properly account
for the pixels spatial dependencies during inference/learning.
Various approximations have been introduced in order to make
the problem tractable (e.g., multiresolution MRF [6]), but
the high cost of MRF-based methods, as compared to other
methods, still remains.
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In order to overcome this computational cost, several alter-
natives to MRF models have been proposed. These include
modeling approaches that aim at directly defining hierarchical
(Markovian) models on trees as in [7] and [8]. Also, Markov
chains [9], [10] have been used, where the 2-D image is trans-
formed into 1-D chain using some predefined sweep. These
approaches, while being in general more computationally
efficient compared to MRF, are less powerful in capturing
spatial dependencies. In particular, as stated in [7], hierarchical
models have a tendency to produce block-like artifacts in the
final estimates. In [9], it is reported that Markov chains, while
being more robust, tend to produce more irregular borders.

A particular problem that has been addressed by MRF models
is image segmentation, the task of identifying homogeneous
image regions or determining their boundaries. Formally, the
task of image segmentation is to partition an image into a set
of nonoverlapping regions , so that the variation
of some property (such as intensity, color, texture, etc.) within
each region is either constant or follows a simple model
(e.g., Gaussian) [11]. What makes this problem especially dif-
ficult is that the parameters for each model , as well as the
corresponding regions , have to be simultaneously estimated
from the input image. To solve it, prior MRF models are com-
monly used in conjunction with iterative estimation procedures
such as the expectation–maximization (EM) or other iterative
algorithms [5].

In this paper, we introduce a novel generative model and an
EM algorithm for Markov-based image segmentation. The pro-
posed generative model assumes that the hidden class labels of
the pixels are generated by prior distributions that share similar
parameters for neighboring pixels. In order to define a notion
of similarity between neighboring pixels priors, we introduce
a pseudolikelihood quantity that couples neighboring priors by
means of entropic quantities such as the KL divergence. To es-
timate the unknown parameters of the pixels prior distributions,
as well as the parameters of the observation model, we derive
an EM algorithm that iteratively maximizes an appropriately
constructed lower bound on the data log-likelihood. The pro-
posed algorithm is very similar to the standard EM algorithm
for mixture models, with the main difference that the mixing
weights (posterior distributions) of neighboring pixels are cou-
pled in each EM iteration by an averaging operation. This re-
sults in a simple and efficient scheme for incorporating spatial
constraints in an EM framework for image segmentation. Ex-
perimental results demonstrate the potential of the method on
synthetic and real images.

The rest of this paper is organized as follows. In Section II, we
briefly review the problem of image segmentation by discussing
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three classes of generative models that are commonly used in the
literature. In Section III, we describe our proposed algorithm
in detail and draw parallels with other existing approaches. In
Section IV, we show experimental results and we conclude with
a discussion in Section V.

II. REVIEW OF MRF-BASED MODELS FOR

IMAGE SEGMENTATION

In this section, we discuss three commonly used probabilistic
graphical models for image segmentation. The first one is a
standard mixture model in which spatial dependencies between
pixels are not explicitly incorporated into the generative model.
The second one assumes that the hidden pixel labels form a
Markov field. The third one, which is the one adopted in our
method, assumes that the prior distributions that generate the
pixel labels form a Markov field.

We first introduce the notation used throughout the paper. We
are dealing with images consisting of pixels. For a pixel , we
denote by its observed value; for grayscale images, this is a
scalar with values from 0 to 255; for color images this can be,
e.g., a three-component vector with values. Moreover,
we assume that each pixel belongs to a single class (image seg-
ment or region) which is indexed by the hidden random variable

. The latter takes values from a discrete set of labels .
In all models we consider, we assume an observation model in
the form that describes the likelihood of observing
given pixel label . This model is a Gaussian1 density condi-
tional on the class label , i.e.,

(1)

that is parameterized by its mean and (co)variance ,
collectively denoted for all components by . In all models
we consider in this paper, the observation model is shared
among all pixels, that is, the parameters are
independent of the pixel index .

A. Standard Mixture Model

This is the standard (Gaussian) mixture model [13] in which
the spatial dependencies between pixels can be implicitly intro-
duced by using the pixels coordinates as an extra feature [14].
This model is also employed in our previous work [15]. The
corresponding generative model is shown in Fig. 1(a), where
we show two neighboring pixels and . The model assumes
a common prior distribution that independently generates all
pixel labels . This prior is assumed to be a discrete distri-
bution with states, whose parameters , are
unknown, and it holds

(2)

where we see that no spatial dependence between pixels is a
priori assumed (the prior has no dependence on pixel index
). Each pixel label generates a pixel observation from a

shared Gaussian distribution with parameters as

1This model cannot handle highly textured regions but there are alternatives
(e.g., FRAME [12]) that can.

Fig. 1. Three commonly used probabilistic graphical models for image seg-
mentation. Pixel j is assumed to be in the neighborhood of pixel i. (a) Standard
mixture model. (b) MRF on pixels labels. (c) MRF on pixel label priors.

described previously. The log-likelihood of all observations
for the pixels is given by

(3)

(4)

The EM algorithm [16], [17] learns the parameters and
by iteratively maximizing a lower bound of the log-likelihood

. This bound is a function of the model parameters and a set
of auxiliary distributions

(5)

where denotes the KL divergence between the two
discrete distributions, which is defined as

, and which is always nonnegative and
becomes zero when . The distribution is
the Bayes posterior of label given and parameters and

(6)

In the EM algorithm, we repeatedly maximize over its pa-
rameters, in a coordinate ascent fashion. In the E-step, we fix

and and optimize over , and in the M-step, we fix and
optimize over and . This gives

(7)

(8)

(9)

We obtain similar equations in our algorithm which we will ex-
plain in detail in Section III.
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B. MRF on Pixel Labels

This model has been used, for instance, in [1] and [18]–[23],
and is graphically shown in Fig. 1(b). Here, the vector of pixel
labels is assumed to be a (hidden) MRF with
Gibbs joint probability distribution

(10)

where is an energy function

(11)

parameterized by a set of clique potentials and some nonneg-
ative scalar . To deal with the inherent intractability of MRF
[due to the normalizer in (10)], a standard approximation sug-
gested by Besag [2], [24] and used, e.g., in [18] and [23] involves
factorizing the joint distribution as

(12)

where denotes the set of neighboring pixels of a pixel .
Using this approximation, the likelihood of the complete data
(hidden pixel labels and pixel observations) reads

(13)

In particular, by clamping for each pixel to , the ob-
served data log-likelihood becomes

(14)

Note a similarity between in (14) and in (4); they are
both mixture likelihoods with a parameter vector in the ob-
servation model that is shared by all pixels. Their difference is
that the prior in is shared by all pixels, whereas the prior

in is different for each pixel and depends on
the neighbors of the pixel and the parameter . We refer the
reader to [18] for more details.

Maximizing with respect to and can be carried out
by the EM algorithm. In [23], for instance, each EM iteration
involves a mean-field-like procedure in which the label of a
pixel is sequentially estimated from the values of its neigh-
boring pixels as, e.g.,

(15)

where is the Bayes posterior given the pa-
rameters and of the previous iteration, and includes
a mix of previous and current estimated values (with respect
to the current sweep over pixels). For each EM iteration, the
previous procedure effectively requires computing a complete
image restoration. We refer the reader to [23] for more details.

C. MRF on Pixel Label Priors

This is the model that we adopt in this paper, and which has
also been used in [9], [11], [25], and [26]. It is graphically shown
in Fig. 1(c). Here, the pixel label priors
are treated as random variables that form an MRF, whereas the
pixel labels are assumed conditionally independent given the
priors. In [25], the random field of the priors is defined as

(16)

where is an energy function in the form

(17)

parameterized by a scalar . In the previous notation, refers
to the component of the prior distribution of pixel . In this
model, the priors are estimated together with by the EM
algorithm. Translating the conditional independencies induced
by the previous graphical model, the penalized log-likelihood of
the observed data reads (ignoring constants)

(18)

We note the similarity of with the of the standard mix-
ture model. Here, however, there are different distribu-
tions, one for each pixel , and additionally there is a penalty
term (the energy ) that penalizes neighboring pixels with dif-
ferent labels. Note that this model enforces spatial dependen-
cies between pixels in a different way than the MRF model of
Section II-B. Namely, here the assumption is that neighboring
pixels have similar prior distributions that generate their pixel
labels, whereas in the classical MRF model, we postulate an
MRF directly on the pixel labels. An attractive property of this
model, as we explain later, is that the E-step of the EM algo-
rithm is easier to carry out since we do not need to estimate a
restoration of the image. On the other hand, the M-step is more
complicated as it also involves the penalty term of (16).
Indeed, the computational effort in [11], [25], and [26] goes in
the estimation of the priors in the M-step which requires
solving a constrained optimization problem (since is a dis-
crete distribution with for each ).

The main motivation for using this model as opposed to the
traditional MRF model on pixel labels (of Section II-B) is its
flexibility with respect to the initial conditions. This flexibility
is manifested in the shape of the objective function. In the tradi-
tional MRF model of Section II-B, the penalized log-likelihood
function will be sharper and will contain several local maxima,
and hence, it will be more sensitive to the initial solution. In the
current model, the field constraints are directly enforced over
the parameters of the label priors, resulting in a smoother ob-
jective function. This can be intuitively seen by noting that dis-
tinct parameter values for some priors may induce exactly the
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same pixel labels, and therefore, searching in the space of priors
(in the M-step of our algorithm as we show later) will be easier
than searching in the space of labels. This search will be also
facilitated by the fact that the space of prior parameters is con-
tinuous, as opposed to the discrete nature of the space of pixel
labels. Interestingly, although the current model contains more
parameters ( , a vector of parameters for each , as op-
posed to of the traditional MRF model), the smoothness of
the objective function, as argued previously, allows the result to
be less dependent on the initialization. The previous arguments
will be experimentally verified in Section IV.

III. PROPOSED METHOD

In our method, we also use the graphical model of Fig. 1(c),
but we use a different modeling strategy for the spatial depen-
dencies between the priors and a different algorithm for learning
the unknown parameters. As in [23], we employ the Besag ap-
proximation for modeling the joint density over pixel priors

(19)

where we define as a mixture distribution over the priors of
neighboring pixels of pixel , i.e.,

(20)

where are fixed positive weights and for each ,
holds. The mixing weight depends on the relative offset be-
tween the pixels and , while the mixture does not include the
prior of the same pixel . Note that the evaluation of this mixture
corresponds to a convolution operation , for each com-
ponent , where is a symmetric linear image filter with zero
coefficient in its center and nonnegative coefficients elsewhere
that sum to one. See Section IV-B for more details about filter
related issues.

Further, for the conditional density , we assume
an approximate log-model in the form (ignoring constants)

(21)

where is
the KL divergence between and , which is always non-
negative and becomes zero when , and

is the entropy of the distribution , which
is always nonnegative and reaches its maximum when is uni-
form. The KL term intuitively expresses the degree
of similarity between the prior of a pixel and the priors of its
neighbors, and it provides a way of constraining neighboring
pixels to have similar class labels. Similarly, the entropy term

constrains the label priors to be as informative as pos-
sible: in homogeneous regions it is reasonable to expect that
neighboring pixels have similar priors and that these priors are
far from uniform. It is important to emphasize that the entropy
term does not enforce the priors to be of a partic-
ular shape, but it merely constrains them to be as informative
as possible.

Maximum a posteriori (MAP) estimation of the parameters
and of our model involves maximizing the data log-like-

lihood [the first term of in (18)] penalized by the approxi-
mate log-prior term (21). Direct optimization of this penalized
log-likelihood is, however, difficult because of the coupling of
neighboring pixels priors (which would require constraint op-
timization techniques as those in [26]). To facilitate optimiza-
tion, we introduce an approximation that makes use of an aux-
iliary set of distributions as follows:

(22)

which decouples the pixels priors and allows for an efficient
coordinate ascent EM-like optimization as we will show later.
Note that in the previous approximation, when , then
(22) becomes identical to (21).

The previous approximate log-prior involves only entropic
quantities and therefore is a nonnegative quantity that lower
bounds the data log-likelihood. Note that this penalty term
(Bayesian prior) does not depend on the observed data (image
pixels). Recently, other approaches have appeared in the ma-
chine learning literature that incorporate constraints into a
learning problem by lower bounding the data log-likelihood
using data-dependent penalty terms [27], [28]. Typically, those
bounds involve a KL distance between posterior distribu-
tions, thus explicitly incorporating the observed data into the
bounding terms, and utilizing useful domain knowledge. In the
same spirit, we introduce an additional penalty term involving
posterior distributions in the form

(23)

where is an arbitrary class distribution for a pixel , and is
the posterior class distribution of a pixel computed for model
parameters and prior by the Bayes rule

(24)

The coefficient in the penalty term was chosen because it al-
lows a tractable M-step. Putting all terms together, the penalized
log-likelihood of the observed data as a function of the model
parameters and the introduced auxiliary distributions
and reads (ignoring constants)

(25)

Our EM algorithm maximizes the energy in (25) by coor-
dinate ascent. In the E-step, we fix and and maximize over

and . In the M-step, we fix and and maximize over
and . Next, we show how these two steps can be performed.
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E-Step: We optimize over for a pixel , assuming and
fixed. A similar derivation holds for . The terms of involving

are

(26)

The latter is an (unnormalized) negative KL-divergence which
becomes zero when

(27)

Similarly, we obtain

(28)

M-Step: We fix and and maximize over and . The
terms of involving the priors and the posteriors (and,
therefore, and ) are

(29)

We show now the derivation involving the posteriors. The terms
of (29) involving only are

(30)

which, ignoring terms independent of , reads

(31)

where

(32)

The mixture appears in the last term of (31) for all pixels
that are neighbors of a pixel . To make the M-step tractable, we
bound these terms using Jensen’s inequality

(33)

Using (31) and (33) and noting that , we finally get
(ignoring again terms independent of )

(34)

where the distribution is

(35)

An identical derivation holds for the priors producing a term

(36)

In total, the terms of [actually a lower bound of it since we
employed (33)] involving the prior and the posterior are

(37)

Expanding the posterior in the previous terms and noting that
, we immediately see that the log-

likelihood term cancels. Then, (37) reads

(38)

Collecting all terms of (38) involving and differentiating with
respect to (using a Lagrange multiplier to ensure

), we can easily show that we get

(39)

Similarly, differentiating (38) over , we get the following up-
date equations for the means and covariances of the Gaussian
components:

(40)

(41)
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Fig. 2. Experiment with synthetic image and white Gaussian noise. (a) Five-
class synthetic image. (b) Maximization progress of the penalized log-likelihood
F of our algorithm for this experiment. (c) Noise corrupted five-class image
with additive white Gaussian noise (� = 52). (d) Segmentation result of the
standard EM algorithm (MCR 53.7%). (e) Segmentation result of ICM with run-
ning time of 39 s (MCR 31.7%). (f) Segmentation result of SimF with running
time of 90 s (MCR 2.88%). (g) Segmentation result of MeanF with running time
of 100 s (MCR 3.89%). (h) Segmentation result of our approach with running
time of 92 s (MCR 1.78%).

Note that the update equations for are analogous to those in
the standard mixture model, with the difference that here the
weights correspond to “smoothed” pixel posteriors. The use of
such spatially smoothed weights in the M-step of the EM algo-
rithm is a key element in our approach that distinguishes it from
other works. The complete algorithm is shown in Algorithm 1.

Concerning the initialization of the parameter vector , we
employ the -means algorithm, but we note that other clustering
algorithms [29] can be used also. The initialization of the priors

in this work is uniform. Concerning time complexity, each
EM step has cost that is linear in the number of pixels in the
image and linear in the number of class labels, as we can directly
see in the EM update equations, for instance, (27) and (40). Ad-
ditionally, our update equations involve a convolution operation
for computing the “smoothed” distributions , , , and

, which, for each pixel , has constant runtime complexity
(since the size of the filter is fixed). Concerning the conver-
gence rate of our algorithm, we have experimentally observed
that our method can quickly reach a good solution indicated by
high values of [see Figs. 2(b) and 3(b)]. This is in accordance
with similar findings for the batch EM algorithm in the literature
[17], but for which theoretical evidence is, to our knowledge,
still lacking.

Finally, in this paper, we set . It is a matter of future
work to investigate ways to incorporate in the optimization
process (as in [22] and [23]).

Fig. 3. Experiment with synthetic image and spatially correlated Gaussian
noise. (a) Original four-class image. (b) Maximization progress of the penalized
log-likelihood F of our algorithm for this experiment. (c) Noise-corrupted
image with spatially correlated Gaussian noise. (d) Segmentation result of
the standard EM algorithm (MCR 28.72%). (e) Segmentation result of ICM
with running time of 5 s (MCR 16.8%). (f) Segmentation result of SimF with
running time of 22 s (MCR 17.6%). (g) Segmentation result of MeanF with
running time of 23 s (MCR 17.4%). (h) Segmentation result of our approach
with running time of 6 s (MCR 0.68%).

Algorithm 1: The proposed EM algorithm for image
segmentation

1) Initialize the parameter vector , e.g., using -means.
2) Initialize the priors , e.g., uniform ,

, .
3) E-step: Compute posterior probabilities using (24) and

the current estimates of and .
4) Compute according to (27) and (20) and normalize

each so that .
5) Compute according to (28) and normalize each

so that .
6) M-step: Update the parameter vector using (40) and

(41).
7) Update according to (39).
8) Evaluate from (25).
9) If convergence of , e.g.,

10) then stop.
11) else go to step 3).
12) end if

IV. EXPERIMENTS

In this section, we demonstrate the performance of our
algorithm on synthetic and real images. Specifically, in
Section IV-A, we evaluate the performance of our segmentation
algorithm in the presence of noise. Section IV-B includes addi-
tional experiments to test the algorithm’s behavior with respect
to the choice of parameters and initialization. Section IV-C
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Fig. 4. Effects of using different filters on the segmentation results. (a) Three-
class synthetic image. (b) Noise-corrupted image with additive white Gaussian
noise of � = 95. (c) Segmentation result using Gaussian kernel with � = 1

(MCR 1.08%).

presents segmentation results on graylevel images. Finally, in
Section IV-D, we show segmentation results on color images.

A. Noise-Corrupted Synthetic Images

We first illustrate our algorithm on synthetic images and
consider its robustness against noise. We use the same synthetic
images as in [20] and [26]. These are simulated three- and
five-class images [see Figs. 4(a) and 2(a)] sampled from an
MRF model using the Gibbs sampler [1]. In Fig. 2(c), we show
the five-class image after adding white Gaussian noise with

. In Fig. 2(d), we show the segmentation results of the
standard EM algorithm using the generative model discussed in
Section II-A. It is clear from these examples that, in presence of
noise, an algorithm that does not use spatial constraints cannot
produce meaningful segmentation results. On the contrary, a
method like ours that does take into account the spatial relation
of pixels can successfully segment these noisy images, as we
demonstrate in Fig. 2(h). The total running time of our method
(from initialization till convergence) was 15 s for the three-class
image and 92 s for the five-class one [as shown in Fig. 2(h)].
All times (for our method) refer to a Matlab implementation
running on a 3.0-GHz PC-based workstation. In these synthetic
images, the ground truth is known (the true assignment of pixels
to the classes), which allows us to evaluate the performance
of the various methods in terms of the misclassification ratio
(MCR). This is simply the number of misclassified pixels
divided by the total number of pixels [20].

We compare our method with related methods based on the
hidden MRFs: the ICM algorithm [2], the spatially variant fi-
nite mixture model (SVFMM) method [25], the extension to
SVFMM (SVFMM-QD)[26], the hidden MRF model based on
EM framework proposed in [20] (HMRF-EM), and the mean
field (MeanF) and the simulated field (SimF) methods of [21]
and [23]. Finally, we have also included the comparison with
the standard EM algorithm.

Tables I and II contain the MCR results of the previously men-
tioned methods for the same synthetic images and for various
amounts of noise. For the methods SVFMM, SVFMM-QD,
and HMRF-EM, we replicate the MCR results reported in the
corresponding papers. For SimF and MeanF methods, we used
a software implementation developed in [21] and [23] (in C pro-
gramming language) and is publicly available at http://mistis.in-
rialpes.fr/software/SEMMS.html. This software also includes an
implementation of the ICM algorithm. We initialize ICM, SimF,
and MeanF methods in the same way that we initialize our algo-
rithm. As in [21] and [23], the number of iterations for SimF and
MeanF was set to 100 and the ICM was run until the convergence.

TABLE I
MCRS FOR THE THREE-CLASS IMAGE

TABLE II
MCRS FOR THE FIVE-CLASS IMAGE

Forourmethod, the restorations shownresult fromthemaximiza-
tion of the estimated prior distribution (which the algorithm
learns). The SVFMM, SVFMM-QD, and HMRF-EM methods
use a first-order neighborhood system, while, ICM, SimF, and
MeanF methods use a second-order neighborhood system.

In Fig. 3, we present the segmentation results for a synthetic
four-class image in which we have added spatially correlated
noise. To generate this noise, we sampled a configuration of
binary indicators from a standard Potts-model MRF [1] using
Gibbs sampling. If the drawn indicator of a pixel was one, then
we added Gaussian noise with standard deviation to the
corresponding pixel, otherwise, we did not add noise. Clearly,
this kind of noise invalidates the Gaussian observation model as-
sumption used by all methods discussed in this paper (since the
true observation model is now a Gaussian mixture), and renders
the observations spatially correlated. Thus, it presents a case
where the true generative model of the image is different than
the postulated one, which makes it an interesting experiment
for real-world data. In Fig. 3(c), we show the noise corrupted
image. In Fig. 3(d)–(g), we present the segmentation results of
the EM, ICM, SimF, and MeanF. Fig. 3(h) shows the segmen-
tation obtained by our method. Clearly, we see an advantage of
our method over the other methods on this problem. We note
that we initialized all algorithms in the same way.

In Figs. 2(b) and 3(b), we present the maximization progress of
the penalized log-likelihood for the simulated five-class image
ofFig.2and thesimulatedfive-class imageofFig.3, respectively.

The experiments point out that in all methods the MCR
increases as the amount of noise and the number of labels
increase. Our method performs much better than all the other
methods when moderate or high amount of noise is present,
and it is competitive to other methods for low amounts of noise.
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TABLE III
COEFFICIENTS OF THE FILTER USED IN THE EXPERIMENTS

TABLE IV
MCRS FOR Fig. 4(b) WITH DIFFERENT FILTERS

Our method, implemented in Matlab, was faster than SimF and
MeanF methods, which were implemented in C and optimized.
In Fig. 2, we present the running time and the segmentation re-
sults of ICM, SimF, and MeanF methods for the five-class image.

B. Choice of Parameters

In total, our algorithm has three parameters, the number of
components , the priors parameter , and the image filter used
in (20). In this paper, we assume that the number of components

as well as the observation model family are given to us for
a particular image. Also, in experiments not shown here, we
determined that 0.5 is a good choice for the parameter . As
aforementioned, it is a matter of future work to investigate ways
to incorporate this parameter in the optimization process. In this
section, we will consider the only other free parameter in our
algorithm which is the filter used for evaluating the mixtures

, , , and [see (20) and (35)].
Specifically, as mentioned in Section III, the evaluation of

such mixtures can be achieved by convolving with an image
filter. In order for these mixtures to be valid distributions
(without the need of extra normalization), the applied filter
must have coefficients that sum to one. Our algorithm also
requires that the center coefficient of the filter be zero. Also,
we choose the filter to be symmetric. In the case where domain
knowledge would imply some (simple) spatial relation between
pixels with the same class label, this knowledge could be easily
incorporated into our framework by employing a nonsymmetric
filter that encourages these spatial relations.

Clearly, the choice of the filter can affect the performance of
the algorithm and the quality of the segmentation. In addition,
the mixture calculation can be performed by a variety of im-
ages filters. In Section IV-A, all reported results of our algorithm
were obtained using a “modified” (i.e., the center coefficient set
to zero) pillbox filter with diameter equal to 5. We show the
coefficients of this filter in Table III.

In Table IV, we report the MCR results using different fil-
ters for the three-class image [see Fig. 4(a)], after adding white
Gaussian noise with [see Fig. 4(b)]. We used “modified”
versions (i.e., the center coefficient is set to zero) of a low-pass
Gaussian filter and a mean filter. In Fig. 4(c), we show the corre-
sponding segmentation results for Gaussian filters with .
The results illustrate that a larger filter size can compensate for
the presence of high noise levels in the image. A closer look at
Fig. 4(a) and (c) reveals that large size filters, while providing in-
creased robustness to noise, tend to oversmooth the edges. When
the noise levels in the image are low there is no benefit from

Fig. 5. Segmentation example of the PET image of a dog lung with K = 3.
(a) Original image. (b) Simple thresholding-based initialization. (c) Segmenta-
tion result of ICM. (d) Segmentation result of SimF. (e) Segmentation result of
MeanF. (f) Segmentation result of our approach.

Fig. 6. Segmentation example of the buoy image with K = 3. (a) Original
image. (b) k-means initialization. (c) Initialization based on EM for indepen-
dent mixtures. (d) Segmentation result of ICM with k-means initialization.
(e) Segmentation result of SimF with k-means initialization. (f) Segmentation
result of MeanF with k-means initialization. (g) Segmentation result of our ap-
proach with k-means initialization. (h) Segmentation result of ICM with EM
initialization. (i) Segmentation result of SimF with EM initialization. (j) Seg-
mentation result of MeanF with EM initialization. (k) Segmentation result of
our approach with EM initialization.

using large size filters, and the resulting oversmoothing of the
edges just decreases the segmentation accuracy. Clearly, if the
noise level of images in a particular domain is known a priori,
then the filter type and its parameters can be fine-tuned for op-
timal performance.

C. Graylevel Images

In natural images, a number of difficult aspects of image seg-
mentation come together, such as noise and varying imaging
conditions. Additionally, the true value of the image label
is not known. In the following experiments, we use the same
images as in [21], [30], and [31], where was estimated using
(approximations of) the Bayesian information criterion (BIC).
Fig. 5(a) shows a 128 128 positron emission tomography
(PET) image of a dog lung and Fig. 6(a) shows an aerial 100
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Fig. 7. Segmentation example of the water buffalo image with K = 2.
(a) Original image. (b) k-means initialization. (c) Segmentation result of
our approach with k-means initialization. (d) Initialization based on EM
for independent mixtures. (e) Segmentation result of our approach with EM
initialization. (f) Segmentation result of ICM with k-means initialization. (g)
Segmentation result of SimF with k-means initialization. (h) Segmentation
result of MeanF with k-means initialization. (i) Segmentation result of ICM
with EM initialization. (j) Segmentation result of SimF with EM initialization.
(k) Segmentation result of MeanF with EM initialization.

100 image of a buoy against a background of dark water (see
[30] for more details on their nature and origin).

For the PET image of a dog lung, the image’s labels was
estimated to be 3. In Fig. 5(c)–(f), we demonstrate the segmen-
tation results of ICM, MeanF, SimF, and our approach. For our
method, we used a “modified” (i.e., the center coefficient set
to zero) pillbox filter with diameter equal to 7. All other set-
tings for all methods were the same as in Section IV-A. All algo-
rithms were initialized by a simple thresholding of the image, as
shown in Fig. 5(b). The result shows that MeanF, SimF, and our
approach perform approximately in the same way and are pro-
ducing more homogeneous regions for the lungs than the ICM
algorithm.

For the buoy image, the image’s label was estimated to
be 3. In Fig. 6(d)–(g), we demonstrate the segmentation re-
sults of ICM, MeanF, SimF, and our approach. We used the
same settings for all methods as in Section IV-A. All algorithms
were initialized using the -means-based initialization which is
shown in Fig. 6(b). It is clear that all algorithms given this par-
ticular initialization perform approximately the same and they
are all capable of correctly assigning the pixels belonging to the
buoy to one cluster. In Fig. 6(h)–(k), we show the segmentation
results of the four methods using the same setting as before but
employing an alternative initialization based on EM for inde-
pendent mixtures. This initialization is shown in Fig. 6(c), where
the horizontal scan lines from the imaging process of Fig. 6(a)

Fig. 8. Segmentation example of the dog sled image withK = 3. (a) Original
image. (b) k-means initialization. (c) Segmentation result of our approach with
k-means initialization. (d) Initialization based on EM for independent mixtures.
(e) Segmentation result of our approach with EM initialization. (f) Segmentation
result of ICM with k-means initialization. (g) Segmentation result of SimF with
k-means initialization. (h) Segmentation result of MeanF with k-means initial-
ization. (i) Segmentation result of ICM with EM initialization. (j) Segmentation
result of SimF with EM initialization. (k) Segmentation result of MeanF with
EM initialization.

can be clearly observed. Only our approach was able to correctly
assign the pixels belonging to the buoy to one cluster given this
EM-based initialization.

The buoy experiment demonstrates a significant aspect of our
approach, namely, that it is relatively insensitive to initialization
compared to other methods. We feel that this is an important as-
pect, since in natural images, not only the true value of the image
label is hard to estimate, but also an appropriate initialization
cannot be known a priori.

D. Color Images

In Figs. 7 and 8, we show the segmentation results of two dif-
ferent color images from the Berkeley Segmentation Data Set
[32]. In these figures, we show the original image, the initializa-
tions obtained by -means and EM, the results of our method
with these two initializations, and the corresponding results of
ICM, SimF, and MeanF. In these examples, our algorithm is able
to consistently segment the original image independently of the
initialization, whereas all three MRF-based methods are rather
sensitive to the initial conditions.

In Fig. 9, we show the segmentation results of an image in
color space when the Gaussian observation model assumption is
violated. Normalized color (chromaticity) has been widely
used by many researchers in the field of image segmentation,
e.g., [33] and [34], because of its important invariant properties.
Specifically, it has been shown in [35] that, under the assump-
tion of the dichromatic reflection model, normalized color is to



DIPLAROS et al.: SPATIALLY CONSTRAINED GENERATIVE MODEL AND AN EM ALGORITHM FOR IMAGE SEGMENTATION 807

Fig. 9. Segmentation example of a color image with K = 6. (a) Original
image. (b) Normalized rgb color image. (c) Segmentation result of ICM in rgb
color space. (d) Segmentation result of SimF in rgb color space. (e) Segmenta-
tion result of MeanF in rgb color space. (f) Segmentation result of our approach
in rgb color space.

a large extent invariant to a change in camera viewpoint, ob-
ject pose, and the direction and intensity of the incident light.
In addition, the color transformation from to normalized
color is simple and easy to compute while does not neces-
sitate extra color-reduction steps, as in [36]. Namely, based on
the measured values, normalized color is computed
as follows:

(42)

(43)

(44)

However, this (nonlinear) color transformation has a serious
drawback, as it becomes unstable for some sensor values.
Particularly, is undefined at the black point

and is unstable near this singular point. As a consequence, a
small perturbation for dark (low-intensity) sensor values (e.g.,
due to sensor noise) will cause a significant jump in the trans-
formed values.

In Fig. 9(b), which is the normalized color transforma-
tion of Fig. 9(a), the unstable invariant values are clearly visible
at the bottom of the red ball. The presence of these unstable in-
variant values violate the assumed Gaussian observation model.
Fig. 9(c)–(e) shows the segmentation results for for
the normalized color image of Fig. 9(b) with ICM, SimF, and
MeanF, respectively. In Fig. 9(f), we show the corresponding
results with our approach. All figures show a reconstruction of
the normalized image, with pixel values in the final result
corresponding to the estimated mean of their assigned Gaussian
component. The results show that our approach produces more
homogeneous regions than other algorithms and consequently a
better segmentation.

V. CONCLUSION

We proposed a graphical model and a novel EM algorithm for
Markov-based image segmentation. The proposed model postu-

lates that the unobserved pixel labels are generated by prior dis-
tributions that have similar parameters for neighboring pixels.
The proposed EM algorithm performs iterative bound optimiza-
tion of a penalized log-likelihood of this model. The derived
EM equations are similar to the standard (unconstrained) EM
algorithm, with the only difference that a “smoothing” step is
interleaved between the E- and the M-step, that couples the
posteriors of neighboring pixels in each iteration. Compared to
the other MRF-based algorithms for segmentation, we note that
our algorithm enjoys a simple implementation and demonstrates
competitive performance in terms of speed and solution quality.
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