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Robust Photometric Invariant Region Detection

in Multispectral Images

Th. Gevers and H. M. G. Stokman

Abstract

Our aim is to detect photometric invariant regions in multispectral images ro-

bust against sensor noise. Therefore, different polar angle representations of a

spectrum are examined for invariance using the dichromatic reflection model.

These invariant representations take advantage of white balancing. Based on

the camera sensitivity, a theoretical expression is obtained of the certainty as-

sociated with the polar angular representations under the influence of noise.

The expression is employed by the segmentation technique to ensure robustness

against sensor noise.

1 Introduction

Multispectral imaging has received a great deal of attention recently. Spectral

imaging is used, for example, in remote sensing, computer vision, and industrial

applications. Spectral information has become an important quality factor in

many industrial processes because of its high accuracy [12]. Spectral images

can be obtained, for example, by a CCD-camera with narrow-band interference

filters [14]. Tominaga [24] [25] describes two generations of a multichannel vision

system based on the use of a CCD-camera and six color filters to reconstruct the

surface spectral reflectance and illuminant spectral power distribution. Baronti
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et al. [3] uses a multispectral imaging system for the non-invasive analysis of

works of art. Haneishi et al. [11] uses five color filters for archiving spectral

images of art works.

In the past, various color image segmentation methods have been proposed

which do not account for the image formation process [6] [18]. A drawback

of these color segmentation methods is that the values of the color features,

on which the segmentation method relies, depend on the geometry of the ob-

ject, the viewpoint of the camera and on the illumination conditions. As a

consequence, the obtained segmentation results may be affected negatively by

shadows, shading and highlights. In contrast, image processing methods that ac-

count for the process of image formation have been studied since the mid-1980s,

see for instance the work collected by Wolff, Shafer and Healey [26]. Shafer [22]

presented the dichromatic reflection model, a physical model of reflection which

states that two distinct types of reflection - surface and body reflection - oc-

cur, and that each type can be decomposed into a relative spectral distribution

and a geometric scale factor. Klinker et al. [16] developed a color segmentation

algorithm based on the Shafer’s model. The method is based on evaluating

characteristic shapes of clusters in red-green-blue (RGB) space followed by seg-

mentation independent of the object’s geometry, illumination and highlights.

To achieve robust image segmentation, however, surface patches of objects in

view must have a rather broad distribution of surface normals which may not

hold for objects in general. Bajcsy [2] developed a similar image segmentation

method using the H-S color space instead of the RGB-color space. Healey [13]

proposed a method to segment images on the basis of normalized color. How-

ever, Kender [15] showed that normalized color and hue are singular at some

RGB values and unstable at many others. For instance, the essential singularity

of normalized coordinates is at black (R = G = B = 0), whereas for the hue

the singularity is at the achromatic axis (R = G = B). As a consequence, both

color spaces become unstable near the singularity where a small perturbation of

RGB value might cause a large jump in the transformed values. Traditionally,

these effects are either ignored or suppressed by an ad hoc thresholding of the
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transformed values. For example, Ohta [20] rejects normalized color values if

the sum of RGB is less than 30, and rejects hue values if the saturation times

the intensity is less than 9. Healey [13] rejects all sensor measurements that fall

within the sphere of radius 4σ centered at the origin in RGB-space.

A more elegant strategy to deal with unstable color values would be to

generate the reliability of a transformed color together with the output and to

incorporate the reliability in the image processing method. An early effort in

this direction is the work of Burns and Berns [5]. The authors analyze the error

propagation from a measured color signal transformed into the CIE L∗a∗b∗ color

space. In this way, an indication is obtained of how the color space transform

influences the mean, variance and covariance of the colors under the influence

of noise. Shafarenko, Petrou and Kittler [21] use an adaptive filter for noise

reduction in the CIE L∗u∗v∗ space prior to 3-D color histogram construction.

The filter width depends on the covariance matrix of the noise distribution in

the CIE L∗u∗v∗ space.

Obviously, photometric invariance is essential for image segmentation. How-

ever, another major requirement is robustness against noise which is amplified

by the instabilities of the photometric invariant transformations. Our aim is to

propose techniques to detect regions in multispectral images which are invariant

to photometric variations and which are, at the same time, robust to substantial

noise. Therefore, the contribution of this paper is two-fold:

1. Photometric Invariance: We propose two polar coordinate models to en-

code spectra and analyze these models for invariance to photometric effects

using the dichromatic reflection model for the purpose of image segmen-

tation.

2. Noise Robustness: We propose computational models for estimating the

effect of sensor noise on the stability of the polar coordinates. The expres-

sion of the reliability of the polar coordinate representation is incorporated

in the segmentation method.

As the segmentation method is based on the physics-based dichromatic reflec-
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tion model, it is possible to characterize what kinds of images are likely to be

segmented successfully by our algorithm. The model describes the reflection

of materials which are optically inhomogeneous. In that case the light inter-

acts with a medium that causes the bigger component of surface matter, as

well as with particles of a colorant to produce scattering and coloration. Many

common materials have these characteristics, including most paints, varnishes,

paper, ceramics, and plastics. Therefore, we anticipate that images of objects

of these materials are properly segmented by the proposed method. As a conse-

quence, the proposed method is unsuited for homogeneous materials. Further,

it is assumed that the light source is spectrally uniform over the scene.

The paper is organized as follows. In section 2, the dichromatic reflection re-

flection model and a camera model are described in detail. In section 3, distance

measures are proposed and examined for photometric invariance. In section 4,

the effect of sensor noise is propagated through the polar angle representations

of spectra. The photometric invariant region detection methods are described

in section 5. In section 6, the theoretical estimated uncertainty in polar angular

representation is compared empirically to the real uncertainty. Experiments are

carried out to evaluate the invariance to photometric effects of the proposed

segmentation methods. A discussion is given in section 7.

2 Reflection and Camera Models

In this section, we discuss a camera and image formation model. Based on

the models, we examine cluster shapes drawn by uniformly colored objects in

multispectral color space.

2.1 Multispectral Imaging

In this paper, we use the Imspector V7 spectrograph from spectral Imaging Ltd.

The spectrograph transforms the monochrome CCD-camera to a line scanner:

One axis displays the spatial information, whereas along the other axis the vis-
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ible wavelength range is recorded generating an image h(x, λ) for each position

(x, λ). In this paper, the Jain CV-M300 camera is used with 576 pixels along

the optical axis. We use the Imspector V7 spectrograph with shortest observ-

able wavelength of 410 nm and longest wavelength of 700 nm. The wavelength

interval corresponds to 5 nm.

2.2 Camera and Image Formation Models

We use a linear camera model to describe the relation between input signal hi

and the output signal ci for the ith color channel at position ~x as

ci(~x, λ) = γihi(~x, λ) + d(~x) (1)

where d(~x) denotes the dark current independent of the wavelength and γi

denotes the camera gain for the ith color channel. For the moment, we ignore

the dark current for notational simplicity. For the same reason, the notation for

the position is left out.

The camera gain may further be refined as consisting of two terms

γi = γe · γw,i (2)

where γe denotes the electronic gain and γw,i denotes the white-balancing gain.

For inhomogeneous, dielectric materials, the measured input signal hi of (1)

is described by the dichromatic reflection model [22]. To be precise, let E(~x, λ)

be the spectral power distribution of the incident (ambient) light at the object

surface at ~x, and let L(~x, λ) be a function based on the geometric and spectral

properties of the object surface at ~x. The spectral sensitivity of the ith sensor

is given by fi(λ). Then gi, the camera output of the ith channel (no camera

gain) is given by:

gi(~x, λ) =

∫

λ

E(~x, λ)L(~x, λ)fi(λ)dλ (3)

where λ denotes the wavelength. The integral is taken from the visible spectrum

(e.g. 410-700 nm). In the remainder, we will leave out the notation of position

~x.
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Then, for an opaque inhomogeneous dielectric object, the geometric and

surface reflection component of function L(~x, λ) can be decomposed in a body

and surface reflection component as described by Shafer [22]:

hi(λ) = mb(~n,~s)

∫

λ

fi(λ)E(λ)cb(λ)dλ + ms(~n,~s,~v)

∫

λ

fi(λ)E(λ)cs(λ)dλ (4)

denoting the camera output (without the camera gain) for filter fi with cen-

tral wavelength i. Further, cb(λ) and cs(λ) are the surface albedo and Fresnel

reflectance respectively, ~n is the surface patch normal, ~s is the direction of the

illumination source, and ~v is the direction of the viewer. Geometric terms mb

and ms denote the geometric dependencies on ~n,~s and ~v. In this paper, we

make no specific assumptions for functions mb and ms but simply require that

0 ≤ mb(~n,~s),ms(~n,~s,~v) ≤ 1 (5)

It is important to observe that (5) captures one of the attractive features of the

dichromatic reflection model: the model is far more general than typical models

used in computer vision and computer graphics, and includes most such models

as special cases. For instance, a possible instantiation of mb is Lambert’s cosine

law (then ms = 0). Similarly, a possible instantiation of both mb and ms is

Phong’s model for specular reflection [4].

2.3 White-Balancing

According to (4), a matte, white reference standard with constant spectral re-

sponse can be described by cb(λ) = 1 and mb(~n,~s) = 1. Furthermore, assume

that the camera is not white-balanced so γw,i = 1, say, for all color channels i.

The measured sensor values are obtained substituting the body reflection of (4)

in (1) as

wi(λ) = γe

∫

λ

fi(λ)E(λ)dλ (6)

denoting the sensor response for the white matte reference standard. The gain

parameter γw,i of (2) is adjusted, either by the white-balancing procedure of the

9



CCD-camera or else manually, as

γw,i =
1

wi(λ)
(7)

Then the output of a white-balanced camera system is as follows

ci(λ) =
γemb(~n,~s)

∫

λ
fi(λ)E(λ)cb(λ)dλ

γe

∫

λ
fi(λ)E(λ)dλ

+
γems(~n,~s,~v)

∫

λ
fi(λ)E(λ)cs(λ)dλ

γe

∫

λ
fi(λ)E(λ)dλ

(8)

Considering the neutral interface reflection (NIR) model [22] (assuming that

cs(λ) has a nearly constant value independent of the wavelength), we obtain

cs(λ) = cs. Then the specular term of (8) rewrites to

si(λ) =
ms(~n,~s,~v)cs

∫

λ
fi(λ)E(λ)dλ

∫

λ
fi(λ)E(λ)dλ

= ms(~n,~s,~v)cs (9)

making the surface reflection term of (4) independent of the spectral distribu-

tion of the light source. Due to the white-balancing operation and the neutral

interface reflection assumption, the color channels ci(λ) produce equal output

when an achromatic object is imaged.

Further, in case of the Imspector V7 spectrograph, we have narrow band

filters f(λi), which can be modeled as a unit impulse that is shifted over i

wavelengths: The transmission at λi = δ and zero elsewhere. Note the subtle

difference between fi(λ) and f(λi). fi(λ) denotes a broad-band color filter

(integrating over various wavelengths) with central wavelength i. f(λi) denotes

a narrow-band filter of unit impulse at wavelength i. Then (9) rewrites to

s(λi) =
ms(~n,~s,~v)E(λi)cs

E(λi)
= ms(~n,~s,~v)cs (10)

again independent of λ and consequently invariant to the spectral distribution

of the light source. Further, assuming narrow-band filters, (8) rewrites to

c(λi) =
mb(~n,~s)E(λi)cb(λi)

E(λi)
+

ms(~n,~s,~v)E(λi)cs

E(λi)
= mb(~n,~s)cb(λi)+ms(~n,~s,~v)cs

(11)

corresponding to the camera output at wavelength λi making the whole dichro-

matic reflection model of (4) independent of the spectral distribution of the light
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source (i.e. color constancy). In vector notation, a spectrum is denoted as

~c = mb(~n,~s)~cb + ms(~n,~s,~v)~cs (12)

The vectors ~n,~s,~v are three-dimensional. The vectors ~c,~cb,~cs are N -dimensional,

with N the number of samples taken in the wavelength range. Although stan-

dard video camera’s are not equipped with narrow-band filters, spectral sharp-

ening can be used to achieve this to a large extent [8].

2.4 Cluster Shapes in Sensor Space

Consider the camera output for a white-balanced camera described in (12).

According to the body reflection term, the color depends on ~cb and the brightness

on mb(~n,~s). If a matte surface region (i.e. the specular term is zero), which is

homogeneously colored (i.e. with constant albedo), contains a variety of surface

normals, then the set of measured colors will generate an elongated color cluster

in sensor space, where the direction of the streak is determined by ~cb and its

extent by the variations of surface normals ~n with respect to the illumination

direction ~s. As a consequence, a uniformly colored surface which is curved

(i.e. varying surface orientation) gives rise to a broad variance of brightness

(i.e. mb(~n,~s)) but not in color (i.e. the same ~cb). Since no negative sensor

values occur, a precise formulation of ~cb is the notion of a vector in the positive

quadrant of in vector space. Hence, for a unit 3-D color cube, ~cb is constrained

to be less than or equal to unity in each dimension, see Figure 1.

For a shiny surface, the observed highlight is defined by vector ~cs (with equal

values), which is on the main diagonal of the unit color cube corresponding to

the grey-values. Further, the extent of ~cs is affected by the surface geometry

and viewing direction. Then, according to (12), the observed colors of a shiny

surface (i.e. uniformly colored and containing highlights) must be on a plane.

The plane is spanned by vectors ~cb and ~cs, where ~cs defines the main diagonal,

see Figure 1.
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Figure 1: The unit-constrained vector (unit half-ray) ~cb is drawn by a matte

surface in RGB-space. Similarly, the plane defined by ~cb and ~cs is drawn by a

shiny surface in RGB.

12



3 Photometric Invariant Distance Measures

Uniformly colored matte objects draw unit-constrained vectors (half-rays) in

multispectral color space due to changes in the surface orientation, illumination

intensity and shading. In addition, due to specularities, shiny objects draw half-

planes in multispectral space. For photometric invariant region detection, we

aim to model the shape of the clusters as either a half-ray or a half-plane. A

measured spectrum is then assigned to one of these clusters based on the minimal

distance of the spectrum to the clusters. Various distance measures have been

proposed. For example, Androutsos et al. [1] proposed a combination distance

measure which is composed of an angle and magnitude component. However,

the distance measure is not a photometric invariant. On the other hand, the

distance from a spectrum to a line is a photometric invariant for matte objects.

Similarly, the distance from a spectrum to a plane is a photometric invariant for

shiny objects [9, 10]. However, the drawback of the computation of the distance

from a spectrum to a plane is that opponent colors map onto the same plane.

Therefore, the angular representation of spectra is proposed in this section.

3.1 Distance between Chromaticity Polar Angles

Spectra can be transformed into polar coordinates. To define polar coordinates

descriptors, the origin O and a positive horizontal axis are fixed. Then each N -

dimensional point ~P can be located by assigning to it polar coordinates (ρ, ~θ)

where the one-dimensional term ρ gives the distance from O to ~P and the

(N − 1)-dimensional term ~θ gives the angles from the initial axis to ~P .

A spectrum defined by (11) is transformed to its polar coordinate represen-

tation as

ρt = |~c| (13)

θc(λi) = arctan

(

c(λi)

c(λN )

)

, 1 ≤ i ≤ N − 1 (14)

where ρt encodes the intensity of the spectrum and θc(λi) the chromaticity of

the spectrum. θc(λi) takes on values in the range 0 ≤ θc ≤ π
2 .
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For the analysis of photometric invariance of the chromaticity angular rep-

resentation of spectra, substitution of the body reflection term of (11) in (14)

gives

θc(λi) = arctan

(

mb(~n,~s)cb(λi)

mb(~n,~s)cb(λN )

)

= arctan

(

cb(λi)

cb(λN )

)

(15)

independent of geometry term mb(~n,~s).

The quadratic distance, e, between any two M -dimensional vectors of angles

~θ1 and ~θ2 is defined as follows:

e2(~θ1, ~θ2) =

M
∑

i=1

(∆(θ1i, θ2i))
2
, 0 ≤ θ1i, θ2i < 2π (16)

Here, θ1i denotes the ith of M angles for the first vector. The distance ∆(θi, θj)

takes values in the interval [0, 2] and is defined as follows:

∆(θi, θj) = [(cos(θi) − cos(θj))
2 + (sin(θi) − sin(θj))

2]1/2 (17)

The angular difference ∆ is indeed a distance because it satisfies the following

metric criteria:

• ∆(θi, θj) ≥ 0 for all θi and θj

• ∆(θi, θj) = 0 if and only if θi = θj

• ∆(θi, θj) = ∆(θj , θi) for all θi and θj

• ∆(θi, θj) + ∆(θj , θk) ≥ ∆(θi, θk) for all θi, θj , and θk

The proof of the first three conditions is trivial. To see the triangular inequality,

consider two angles θi, θj . Define

~θi = [ cos(θi) sin(θi) ]T (18)

and define ~θj in similar fashion. Since ∆(θi, θj) = d(~θi, ~θj) where d denotes the

well-known Euclidean distance, the triangular inequality is proven.

Since chromaticity polar angles are independent of the geometry of the ob-

ject, as was shown in (15), the distance between two chromaticity angles is

photometric invariant as well.
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3.2 Distance between Hue Polar Angles

Consider a N -dimensional spectrum ~c defined by (11) transformed to a different

polar coordinate representation as follows

ρs = 1 − min{c(λ1), · · · , c(λN )} (19)

θh = α[ c(λi) − [1 − ρs], φ(i,N) ] (20)

where θh takes on values in the range 0 ≤ θh < 2π and where

φ(i,N) =
i − 1

N − 1
· 4

3
π (21)

and

α(wi, θi) = arctan

(

∑N
i=1 wi sin(θi)

∑N
i=1 wi cos(θi)

)

, (22)

The function φ takes on values in the range 0 ≤ φ(i,N) ≤ 4
3π. The function α

takes on values in the range 0 ≤ α < 2π. The function denotes the weighted

average of a series of N angles θi with corresponding weight wi. The average

is computed by decomposing the angular value into a horizontal and vertical

component. The saturation of the spectrum is encoded by ρs. The angle θh

can be thought of as the hue obtained directly from multispectral data. The

function φ(i,N) assigns a hue-angle to the ith of N spectral samples. The

range from 0 · · · 4/3π is reserved for the colors ranging from red through green

through blue, so that the range from 4/3π · · · 2π represents the purplish colors.

The choice of 4/3π is somewhat arbitrary but can be defended by taking the hue

computation into account based on conventional red-green-blue colors where a

similar division is employed. For example, consider the following equation for

the hue [17]:

θ = arctan

( √
3(G − B)

(R − G) + (R − B)

)

(23)

Equation (21) assigns hue-angle θh = 0 to the red channel, hue-angle θh =

2/3π to the green channel, and θh = 4/3π to the blue channel. Let ρs =

1 − min{R,G,B}, then the weights of (22) are defined as w1 = R − ρs for the

red channel, w2 = G − ρs for the green channel, and w3 = B − ρs for the blue

15



channel. Substitution of these results into (20) gives

θ = arctan

(

(R − ρs) sin(0) + (G − ρs) sin(2/3π) + (B − ρs) sin(4/3π)

(R − ρs) cos(0) + (G − ρs) cos(2/3π) + (B − ρs) cos(4/3π)

)

= arctan

(

1
2

√
3G − 1

2

√
3B

R − 1
2G − 1

2B

)

= arctan

( √
3(G − B)

(R − G) + (R − B)

)

(24)

identical to (23).

The polar coordinates are illustrated in figure (2). The hue polar angle θh

is invariant to the geometry and specularities: For a multispectral camera with

narrow-band filters, consider substitution of (11) in the term c(λi)− [1− ρs] of

(20) as

c(λi) − [1 − ρs] = mb(~n,~s)[cb(λi) − cb(λρ)] (25)

where cb(λρ) = min{c(λ1), · · · , c(λN )}. This term is clearly independent of

specularity term ms(~n,~s,~v). Moreover, the hue polar angle is independent of

shadows (i.e. assuming that the light in the shadow has the same spectral char-

acteristics as the light in the non-shadow area) and geometry as the substitution

of (25) in (20) gives

θh = arctan

(

∑N
i=1[cb(λi) − cb(λρ)] sin[φ(i,N)]

∑N
i=1[cb(λi) − cb(λρ)] cos[φ(i,N)]

)

(26)

independent of geometric term mb(~n,~s). Similar arguments hold for the white-

balanced spectral sharpened RGB-camera.

The distance between two hue polar angles θh,i, θh,j is computed as ∆(θh,i, θh,j)

where ∆ is defined in (17). Because the hue polar angle is independent of the ge-

ometry of the object and independent of shadows and specularities, the distance

between two hue polar angles is therefore photometric invariant as well.

3.3 Discussion

The distance between chromaticity angles, ∆(θc,i, θc,j), is a photometric in-

variant for shadows (i.e. assuming that a shadow area has the same spectral

characteristics as the light source) and the geometry of objects. Similarly, the

distance between hue-angles, ∆(θh,i, θh,j), is a photometric invariant to shadows,
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Figure 2: Polar coordinate representation of a spectrum depicted as a Euclidean

map. ρs encodes the saturation of the spectrum and θh encodes the hue. The hue

polar angle forms a unit half plane emanating from the origin in multispectral

space. The hue range from 0 · · · 4/3π is reserved for the colors ranging from red

(700 nm) through green (550 nm) to blue (400 nm). The range from 4/3π · · · 2π
(dashed part of the hue circle) represents purplish colors.
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the geometry and highlights (i.e. again assuming spectrally uniform illumina-

tion). These novel invariant measures come at the expense of requiring white

balancing.

4 Error Propagation

In general, the result of a measurement of a quantity u is properly stated as

û = ue ± σu (27)

where ue is the best estimate for the quantity u and σu is the uncertainty or error

in the measurement of u. Suppose that u, · · · , w are measured with correspond-

ing uncertainties σu, · · · , σw, and the measured values are used to compute the

function q(u, · · · , w). If the uncertainties in u, · · · , w are independent, random

and small, then the estimated uncertainty in q̂ [23] is

σq =

√

(

∂q

∂u
σu

)2

+ · · · +
(

∂q

∂w
σw

)2

(28)

The uncertainty in q is never larger than the ordinary sum

σq ≤
∣

∣

∣

∣

∂q

∂u

∣

∣

∣

∣

σu + · · ·
∣

∣

∣

∣

∂q

∂w

∣

∣

∣

∣

σw (29)

In fact, this equation is really the upper limit on the uncertainty as proofed by

Taylor [23]. Therefore, whether or not the errors in u, · · · , w are dependent (or

normally distributed), the uncertainty in q will never exceed the right side of

(29). Therefore, (29) can be used for independent and dependent errors and

will be used in the following sections to propagate noise through the polar angle

representations of spectra.

4.1 Propagation of Uncertainties due to Photon Noise

Modern CCD-cameras are sensitive enough to be able to count individual pho-

tons. Photon noise arises from the fundamentally stochastical nature of photon

production. The probability distribution for counting ρ photons during t seconds
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is known to follow the Poisson distribution. The number of photons measured

at pixel x is given by its average as

ĥ(x) = ρt ±
√

ρt (30)

Let σd denote the dark current uncertainty. Incorporating σd and the uncer-

tainty of (30) in (1) gives

c(x) ± σc(x) = γ[ρt ±
√

ρt] + [d(x) ± σd] (31)

Our interest is in computing σc(x). Let the dark current variance be denoted as

var(d) = σ2
d. Let the average image intensity measured over a homogeneously

colored patch be Î = γρt, then the associated variance var(Î) = γ2ρt We have

the linear relation between Î and var(Î) based on [19] as

var(Î) + var(d̂) = γÎ + var(d̂) (32)

Linear regression among some intensity-variance pairs gives a robust estimation

of the gain γ. It follows that the uncertainty in the number of photons measured

at an arbitrary pixel c(x) is given by

σ2
c (x) = [γ · c(x)]2 + σ2

d (33)

4.2 Propagation of Uncertainty

As stated before, in this paper, the Jain CV-M300 camera is used with 576 pixels

along the optical axis. We use the Imspector V7 spectrograph, from 410 nm to

700 nm, with wavelength interval of 5 nm. Then the number of spectral samples

obtained is 59. In fact, these 59 samples are recorded (uniformly spaced) over

the 576 pixels along the optical axis. Therefore, the pixels at position (x, λ) of

image h can be averaged in spectral direction by a uniform filter depending on

the number of pixels. Let K ′ = round(576/59). If K ′ is odd, then the size of

the filter K = K ′, else K = K ′ − 1. The averaged spectral image h′ is

h′(x, λ) =
1

K

yλ+bK/2c
∑

i=yλ−bK/2c

h(x, λi) (34)
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The uncertainty in a pixel value is propagated to the uncertainty in polar

angles as follows. First, it is assumed that the pixel values in the spectral image

are dependent. Therefore, using (29) instead of (28), the uncertainty due to the

smoothing operation of (34) reduces to

σ2
h′(x, λ) =

1

K

yλ+bK/2c
∑

i=yλ−bK/2c

σ2
h(x, λi) (35)

From (11) it follows that the uncertainty in the white-balanced camera output

is

σ2
c′(x, λi) =

c2(x, λi)σ
2
w(x, λi) + w2(x, λi)σ

2
c (x, λi)

w4(x, λi)
(36)

where c′ denotes the white-balanced camera output and c denotes the observed

camera output. w denotes the output for the white matte reference standard.

For the general function q(u, v) = arctan(u/v) where the parameters u, v are

dependent and have associated uncertainties σu, σv, the uncertainty in output

σq is obtained using (29) as

σq ≤
∣

∣

∣

∣

vσu

u2 + v2

∣

∣

∣

∣

+

∣

∣

∣

∣

uσv

u2 + v2

∣

∣

∣

∣

(37)

The function is shown in figure (3). Large uncertainties occur if u and v both

approach the value zero. The polar angles of (14) are inter-dependent as each

angle is obtained by division through the same value θ(λN ). The uncertainty

in chromaticity polar angle of (14) therefore follows straightforward from (37)

by substituting u = c(λi), v = c(λN ), and where both σu and σv are obtained

from (36).

To obtain an estimate of the uncertainty of the hue polar angle, consider the

term c(λi)− [1−ρs] of (20). The parameters c(λi) and ρs are assumed indepen-

dent because the reflectance factor c(λi) is assumed to be obtained independent

from the reflectance factor ρs = 1−min{c(λ1), · · · , c(λN )}. Thus, the resulting

uncertainty is obtained using (28) as

σ2
c−[1−ρ](λi) = σ2

c (λi) + σ2
ρ (38)

The uncertainty for the hue polar angle of (20) follows from (22). The ex-

act number generated by (21) has no associated uncertainty, and therefore
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Figure 3: Uncertainty in the function arctan(u/v) as function of u and v. The

uncertainties σu and σv are set equal to one. Large uncertainties occur if both u

and v approach the value zero, indicating the instability of the function around

the origin.
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sin[φ(i,N)] has no associated uncertainty. However, the weights wi = c(λi) do

have uncertainty σc(λi), again specified by (36). The individual terms wi sin(θi)

are considered independent, because the reflectance factor wi = c(λi) is assumed

to be obtained independent from the reflectance factor at wavelength wj = c(λj).

Therefore, the uncertainty of the enumerator term u =
∑

i wi sin(θi) is

σ2
u =

∑

i

(σc(λi) · sin[φ(i,N)])2 (39)

A similar argument holds for the denominator term u =
∑

i wi cos(θi) yielding

σv. The uncertainty for (22) is then obtained by straightforward substitution

of u, σu and v, σv in (37).

In summary, the uncertainty in the reflectance factors of a spectrum is de-

termined in theory by converting a pixel color value into the number of photons

counted at that pixel. Under the assumption that counting photons follows

a Poisson distribution, the uncertainty associated with a pixel value is deter-

mined. The obtained uncertainty is propagated to the uncertainty in the two

polar angle representations of the spectrum.

5 Photometric Invariant Region Detection by

Clustering

In section 2, it was shown that uniformly colored objects of matte material draw

half-rays in RGB and multispectral color space due to changes in the surface

orientation, illumination intensity, and shading. In section 3, it was derived

that the distance from a spectrum to such half-ray is a photometric invariant.

Furthermore, in section (4), we derived for the i-th spectrum ~ci, i = 1, · · · , n that

the uncertainty ~σi can be obtained using (36). In this section, the uncertainty of

the polar angle representations will be incorporated into the image segmentation

scheme.
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5.1 Robust K-means Clustering

Let a multispectral image consist of spectra ~ci, i = 1, · · · , n, with corresponding

uncertainties ~σi. The well-known K-means clustering method [7] segments the

image by minimizing the squared error criterion. A clustering is a partition

[~v1, · · · , ~vK ] that assigns each spectrum to a single partition ~vj , 1 ≤ j ≤ K. The

spectra assigned to ~vj form the j-th cluster. In this paper, we assume that the

number K is given.

We compute the cluster center as the weighted average [23]. If M spectra

~ci with corresponding uncertainties ~σi, i = 1, · · · ,M , are assigned to a cluster,

then the weighted average is computed as

~v =

∑M
i=1 ~wi · ~ci
∑M

i=1 ~wi

(40)

where the weights are the inverse squares of the uncertainties

~wi =
1

~σi · ~σi
(41)

Since the weight attached to each measurement involves the square of the corre-

sponding uncertainty σi, any measurement which is much less precise than the

others contributes very much less to the final answer (40). With ~ci the series of

M spectra assigned to the j-th cluster, and with ~vj the weighted average of the

spectra, the squared error for the j-th cluster is:

e2
j =

M
∑

i=1

(~ci − ~vj) · (~ci − ~vj) (42)

and the squared error for the clustering is:

E2 =

K
∑

i=1

e2
i (43)

The objective of the K-means clustering method is to define, for given K, a

clustering that minimizes E2 by moving spectra from one cluster to another.

5.2 Photometric Invariant Segmentation

To obtain photometric invariant region detection, in this paper, we propose to

cluster on K straight lines from the origin. Assume that the N -dimensional
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spectrum ~c is described by (12) with associated uncertainty ~σc obtained from

(36). The spectrum is transformed to chromaticity polar angles ~θ by (14) with

associated uncertainty ~σθ obtained from (37).

To cluster in polar angle space, the angular distance of (16) replaces (42)

and the weighted angular average of (22) replaces (40). Given K clusters v, the

spectrum is then assigned to the closest cluster. In the next step of the clustering

algorithm, new partitions are obtained by moving spectra from one cluster to

another. Kender [15] pointed out that color space transforms are unstable for

sensor input values near the singularity. As is clear from (37), the instability of

the polar angle transformation is the drawback of the polar angle representation

of the spectrum. The instability is dealt with by updating the cluster by the

weighted sum as defined by (22) where the weights wj are derived by (41). In

other words, transformed polar angles with higher uncertainty contribute much

less to the final estimate of the cluster than polar angles with small uncertainty.

It was shown that the chromaticity polar angle representation is invariant to

changes in the geometry of a uniformly colored object. Therefore, clustering

in chromaticity polar angle space yields regions invariant to the geometry. In

conclusion, using the uncertainties, we obtain segmentation results invariant to

photometric effects and robust against noise.

Similarly, to find homogeneously colored surfaces from glossy materials, we

cluster in the hue polar angle representation. For shiny surfaces, the spectrum

is transformed to the hue polar angle θh by (20) with associated uncertainty

σθh
obtained from (37). Given K clusters, the distance from the cluster υj to

the spectrum is derived by (16). The spectrum is then assigned to the closest

cluster υi. The instability of the polar angle transformation is again dealt with

by updating the cluster using the weighted sum (Equation (22)). In other

words, transformed polar angles with higher uncertainty contribute much less

to the final estimate of the cluster than polar angles with small uncertainty. In

conclusion, it was shown that the hue polar angle representation is invariant to

changes in the geometry and specularities. Therefore, clustering in hue polar

angle space yields regions invariant to the geometry and specularities. Using the
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weighted sum for the updating of cluster centroids achieves robustness against

noise.

6 Experiments

All multispectral images are grabbed using a Jain CV-M300 monochrome CCD-

camera, Matrox Corona Frame-grabber, Navitar 7000 zoom lens and Imspector

V7 spectrograph under 500 Watt halogen illumination. The RGB images are

grabbed using a Sony 3CCD color camera XC-003P and four Osram 18 Watt

“Lumilux deLuxe daylight” fluorescent light sources.

To estimate the values of the electronic gain parameter γe (2) and the value

of the dark current variance of (32) for the monochrome camera, 19 images

are taken of a white reference while varying the lens aperture such that each

image has a different intensity as shown in figure (4). A line is fitted through

the intensity-variance data yielding an electronic gain of γ = 0.0069, and dark

current variance of σ2
d = 0.87.

The RGB-camera has a white-balancing option. The goal is therefore to

establish the overall value of the camera gain γi where i ∈ {R,G,B}. To that

end, 26 images are taken of a white reference while repeating the procedure to

obtain different intensity images. The data are shown in figure (5). Fitting three

lines through a common origin yield a camera gain of γR = 0.040, of γG = 0.014,

of γB = 0.021 and dark current variance σ2
d = 2.7.

6.1 Propagation of Uncertainties in Transformed Spectra

Models were proposed in (33, 35, 36) to estimate uncertainties resulting from

sensor noise in a spectrum for white-balanced camera systems. The goal of the

experiment is to verify empirically the validity of the equations. Therefore, five

multispectral images are taken from uniformly colored sheets of paper such that

the entire spectral image exhibits one single color. The colors are red, yellow,

green, cyan and blue.
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Figure 4: Visualization of the fitted line var(I) = γI + var(d) for the Jain

monochrome camera.
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Figure 5: Visualization of the fitted lines var(Ii) = γiIi + var(d) where i ∈
{R,G,B} for the Sony color camera. Diamonds correspond to the red color

channel, squares to green and circles to blue.
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Using the gain parameters, the uncertainty in the white-balanced camera

output σ̂c(λ) can be estimated (33). The estimated uncertainties are averaged

for each wavelength over the spatial range as

σ̂c(λ) =
1

M

M
∑

i=1

σc(xi, λ) (44)

for M pixels along the one-dimensional spatial axis of the multispectral image.

The real uncertainty is derived from the standard deviation of reflectance factors

c(λ) over the spatial range as

σ2(λ) =
1

M − 1

M
∑

i=1

(c(xi, λ) − c(λ))
2

(45)

where c(λ) denotes the average reflectance factor. The absolute difference

δ(σ̂(λ), σ(λ)) between the real and estimated error is obtained as

δ(σ̂c(λ), σc(λ)) = |σ̂c(λ) − σc(λ)| (46)

and then averaged over the wavelength range as

δ(σ̂, σ) =
1

N

N
∑

i=1

δ(σ̂c(λi), σc(λi)) (47)

where N denotes the number of samples taken in the wavelength range. Due to

the low sensitivity of the CCD-camera and low transmittance of the illuminant

at lower wavelengths, the uncertainty is greater at the lower wavelengths than

at higher wavelengths. The reflectance of a spectrum at a certain wavelength

is expressed as the reflectance factor c(λ) taking on values between 0 and 1.

The difference between the estimated and real uncertainty in the reflectance

factor is given in table (1) and is approximately 0.01, corresponding to one

percent. Therefore, the table shows a very reasonable correspondence between

the measured and real uncertainty. This conclusion can be confirmed visually

by examination of figure (6).

The estimation of the uncertainty in the chromaticity and hue polar angles

by (37) is verified empirically in a similar way. The average of a series of M
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Figure 6: Yellow paper. Experiment: Comparison of the estimated uncertainty

(dashed line) versus the real uncertainty (solid line) of the reflection factors for

a yellow paper.
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multispectral

color δ(σ̂(λ), σ(λ)) (46), Eq. (47)

red 0.011 ± 0.011

yellow 0.011 ± 0.011

green 0.009 ± 0.011

cyan 0.008 ± 0.011

blue 0.006 ± 0.011

Table 1: Results differentiated for the estimated and real uncertainties in re-

flectance factors after the white-balancing operation for multispectral images of

uniformly colored paper as indicated.

angular values θi, i = 1, · · · ,M , with equal weights wi is computed using (22)

and is denoted θ. The standard deviation is computed as

σθ =
1

N − 1

N
∑

i=1

[

∆(θ, θi)
]2

, 0 ≤ θ, θi < 2π (48)

where ∆ is defined by (17). Similarly, the difference ∆(σ̂θ(λ), σθ(λ)) between

the real and estimated error between chromaticity angles at a certain wavelength

is obtained using (17). The results are averaged over the wavelength range as

δ(σ̂θ, σθ) =
1

N

N
∑

i=1

∆(σ̂θ(λi), σθ(λi)) (49)

The results of the experiment are given in table (2). The dimension of chro-

maticity polar angles is the number of spectral samples minus one. The second

column of the table specifies the results for the spectrograph. The results are

averaged over 58 chromaticity angles, therefore the standard deviation is given

as well. The third column specifies the results for the RGB-camera averaged

over 2 chromaticity angles. The chromaticity angles are in the range of zero

to 90 degrees, the difference between the estimated and real uncertainty is less

than one percent. Consequently, there is a very reasonable correspondence be-

tween the measured and real uncertainty. A more detailed example is given in

figure (7) for the results for the yellow color.
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multispectral RGB

color δ(σ̂θ, σθ) δ(σ̂θ, σθ)

red 0.6 ± 0.8 1.26

yellow 0.5 ± 0.7 0.01

green 1.6 ± 2.4 0.36

cyan 0.7 ± 0.7 0.11

blue 0.9 ± 1.1 0.07

Table 2: Results differentiated for the estimated and measured uncertainties in

chromaticity polar angles using (49).

multispectral RGB

color δ(σ̂θ, σθ) δ(σ̂θ, σθ)

red 0.7 1.1

yellow 0.4 0.5

green 2.1 1.8

cyan 0.5 0.7

blue 1.7 0.5

Table 3: Results differentiated for the estimated and measured uncertainties in

hue polar angles using (17).

Similarly, for the hue polar angle, the results are given in table (3). The

hue angles are in the range of zero to 360 degrees, the difference between the

estimated and real uncertainty is less than one percent. Consequently, there is

a very reasonable correspondence between the measured and real uncertainty.

6.2 Photometric Invariant Clustering

Multispectral Images Figure (8a) shows a multispectral image of a textile

sample. The spectral information is on the vertical axis. The top of the pic-

ture corresponds to 410 nm, the bottom to 700 nm. The left-hand side of the
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Figure 7: Yellow paper, uncertainty in chromaticity angle. The absolute dif-

ference averaged over the wavelength range is 0.5 ± 0.7 degrees.
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(a) (b)

Figure 8: (a) shows a multispectral image of a textile sample. The spatial in-

formation is on the horizontal axis, the spectral information is on the vertical

axis. The top corresponds to 410 nm wavelength, the bottom to 700 nm wave-

length. The left hand side of the image is colored homogeneously red, the right

hand side is colored green. The structure of the textile is visible through the

intensity fluctuations occurring in the further homogeneous spectra. (b) shows

the spectra of two plastic objects. The left hand side object is colored orange,

the right hand side object is green. The objects are smooth and structure-less,

but reflect specularities showing up as the vertical bright streaks in the spectral

image. Furthermore, the intensity of the spectra gradually reduces towards the

right hand side of the image due to a change in the surface orientation of the

objects.
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Figure 9: Result of clustering in the chromaticity polar angle space for the mul-

tispectral image shown in figure (8a). The result is shown for the angle between

the 510-nm and 710-nm wavelength. The spectra form half-rays due to the ge-

ometry changes of the structure of the textile. Fitting of half-rays through the

chromaticity angle representation results in invariance for shadows and surface

orientation changes.
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Figure 10: Result of clustering in hue polar angle space for the image shown in

figure (8b). Clustering in hue polar angle representation results in independence

to the highlights and surface orientation changes.
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image is from homogeneously red colored textile, the right-hand side is colored

green. The structure of the textile is visible in intensity fluctuations occurring

in otherwise homogeneous spectra. The result of clustering in the chromaticity

polar angle space is shown in figure (9). The figure shows how the spectra form

half-rays due to the geometry changes of the structure of the textile. Fitting of

half-rays through the chromaticity angle representation results in invariance for

shadows and surface orientation changes.

Figure (8b) shows the spectra of two plastic objects. The left-hand side

object is colored orange, the right-hand side object is green. The objects are

smooth and structure-less, but reflect specularities showing up as the vertical

bright streaks in the spectral image. Furthermore, the intensity of the spectra

gradually reduces towards the right hand side of the image due to a change

in the surface orientation of the objects. The result of clustering in hue polar

angle space is shown in figure (10). Clustering in hue polar angle representation

results in independence to the highlights and surface orientation changes.

RGB images Figure 11 shows a RGB-image of several toys against a back-

ground consisting of four squares. The upper-left quadrant of the image consists

of three uniformly painted matte cubes of wood. The upper-right quadrant con-

tains two specular plastic donuts on top of each other. In the bottom-left quad-

rant a red highlighted ball and a matte cube are shown while the last quadrant

contains two matte cubes. Each individual object is painted uniformly with

a distinct color. The image is contaminated by noise, shadows, shading, and

specularities.

In figure (11b) the segmentation result is shown obtained by the K-means

clustering method in RGB-data. False regions are detected due to abrupt sur-

face orientations, shadows, inter-reflections and highlights. In contrast, the re-

sult of clustering in the chromaticity polar angle space is shown in figure (11c).

Regions are detected insensitive for shadows and surface orientation changes

but are affected by highlights. The result of clustering in hue polar angle space

is shown in figure (11d). Here, computed region edges correspond to material
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Figure 11: Segmentation results for the K-means clustering method. a. RGB-

image b. Cluster model is a point, region detection is sensitive to intensity

changes, shadows, geometry, highlights and color transitions. c. Cluster model

is a half-ray, region detection is sensitive to highlights and color transitions. d.

Cluster model is a triangularly-shaped plane, region detection is sensitive only

to color transitions.
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boundaries discounting the disturbing influences of surface orientation, illumi-

nation, shadows and highlights. The difference between figures (11c) and (11d)

is the invariance of the latter to the specularities reflected at the red ball.

7 Discussion

We have combined a camera and image formation model to describe how light

reflected by an object results in the observed sensor value. Based on the models,

we then investigated how uniformly colored objects draw clusters in multispec-

tral color space. We showed that uniformly colored objects of matte materials

draw half-rays in multispectral color space due to changes in the surface orienta-

tion, illumination intensity and shading. In contrast, due to specularities, shiny

objects will draw triangularly-shaped planes in multispectral space. Therefore,

we investigated computational models to detect clusters where the cluster shape

is modeled as either a half-ray or a triangularly-shaped plane. To that end,

different distance measures were proposed. The polar angular representations

elegantly allow for photometric invariant detection of both matte and shiny sur-

faces. However, we also showed that the polar angle representation may become

unstable in the presence of sensor noise, a problem shared by other photometric

invariant color spaces. To overcome this effect, we examined, in theory and in

practice, the propagation of sensor noise to the computation of the polar angles.

Taking the simplicity of our camera, noise and error propagation models into

account, we showed that a neat correspondence exists between the estimated

and real uncertainties. The estimated uncertainty was employed in the region

detection method to be robust against sensor noise. Finally, we verified em-

pirically that uniformly colored regions are detected by the proposed clustering

method invariant to surface orientation changes, shadows and highlights.

38



Acknowledgments

The authors are grateful to the anonymous reviewers for their valuable com-

ments.

References

[1] D. Andoutsos, K. N. Plataniotis, and A. N. Venetsanopoulos. A novel

vector-based approach to color image retrieval using a vector angular dis-

tance measure. Computer Vision and Image Understanding, 75(1/2):46–58,

1999.

[2] R. Bajcsy, S. W. Lee, and A. Leonardis. Color image segmentation with

detection of highlights and local illumination induced by inter-reflections.

In Proceedings of 10th ICPR, pages 785–790, Atlantic City, NJ, 1990.

[3] S. Baronti, A. Casini, F. Lotti, and S. Parcinai. Multispectral imaging

system for the mapping of pigments in works of art by use of principal-

component analysis. Applied Optics, 37:1299–1309, 1998.

[4] P. Bui-Tuong. Illumination for computer generated pictures. Communica-

tions of the Association of Computing Machinery, 18(6):311–317, 1975.

[5] P. D. Burns and R. S. Berns. Error propagation analysis in color measure-

ment and imaging. Color Research Applications, 22(4):123–129, 1997.

[6] M. Celenk. A color clustering technique for image segmentation. Computer

Vision, Graphics, and Image Processing, 52:145–170, 1990.

[7] R. Dubes and A. K. Jain. Clustering techniques: The user’s dilemma.

Pattern Recognition, 8:247–260, 1976.

[8] G. D. Finlayson, M. S. Drew, and B. V. Funt. Spectral sharpening: Sensor

transformation for improved color constancy. Journal of Optical Society of

America, A, 11:1553–1563, 1994.

39



[9] Th. Gevers and A. W. M. Smeulders. Color based object recognition.

Pattern Recognition, 32:453–464, 1999.

[10] Th. Gevers and A. W. M. Smeulders. Pictoseek: Combining color and shape

invariant features for image retrieval. IEEE Trans. on Image Processing,

9:102–119, 2000.

[11] H. Haneishi, T. Hasegawa, N. Tsumura, and Y. Miyake. Design of color

filters for recording artworks. In Proceedings of the IS&T’s 50th Annual

Conference, pages 369–372, Springfield, Va., 1997.

[12] M. Hauta-Kasari, K. Miyazawa, S. Toyooka, and J. Parkkinen. Spectral

vision system for measuring color images. Journal of the Optical Society of

America A, 16(10), 1999.

[13] G. Healey. Segmenting images using normalized color. IEEE Transactions

on Systems, Man and Cybernetics, 22(1):64–73, 1992.

[14] S. Kawata, K. Sasaki, and S. Minami. Component analysis of spatial and

spectral patterns in multispectral images. Journal of the Optical Society of

America A, 4:2101–2106, 1987.

[15] J. R. Kender. Saturation, hue and normalized color: Calculation, digitation

effects, and use. Technical report, Carnegie-Mellon University, November

1976.

[16] G. J. Klinker, S. A. Shafer, and T. Kanade. A physical approach to color im-

age understanding. International Journal Computer Vision, 4:7–38, 1990.

[17] H. Levkowitz and G. T. Herman. Glhs: A generalized lightness, hue and

saturation color model. Computer Vision, Graphics, and Image Processing:

Graphical Models and Image Processing, 55(4):271–285, 1993.

[18] J. Liu and Y-H. Yang. Multi-resolution color image segmentation. IEEE

Transactions Pattern Analysis and Machine Intelligence, 16(7):689–700,

1994.

40



[19] J. C. Mullikin, L. J. van Vliet, H. Netten, F. R. Boddeke, G. van der

Feltz, and I. T. Young. Methods for ccd camera characterization. In H. C.

Titus and A. Waks, editors, SPIE Image Acquisition and Scientific Imaging

Systems, volume 2173, pages 73–84, 1994.

[20] Y. Ohta, T. Kanade, and T. Sakai. Color information for region segmen-

tation. Computer Graphics and Image Processing, 13:222–241, 1980.

[21] L. Shafarenko, M. Petrou, and J. Kittler. Histogram-based segmentation

in a perceptually uniform color space. IEEE Transactions on Image Pro-

cessing, 7(9):1354–1358, September 1998.

[22] S. A. Shafer. Using color to separate reflection components. Color Research

Applications, 10(4):210–218, Winter 1985.

[23] J. R. Taylor. An Introduction to Error Analysis. University Science Books,

Mill Valley, CA, 1982.

[24] S. Tominaga. Multichannel vision system for estimating surface and illu-

mination functions. Journal of the Optical Society of America A, 13:2163–

2173, 1996.

[25] S. Tominaga. Spectral imaging by a multichannel camera. Journal of

Electronic Imaging, 8(4):332–341, October 1999.

[26] L. Wolff, S. A. Shafer, and G. E. Healey, editors. Physics-based vision:

principles and practice, volume 2. Jones and Bartlett, Boston etc., 1992.

41


