Skin detection using the EM algorithm with spatial
constraints *

A. Diplaros

T. Gevers

N. Vlassis

Informatics Institute, University of Amsterdam
The Netherlands
{diplaros,gevers,vlassis } @science.uva.nl

Abstract — In this paper, we propose a color-based method
for skin detection and segmentation, which also takes into
account the spatial coherence of the skin pixels. We treat the
problem of skin detection as an inference problem. We as-
sume that each pixel in an image has a hidden binary label
associated with it, that specifies if it is skin or not. In order
to solve the inference problem ,we use a variational EM al-
gorithm which incorporates the spatial constraints with just
a small computational overhead in the E-step. Finally, we
show that our method provides better results than the stan-
dard EM algorithm and a state-of-art skin-detection method
from the literature [9].
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1 Introduction

Skin color is considered to be a useful and discriminating
image feature for face and people detection, localization, and
tracking [1] [2] [3]. Like in almost any other computer vision
research field, confounding imaging conditions (e.g., change
of illumination, shadows, shading and highlights) compli-
cate the skin detection problem. In addition, the color of
skin may vary among people. Furthermore, for the same per-
son the skin color differs significantly [10] both in place (i.e.
face versus hands) and in time (i.e. after long sun exposure).
Numerous techniques for skin color modelling and detection
have been proposed [8].

There are three broad categories of methods for skin de-
tection and segmentation. The fist category of methods uses
explicit rules on the color values [14] [13]. In general, these
methods are very simple to implement and computationally
inexpensive. However, they are very rigid and cannot cope
with the complexity of the problem.

The second category uses an nonparametric model for skin
color distributions. These methods estimate the skin color
distribution from the training data without deriving an ex-
plicit model of the skin color [9] [15]. This category includes
methods that build and use the skin distribution map (SMP),
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which is the discrete probability distribution of observed col-
ors are skin. These methods are fast, but, require signifi-
cant storage space. Furthermore, their performance depends
heavily on the selection of the training set.

The third category uses parametric models for the skin
color distributions. These models usually consist of a Gaus-
sian or a mixture of Gaussians and offer a more compact
skin representation along with the ability to generalize and
interpolate the training data. For example in this cate-
gory falls [11] [12], where, the "perceptually plausible hue-
saturation chrominance space” TSL (Tint, Saturation, Light-
ness) is introduced in order to model skin pixels samples
compactly by only one gaussian.

Except for the methods in the first category, almost all
other methods build an extra non-skin model. In this case,
the image pixels are detected as skin by comparing (using
the likelihood ratio) which of their color’s probability, of be-
ing skin or non-skin, is higher.

All these methods use a number of images to build their
models (or derive rules) in order to detect skin pixels in an
image. For a particular image the model will not coincide
with the actual distribution. An interesting research direc-
tion is the combined problem of skin detection and model
learning for an image. This is the problem we address in this
paper. In particular using an initial skin color model, we try
to estimate the actual skin color distribution in an image and
learn the non-skin distribution.

The rest of the paper is organized as follows. In Section 2
we present the motivation of our approach. Section 3 de-
scribes the algorithm. In Section 4, experimental results are
presented. Finally, conclusion are drawn.

2 Skin detection and the EM algo-
rithm

In this paper, we treat the skin detection problem as an in-
ference problem with hidden variables, for which we use the
EM algorithm [4] . In particular, we assume that each pixel ¢
has an associated label with it. The associated label is a bi-
nary variable s; € {0, 1} that specifies whether that pixel is
skin (s; = 1) or not (s; = 0). Of course, when we are given



an image we do not know a priori those labels (i.e. they are
hidden). Instead, we only receive some observation for each
pixel ¢ in the form of a color vector ¢; = [r, g, b];. Addition-
ally, we may have an observation model p(c;|s;) that relates
an observed pixel color with the corresponding pixel label
(e.g., a multivariate Gaussian or a mixture of Gaussians), or
we can try to learn such a model from the data. The prob-
lem of skin detection is how to infer the hidden pixel labels
s; from the observed pixel colors c;, which may or may not
involve learning the model parameters.

A simple approach to the problem would be to treat each
pixel independently of the other and to apply the standard
EM algorithm for independent and identically distributed
(iid) data in order to infer the pixel labels and (potentially)
learn the model parameters [9]. However, such an approach
may give suboptimal results because it neglects the correla-
tions between the labels of neighboring pixels. For instance,
if there is a face in the image, these face pixels are spatially
constrained to be skin pixels.

A more principled approach to incorporate such spatial
constraints into the EM algorithm would be to model the
pixel labels using a hidden Markov random field (HMRF).
This approach assumes a joint prior distribution p({s;}? ;)
over all n pixel labels (typically parametrized by some un-
known parameter) that gives high probability to configura-
tions where neighboring pixels have similar labels. However,
a well-known problem with using a HMRF for modeling and
solving an image segmentation problem is its computational
complexity: typically, an iterative procedure is required for
computing (approximate) posterior distributions for the pixel
labels [5].

Our approach lies somewhere in the middle of these two
extremes. It provides a simple way to take into account the
correlations between the labels of neighboring pixels, while
avoiding the heavy computation cost of the HMRF.

3 Incorporating spatial constraints
with a variational EM algorithm

The idea behind our method is to treat the pixel labels as
independent random variables from a common prior distri-
bution p(s;) (which we are going to learn by the EM algo-
rithm), but constrain their posterior distributions (computed
in the E-step of the EM algorithm) according to the spatial
dependencies between pixels. In particular, we define a log-
likelihood function:

L(6) = Z log ZP(QM)P(&) 1
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where the parameter § summarizes all unknown parameters
in the model. These unknown parameters are learned by the
EM algorithm. For example, § may include the prior prob-
ability of the skin model component (vs. the non-skin), as
well as the parameters of the two (skin and non-skin) mix-
ture components.

In order to capture the spatial constraints of the pixel la-
bels into an EM algorithm, we employ a variational approx-
imation in which we maximize in each step a lower bound
of £(#) [6, 7]. This bound F(0,Q) is a function of the
current mixture parameters 6 and a factorized distribution
Q = [Ii-, ¢i(s;), where each ¢;(s;) corresponds to pixel
1 but defines an otherwise arbitrary discrete distribution over
s;. For a particular realization of s; we will refer to ¢;(s;) as
the responsibility of label s; for the pixel :.

This lower bound, analogous to the (negative) variational
free energy in statistical physics, can be expressed by the
following two (equivalent) decompositions

S
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where D(- || -) denotes the Kullback-Leibler divergence be-
tween two distributions, and p(s;|¢;) is the posterior distri-
bution over components of a data point ¢; computed by ap-
plying the Bayes’ rule:

p(cilsi)p(si)
pla)
The dependence of p on 6 is throughout assumed, although
not always written explicitly.

Since the Kullback-Leibler divergence between two distri-
butions is non-negative, the decomposition (2) defines indeed
a lower bound on the log-likelihood. Moreover, the closer
the responsibilities g;(s;) are to the posteriors p(s;|c;), the
tighter the bound. In particular, maxima of F are also max-
ima of £ [6]. In the original derivation of EM [4], each E
step of the algorithm sets ¢;(s;) = p(s;|c;) in which case,
and for the current value #* of the parameter vector, holds
F(0t,Q) = L(6"). However, other (suboptimal) assign-
ments to the individual ¢;(s;) are also allowed provided that
F increases in each step.

For particular values of the responsibilities g;(s), we can
solve for the unknown parameters of the mixture by using
the second decomposition (3) of F. It is easy to see that
maximizing F for the unknown parameters of a component
s yields the following solutions:

“
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An attractive property of the variational EM framework is
that in each step of the algorithm we are allowed to assign
any responsibility distribution ¢;(s;) to individual pixels as
long as this increases the energy F.



Figure 1: Our test image which contains multiple objects,
shadows, and specularities.

In summary, our variational EM algorithm is as follows:

1. (Initialization) Start with a random guess for the param-
eter vector 6.

2. (Standard E-step) Compute the Bayes posterior proba-
bilities using Eq. 4 over pixel labels given the pixel col-
ors (as if the pixels were iid samples) given the current
estimate of 6.

3. Smooth the responsibilities of neighboring pixels by ap-
plying a local filter on the set of assigned posteriors (and
then renormalize if needed). An efficient way to do this
is to represent the set of assigned responsibilities as an
image and apply a standard Gaussian smoothing filter.

4. (Standard M-step) Use the smoothed responsibilities in
order to update the parameter 6 as in standard EM [4].
If convergence stop else go to step 2.

The main difference of our approach with HMREF is that
instead of imposing a composite prior over the hidden vari-
ables and infer their posteriors using some (typically mean-
field like) approximation, here we impose a very easy (multi-
nomial) common prior which we learn by the EM algorithm,
and constrain the posteriors via the spatial dependencies of
the pixels and through control of the energy F.

4 Demonstration

In order to demonstrate the effectiveness of our method
we have conducted a skin segmentation experiment. In this
experiment we assume that each component of the mixture
is a multivariate Gaussian, where the skin model component
is known and fixed. Our task is to learn the prior distribution
p(s) of the two components, skin and non-skin, while at the
same time infer the pixel labels p(s;).

We have employed the skin color model of [9] which is a
mixture of 16 Gaussians in the RGB color space. We have
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Figure 2: Skin segmentation example: (a) the segmentation
result obtained with the standard EM algorithm, (b) the seg-
mentation results obtained by [9] with parameter O set to 0.4
and (c) the segmentation result obtained by our algorithm.



mapped this model into the rb channels of the normalized-
rgb color space (chromaticity) where the skin component
model can be adequately described using only one two-
dimensional Gaussian. For simplicity, we also used one
Gaussian to describe the non-skin component (which we
learn with the EM).

Fig. 1 shows our real-world test image, which contains
multiple objects, shadows, and specularities. Fig. 2(a) shows
the skin segmentation results using the standard EM algo-
rithm (without the smoothing step 3). Note that the specular-
ities and shadows are incorrectly classified as skin. Fig. 2(b)
shows the skin segmentation results obtained by [9]. This
method takes a user-defined parameter © which we set to
0.4 (same as used in their examples). As we can see from the
image and is also stated in [9] this method “tends to fail on
highly saturated or shadowed skin”. Fig. 2(c) shows the re-
sults of our algorithm. The results clearly show that our algo-
rithm has correctly classified the majority of the skin pixels
in the image, with the exception of a tiny, deeply shadowed
skin region at the tip of the pointing finger.

5 Conclusions

We have proposed a method for skin detection and seg-
mentation with concurrent model learning. The method in-
corporates the spatial constraints into the EM algorithm with
just a small computational overhead in the E-step of the stan-
dard EM algorithm. Our experimental results shows that our
method provides better detections results than two standard
methods.
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