
�����
���	��

�������

�����
������

�������

Small sets in pluripotential theory
(Joint work with Armen Edigarian)

Jan Wiegerinck,
University of Amsterdam

– p. 1/30



Potential theory in
Harmonic function

�

on an open set in :

� Locally: real part of holomorphic function ;

� Solution of

� � � � � ���� � � ���� � 	 � 	 � 


;

� Mean Value Equality� ��� 	 � 
���
��� � ��� �� �� 	� �

.

Subharmonic function : upper semicontinuous and

(as distribution)

Mean Value Inequality
.
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Properties

� �� � � � SH .
Potential of �:

� � 	 � � �� � � � � �� � � � 	
in SH for

� � 


a reasonable measure.
Riesz: Every � � SH is (locally) the sum of a
harmonic function and a potential.

POTENTIAL THEORY!
Potential leads to:
Energy of compactly supported :

.
Capacity of compact :

Cap
Supp
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Small sets in potential theory
Sets of capacity 0 are the small sets.

� . Equivalent are

� Cap

� 	 � 


;

� � � � SH s.t.

� � � � � , i.e. is polar;

� Every bounded from harmonic function on

�

extends harmonically to .

If SH s.t. , then is called
complete polar.

complete polar iff polar and a (countable
intersection of opens)
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Dirichlet problem
a domain in . Given a (continuous) function � on

�

, find harmonic

�

on with bdry values �.
Solvable ?

Almost!
SH on

Perron family for . Perron solution:

solves the Dirichlet problem, except that the bdry
values may be incorrect at an exceptional .
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� is polar;

� �

is thin at points of

�

thin at

�

if

� � � �

or

�

a nbhd � and � � SH

�
�

	

�� � � ��
� � �

� � 	 
 �

�
�� 	 � �
� � 	

�

closed in , . Harmonic measure

SH
“at”
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pluripotential theory

� � � � �

.

plurisubharmonic ( PSH ) if SH
and complex line passing through ,

SH .
, and PSH , fast.

PSH , PSH ;

and are in PSH ;

PSH ;

Invariant under holomorphic change of variables

.
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small sets

� � �

is called pluripolar in the domain if

� � � PSH with

� �
� � � .

� � �

is called complete pluripolar in if

� � � PSH

� 	

s.t. � � � � � � �� 	 � �

�

.

Thm.[Josefson, 1978] Suppose is locally pluripolar
in . Then PSH s.t. .

How about complete pluripolarity?
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Basic notions

In

�

global phenomena:� � � � � � �
�

� � 
 �

, � � � � 
 �

; then� �
� � � � ��� � � .

Pluripolar hull of a pluripolar set in :

PSH

Thm. [Zeriahi, 1989] Let be a pluripolar in a
(pseudo)convex domain . If and is

and , then is complete pluripolar in .
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pluri-thinness
Let
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Questions

Sadullaev’s questions, (1981):
1. Is pluri-thin at ?
( ).
2. Is pluri-thin at ?
Question: Let . Suppose ,
its graph. Is complete pluripolar in (or in a
domain containing )?
No, if has an analytic continuation.
Levenberg-Martin-Poletsky, (1992):
Let on its domain of holomorphy .
Is the graph complete pluripolar in ?
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Answers

Sadullaev’s question

1. Yes;

�
�

	��� � � �. (Levenberg-Poletsky, 1999)

2. Yes;

�� � , is complete pluripolar in

�

.
(W., 2000)

L-M-P-question: Support from results on lacunary
series (Sadullaev, L-M-P), (2) and

Thm. [W., 2000] Let be a domain in and let
have no limit points in . If

has singularities in that cannot be
removed, then is complete pluripolar in .
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The answer to L-M-P is NO

Thm. 1 Let be domains in , such that
has a limit point in .

Then with domain of existence such
that is not complete pluripolar in .

Thm. 2 and s.t.

(1)

is on , is nowhere extendible over , while
is not complete pluripolar in .
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Thm. [Siciak]

� �
�

�

in Thm. 6 can be chosen
s.t. � � � �� �� 	

. Moreover

� �� ���
	�� � � �� ��� ���� � 	 �

Zwonek expanded on the E-W and Siciak examples
showing that there exist , not extendible,
but contains any finite number of points over
certain boundary points of .
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Main results

: domain in , : closed polar in ;
: limit points of in .

Thm. 7 If , then is
complete pluripolar in .
If does not extend holomorphically over , then

is complete pluripolar in .
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Main results ctd

Thm. 9 Let � � � 	

not extendible over and� � � . TFAE:

1.

� � � � � � 	 � � ��
	�� � � � �

;

2. � � � � � � � � � ��� 	 � �

is not thin at� �for any � 


.

If � � is thin at � �for some � 


, then

� � � � ,
s.t.

� � � � � � 	 � � ��
	�� � � � ��� ��

� �	 .
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Main results ctd

Any graph is of �- and � -type, hence by Zeriahi’s
theorem:

Cor. 10 Let a domain in and � closed
polar. Suppose � � � 	

not extendible over .
Then

�� is complete pluripolar in �

iff

� � 


the set � � is not thin at any point of A.
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The role of 


Fix a disc � in � �. If � � is thin at � �, then

� � � � � � � � s.t. � � � �and harmonic measure
satisfies

�
���

� � � � � �
	 � � 
 �� 	

Lemma The limit points � of
� ��� � 	 �

with � �

satisfying (4) give rise to points

��� ��

� 	 � ��

.

But

Lemma � � �

�� � ���

��� � 	 � � �

exists independent of the

� � � �

as long as (4) is
fulfilled.
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: the maximal ideal space of

� � 	

;

� : the fiber over

� � ;� 	 � : the homomorphisms �

�� 	

,� � � .

Zalcman (1969) and Gamelin and Garnett (1970)
studied distinguished homomorphisms in .

A distinguished homomorphism: with
that is in the same Gleason part as (a

component of) .
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continued
There can at most be one distinguished
homomorphism in � .

The estimate on the harmonic measure shows that the
point evaluations at � � have pseudohyperbolic
distance � �

to

�
�

	

, so any limit point of
these must be in the same Gleason part as and the
limit exists and is the distinguished homomorphism.

– p. 21/30



Proof of Thm 8: Approximation.

Thm.[E-W] Assume � �

,

� 	 � 

,

compact polar.

�

rational functions �
�

��� 	 � ��
�

� � �
�
�

� � � of
degree � with singularities in such that for any
compact

� � �

�

� �
�

� 
 �
�

� 

� if � �

Here

��
�

� � means � �� -norm in

�

.

Make

�
�

� PSH

�
�
� �

�
�

� �� � � � � �
�

��� 	 	 � �
�
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adapt �

For large � � � 	 , ( � � �
�

�
� � � � ), with

��� � � � �� � �
�
� � � � � �� � � � 	

� � � � � �� � � � 	 �

�� � 


on

� � � � �
�

��
���

�

��� 	 	 � � � on
� � � � � � � � �

�

��� ���
�

� 	 � � � �� �

on

� � � � � � � � �
�

� � �

�� 	 � � � � �. Hence

� �

�
� � ��� � PSH

� � 	
�

�� � �

� � �

� � �� � � � 	
�
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Proof of Thm. 9

1. Use Thm. 8;

� � � PSH

� � 	

s.t.
� � �

precisely on

�� � � .
2. A (new?) result in classical potential theory:
Thm. a bdd domain in and

� � a closed disc.
If � �

is compact polar, then for � �

�
���

�

�
�

	 � ��� � �

�
���

�

�
�

� 	�� � open

�
�

If � � is non-thin w.r.t.

�

, then

��� � �

�
���

�

�
�

� 	 � � open

� � 

�
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Proof of Thm. 9
Fix a closed disc in

� � � � � � � � � � ��� 	 � � �

.

��� � 

and

�

non-thin � � w.r.t.

�

� �
�

a nbhd of and�
� � SH

�
� � � 	

with

�
� � 


,
�

�
� � 	 � � � ,� � � � � �

.
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Proof of Thm. 9.

3. View

�
� as a PSH-function on a nbhd of � � �

in

�
� ��� 
 . This admits extending

�
to a PSH-function� � � 


on � �� 
 � � � 
 with

� � ��� � ���

� � �

,

� � � �
�

� 	 � � � .

4. Weighted sum of such
� �

’s gives PSH-function �

that has

5. Conclude: � � � � � � and

� ��
	�� � � � �� is

complete pluripolar.
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An essential example

�
�

� 

� , � ��

�
� � � � � �

.

Let �
�

� � � �
� � �
�

, �
�

� � � �
�

��� 	 �
�
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� � � 	

is well-defined on
�

.
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An essential example
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An essential example

With � � � 

�

� ��� 	

, � � � ��
� �
 � � � �

�
�

�
	

,

�
� 


�

�
� � 	 � � 


independent of N(!)

� � � � 


is not a Dirichlet domain.
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An essential example
Let

� � PSH

� � 	

have

� � � � � � . Let

� � �� � � �� � � ��� � � 
 
 � � ���
�

� 	 .

Now

� ���
� � ��� 	 	 � SH on a nbhd of

�
� and

� � � ��
� ��

� ���
� � ��� 	 	

� �

(

�

USC , � unif. on �).
By the two constants theorem:

� � 

�

� 
 	 	 � � � 

� � � 
 	 	 � �

� 

�

�
� � 	

� � � �
� 


�

�
� � 	 	
�

Conclude:
� � 


�

� 
 	 	 � � ;

� 

�

� 
 	 	 � � ��
	�� � .
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