Small sets in pluripotential theory (Joint work with Armen Edigarian)

Jan Wiegerinck, University of Amsterdam

Potential theory in \mathbb{C}

Harmonic function h on an open set in \mathbb{C} :

- Locally: real part of holomorphic function f;
- Solution of $\Delta h \left(=\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)h\right) = 0;$
- Mean Value Equality
 - $h(z) = \frac{1}{2\pi} \int_0^{2\pi} h(z + re^{it}) dt.$

Potential theory in $\ensuremath{\mathbb{C}}$

Harmonic function h on an open set in \mathbb{C} :

- Locally: real part of holomorphic function f;
- Solution of $\Delta h \left(=\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)h\right) = 0;$
- Mean Value Equality $h(z) = \frac{1}{2\pi} \int_0^{2\pi} h(z + re^{it}) dt.$

Subharmonic function u: upper semicontinuous and

- $\Delta u \ge 0$ (as distribution)
- Mean Value Inequality

 $u(z) \le \frac{1}{2\pi} \int_0^{2\pi} u(z + re^{it}) dt.$

Properties

log $|f| \in SH$. Potential of μ : $P(\mu) = \int \log |z - \zeta| d\mu(\zeta)$ in SH for $\mu > 0$ a reasonable measure. Riesz: Every $u \in SH$ is (locally) the sum of a harmonic function and a potential.

Properties

 $\log |f| \in SH.$ Potential of μ : $P(\mu) = \int \log |z - \zeta| d\mu(\zeta)$ in SH for $\mu > 0$ a reasonable measure. Riesz: Every $u \in SH$ is (locally) the sum of a harmonic function and a potential. POTENTIAL THEORY!

Properties

 $\log |f| \in SH$. Potential of μ : $P(\mu) = \int \log |z - \zeta| d\mu(\zeta)$ in SH for $\mu > 0$ a reasonable measure. Riesz: Every $u \in SH$ is (locally) the sum of a harmonic function and a potential. **POTENTIAL THEORY!** Potential leads to: Energy of compactly supported μ : $I(\mu) = \int \int \log |z - \zeta| d\mu(\zeta) d\mu(z).$ Capacity of compact E:

Cap
$$E = \sup_{|\mu|=1, \text{Supp } \mu \subset E} e^{I(\mu)}.$$

Small sets in potential theory

Sets of capacity 0 are the small sets. $E \subset D$. Equivalent are

- Cap(E) = 0;
- $\exists h \in SH \text{ s.t. } h|_E = -\infty$, i.e. E is polar;
- Every bounded from harmonic function on $D \setminus E$ extends harmonically to D.

Small sets in potential theory

Sets of capacity 0 are the small sets. $E \subset D$. Equivalent are

- Cap(E) = 0;
- $\exists h \in SH \text{ s.t. } h|_E = -\infty$, i.e. E is polar;
- Every bounded from harmonic function on $D \setminus E$ extends harmonically to D.

If $\exists h \in SH$ s.t. $E = \{h = -\infty\}$, then E is called complete polar.

Small sets in potential theory

Sets of capacity 0 are the small sets. $E \subset D$. Equivalent are

- Cap(E) = 0;
- $\exists h \in SH \text{ s.t. } h|_E = -\infty$, i.e. E is polar;
- Every bounded from harmonic function on $D \setminus E$ extends harmonically to D.

If $\exists h \in SH$ s.t. $E = \{h = -\infty\}$, then E is called complete polar. E complete polar iff E polar and a G_{δ} (countable intersection of opens)

Dirichlet problem

D a domain in \mathbb{C} . Given a (continuous) function g on ∂D , find harmonic h on D with bdry values g. Solvable ?

Dirichlet problem

D a domain in \mathbb{C} . Given a (continuous) function g on ∂D , find harmonic h on D with bdry values g. Solvable ? Almost!

Dirichlet problem

D a domain in \mathbb{C} . Given a (continuous) function *g* on ∂D , find harmonic *h* on *D* with bdry values *g*. Solvable ? Almost! $\mathcal{F} = \{u \in SH(D) : u < g \text{ on } \partial D\}$ Perron family for *q*. Perron solution:

$$\tilde{h}(z) = \sup_{u \in \mathcal{F}} u(z).$$

h solves the Dirichlet problem, except that the bdry values may be incorrect at an exceptional $E \subset \partial D$.

- E is polar;
- ∂D is thin at points of E

S thin at ζ if $\zeta \notin \overline{S}$ or \exists a nbhd U_{ζ} and $u \in SH(U_{\zeta})$ $\limsup_{\substack{z \to \zeta \\ z \in S \setminus \zeta}} u(z) < u(\zeta).$

- E is polar;
- ∂D is thin at points of E

S thin at ζ if $\zeta \notin \overline{S}$ or \exists a nbhd U_{ζ} and $u \in SH(U_{\zeta})$ $\limsup_{\substack{z \to \zeta \\ z \in S \setminus \zeta}} u(z) < u(\zeta).$

A closed in $\overline{D}, z \in D \setminus A$. Harmonic measure $\omega(z, A, D) = -\sup\{u(z) : u \in SH(D), u \leq 0, u \leq -1 \text{ "at" } A\}.$

pluripotential theory

 $D \subset \mathbb{C}^n = \mathbb{R}^{2n}.$

pluripotential theory

 $D \subset \mathbb{C}^n = \mathbb{R}^{2n}$. *h* plurisubharmonic ($h \in PSH(D)$) if $h \in SH(D)$ and $\forall L$ complex line passing through D, $h|_L \in SH(L \cap D)$.

pluripotential theory

 $D \subset \mathbb{C}^n = \mathbb{R}^{2n}.$

h plurisubharmonic $(h \in PSH(D))$ if $h \in SH(D)$ and $\forall L$ complex line passing through D, $h|_L \in SH(L \cap D)$. $f, f_n \in H(D)$, and $u, v, u_n \in PSH(D)$, $c_n \downarrow 0$ fast.

- $\log |f| \in \text{PSH}(D), \sum c_n \log |f_n| \in \text{PSH}(D);$
- u + v and $\max\{u, v\}$ are in PSH (D);
- $(\sup c_n u_n)^* \in \operatorname{PSH}(D);$
- Invariant under holomorphic change of variables

•
$$\left(\frac{\partial^2 u}{\partial z_i \partial \overline{z_j}}\right) > 0$$

small sets

 $A \subset D \subset \mathbb{C}^n$ is called pluripolar in the domain D if $\exists h \in PSH$ with $h|_A = -\infty$. $A \subset D \subset \mathbb{C}^n$ is called complete pluripolar in D if $\exists h \in PSH(D)$ s.t. $A = \{z \in D : h(z) = -\infty\}.$

small sets

 $A \subset D \subset \mathbb{C}^n$ is called pluripolar in the domain D if $\exists h \in PSH$ with $h|_A = -\infty$. $A \subset D \subset \mathbb{C}^n$ is called complete pluripolar in D if $\exists h \in PSH(D)$ s.t. $A = \{z \in D : h(z) = -\infty\}.$

Thm.[Josefson, 1978] Suppose A is locally pluripolar in \mathbb{C}^n . Then $\exists h \in PSH(\mathbb{C}^n)$ s.t. $h|_A = -\infty$.

small sets

 $A \subset D \subset \mathbb{C}^n$ is called pluripolar in the domain D if $\exists h \in PSH$ with $h|_A = -\infty$. $A \subset D \subset \mathbb{C}^n$ is called complete pluripolar in D if $\exists h \in PSH(D)$ s.t. $A = \{z \in D : h(z) = -\infty\}.$

Thm.[Josefson, 1978] Suppose A is locally pluripolar in \mathbb{C}^n . Then $\exists h \in PSH(\mathbb{C}^n)$ s.t. $h|_A = -\infty$.

How about complete pluripolarity?

Basic notions

In \mathbb{C}^2 global phenomena: $A = \{|z| < 1, w = 0\}, B = \{w = 0\};$ then $h|_A = -\infty \Rightarrow h|_B = -\infty.$

Basic notions

In \mathbb{C}^2 global phenomena: $A = \{|z| < 1, w = 0\}, B = \{w = 0\};$ then $h|_A = -\infty \Rightarrow h|_B = -\infty.$

Pluripolar hull of a pluripolar set A in D:

$$A_D^* := \{ z \in D : \forall u \in \mathsf{PSH}(D) : \\ u|_A = -\infty \Rightarrow u(z) = -\infty \}.$$

Basic notions

In \mathbb{C}^2 global phenomena: $A = \{|z| < 1, w = 0\}, B = \{w = 0\};$ then $h|_A = -\infty \Rightarrow h|_B = -\infty.$

Pluripolar hull of a pluripolar set A in D:

$$A_D^* := \{ z \in D : \forall u \in \mathsf{PSH}(D) : \\ u|_A = -\infty \Rightarrow u(z) = -\infty \}.$$

Thm. [Zeriahi, 1989] Let E be a pluripolar in a (pseudo)convex domain $D \subset \mathbb{C}^n$. If $E_D^* = E$ and E is G_{δ} and F_{σ} , then E is complete pluripolar in D.

pluri-thinness

Let $S \subset \mathbb{C}^n$, $\zeta \in \mathbb{C}^n$. Call S pluri-thin at ζ if $\zeta \notin \overline{S}$ or $\exists u \in \text{PSH}(U_{\zeta})$

 $\limsup_{\substack{z \to \zeta \\ z \in S \setminus \zeta}} u(z) < u(\zeta).$

If A is pluripolar and $z \notin A_D^*$, then A is pluri-thin at z.

Sadullaev's questions, (1981): 1. Is $E_{\alpha} = \{w = z^{\alpha}, z \neq 0\}$ pluri-thin at (0, 0)? $(\alpha \in \mathbb{R} \setminus \mathbb{Q})$. 2. Is $A = \{w = e^{1/z}, z \neq 0\}$ pluri-thin at (0, 0)?

Sadullaev's questions, (1981): 1. Is $E_{\alpha} = \{w = z^{\alpha}, z \neq 0\}$ pluri-thin at (0, 0)? $(\alpha \in \mathbb{R} \setminus \mathbb{Q})$. 2. Is $A = \{w = e^{1/z}, z \neq 0\}$ pluri-thin at (0, 0)? Question: Let $\Omega \subset \mathbb{C}$. Suppose $f \in H(\Omega), \Gamma_f \subset \mathbb{C}^2$ its graph. Is Γ_f complete pluripolar in \mathbb{C}^2 (or in a domain containing $\Omega \times \mathbb{C}$)?

Sadullaev's questions, (1981): 1. Is $E_{\alpha} = \{w = z^{\alpha}, z \neq 0\}$ pluri-thin at (0, 0)? $(\alpha \in \mathbb{R} \setminus \mathbb{Q})$. 2. Is $A = \{w = e^{1/z}, z \neq 0\}$ pluri-thin at (0, 0)? Question: Let $\Omega \subset \mathbb{C}$. Suppose $f \in H(\Omega), \Gamma_f \subset \mathbb{C}^2$ its graph. Is Γ_f complete pluripolar in \mathbb{C}^2 (or in a domain containing $\Omega \times \mathbb{C}$)? No, if f has an analytic continuation.

Sadullaev's questions, (1981): 1. Is $E_{\alpha} = \{w = z^{\alpha}, z \neq 0\}$ pluri-thin at (0, 0)? $(\alpha \in \mathbb{R} \setminus \mathbb{Q}).$ 2. Is $A = \{w = e^{1/z}, z \neq 0\}$ pluri-thin at (0, 0)? Question: Let $\Omega \subset \mathbb{C}$. Suppose $f \in H(\Omega), \Gamma_f \subset \mathbb{C}^2$ its graph. Is Γ_f complete pluripolar in \mathbb{C}^2 (or in a domain containing $\Omega \times \mathbb{C}$? No, if f has an analytic continuation. Levenberg-Martin-Poletsky, (1992): Let $f \in H(\Omega)$ on its domain of holomorphy $\Omega \subset \mathbb{C}$. Is the graph Γ_f complete pluripolar in \mathbb{C}^2 ?

Answers

Sadullaev's question

- 1. Yes; $(E_{\alpha})_{\mathbb{C}^2}^* = E_{\alpha}$. (Levenberg-Poletsky, 1999)
- 2. Yes; $A_D^* = A$, A is complete pluripolar in \mathbb{C}^2 . (W., 2000)

Answers

Sadullaev's question

- 1. Yes; $(E_{\alpha})_{\mathbb{C}^2}^* = E_{\alpha}$. (Levenberg-Poletsky, 1999)
- 2. Yes; $A_D^* = A$, A is complete pluripolar in \mathbb{C}^2 . (W., 2000)

L-M-P-question: Support from results on lacunary series (Sadullaev, L-M-P), (2) and

Thm. [W., 2000] Let D be a domain in \mathbb{C} and let $A = \{a_1, a_2, \ldots\} \subset D$ have no limit points in D. If $f \in H(D \setminus A)$ has singularities in a_n that cannot be removed, then Γ_f is complete pluripolar in $D \times \mathbb{C}$.

The answer to L-M-P is NO

The answer to L-M-P is NO

Thm. 3 Let $D_1 \subset D_2$ be domains in \mathbb{C} , such that $D_2 \setminus D_1$ has a limit point in D_2 . Then $\exists f \in H(D_1)$ with domain of existence D_1 such that Γ_f is not complete pluripolar in $D_2 \times \mathbb{C}$.

The answer to L-M-P is NO

Thm. 5 Let $D_1 \subset D_2$ be domains in \mathbb{C} , such that $D_2 \setminus D_1$ has a limit point in D_2 . Then $\exists f \in H(D_1)$ with domain of existence D_1 such that Γ_f is not complete pluripolar in $D_2 \times \mathbb{C}$. **Thm. 6** $\exists \{a_n\}_{n=1}^{\infty} \subset \mathbb{C} \setminus \overline{\mathbb{D}}$ and $\{c_n\}_{n=1}^{\infty}$ s.t.

(3)
$$f(z) = \sum_{j=1}^{\infty} \frac{c_j}{z - a_j} \in H(\mathbb{D}).$$

is C^{∞} on $\overline{\mathbb{D}}$, is nowhere extendible over $\partial \mathbb{D}$, while Γ_f is not complete pluripolar in \mathbb{C}^2 .

Thm. [Siciak] $\{c_n\}$ in Thm. 6 can be chosen s.t. $f \in H(\mathbb{C} \setminus \overline{\{a_j\}})$. Moreover

 $(\Gamma_{f|_D})^*_{\mathbb{C}^2} \supset \Gamma_{f|_{\mathbb{C}\setminus\{a_j\}}}.$

Thm. [Siciak] $\{c_n\}$ in Thm. 6 can be chosen s.t. $f \in H(\mathbb{C} \setminus \overline{\{a_j\}})$. Moreover

 $(\Gamma_{f|_D})^*_{\mathbb{C}^2} \supset \Gamma_{f|_{\mathbb{C}\setminus\{a_j\}}}.$

Zwonek expanded on the E-W and Siciak examples showing that there exist $f \in H^{\infty}(\mathbb{D})$, not extendible, but Γ_f^* contains any finite number of points over certain boundary points of \mathbb{D} .

Main results

Main results

D: domain in \mathbb{C} , A: closed polar in D; A': limit points of A in D.

Thm. 8 If $f \in H(D \setminus A)$, then $\Gamma_f \cup (A \times \mathbb{C})$ is complete pluripolar in $D \times \mathbb{C}$. If f does not extend holomorphically over A, then $\Gamma_f \cup (A' \times \mathbb{C})$ is complete pluripolar in $D \times \mathbb{C}$.

Main results ctd

Thm. 9 Let $f \in H(D \setminus A)$ not extendible over A and $z_0 \in A$. TFAE:

1. $(\{z_0\} \times \mathbb{C}) \cap (\Gamma_f)_{D \times \mathbb{C}}^* = \emptyset;$

2. $D_{\geq R} = \{z \in D \setminus A : |f(z)| \geq R\}$ is not thin at z_0 for any R > 0.

If $D_{\geq R}$ is thin at z_0 for some R > 0, then $\exists w_0 \in \mathbb{C}$, s.t. $(\{z_0\} \times \mathbb{C}) \cap (\Gamma_f)^*_{D \times \mathbb{C}} = (z_0, w_0).$

Main results ctd

Any graph is of G_{δ} - and F_{σ} -type, hence by Zeriahi's theorem:

Cor. 10 Let D a domain in \mathbb{C} and $A \subset D$ closed polar. Suppose $f \in H(D \setminus A)$ not extendible over A. Then Γ_f is complete pluripolar in $D \times \mathbb{C}$ iff $\forall R > 0$ the set $D_{\geq R}$ is not thin at any point of A.

The role of w_0

Fix a disc \mathbb{D}_{ε} in $D_{\leq R}$. If $D_{\geq R}$ is thin at z_0 , then $\exists \{z_k\} \subset D_{\leq R}$ s.t. $z_k \rightarrow z_0$ and harmonic measure satisfies

$$\omega(z_n, \mathbb{D}_{\varepsilon}, D_{\leq R}) \ge c > 0 \quad (4)$$

Lemma The limit points w of $\{f(z_k)\}$ with z_k satisfying (4) give rise to points $(z_0, w) \in \Gamma^*$. But

Lemma

$$\lim_{z_k \to z_0} f(z_k) = w_0$$

exists independent of the $\{z_k\}$ as long as (4) is fulfilled.

H^{∞}

 \mathcal{M} : the maximal ideal space of $H^{\infty}(\Omega)$; \mathcal{M}_{λ} : the fiber over $\lambda \in \overline{\Omega}$; $\mathcal{M}(G) \subset \mathcal{M}$: the homomorphisms $f \mapsto f(z)$, $z \in G \subset \Omega$.

H^{∞}

 \mathcal{M} : the maximal ideal space of $H^{\infty}(\Omega)$; \mathcal{M}_{λ} : the fiber over $\lambda \in \overline{\Omega}$; $\mathcal{M}(G) \subset \mathcal{M}$: the homomorphisms $f \mapsto f(z)$, $z \in G \subset \Omega$.

Zalcman (1969) and Gamelin and Garnett (1970) studied distinguished homomorphisms in $H^{\infty}(\Omega)$.

A distinguished homomorphism: $\mu \in \mathcal{M}_{\lambda}$ with $\lambda \in \partial \Omega$ that is in the same Gleason part as (a component of) $\mathcal{M}(\Omega)$.

continued

There can at most be one distinguished homomorphism in \mathcal{M}_{λ} .

The estimate on the harmonic measure shows that the point evaluations at z_k have pseudohyperbolic distance $\leq C < 1$ to $\mathcal{M}(\mathbb{D}_{\varepsilon})$, so any limit point of these must be in the same Gleason part as Ω and the limit exists and is the distinguished homomorphism.

Proof of Thm 8: Approximation.

Thm.[E-W] Assume $f \in \mathbb{C} \setminus K$, $f(\infty) = 0$, \overline{K} compact polar. \exists rational functions $r_n(z) = \frac{P_n(z)}{Q_n(z)}$ of degree $\leq n$ with singularities in K such that for any compact $L \subset \mathbb{C} \setminus K$

$$||f - r_n||_L^{1/n} \to 0, \quad \text{if } n \to \infty.$$

Here $\|\cdot\|_L$ means sup-norm in L.

Make $h_n \in PSH$

$$h_n := \frac{1}{n} \log |(w - r_n(z))Q^n|.$$

adapt h_n

For large n(m), (m = 1, 2, ...), with $u_m := \max\{h_{n(m)} - \log(m+2), -m - \log(m+2)\}$

 $u_m < 0 \text{ on } |z| < m,$ $u_m(z, f(z)) < -m \text{ on } 1/m < |z| < m,$ $u_m(z, w) > -C \log m$

on 1/m < |z| < m, |w - f(z)| > 1/m. Hence

$$u = \sum \frac{1}{m^2} u_m \in \operatorname{PSH}(\mathbb{C}^2).$$

 $\Gamma_f \subset \{u = -\infty\} \subset \Gamma_f \cup (A \times \mathbb{C}).$

Proof of Thm. 9

1. Use Thm. 8; $\exists h \in \text{PSH}(D \times \mathbb{C})$ s.t. $h = -\infty$ precisely on $\Gamma_f \cup A \times \mathbb{C}$. 2. A (new?) result in classical potential theory: **Thm.** D a bdd domain in \mathbb{C} and $S \subset D$ a closed disc. If $K \subset \partial D$ is compact polar, then for $z \in D$

 $\omega(z, S, D) = \inf\{\omega(z, S, D \cup U) : K \subset U \text{ open}\}.$

If $z \in K$ is non-thin w.r.t. ∂D , then

 $\inf\{\omega(z, S, D \cup U) : K \subset U \text{ open}\} = 0.$

Proof of Thm. 9

Fix Δ a closed disc in $D_{<R} = \{z \in D \setminus A : |(f(z))| < R\}$. $\forall \varepsilon > 0$ and \forall **non-thin** $p \in A$ w.r.t. $\partial D_{<R} \exists$ a nbhd U of A and $h_p \in SH(D_{<R} \cup U)$ with $h_p < 0$, $h_p(p) = -\varepsilon$, $h|_{\Delta} = -1$.

Proof of Thm. 9.

3. View h_p as a PSH-function on a nbhd of $u = -\infty$ in $D^2_{< R-1}$. This admits extending h to a PSH-function $\tilde{h} < 0$ on $D_{< R-1} \times \mathbb{D}_{m-1}$ with $\tilde{h}|_{\Gamma_{f|_{\Delta}}} = -1$, $\tilde{h}(p, w) = -\varepsilon$.

4. Weighted sum of such \tilde{h} 's gives PSH-function v that has

5. Conclude: $v|_{\Gamma_f} = -\infty$ and $(\Gamma_f)^*_{D \times \mathbb{C}} = \Gamma_f$ is complete pluripolar.

$$a_n = \frac{1}{n}, A = \{a_n : n \in \mathbb{N}\} D = \mathbb{C} \setminus \overline{A}.$$

Let $c_n = e^{-n^2}/n^2, r_n = e^{-n^2}$

$$f(z) = \sum_{n=1}^{\infty} \frac{c_n}{z - 1/n} \quad \in H(\mathbb{C} \setminus \overline{A})$$

is well-defined on $\mathbb{C} \setminus A$.

$$f_N = \sum_{n=1}^N \frac{c_n}{z - 1/n} + \sum_{n=N+1}^\infty \frac{c_n}{-1/n}.$$

$$f_N| < 10 \quad \text{on } \mathbb{C} \setminus \left(\bigcup_{1}^N B(1/n, r_n)\right);$$

$$|f| < 10 \quad \text{on } \mathbb{C} \setminus \left(\bigcup_{1}^\infty B(1/n, r_n)\right).$$

With $\gamma = C(0, 2/3), E_N = \mathbb{D}_{2/3} \setminus \left(\bigcup_{1}^N B(1/n, r_n)\right),$

 $\omega(0, \gamma, E_N) \ge c > 0$ independent of N(!)

|f| < 10 is not a Dirichlet domain.

Let $h \in \text{PSH}(\mathbb{D} \times \mathbb{C})$ have $h|_{\Gamma_f} = -\infty$. Let $M = \sup_{\mathbb{D}_{2/3} \times \{|w| < 11\}} h(z, w).$

Now $h(z, f_N(z)) \in SH$ on a nbhd of \overline{E}_N and $M_N = \max_{z \in \gamma} h(z, f_N(z)) \downarrow -\infty,$

(*h* USC, $f_N \rightarrow f$ unif. on γ). By the two constants theorem:

 $h(0, f(0)) = h(0, f_N(0)) \le M_N \omega(0, \gamma, E_N) + M(1 - \omega(0, \gamma, E_N)).$

Conclude: $h(0, f(0)) = -\infty; (0, f(0)) \in (\Gamma_f)^*_{\mathbb{C}^2}.$