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In this supplement to Serre’s [2, §1.5] we discuss tensor products of modules over as-
sociative algebras. More information on tensor products can for instance be found in the
book “Algebra” of Lang [1, Chpt. XVI].

Definition 0.1. An associative algebra over C with unit element 1 is a vector space A
over C endowed with a C-bilinear multiplication map

A× A→ A, (a, a′) 7→ a · a′

(i.e. for all a′ ∈ A, the maps A → A given by a 7→ a · a′ and a 7→ a′ · a are C-linear),
satisfying associativity

a · (a′ · a′′) = (a · a′) · a′′ ∀ a, a′, a′′ ∈ A
and satisfying 1 · a = a · 1 for all a ∈ A.

For convenience we will call an associative algebra A with 1 in the remainder of the text
a C-algebra. Note that a C-algebra is in particular a unital ring.

We write EndC(V ) = {φ : V → V | φ linear } for the vector space of linear endomor-
phisms of a complex vector space V .

Example 0.2. (i) A = EndC(V ) is a C-algebra with multiplication the composition of
linear endomorphisms.
(ii) The group algebra A = C[G] of a finite group G is a C-algebra with multiplication(∑

g∈G

λgeg,
∑
g′∈G

µg′eg′
)
7→

∑
g,g′∈G

λgµg′egg′ ,

where λg, µg′ ∈ C.

Definition 0.3. Let A be a C-algebra. A left A-module is a vector space V over C together
with a map

(0.1) A× V → V, (a, v) 7→ a · v
satisfying

(1) the action map (0.1) is bilinear,
(2) for all a, a′ ∈ A and v ∈ V ,

a · (a′ · v) = (aa′) · v, 1 · v = v.

A similar definition can be given for right actions. In this case we have a bilinear map

V × A→ V, (v, a) 7→ v · a
satisfying (v · a) · a′ = v · (aa′) and v · 1 = v.
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Example 0.4. Let V be a complex vector space. The map

EndC(V )× V → V, (φ, v) 7→ φ(v)

turns V into a left EndC(V )-module.

Exercise 0.5. Let G be a finite group and V a complex vector space.

(1) If π : G → GL(V ) is a representation, then V is a left C[G]-module with action
given by

C[G]× V → V, (
∑
g∈G

λgeg, v) 7→
∑
g∈G

λgπ(g)v.

Check this.
(2) Conversely, prove that a left C[G]-action (a, v) 7→ a · v (a ∈ C[G]) on V gives rise

to a representation π : G→ GL(V ) defined by the formula π(g)(v) := eg · v (g ∈ G
and v ∈ V ).

Suppose that V is a right A-module, W is a left A-module and U is a complex vector
space. We call a map φ : V ×W → U A-bilinear if φ is complex bilinear and if

(0.2) φ(v · a, w) = φ(v, a · w), ∀ v ∈ V, w ∈ W, a ∈ A.

We write Hom
(2)
A (V ×W,U) for the space of A-bilinear maps V ×W → U .

Example 0.6. A vector space V can be viewed as left and right A = C-module by (v, λ) 7→
λv and (λ, v) 7→ λv for λ ∈ C and v ∈ V . In this case Hom

(2)
C (V ×W,U) is simply the

space of C-bilinear maps V ×W → U .

Proposition 0.7. Let A be a C-algebra. Let V be a right A-module and W a left A-module.

(1) There exists a complex vector space Z and a A-bilinear map ι : V × W → Z
satisfying the following universality property: for all A-bilinear maps φ : V ×W →
U (with U an arbitrary complex vector space) there exists a unique linear map
φ : Z → U such that φ = φ ◦ ι.

(2) If (Z ′, ι′) is a second pair satisfying this universality property, then there exists a

unique linear isomorphism ψ : Z
∼−→ Z ′ satisfying ψ ◦ ι = ι′.

Proof. (1) Consider the (huge!) vector space

Z̃ :=
⊕

v∈V,w∈W

Ce(v,w)

with linear basis {e(v,w)}v∈V,w∈W , together with the map

ι̃ : V ×W → Z̃, ι̃(v, w) := e(v,w)

for v ∈ V and w ∈ W . Note that the image of ι̃ spans Z̃. But ι̃ is not A-bilinear. We

can make it A-bilinear by composing ι̃ with the canonical map p : Z̃ → Z := Z̃/S for the
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vector subspace S ⊂ Z̃ spanned by the vectors

e(v+v′,w) − e(v,w) − e(v′,w),

e(λv,w) − λe(v,w),

e(v,λw) − λe(v,w),

e(v,w+w′) − e(v,w) − e(v,w′),

e(v·a,w) − e(v,a·w)

for all a ∈ A, v, v′ ∈ V , w,w′ ∈ W and λ ∈ C. We write ι := p ◦ ι̃ : V ×W → Z for the
resulting A-bilinear map. Note that the image of ι spans Z. We show that the pair (Z, ι)
satisfies the desired universality property.

Let φ ∈ Hom
(2)
A (V ×W,U). Define a linear map φ̃ : Z̃ → U by

φ̃(e(v,w)) := φ(v, w), ∀ v ∈ V,w ∈ W.

This is well defined since the e(v,w) (v ∈ V , w ∈ W ) form a linear basis of Z̃. Since φ

is A-bilinear, S ⊂ Ker(φ̃), hence there exists a unique linear map φ : Z → U such that

φ̃ = φ ◦ p. Then φ = φ ◦ ι since for all v ∈ V and w ∈ W ,

(φ ◦ ι)(v, w) = φ(e(v,w) + S) = φ̃(e(v,w)) = φ(v, w).

Note that φ is unique since the image of ι spans Z.
(b) Let (Z ′, ι′) be a second pair satisfying the universality property. Then the image
of ι′ spans Z ′, because, if this would not be the case, then the choice of a linear map

φ ∈ HomC(Z
′, U) satisfying φ = φ ◦ ι′ for a given φ ∈ Hom

(2)
A (V ×W,U) would not be

unique.
Applying the universality property of (Z, ι) to the A-bilinear map ι′ : V ×W → Z ′ gives

a unique linear map σ : Z → Z ′ such that

σ ◦ ι = ι′.

On the other hand, applying the universality property of (Z ′, ι′) to the A-bilinear map
ι : V ×W → Z gives a unique linear map gives a unique linear map σ′ : Z ′ → Z such that

σ′ ◦ ι′ = ι.

The linear map σ′ ◦ σ : Z → Z then satisfies for all v ∈ V and w ∈ W ,

(σ′ ◦ σ)(ι(v, w)) = σ′(ι′(v, w)) = ι(v, w).

Since the image of ι spans Z we conclude that σ′ ◦ σ = IdZ . Similarly, σ ◦ σ′ = IdZ′ . In
particular, σ is a linear isomorphism. Take ψ = σ : Z

∼−→ Z ′. Then

ψ ◦ ι = σ ◦ ι = ι′.

Note that ψ is the unique linear map with this property since the image of ι spans Z. �
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By the second part of the proposition, the pair (Z, ι) is unique up to linear isomorphism.
It therefore makes sense to denote it by V ⊗A W . It is called the tensor product over A
of the right A-module V with the left A-module W . It comes equipped with a A-bilinear
map ι : V ×W → V ⊗AW . We write

v ⊗A w := ι(v, w), v ∈ V, w ∈ W.

The elements v⊗Aw (v ∈ V and w ∈ W ) are called the pure tensors in V ⊗AW . They form

a spanning set of V⊗AW , cf. the proof of the proposition. Since ι ∈ Hom
(2)
A (V×W,V⊗AW )

we have in V ⊗AW the following convenient identities in V ⊗AW ,

(v + v′)⊗A w = v ⊗A w + v′ ⊗A w,

(λv)⊗A w = λ(v ⊗A w) = v ⊗A (λw),

v ⊗A (w + w′) = v ⊗A w + v ⊗A w
′,

(v · a)⊗A w = v ⊗A (a · w)

for a ∈ A, v, v′ ∈ V , w,w′ ∈ W and λ ∈ C.

Example 0.8. The proposition gives for two vector spaces V and W their tensor product
V ⊗CW , where V and W are viewed as C-modules as in Example 0.6.

Exercise 0.9. Let V and W be finite dimensional complex vector spaces. The dual V ∗ =
HomC(V,C) of V is the complex vector space of linear functionals V → C. Define a complex
bilinear map ι : V ∗ ×W → HomC(V,W ) by ι(f, w) := f(·)w (here f(·)w means the linear
map V → W defined by v 7→ f(v)w).

(1) Suppose φ : V ∗×W → U is a complex bilinear map into the vector space U . Prove
that there exists a unique linear map φ : HomC(V,W ) → U such that φ ◦ ι = φ.

(2) Conclude that V ∗ ⊗CW ' HomC(V,W ) as vector spaces.
(3) Let {ei}i∈I and {fj}j∈J be linear bases of V and W respectively (with I and J

suitable finite index sets). Prove that {ei ⊗C fj}i∈I,j∈J is a linear basis of V ⊗CW
(in particular, dimC(V ⊗CW ) = dimC(V ) dimC(W )).

Let φ : V → V ′ and ψ : W → W ′ be linear maps. Then

cφ,ψ : V ×W → V ′ ⊗CW ′, cφ,ψ(v, w) := φ(v)⊗C ψ(w)

defines a C-bilinear map cφ,ψ ∈ Hom
(2)
C (V × W,V ′ ⊗C W ′). Hence, by the universality

property of the tensor product, there exists a unique complex linear map

cφ,ψ : V ⊗CW → V ′ ⊗CW ′

such that cφ,ψ(v ⊗C w) = cφ,ψ(v, w) for all v ∈ V and w ∈ W . We will denote the linear
map cφ,ψ by φ⊗C ψ. It is called the tensor product of the linear maps φ and ψ. Note that

(φ⊗C ψ)(v ⊗C w) = φ(v)⊗C ψ(w)

for all v ∈ V and w ∈ W .
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Exercise 0.10. Let π : G → GL(V ) and π′ : G → GL(V ′) be two representations of G.
Show that

(π ⊗ π′)(g)(v ⊗C v′) := (π(g)v)⊗C (π′(g)v′)

for g ∈ G, v ∈ V and v′ ∈ V ′ defines a representation

π ⊗ π′ : G→ GL(V ⊗C V ′).

It is called the tensor product representation of π and π′.

Exercise 0.11. Let V and W be two complex vector spaces. Prove that there exists a
unique linear isomorphism θV,W : V ⊗CW

∼−→ W ⊗C V satisfying

θV,W (v ⊗C w) = w ⊗C v ∀ v ∈ V, w ∈ W.

Suppose that V is finite dimensional complex vector space. The linear automorphism
θ := θV,V of V ⊗C V from the previous exercise is an involution, θ2 = IdV⊗CV . Write

Sym(2)(V ) :={X ∈ V ⊗C V | θ(X) = X},
Alt(2)(V ) :={X ∈ V ⊗C V | θ(X) = −X}

for the eigenspaces of θ corresponding to its two eigenvalues +1 and −1. These subspaces
are called the symmetric square and alternating square of V , respectively.

Note that
V ⊗C V = Sym(2)(V )⊕Alt(2)(V ).

In fact, if {ei}1≤i≤m is a linear basis of V then

{ei ⊗C ej + ej ⊗C ei}1≤i≤j≤m

is a linear basis of Sym(2)(V ) and

{ei ⊗C ej − ej ⊗C ei}1≤i<j≤m

is a linear basis of Alt(2)(V ). In particular, if dimC(V ) = m then dimC(Sym(2)(V )) =

m(m+ 1)/2 and dimC(Alt(2)(V )) = m(m− 1)/2.

Exercise 0.12. Let π : G → GLC(V ) be a representation of the finite group G. Show

that Sym(2)(V ) and Alt(2)(V ) are G-invariant subspaces of V ⊗C V (the latter viewed as
representation space for the tensor product representation π ⊗ π of G).

Exercise 0.13. Let V be a finite dimensional vector space and φ ∈ EndC(V ) (i.e. φ is a
linear map V → V ). Let {ei}ni=1 be a linear basis of V , and {e∗i }ni=1 the corresponding dual
basis of V ∗ = HomC(V,C) (so e∗i (ej) = δi,j with the Kronecker delta function δi,j being one
if i = j and zero if i 6= j). The trace of φ is defined by

Tr(φ) :=
n∑
i=1

e∗i (φ(ei)).

(1) Show that Tr(φ) is well defined (i.e. independent of the choice {ei}ni=1 of linear
basis of V ).
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(2) Prove that Tr(φ ◦ ψ) = Tr(ψ ◦ φ) for all φ, ψ ∈ EndC(V ).
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