ALGEBRA 3; REPRESENTATIE THEORIE. AANVULLING 1

In this supplement to Serre's [2, §1.5] we discuss tensor products of modules over associative algebras. More information on tensor products can for instance be found in the book "Algebra" of Lang [1, Chpt. XVI].

Definition 0.1. An associative algebra over \mathbb{C} with unit element 1 is a vector space A over \mathbb{C} endowed with a \mathbb{C} -bilinear multiplication map

$$A \times A \to A, \qquad (a, a') \mapsto a \cdot a'$$

(i.e. for all $a' \in A$, the maps $A \to A$ given by $a \mapsto a \cdot a'$ and $a \mapsto a' \cdot a$ are \mathbb{C} -linear), satisfying associativity

$$a \cdot (a' \cdot a'') = (a \cdot a') \cdot a'' \qquad \forall a, a', a'' \in A$$

and satisfying $1 \cdot a = a \cdot 1$ for all $a \in A$.

For convenience we will call an associative algebra A with 1 in the remainder of the text a \mathbb{C} -algebra. Note that a \mathbb{C} -algebra is in particular a unital ring.

We write $\operatorname{End}_{\mathbb{C}}(V) = \{\phi : V \to V \mid \phi \text{ linear }\}$ for the vector space of linear endomorphisms of a complex vector space V.

Example 0.2. (i) $A = \operatorname{End}_{\mathbb{C}}(V)$ is a \mathbb{C} -algebra with multiplication the composition of linear endomorphisms.

(ii) The group algebra $A = \mathbb{C}[G]$ of a finite group G is a \mathbb{C} -algebra with multiplication

$$\left(\sum_{g\in G}\lambda_g e_g, \sum_{g'\in G}\mu_{g'}e_{g'}\right)\mapsto \sum_{g,g'\in G}\lambda_g\mu_{g'}e_{gg'},$$

where $\lambda_g, \mu_{g'} \in \mathbb{C}$.

Definition 0.3. Let A be a \mathbb{C} -algebra. A left A-module is a vector space V over \mathbb{C} together with a map

satisfying

- (1) the action map (0.1) is bilinear,
- (2) for all $a, a' \in A$ and $v \in V$,

$$a \cdot (a' \cdot v) = (aa') \cdot v, \qquad 1 \cdot v = v.$$

A similar definition can be given for right actions. In this case we have a bilinear map

$$V \times A \to V, \qquad (v, a) \mapsto v \cdot a$$

satisfying $(v \cdot a) \cdot a' = v \cdot (aa')$ and $v \cdot 1 = v$.

Example 0.4. Let V be a complex vector space. The map

 $\operatorname{End}_{\mathbb{C}}(V) \times V \to V, \qquad (\phi, v) \mapsto \phi(v)$

turns V into a left $\operatorname{End}_{\mathbb{C}}(V)$ -module.

Exercise 0.5. Let G be a finite group and V a complex vector space.

(1) If $\pi : G \to \operatorname{GL}(V)$ is a representation, then V is a left $\mathbb{C}[G]$ -module with action given by

$$\mathbb{C}[G] \times V \to V, \qquad (\sum_{g \in G} \lambda_g e_g, v) \mapsto \sum_{g \in G} \lambda_g \pi(g) v.$$

Check this.

(2) Conversely, prove that a left $\mathbb{C}[G]$ -action $(a, v) \mapsto a \cdot v$ $(a \in \mathbb{C}[G])$ on V gives rise to a representation $\pi : G \to \operatorname{GL}(V)$ defined by the formula $\pi(g)(v) := e_g \cdot v$ $(g \in G$ and $v \in V)$.

Suppose that V is a right A-module, W is a left A-module and U is a complex vector space. We call a map $\phi: V \times W \to U$ A-bilinear if ϕ is complex bilinear and if

(0.2)
$$\phi(v \cdot a, w) = \phi(v, a \cdot w), \qquad \forall v \in V, w \in W, a \in A.$$

We write $\operatorname{Hom}_{A}^{(2)}(V \times W, U)$ for the space of A-bilinear maps $V \times W \to U$.

Example 0.6. A vector space V can be viewed as left and right $A = \mathbb{C}$ -module by $(v, \lambda) \mapsto \lambda v$ and $(\lambda, v) \mapsto \lambda v$ for $\lambda \in \mathbb{C}$ and $v \in V$. In this case $\operatorname{Hom}_{\mathbb{C}}^{(2)}(V \times W, U)$ is simply the space of \mathbb{C} -bilinear maps $V \times W \to U$.

Proposition 0.7. Let A be a \mathbb{C} -algebra. Let V be a right A-module and W a left A-module.

- There exists a complex vector space Z and a A-bilinear map ι : V × W → Z satisfying the following universality property: for all A-bilinear maps φ : V × W → U (with U an arbitrary complex vector space) there exists a unique linear map φ̄ : Z → U such that φ = φ̄ ∘ ι.
- (2) If (Z', ι') is a second pair satisfying this universality property, then there exists a unique linear isomorphism $\psi: Z \xrightarrow{\sim} Z'$ satisfying $\psi \circ \iota = \iota'$.

Proof. (1) Consider the (huge!) vector space

$$\widetilde{Z} := \bigoplus_{v \in V, w \in W} \mathbb{C}e_{(v,w)}$$

with linear basis $\{e_{(v,w)}\}_{v \in V, w \in W}$, together with the map

$$\widetilde{\iota}: V \times W \to \widetilde{Z}, \qquad \widetilde{\iota}(v, w) := e_{(v, w)}$$

for $v \in V$ and $w \in W$. Note that the image of $\tilde{\iota}$ spans Z. But $\tilde{\iota}$ is not A-bilinear. We can make it A-bilinear by composing $\tilde{\iota}$ with the canonical map $p: \tilde{Z} \to Z := \tilde{Z}/S$ for the

vector subspace $S \subset \widetilde{Z}$ spanned by the vectors

$$\begin{split} e_{(v+v',w)} &= e_{(v,w)} - e_{(v',w)}, \\ e_{(\lambda v,w)} &= \lambda e_{(v,w)}, \\ e_{(v,\lambda w)} &= \lambda e_{(v,w)}, \\ e_{(v,w+w')} &= e_{(v,w)} - e_{(v,w')}, \\ e_{(v\cdot a,w)} &= e_{(v,a\cdot w)} \end{split}$$

for all $a \in A$, $v, v' \in V$, $w, w' \in W$ and $\lambda \in \mathbb{C}$. We write $\iota := p \circ \tilde{\iota} : V \times W \to Z$ for the resulting A-bilinear map. Note that the image of ι spans Z. We show that the pair (Z, ι) satisfies the desired universality property.

Let $\phi \in \operatorname{Hom}_{A}^{(2)}(V \times W, U)$. Define a linear map $\widetilde{\phi} : \widetilde{Z} \to U$ by

$$\phi(e_{(v,w)}) := \phi(v,w), \qquad \forall v \in V, w \in W.$$

This is well defined since the $e_{(v,w)}$ $(v \in V, w \in W)$ form a linear basis of \widetilde{Z} . Since ϕ is A-bilinear, $S \subset \text{Ker}(\widetilde{\phi})$, hence there exists a unique linear map $\overline{\phi} : Z \to U$ such that $\widetilde{\phi} = \overline{\phi} \circ p$. Then $\phi = \overline{\phi} \circ \iota$ since for all $v \in V$ and $w \in W$,

$$(\overline{\phi} \circ \iota)(v, w) = \overline{\phi}(e_{(v,w)} + S) = \widetilde{\phi}(e_{(v,w)}) = \phi(v, w).$$

Note that $\overline{\phi}$ is unique since the image of ι spans Z.

(b) Let (Z', ι') be a second pair satisfying the universality property. Then the image of ι' spans Z', because, if this would not be the case, then the choice of a linear map $\overline{\phi} \in \operatorname{Hom}_{\mathbb{C}}(Z', U)$ satisfying $\phi = \overline{\phi} \circ \iota'$ for a given $\phi \in \operatorname{Hom}_{A}^{(2)}(V \times W, U)$ would not be unique.

Applying the universality property of (Z, ι) to the A-bilinear map $\iota' : V \times W \to Z'$ gives a unique linear map $\sigma : Z \to Z'$ such that

$$\sigma \circ \iota = \iota'.$$

On the other hand, applying the universality property of (Z', ι') to the A-bilinear map $\iota: V \times W \to Z$ gives a unique linear map gives a unique linear map $\sigma': Z' \to Z$ such that

$$\sigma' \circ \iota' = \iota.$$

The linear map $\sigma' \circ \sigma : Z \to Z$ then satisfies for all $v \in V$ and $w \in W$,

$$(\sigma' \circ \sigma)(\iota(v, w)) = \sigma'(\iota'(v, w)) = \iota(v, w).$$

Since the image of ι spans Z we conclude that $\sigma' \circ \sigma = \mathrm{Id}_Z$. Similarly, $\sigma \circ \sigma' = \mathrm{Id}_{Z'}$. In particular, σ is a linear isomorphism. Take $\psi = \sigma : Z \xrightarrow{\sim} Z'$. Then

$$\psi \circ \iota = \sigma \circ \iota = \iota'.$$

Note that ψ is the unique linear map with this property since the image of ι spans Z. \Box

By the second part of the proposition, the pair (Z, ι) is unique up to linear isomorphism. It therefore makes sense to denote it by $V \otimes_A W$. It is called the tensor product over A of the right A-module V with the left A-module W. It comes equipped with a A-bilinear map $\iota: V \times W \to V \otimes_A W$. We write

$$v \otimes_A w := \iota(v, w), \qquad v \in V, w \in W.$$

The elements $v \otimes_A w$ ($v \in V$ and $w \in W$) are called the pure tensors in $V \otimes_A W$. They form a spanning set of $V \otimes_A W$, cf. the proof of the proposition. Since $\iota \in \operatorname{Hom}_A^{(2)}(V \times W, V \otimes_A W)$ we have in $V \otimes_A W$ the following convenient identities in $V \otimes_A W$,

$$(v + v') \otimes_A w = v \otimes_A w + v' \otimes_A w,$$

$$(\lambda v) \otimes_A w = \lambda(v \otimes_A w) = v \otimes_A (\lambda w),$$

$$v \otimes_A (w + w') = v \otimes_A w + v \otimes_A w',$$

$$(v \cdot a) \otimes_A w = v \otimes_A (a \cdot w)$$

for $a \in A$, $v, v' \in V$, $w, w' \in W$ and $\lambda \in \mathbb{C}$.

Example 0.8. The proposition gives for two vector spaces V and W their tensor product $V \otimes_{\mathbb{C}} W$, where V and W are viewed as \mathbb{C} -modules as in Example 0.6.

Exercise 0.9. Let V and W be finite dimensional complex vector spaces. The dual $V^* = \operatorname{Hom}_{\mathbb{C}}(V,\mathbb{C})$ of V is the complex vector space of linear functionals $V \to \mathbb{C}$. Define a complex bilinear map $\iota : V^* \times W \to \operatorname{Hom}_{\mathbb{C}}(V,W)$ by $\iota(f,w) := f(\cdot)w$ (here $f(\cdot)w$ means the linear map $V \to W$ defined by $v \mapsto f(v)w$).

- (1) Suppose $\phi: V^* \times W \to U$ is a complex bilinear map into the vector space U. Prove that there exists a unique linear map $\overline{\phi}: \operatorname{Hom}_{\mathbb{C}}(V, W) \to U$ such that $\overline{\phi} \circ \iota = \phi$.
- (2) Conclude that $V^* \otimes_{\mathbb{C}} W \simeq \operatorname{Hom}_{\mathbb{C}}(V, W)$ as vector spaces.
- (3) Let $\{e_i\}_{i\in I}$ and $\{f_j\}_{j\in J}$ be linear bases of V and W respectively (with I and J suitable finite index sets). Prove that $\{e_i \otimes_{\mathbb{C}} f_j\}_{i\in I, j\in J}$ is a linear basis of $V \otimes_{\mathbb{C}} W$ (in particular, dim_C($V \otimes_{\mathbb{C}} W$) = dim_C(V) dim_C(W)).

Let $\phi: V \to V'$ and $\psi: W \to W'$ be linear maps. Then

$$c_{\phi,\psi}: V \times W \to V' \otimes_{\mathbb{C}} W', \qquad c_{\phi,\psi}(v,w) := \phi(v) \otimes_{\mathbb{C}} \psi(w)$$

defines a \mathbb{C} -bilinear map $c_{\phi,\psi} \in \operatorname{Hom}^{(2)}_{\mathbb{C}}(V \times W, V' \otimes_{\mathbb{C}} W')$. Hence, by the universality property of the tensor product, there exists a unique complex linear map

$$\overline{c_{\phi,\psi}}: V \otimes_{\mathbb{C}} W \to V' \otimes_{\mathbb{C}} W'$$

such that $\overline{c_{\phi,\psi}}(v \otimes_{\mathbb{C}} w) = c_{\phi,\psi}(v,w)$ for all $v \in V$ and $w \in W$. We will denote the linear map $\overline{c_{\phi,\psi}}$ by $\phi \otimes_{\mathbb{C}} \psi$. It is called the tensor product of the linear maps ϕ and ψ . Note that

$$(\phi \otimes_{\mathbb{C}} \psi)(v \otimes_{\mathbb{C}} w) = \phi(v) \otimes_{\mathbb{C}} \psi(w)$$

for all $v \in V$ and $w \in W$.

Exercise 0.10. Let $\pi : G \to GL(V)$ and $\pi' : G \to GL(V')$ be two representations of G. Show that

 $(\pi \otimes \pi')(g)(v \otimes_{\mathbb{C}} v') := (\pi(g)v) \otimes_{\mathbb{C}} (\pi'(g)v')$

for $g \in G$, $v \in V$ and $v' \in V'$ defines a representation

$$\pi \otimes \pi' : G \to \operatorname{GL}(V \otimes_{\mathbb{C}} V')$$

It is called the tensor product representation of π and π' .

Exercise 0.11. Let V and W be two complex vector spaces. Prove that there exists a unique linear isomorphism $\theta_{V,W}: V \otimes_{\mathbb{C}} W \xrightarrow{\sim} W \otimes_{\mathbb{C}} V$ satisfying

$$\theta_{V,W}(v \otimes_{\mathbb{C}} w) = w \otimes_{\mathbb{C}} v \qquad \forall v \in V, w \in W$$

Suppose that V is finite dimensional complex vector space. The linear automorphism $\theta := \theta_{V,V}$ of $V \otimes_{\mathbb{C}} V$ from the previous exercise is an involution, $\theta^2 = \mathrm{Id}_{V \otimes_{\mathbb{C}} V}$. Write

$$\mathbf{Sym}^{(2)}(V) := \{ X \in V \otimes_{\mathbb{C}} V \mid \theta(X) = X \}, \\ \mathbf{Alt}^{(2)}(V) := \{ X \in V \otimes_{\mathbb{C}} V \mid \theta(X) = -X \}$$

for the eigenspaces of θ corresponding to its two eigenvalues +1 and -1. These subspaces are called the symmetric square and alternating square of V, respectively.

Note that

$$V \otimes_{\mathbb{C}} V = \mathbf{Sym}^{(2)}(V) \oplus \mathbf{Alt}^{(2)}(V).$$

In fact, if $\{e_i\}_{1 \le i \le m}$ is a linear basis of V then

$$\{e_i \otimes_{\mathbb{C}} e_j + e_j \otimes_{\mathbb{C}} e_i\}_{1 \le i \le j \le m}$$

is a linear basis of $\mathbf{Sym}^{(2)}(V)$ and

$$\{e_i \otimes_{\mathbb{C}} e_j - e_j \otimes_{\mathbb{C}} e_i\}_{1 \le i < j \le m}$$

is a linear basis of $\operatorname{Alt}^{(2)}(V)$. In particular, if $\dim_{\mathbb{C}}(V) = m$ then $\dim_{\mathbb{C}}(\operatorname{Sym}^{(2)}(V)) = m(m+1)/2$ and $\dim_{\mathbb{C}}(\operatorname{Alt}^{(2)}(V)) = m(m-1)/2$.

Exercise 0.12. Let $\pi : G \to \operatorname{GL}_{\mathbb{C}}(V)$ be a representation of the finite group G. Show that $\operatorname{Sym}^{(2)}(V)$ and $\operatorname{Alt}^{(2)}(V)$ are G-invariant subspaces of $V \otimes_{\mathbb{C}} V$ (the latter viewed as representation space for the tensor product representation $\pi \otimes \pi$ of G).

Exercise 0.13. Let V be a finite dimensional vector space and $\phi \in \operatorname{End}_{\mathbb{C}}(V)$ (i.e. ϕ is a linear map $V \to V$). Let $\{e_i\}_{i=1}^n$ be a linear basis of V, and $\{e_i^*\}_{i=1}^n$ the corresponding dual basis of $V^* = \operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$ (so $e_i^*(e_j) = \delta_{i,j}$ with the Kronecker delta function $\delta_{i,j}$ being one if i = j and zero if $i \neq j$). The trace of ϕ is defined by

$$\operatorname{Tr}(\phi) := \sum_{i=1}^{n} e_i^*(\phi(e_i)).$$

(1) Show that $\operatorname{Tr}(\phi)$ is well defined (i.e. independent of the choice $\{e_i\}_{i=1}^n$ of linear basis of V).

ALGEBRA 3; REPRESENTATIE THEORIE. AANVULLING 1

(2) Prove that $\operatorname{Tr}(\phi \circ \psi) = \operatorname{Tr}(\psi \circ \phi)$ for all $\phi, \psi \in \operatorname{End}_{\mathbb{C}}(V)$.

References

- [1] S. Lang, Algebra, Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002.
- [2] J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematcs, 42, Springer-Verlag, New York, 1977.