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1. INTRODUCTION

In this supplement to Serre [1, §3.3 & §7.1] we give an alternative construction of induced
representations using tensor products over associative algebras (see the first supplement to
the course for a detailed discussion of tensor products).

2. INDUCED REPRESENTATIONS

Let G be a group and H a subgroup. Let 7 : G — GL¢ (V) be a linear representation of
G. The restriction of m to H, denoted by Res% (7) is the representation

Res%(n) : H — GL¢(V)

of H defined by Res%(7) := |y.

Starting with an irreducible representation 7, it may well happen that Resg(w) is re-
ducible. Take for instance H = {e}! More subtle examples arise as follows. If m; :
G — GL¢(V;) (i = 1,2) are two irreducible representations of G, then we have seen that
the product representation 7 := m @ M : G X G — GL¢ (V] ®c¢ Vs) is irreducible, but
RengG(ﬂ) may be reducible. Here G is viewed as the diagonal subgroup of G' x GG via the
group embedding G — G x G given by g — (g, g) for all g € G.

We also write Res% for the linear map F(G) — F(H) defined by

Res$(x) = x|u, X € F(G)

(in other words, it is restricting a class function on G to H). If x, € F(G) is the character
of the linear G-representation 7, then Res% (x,) is the character of Res% (),

Res?[ (XW) = XResg ()"

In this supplement we are going to make a converse construction: given a representa-
tion 0 : H — GL¢c(W) of the subgroup H C G, we are going to induce (“lift”) it to a
representation of G.

For this we need to recall some facts on left coset spaces from Algebra 1. Let G/H be
the left cosets of H in G. In other words, G/H is the set of equivalence classes of G with
respect to the equivalence relation g ~ ¢ iff g7'¢’ € H. The elements of G/H thus are the
left cosets gH = {gh|h € H} (g € G). Recall that

(G: H):=(G/H) = #G/#H
is called the index of H in G. We write R for a complete set of representatives of the left

H-cosets in G. We assume throughout this section that the representative in R for the left

coset H is the unit element e of G.
1
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View C|G] as a right C[H]-module by
C[G] x C[H] — C[G], (a,b) — ab.

Then {e, |r € R} is a C[H|-basis of C[G], i.e. each a € C[G] can be uniquely written as
a=73_,cr b with b, € C[H]. Indeed, a =} _, Ase, for unique A, € C, hence

a=> eby, b= Anen€CH
reR heH
and clearly this is the only choice for the b, € H such that a =) _ e,b,.
Proposition 2.1. Suppose that 0 : H — GLc(W) is a finite dimensional linear represen-

tation of H. Suppose {w;}1, is a C-basis of W. Consider W as left C[H]-module in the
usual way,

ClH]x W — W, (Z [inen, w) — Z pnf(h)w

heH heH

a. The complex vector space Ind% (W) := C[G] Qcim W has {e; @cim) Witrer,1<i<m 08
a C-basis.

b. Ind% (W) is a left C[G)-module with the action defined by
C[G] x Ind5 (W) — Ind% (W), (a,d @ci w) — (ad’) @i w.

Proof. a. {e,®c[mW; }rer,1<i<m SPans Indfl(W). Indeed, fora =} % e.b, with b, € C[H]
and for w € W,

a Q¢ w = Z e, @cm) by - w = Z Z )\Er)er Rc[H] Wi

reR reR i=1

with A" € C such that b, -w = 327, A w; (here we write b-w for the action of b € C|H]

i=1""

on w € W). For the linear independence, define for r € R the map ¢, : C[G] x W — W

by
¢T(Z erxbrx, w) =

reR
with b, € C[H| and w € W. This is well defined by the remark preceding the proposition.
Since ¢, is a C[H]-bilinear map, there exists a unique linear map

6, : Ind% (W) = C[G] @cim W — W

satisfying ¢, (a ®cpm w) = ¢(a,w) for all a € C[G] and w € W (due to the universal
property of ®cay). Suppose now that

Z Z MEW)er' Qcim w; =0

r'eR i=1
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in Ind% (W) with ,ugT/) € C. Write w™) =", 1" w;. Then for all r € R,

ET(Z Z MEW)eT’ Qc[H] wi)
r'eR 1=1

6, (2 e @ermw™)
r"eR
=™,

Hence ,ulm =0forall 1 <7<mandr € R, proving the linear independence.
b. Define for a € C[G],

7(a) : C[G] x W — Ind$ (W)
by 7(a)(a’,w) := (aa’) @cig w for a,a’ € C[G] and w € W. Then 7(a) is C[H]-bilinear,
hence it gives rise to a complex linear endomorphism m(a) of Indg(W) defined by
7T(a) (CL/ ®(C[H] w) = (aa’) @(C[H] w

for a,a’ € C|G] and w € W. It is straightforward to check that the map = : C[G] —
Endc (Indg(W)) is an algebra homomorphism. O

The C[G]-module structure on Ind% (W) thus gives rise to a linear representation 7 :=
nd% () : G — GLc(Ind$(W)), called the representation of G induced from 6. Tt is
explicitly given by

m(9)(a ®cpm w) = (eya) Rcpm w
for g € G, a € C[G] and w € W. Note that Dime(Ind%(W)) = (G : H)Dime (W).

The structure of the induced representation 7 := Ind%(0) of G on V := Ind%(W) is as

follows. Define for g € G the subspace
Vg i=¢g @cm W V.

It is linearly isomorphic to W by the linear isomorphism ¢, : W —— V, defined by
g(w) := ey ®cpu) w. Note that V, only depends on the left coset gH. Indeed, for h € H,

Van = egen Qcim W = ¢4 Qcim G(h)W = e, Qcm W =V,
Hence we write Vi =V, for g € G. Then
Vo @ Vin
gHeG/H

Note that V., C V is a H-invariant subspace with respect to the representation map
Res%(m) = 7|y, isomorphic to W via the bijective H-intertwiner ¢, : W = V.. In
particular, Indff (W) ~ W.

Recall that G acts on G/H by

GxG/H— G/H, (9,9/H) — gq'H.
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Corollary 2.2. We use the above notations. In particular we write 7 = Ind% () and
V = Ind%(W).

(i) If g € G then w(g9) € GLc(V) permutes the subspaces Vyg (¢H € G/H). More
precisely, m(g) restricts to a complex linear isomorphism 7(g)lv,,,, : Von — V-

(ii) If H < G is a normal subgroup then Vo C 'V = Ind$ (W) are H-invariant subspaces
with respect to Res$(m) = |y for all gH € G/H.

Proof. (i) For g,¢" € G we have
m(9) (Vo) = m(9)(eg Qcim W) = egg @ctm W = Vg

Hence 7(g)|v,,,, : Vyu — Vygm. 1t is a linear isomorphism since its inverse is given by
(g N,y
(ii) If H QG then Hg = gH for all g € G hence, for h € H,

(W)W Vorr — Vagr = V-

U

Remark 2.3. Let 0 : H — GL¢(W) be a linear H-representation. If H <G and g € G,

then V,py as linear H-representation with respect to Res% (m) = m|H is isomorphic to the
linear H-representation 69 : H — GL¢ (W), defined by 69(h) := 6(g'hg) for all h € H.

Example 2.4. Let H C G be an inclusion of finite groups. Let py : H — GLc(C[H]) be
the regqular representation, then {e, @cimen}trer e 15 a C-linear basis of the representation
space IndS (C[H]) of the induced representation Ind% (py). Let pg : G — GL¢(C[G]) be the
reqular representation of G, then Indg(pH) ~ pa as G-representations with the bijective
intertwiner Ind(C[H]) — C[G] defined by e, @cjm en — e for allr € R and h € H.

Example 2.5. Consider the dihedral group D, (n odd), generated by r,s and satisfying
rm =e, s> = e and srs = r~t. It has one-dimensional representations ps+ and two dimen-
sional representations m (0 <t < n) defined by

p+(r) =1, p(s) = £1,

_ [cos(2mt/n) —sin(27t/n) (1 0
m(r) = (sin(27rt/n) cos(2mt/n) )’ mi(s) = 0 —1
(we have seen that the m (1 < t < ”T_l) form a complete set of representatives of the

equivalence classes of irreducible representations of D,, of degree two). Rewriting m(+) in

terms of the basis v1 = <_12//22) and vy = (1/@) we get m >~ m, with w, defined by

e27rit/n 0 0 1
a0 = (70 ) me= (] o).

and
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Note that the subgroup H := (r) of D,, generated by r is a normal, index two subgroup of
D,,, isomorphic to Z/nZ. Take R = {e, s} as the set of representatives of the left cosets of
(r) in Dy.

Consider the one dimensional representation x; of the subgroup H = (r) C D,,, defined
by x(r) = ¥ Write C, for the representation space of x; and 1, € C, for a basis
element of Cy, so that r-1; = x¢(r)1;. Set oy == Indg; (xt). The representation space V' of
o, 1s two-dimensional. A linear basis of V' is given by ui 1= e, @4y 1y and ug := e, @y 1.
We then have

O-t<r)u1 = €e ®(r> Xt(r)lt = 6271-“/”’11,1,
Ut(r)UQ = €rg ®<r> 1t = €gp-1 ®<7.> 1t = e, ®<T> Xt(r_l)lt — e—?ﬂit/nu :
and
O't(S>U1 = Usg, O't(8>u2 = ez ®(r> ]-t =e, ®<7‘> 1t = uy.

Hence oy ~ m, ~ 7.

Exercise 2.6. Let n € N and e € {£1}.
(i) Let V be a complex vector space of dimension n with linear basis {vm}mez/mz. Show
that there exists a unique group homomorphism w. : D,, — GL¢c(Ve) satisfying

Te(T)Vm = Vg, Te(8) U = €Uy=y.

(ii) Let (s) C D, be the subgroup of order 2 generated by s. Prove that m, ~ Indgy(ps),
where p. is the one-dimensional representation of (s) defined by p.(s) = €.

Exercise 2.7. Let H C K C G be an inclusion of finite groups.
(i) Let m: G — GL¢(V) be a group homomorphism. Show that
Res% (m) =~ Resh (Res% ()

as linear representations of H.
(ii) Let 0 : H — GLc(W) be a group homomorphism. Show that

Ind%(0) ~ Ind% (Ind%(6))
as linear representations of G.
Exercise 2.8. Let H C G be an inclusion of finite groups and let @ : H — GL¢c(W) and
0" : H— GLc(W’) be finite dimensional linear representations of H.

(i) Prove that ITnd%(0 @ 6') ~ Ind$(0) © Ind%(0") as G-representations.
(ii) Show that Ind%(0) ~ Ind%(#) as G-representations if 6 ~ ' as H-representations.

3. CHARACTERS OF INDUCED REPRESENTATIONS

Let H C G be an inclusion of finite groups. Let R be a complete set of representatives
of the set of left H-cosets in G. The left G-action on G/H gives rise to a left G-action on
R. Concretely, g - r for g € G and r € R is the representative ' € R such that g -r = r’.
Note that g-r =riff gr e rH iff r~1gr € H.
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Theorem 3.1. Define for y € F(H),

(3.1) Ind§(x)(9) == 7 > x(s'gs).

(i) This defines a well defined linear map Ind$, : F(H) — F(G).
(ii) We have

mdG(0)(g) = Y, x(r'gr).
reR:g-r=r

(iii) Let (W,0) be a finite dimensional linear representation of H. Let x9 € F(H) be its
character and Xy,q6 ) € F(Q) the character of the corresponding induced representation
of G. Then

Indg(XB) = Xnd§ (6)-
Proof. (i) We only need to verify that (3.1) defines a class function on G. Let t,g € G.
Then

Indg(x)(tgt‘l)z#% > x(sMtgst™)

s—ltgt—iseH

= — Y x(utgu) = nd§(x)(9),

where the group elements were reparametrized in the second equality by setting v = t~'s
(s € G).

(ii) Since y is a class function on H, we have

1 _ 1 1
o 2 XeTes) = D0 S o grh)
SEG: réeR: heH
s—lgseH r—lgreH
1 _
= 4H > D xilgn)
reR: heH
r—lgreH
= > x(r'gr).
reR:g-r=r

(iii) Fix a linear basis {w;}™, of W and consider the corresponding linear basis v,; :=
e, @c w; (1 <i<m)of V, CV =Ind5(W) (r € R). We have seen that

{vpi|r € R,1<i <m}
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is a linear basis of V = Ind% (W) = @, V,. Write 7 = Ind%(0). Then we have

Xw(g) = Z Z 7T(g)vr,i|vr,i

reR 1=1
m

= § :§ :(egT Qc(H] wi)|er®C[H]wi'
reR i=1

Now observe that the terms for fixed r € R will be zero unless gr € rH, i.e. unless g-r =,
since ey, Q¢ w; € Vy.r. Hence

Xw(g) = Z 2(67‘7‘7197“ ®(C[H} wz) |6r®c[H]wz‘

reR:g-r=r 1=1

— Z Z(er QcH] Q(T_lgr)wiﬂer@c[mwi

reR:g-r=r 1=1

= Z ZQ(r_lgr)wiw

reR:g-r=r =1

= Y xe(r'gr)

reR:g-r=r

= Indf (xo)(9)-

i

|

Exercise 3.2. Let x € F(H) and n € F(G). Denote by - the pointwise multiplication on
F(H) and F(G) respectively.
(i) Show that

Indiy (x - Resf (n)) = Indg(x) -
as identity in F(G).
(ii) Conclude that the image of the induction map Ind% : F(H) — F(G) is an ideal in
(F(G),-).

Recall the scalar product
! R 1 /
(11 =25 ;E;f(g)f (9)

on F(G) C Fung(G). The following theorem shows that the maps Ind$ and Res$; on class
functions are adjoint with respect to these scalar products:

Theorem 3.3 (Frobenius reciprocity). Let x € F(H) andn € F(G). Then
(Ind§(x) 1) = (x| Res§;(m)) ;.



8 ALGEBRA 3; REPRESENTATIE THEORIE. AANVULLING 3

Proof. This is a direct computation,

(10500 ) = 2 22 () (o)

geqG

— 26X X )

geG reR:g-r=r

-G X e

r€R geGir—lgreH

S D DN DI G A TG

r€R geG:r—lgreH

:#zzmw

(G:H)#H 1 —
ey }LEZHX(h)n(h)
= (x| Resf (1)) -

where we used that 7 is a class function on G in the fourth equality. O

Corollary 3.4. Let 0 € H and 7 € G with corresponding irreducible characters xg € F(H)
and n, € F(Q) respectively. The number of times that the irreducible representation 0 ap-
pears as constituent in an irreducible decomposition of Res$ () is equal to the number of

times that the irreducible representation ™ appears as constituent in an irreducible decom-
position of Ind%(6).

Proof. Since the irreducible characters form an orthonormal basis of the class functions, it
follows that

(1) the number of times that the irreducible representation § appears as constituent in
an irreducible decomposition of Res{;(7) is (o | Res% (1)) o

(2) the number of times that the irreducible representation 7 appears as constituent in
an irreducible decomposition of Ind%(6) is (Indfl(xg) | ) o

Hence we need to prove that

(X9 ’ Resg(nw»[{ = (Indg()@) | UW)G,

but this is what Frobenius reciprocity is telling us! U

Example 3.5. Consider again Example 2.5. In particular, n is odd and 0 <t < n. Note
that

m\ __  2mimt/n —2mimt/n
Xo, (T™) =€ m4e /n,
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We then have, by Frobenius reciprocity,

(Xou [Xar) p, = (e [ Ress (xa))

1 n—1
= 7 xRl

n—1
i E 627r7,mt/n(€27rzmt/n +e 27r7,mt/n)
n
m=0

1 n—1
_ ﬁ Z(l + e47rimt/n)'
m=0

This equals 1 1f 1 <t <n and 2 if t =0 since

n—1 _ e47'ri1t/n .
Z(GQWit/n)m: {11(_57%207 Zf1§t<n7
m=0 n, ift=20

(here we use that n is odd, so that e*™*/™ £ 1 for all 1 < t < n). This shows that
o ~ m ~ m is irreducible if 1 <t < n, and that it decomposes in two one-dimensional
wrreducible representations if t = 0.

We now translate Frobenius reciprocity to the setting of intertwiners. Let 6 € H and
m € G with representation spaces Wy and V, and characters yy and 7, respectively. Then
Frobenius reciprocity says that

(xo | Resfi(nx)) ,; = (Ind% (xo) | 1) s
on the other hand we have seen that
(Xg | Resg(m))H = Dim¢ (Hom(H)(W97 Resg(Vﬂ))),
(Indg(xg) ’77“>G = Dim¢ (Hom(G)(Indg(Wg), V,T)).
The resulting equality of dimensions of intertwiner spaces,
(3.2) Dimc (Hom ™) (W, Res%(V4))) = Dime (Hom® (Ind (Wy), V7))
lifts to the following explicit linear isomorphism between the intertwiner spaces.
Proposition 3.6. Let f € Hom'® (Ind%(W;), V;) and set
(3.3) f(w) = flee ®cm w), w € Wy.
Then f — f defines a linear isomorphism
Hom @ (Ind$, (W), Vi) — Hom ™) (W, Res% (V;,)).

In other words, for any H-intertwiner f - Wy — Res$ (Vi) there exists a unique G-
intertwiner f : Ind$(Wy) — Vi such that (3.3) holds true.
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Proof. A direct computation shows that fvis an H-intertwiner,

FO(h)w) = f(ec @cm H(h)w)

Suppose that fz 0. Then
Fle. e w) = Flw) =0 vwew,
Consequently, for r € R and w € W,
fler @cpay w) = f(r - (e Ocpuy w)) = 7(r)(f(ee Ocpm w)) = 0.
Hence f = 0. The map f — fthus is injective. By (3.2) we conclude that f — fis a
linear isomorphism. O

Exercise 3.7. Let H C G be an inclusion of finite groups. Use Frobenius reciprocity to
prove that each irreducible representation m € G of G is contained in Indfl(G) for at least
one 0 € H. Derive from this fact that dimc(V;) < (G : H) if H is abelian.

The following exercise is a preparation to [1, Exerc. 7.2].

Exercise 3.8. Suppose H C G is an inclusion of finite groups. Let R be a complete set
of representatives of the left H-coset space G/H and suppose that e € R (with e the unit
element of G). Recall that G acts transitively on G/H with action map G x G/H — G/H
given by (g,9'H) — gg'H.

(1) Prove that for all r € R\ {e},

#H

(G:H)—1
Hint: Loot at the G-orbit of (H,rH) € G/H x G/H with respect to the diagonal
G-action on G/H x G/H (cf. [1, Exerc. 2.6]).

(2) Prove that the following four statements are equivalent.
(a) G acts double transitively on G/H (see [1, Exerc. 2.6] for the terminology),
(b) there exists an r € R\ {e} such that

#{heH|hrerH} >

B #H
#{hGH”LTGTH}—m,
(c) for allm € R\ {e} we have
B #H

(d) D ey #lh € H|hr e rH} = #H.
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