ALGEBRA 3; REPRESENTATIE THEORIE. AANVULLING 3

1. Introduction

In this supplement to Serre $[1, \S 3.3 \& \S 7.1]$ we give an alternative construction of induced representations using tensor products over associative algebras (see the first supplement to the course for a detailed discussion of tensor products).

2. Induced representations

Let G be a group and H a subgroup. Let $\pi: G \rightarrow \mathrm{GL}_{\mathbb{C}}(V)$ be a linear representation of G. The restriction of π to H, denoted by $\operatorname{Res}_{H}^{G}(\pi)$ is the representation

$$
\operatorname{Res}_{H}^{G}(\pi): H \rightarrow \mathrm{GL}_{\mathbb{C}}(V)
$$

of H defined by $\operatorname{Res}_{H}^{G}(\pi):=\left.\pi\right|_{H}$.
Starting with an irreducible representation π, it may well happen that $\operatorname{Res}_{H}^{G}(\pi)$ is reducible. Take for instance $H=\{e\}$! More subtle examples arise as follows. If π_{i} : $G \rightarrow \mathrm{GL}_{\mathbb{C}}\left(V_{i}\right)(i=1,2)$ are two irreducible representations of G, then we have seen that the product representation $\pi:=\pi_{1} \otimes \pi_{2}: G \times G \rightarrow \mathrm{GL}_{\mathbb{C}}\left(V_{1} \otimes_{\mathbb{C}} V_{2}\right)$ is irreducible, but $\operatorname{Res}_{G}^{G \times G}(\pi)$ may be reducible. Here G is viewed as the diagonal subgroup of $G \times G$ via the group embedding $G \hookrightarrow G \times G$ given by $g \mapsto(g, g)$ for all $g \in G$.

We also write $\operatorname{Res}_{H}^{G}$ for the linear map $F(G) \rightarrow F(H)$ defined by

$$
\operatorname{Res}_{H}^{G}(\chi):=\left.\chi\right|_{H}, \quad \chi \in F(G)
$$

(in other words, it is restricting a class function on G to H). If $\chi_{\pi} \in F(G)$ is the character of the linear G-representation π, then $\operatorname{Res}_{H}^{G}\left(\chi_{\pi}\right)$ is the character of $\operatorname{Res}_{H}^{G}(\pi)$,

$$
\operatorname{Res}_{H}^{G}\left(\chi_{\pi}\right)=\chi_{\operatorname{Res}_{H}^{G}(\pi)} .
$$

In this supplement we are going to make a converse construction: given a representation $\theta: H \rightarrow \mathrm{GL}_{\mathbb{C}}(W)$ of the subgroup $H \subseteq G$, we are going to induce ("lift") it to a representation of G.

For this we need to recall some facts on left coset spaces from Algebra 1. Let G / H be the left cosets of H in G. In other words, G / H is the set of equivalence classes of G with respect to the equivalence relation $g \sim g^{\prime}$ iff $g^{-1} g^{\prime} \in H$. The elements of G / H thus are the left cosets $g H=\{g h \mid h \in H\}(g \in G)$. Recall that

$$
(G: H):=\#(G / H)=\# G / \# H
$$

is called the index of H in G. We write \mathcal{R} for a complete set of representatives of the left H-cosets in G. We assume throughout this section that the representative in \mathcal{R} for the left coset H is the unit element e of G.

View $\mathbb{C}[G]$ as a right $\mathbb{C}[H]$-module by

$$
\mathbb{C}[G] \times \mathbb{C}[H] \rightarrow \mathbb{C}[G], \quad(a, b) \mapsto a b
$$

Then $\left\{e_{r} \mid r \in \mathcal{R}\right\}$ is a $\mathbb{C}[H]$-basis of $\mathbb{C}[G]$, i.e. each $a \in \mathbb{C}[G]$ can be uniquely written as $a=\sum_{r \in \mathcal{R}} e_{r} b_{r}$ with $b_{r} \in \mathbb{C}[H]$. Indeed, $a=\sum_{g \in G} \lambda_{g} e_{g}$ for unique $\lambda_{g} \in \mathbb{C}$, hence

$$
a=\sum_{r \in \mathcal{R}} e_{r} b_{r}, \quad b_{r}:=\sum_{h \in H} \lambda_{r h} e_{h} \in \mathbb{C}[H]
$$

and clearly this is the only choice for the $b_{r} \in H$ such that $a=\sum_{r \in \mathcal{R}} e_{r} b_{r}$.
Proposition 2.1. Suppose that $\theta: H \rightarrow \mathrm{GL}_{\mathbb{C}}(W)$ is a finite dimensional linear representation of H. Suppose $\left\{w_{i}\right\}_{i=1}^{m}$ is a \mathbb{C}-basis of W. Consider W as left $\mathbb{C}[H]$-module in the usual way,

$$
\mathbb{C}[H] \times W \rightarrow W, \quad\left(\sum_{h \in H} \mu_{h} e_{h}, w\right) \mapsto \sum_{h \in H} \mu_{h} \theta(h) w .
$$

a. The complex vector space $\operatorname{Ind}_{H}^{G}(W):=\mathbb{C}[G] \otimes_{\mathbb{C}[H]} W$ has $\left\{e_{r} \otimes_{\mathbb{C}[H]} w_{i}\right\}_{r \in \mathcal{R}, 1 \leq i \leq m}$ as $a \mathbb{C}$-basis.
b. $\operatorname{Ind}_{H}^{G}(W)$ is a left $\mathbb{C}[G]$-module with the action defined by

$$
\mathbb{C}[G] \times \operatorname{Ind}_{H}^{G}(W) \rightarrow \operatorname{Ind}_{H}^{G}(W), \quad\left(a, a^{\prime} \otimes_{\mathbb{C}[H]} w\right) \mapsto\left(a a^{\prime}\right) \otimes_{\mathbb{C}[H]} w
$$

Proof. a. $\left\{e_{r} \otimes_{\mathbb{C}[H]} w_{i}\right\}_{r \in \mathcal{R}, 1 \leq i \leq m} \operatorname{spans} \operatorname{Ind}_{H}^{G}(W)$. Indeed, for $a=\sum_{r \in \mathcal{R}} e_{r} b_{r}$ with $b_{r} \in \mathbb{C}[H]$ and for $w \in W$,

$$
a \otimes_{\mathbb{C}[H]} w=\sum_{r \in \mathcal{R}} e_{r} \otimes_{\mathbb{C}[H]} b_{r} \cdot w=\sum_{r \in \mathcal{R}} \sum_{i=1}^{m} \lambda_{i}^{(r)} e_{r} \otimes_{\mathbb{C}[H]} w_{i}
$$

with $\lambda_{i}^{(r)} \in \mathbb{C}$ such that $b_{r} \cdot w=\sum_{i=1}^{m} \lambda_{i}^{(r)} w_{i}$ (here we write $b \cdot w$ for the action of $b \in \mathbb{C}[H]$ on $w \in W)$. For the linear independence, define for $r \in \mathcal{R}$ the map $\phi_{r}: \mathbb{C}[G] \times W \rightarrow W$ by

$$
\phi_{r}\left(\sum_{r^{\prime} \in \mathcal{R}} e_{r^{\prime}} b_{r^{\prime}}, w\right):=b_{r} \cdot w
$$

with $b_{r^{\prime}} \in \mathbb{C}[H]$ and $w \in W$. This is well defined by the remark preceding the proposition. Since ϕ_{r} is a $\mathbb{C}[H]$-bilinear map, there exists a unique linear map

$$
\bar{\phi}_{r}: \operatorname{Ind}_{H}^{G}(W)=\mathbb{C}[G] \otimes_{\mathbb{C}[H]} W \rightarrow W
$$

satisfying $\bar{\phi}_{r}\left(a \otimes_{\mathbb{C}[H]} w\right)=\phi_{r}(a, w)$ for all $a \in \mathbb{C}[G]$ and $w \in W$ (due to the universal property of $\left.\otimes_{\mathbb{C}[H]}\right)$. Suppose now that

$$
\sum_{r^{\prime} \in \mathcal{R}} \sum_{i=1}^{m} \mu_{i}^{\left(r^{\prime}\right)} e_{r^{\prime}} \otimes_{\mathbb{C}[H]} w_{i}=0
$$

in $\operatorname{Ind}_{H}^{G}(W)$ with $\mu_{i}^{\left(r^{\prime}\right)} \in \mathbb{C}$. Write $w^{\left(r^{\prime}\right)}=\sum_{i=1}^{m} \mu_{i}^{\left(r^{\prime}\right)} w_{i}$. Then for all $r \in \mathcal{R}$,

$$
\begin{aligned}
0 & =\bar{\phi}_{r}\left(\sum_{r^{\prime} \in \mathcal{R}} \sum_{i=1}^{m} \mu_{i}^{\left(r^{\prime}\right)} e_{r^{\prime}} \otimes_{\mathbb{C}[H]} w_{i}\right) \\
& =\bar{\phi}_{r}\left(\sum_{r^{\prime} \in \mathcal{R}} e_{r^{\prime}} \otimes_{\mathbb{C}[H]} w^{\left(r^{\prime}\right)}\right) \\
& =w^{(r)} .
\end{aligned}
$$

Hence $\mu_{i}^{(r)}=0$ for all $1 \leq i \leq m$ and $r \in \mathcal{R}$, proving the linear independence.
b. Define for $a \in \mathbb{C}[G]$,

$$
\widetilde{\pi}(a): \mathbb{C}[G] \times W \rightarrow \operatorname{Ind}_{H}^{G}(W)
$$

by $\widetilde{\pi}(a)\left(a^{\prime}, w\right):=\left(a a^{\prime}\right) \otimes_{\mathbb{C}[H]} w$ for $a, a^{\prime} \in \mathbb{C}[G]$ and $w \in W$. Then $\widetilde{\pi}(a)$ is $\mathbb{C}[H]$-bilinear, hence it gives rise to a complex linear endomorphism $\pi(a)$ of $\operatorname{Ind}_{H}^{G}(W)$ defined by

$$
\pi(a)\left(a^{\prime} \otimes_{\mathbb{C}[H]} w\right)=\left(a a^{\prime}\right) \otimes_{\mathbb{C}[H]} w
$$

for $a, a^{\prime} \in \mathbb{C}[G]$ and $w \in W$. It is straightforward to check that the map $\pi: \mathbb{C}[G] \rightarrow$ $\operatorname{End}_{\mathbb{C}}\left(\operatorname{Ind}_{H}^{G}(W)\right)$ is an algebra homomorphism.

The $\mathbb{C}[G]$-module structure on $\operatorname{Ind}_{H}^{G}(W)$ thus gives rise to a linear representation $\pi:=$ $\operatorname{Ind}_{H}^{G}(\theta): G \rightarrow \mathrm{GL}_{\mathbb{C}}\left(\operatorname{Ind}_{H}^{G}(W)\right)$, called the representation of G induced from θ. It is explicitly given by

$$
\pi(g)\left(a \otimes_{\mathbb{C}[H]} w\right):=\left(e_{g} a\right) \otimes_{\mathbb{C}[H]} w
$$

for $g \in G, a \in \mathbb{C}[G]$ and $w \in W$. Note that $\operatorname{Dim}_{\mathbb{C}}\left(\operatorname{Ind}_{H}^{G}(W)\right)=(G: H) \operatorname{Dim}_{\mathbb{C}}(W)$.
The structure of the induced representation $\pi:=\operatorname{Ind}_{H}^{G}(\theta)$ of G on $V:=\operatorname{Ind}_{H}^{G}(W)$ is as follows. Define for $g \in G$ the subspace

$$
V_{g}:=e_{g} \otimes_{\mathbb{C}[H]} W \subseteq V
$$

It is linearly isomorphic to W by the linear isomorphism $\psi_{g}: W \xrightarrow{\sim} V_{g}$ defined by $\psi_{g}(w):=e_{g} \otimes_{\mathbb{C}[H]} w$. Note that V_{g} only depends on the left coset $g H$. Indeed, for $h \in H$,

$$
V_{g h}=e_{g} e_{h} \otimes_{\mathbb{C}[H]} W=e_{g} \otimes_{\mathbb{C}[H]} \theta(h) W=e_{g} \otimes_{\mathbb{C}[H]} W=V_{g}
$$

Hence we write $V_{g H}=V_{g}$ for $g \in G$. Then

$$
V=\bigoplus_{g H \in G / H} V_{g H}
$$

Note that $V_{e} \subseteq V$ is a H-invariant subspace with respect to the representation map $\operatorname{Res}_{H}^{G}(\pi)=\left.\pi\right|_{H}$, isomorphic to W via the bijective H-intertwiner $\psi_{e}: W \xrightarrow{\sim} V_{e}$. In particular, $\operatorname{Ind}_{H}^{H}(W) \simeq W$.

Recall that G acts on G / H by

$$
G \times G / H \rightarrow G / H, \quad\left(g, g^{\prime} H\right) \mapsto g g^{\prime} H .
$$

Corollary 2.2. We use the above notations. In particular we write $\pi=\operatorname{Ind}_{H}^{G}(\theta)$ and $V=\operatorname{Ind}_{H}^{G}(W)$.
(i) If $g \in G$ then $\pi(g) \in \operatorname{GL}_{\mathbb{C}}(V)$ permutes the subspaces $V_{g^{\prime} H}\left(g^{\prime} H \in G / H\right)$. More precisely, $\pi(g)$ restricts to a complex linear isomorphism $\left.\pi(g)\right|_{V_{g^{\prime} H}}: V_{g^{\prime} H} \xrightarrow{\sim} V_{g g^{\prime} H}$.
(ii) If $H \unlhd G$ is a normal subgroup then $V_{g H} \subseteq V=\operatorname{Ind}_{H}^{G}(W)$ are H-invariant subspaces with respect to $\operatorname{Res}_{H}^{G}(\pi)=\left.\pi\right|_{H}$ for all $g H \in G / H$.

Proof. (i) For $g, g^{\prime} \in G$ we have

$$
\pi(g)\left(V_{g^{\prime} H}\right)=\pi(g)\left(e_{g^{\prime}} \otimes_{\mathbb{C}[H]} W\right)=e_{g g^{\prime}} \otimes_{\mathbb{C}[H]} W=V_{g g^{\prime} H} .
$$

Hence $\left.\pi(g)\right|_{V_{g^{\prime} H}}: V_{g^{\prime} H} \rightarrow V_{g g^{\prime} H}$. It is a linear isomorphism since its inverse is given by $\left.\pi\left(g^{-1}\right)\right|_{V_{g g^{\prime} H}}$.
(ii) If $H \unlhd G$ then $H g=g H$ for all $g \in G$ hence, for $h \in H$,

$$
\left.\pi(h)\right|_{V_{g H}}: V_{g H} \xrightarrow{\sim} V_{h g H}=V_{g H} .
$$

Remark 2.3. Let $\theta: H \rightarrow \mathrm{GL}_{\mathbb{C}}(W)$ be a linear H-representation. If $H \unlhd G$ and $g \in G$, then $V_{g H}$ as linear H-representation with respect to $\operatorname{Res}_{H}^{G}(\pi)=\pi \mid H$ is isomorphic to the linear H-representation $\theta^{g}: H \rightarrow \mathrm{GL}_{\mathbb{C}}(W)$, defined by $\theta^{g}(h):=\theta\left(g^{-1} h g\right)$ for all $h \in H$.

Example 2.4. Let $H \subseteq G$ be an inclusion of finite groups. Let $\rho_{H}: H \rightarrow \mathrm{GL}_{\mathbb{C}}(\mathbb{C}[H])$ be the regular representation, then $\left\{e_{r} \otimes_{\mathbb{C}[H]} e_{h}\right\}_{r \in \mathcal{R}, h \in H}$ is a \mathbb{C}-linear basis of the representation space $\operatorname{Ind}_{H}^{G}(\mathbb{C}[H])$ of the induced representation $\operatorname{Ind}_{H}^{G}\left(\rho_{H}\right)$. Let $\rho_{G}: G \rightarrow \mathrm{GL}_{\mathbb{C}}(\mathbb{C}[G])$ be the regular representation of G, then $\operatorname{Ind}_{H}^{G}\left(\rho_{H}\right) \simeq \rho_{G}$ as G-representations with the bijective intertwiner $\operatorname{Ind}_{H}^{G}(\mathbb{C}[H]) \xrightarrow{\sim} \mathbb{C}[G]$ defined by $e_{r} \otimes_{\mathbb{C}[H]} e_{h} \mapsto e_{r h}$ for all $r \in \mathcal{R}$ and $h \in H$.

Example 2.5. Consider the dihedral group D_{n} (n odd), generated by r, s and satisfying $r^{n}=e, s^{2}=e$ and srs $=r^{-1}$. It has one-dimensional representations $\rho_{ \pm}$and two dimensional representations $\pi_{t}(0 \leq t<n)$ defined by

$$
\rho_{ \pm}(r)=1, \quad \rho_{ \pm}(s)= \pm 1
$$

and

$$
\pi_{t}(r)=\left(\begin{array}{cc}
\cos (2 \pi t / n) & -\sin (2 \pi t / n) \\
\sin (2 \pi t / n) & \cos (2 \pi t / n)
\end{array}\right), \quad \pi_{t}(s)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(we have seen that the $\pi_{t}\left(1 \leq t<\frac{n-1}{2}\right)$ form a complete set of representatives of the equivalence classes of irreducible representations of D_{n} of degree two). Rewriting $\pi_{t}(\cdot)$ in terms of the basis $v_{1}=\binom{1 / 2}{-i / 2}$ and $v_{2}=\binom{1 / 2}{i / 2}$ we get $\pi_{t} \simeq \pi_{t}^{\prime}$ with π_{t}^{\prime} defined by

$$
\pi_{t}^{\prime}(r)=\left(\begin{array}{cc}
e^{2 \pi i t / n} & 0 \\
0 & e^{-2 \pi i t / n}
\end{array}\right), \quad \pi_{t}^{\prime}(s)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Note that the subgroup $H:=\langle r\rangle$ of D_{n} generated by r is a normal, index two subgroup of D_{n}, isomorphic to $\mathbb{Z} / n \mathbb{Z}$. Take $\mathcal{R}=\{e, s\}$ as the set of representatives of the left cosets of $\langle r\rangle$ in D_{n}.

Consider the one dimensional representation χ_{t} of the subgroup $H=\langle r\rangle \subset D_{n}$, defined by $\chi_{t}(r)=e^{2 \pi i t / n}$. Write \mathbb{C}_{t} for the representation space of χ_{t} and $1_{t} \in \mathbb{C}_{t}$ for a basis element of \mathbb{C}_{t}, so that $r \cdot 1_{t}=\chi_{t}(r) 1_{t}$. Set $\sigma_{t}:=\operatorname{Ind}_{\langle r\rangle}^{D_{n}}\left(\chi_{t}\right)$. The representation space V of σ_{t} is two-dimensional. A linear basis of V is given by $u_{1}:=e_{e} \otimes_{\langle r\rangle} 1_{t}$ and $u_{2}:=e_{s} \otimes_{\langle r\rangle} 1_{t}$. We then have

$$
\begin{aligned}
& \sigma_{t}(r) u_{1}=e_{e} \otimes_{\langle r\rangle} \chi_{t}(r) 1_{t}=e^{2 \pi i t / n} u_{1}, \\
& \sigma_{t}(r) u_{2}=e_{r s} \otimes_{\langle r\rangle} 1_{t}=e_{s r^{-1}} \otimes_{\langle r\rangle} 1_{t}=e_{s} \otimes_{\langle r\rangle} \chi_{t}\left(r^{-1}\right) 1_{t}=e^{-2 \pi i t / n} u_{2}
\end{aligned}
$$

and

$$
\sigma_{t}(s) u_{1}=u_{2}, \quad \sigma_{t}(s) u_{2}=e_{s^{2}} \otimes_{\langle r\rangle} 1_{t}=e_{e} \otimes_{\langle r\rangle} 1_{t}=u_{1}
$$

Hence $\sigma_{t} \simeq \pi_{t}^{\prime} \simeq \pi_{t}$.
Exercise 2.6. Let $n \in \mathbb{N}$ and $\epsilon \in\{ \pm 1\}$.
(i) Let V be a complex vector space of dimension n with linear basis $\left\{v_{\bar{m}}\right\}_{\bar{m} \in \mathbb{Z} / n \mathbb{Z}}$. Show that there exists a unique group homomorphism $\pi_{\epsilon}: D_{n} \rightarrow \mathrm{GL}_{\mathbb{C}}\left(V_{\epsilon}\right)$ satisfying

$$
\pi_{\epsilon}(r) v_{\bar{m}}=v_{\overline{m+1}}, \quad \pi_{\epsilon}(s) v_{\bar{m}}=\epsilon v_{\overline{n-m}} .
$$

(ii) Let $\langle s\rangle \subset D_{n}$ be the subgroup of order 2 generated by s. Prove that $\pi_{\epsilon} \simeq \operatorname{Ind}_{\langle s\rangle}^{D_{n}}\left(\rho_{\epsilon}\right)$, where ρ_{ϵ} is the one-dimensional representation of $\langle s\rangle$ defined by $\rho_{\epsilon}(s)=\epsilon$.

Exercise 2.7. Let $H \subseteq K \subseteq G$ be an inclusion of finite groups.
(i) Let $\pi: G \rightarrow \operatorname{GL}_{\mathbb{C}}(V)$ be a group homomorphism. Show that

$$
\operatorname{Res}_{H}^{G}(\pi) \simeq \operatorname{Res}_{H}^{K}\left(\operatorname{Res}_{K}^{G}(\pi)\right)
$$

as linear representations of H.
(ii) Let $\theta: H \rightarrow \operatorname{GL}_{\mathbb{C}}(W)$ be a group homomorphism. Show that

$$
\operatorname{Ind}_{H}^{G}(\theta) \simeq \operatorname{Ind}_{K}^{G}\left(\operatorname{Ind}_{H}^{K}(\theta)\right)
$$

as linear representations of G.
Exercise 2.8. Let $H \subseteq G$ be an inclusion of finite groups and let $\theta: H \rightarrow \mathrm{GL}_{\mathbb{C}}(W)$ and $\theta^{\prime}: H \rightarrow \mathrm{GL}_{\mathbb{C}}\left(W^{\prime}\right)$ be finite dimensional linear representations of H.
(i) Prove that $\operatorname{Ind}_{H}^{G}\left(\theta \oplus \theta^{\prime}\right) \simeq \operatorname{Ind}_{H}^{G}(\theta) \oplus \operatorname{Ind}_{H}^{G}\left(\theta^{\prime}\right)$ as G-representations.
(ii) Show that $\operatorname{Ind}_{H}^{G}(\theta) \simeq \operatorname{Ind}_{H}^{G}\left(\theta^{\prime}\right)$ as G-representations if $\theta \simeq \theta^{\prime}$ as H-representations.

3. Characters of induced Representations

Let $H \subseteq G$ be an inclusion of finite groups. Let \mathcal{R} be a complete set of representatives of the set of left H-cosets in G. The left G-action on G / H gives rise to a left G-action on \mathcal{R}. Concretely, $g \cdot r$ for $g \in G$ and $r \in \mathcal{R}$ is the representative $r^{\prime} \in \mathcal{R}$ such that $g \cdot r=r^{\prime}$. Note that $g \cdot r=r$ iff $g r \in r H$ iff $r^{-1} g r \in H$.

Theorem 3.1. Define for $\chi \in F(H)$,

$$
\begin{equation*}
\operatorname{Ind}_{H}^{G}(\chi)(g):=\frac{1}{\# H} \sum_{\substack{s \in G: \\ s^{-1} g s \in H}} \chi\left(s^{-1} g s\right) . \tag{3.1}
\end{equation*}
$$

(i) This defines a well defined linear map $\operatorname{Ind}_{H}^{G}: F(H) \rightarrow F(G)$.
(ii) We have

$$
\operatorname{Ind}_{H}^{G}(\chi)(g)=\sum_{r \in \mathcal{R}: g \cdot r=r} \chi\left(r^{-1} g r\right) .
$$

(iii) Let (W, θ) be a finite dimensional linear representation of H. Let $\chi_{\theta} \in F(H)$ be its character and $\chi_{\operatorname{Ind}_{H}^{G}(\theta)} \in F(G)$ the character of the corresponding induced representation of G. Then

$$
\operatorname{Ind}_{H}^{G}\left(\chi_{\theta}\right)=\chi_{\operatorname{Ind}_{H}^{G}(\theta)} .
$$

Proof. (i) We only need to verify that (3.1) defines a class function on G. Let $t, g \in G$. Then

$$
\begin{aligned}
\operatorname{Ind}_{H}^{G}(\chi)\left(t g t^{-1}\right) & =\frac{1}{\# H} \sum_{\substack{s \in G_{:} \\
s^{-1} t g t^{-1} s \in H}} \chi\left(s^{-1} t g s t^{-1}\right) \\
& =\frac{1}{\# H} \sum_{\substack{u \in G: \\
u^{-1} g u \in H}} \chi\left(u^{-1} g u\right)=\operatorname{Ind}_{H}^{G}(\chi)(g),
\end{aligned}
$$

where the group elements were reparametrized in the second equality by setting $u=t^{-1} s$ $(s \in G)$.
(ii) Since χ is a class function on H, we have

$$
\begin{aligned}
\frac{1}{\# H} \sum_{\substack{s \in G: \\
s^{-1} g s \in H}} \chi\left(s^{-1} g s\right) & =\frac{1}{\# H} \sum_{\substack{r \in \mathcal{R}: \\
r^{-1} 1 g r \in H}} \sum_{h \in H} \chi\left(h^{-1} r^{-1} g r h\right) \\
& =\frac{1}{\# H} \sum_{\substack{r \in \mathcal{R}: \\
r^{-1} 1}} \sum_{h \in H} \chi\left(r^{-1} g r\right) \\
& =\sum_{r \in \mathcal{R}: g \cdot r=r} \chi\left(r^{-1} g r\right) .
\end{aligned}
$$

(iii) Fix a linear basis $\left\{w_{i}\right\}_{i=1}^{m}$ of W and consider the corresponding linear basis $v_{r, i}:=$ $e_{r} \otimes_{\mathbb{C}[H]} w_{i}(1 \leq i \leq m)$ of $V_{r} \subseteq V=\operatorname{Ind}_{H}^{G}(W)(r \in \mathcal{R})$. We have seen that

$$
\left\{v_{r, i} \mid r \in \mathcal{R}, 1 \leq i \leq m\right\}
$$

is a linear basis of $V=\operatorname{Ind}_{H}^{G}(W)=\bigoplus_{r \in \mathcal{R}} V_{r}$. Write $\pi=\operatorname{Ind}_{H}^{G}(\theta)$. Then we have

$$
\begin{aligned}
\chi_{\pi}(g) & =\left.\sum_{r \in \mathcal{R}} \sum_{i=1}^{m} \pi(g) v_{r, i}\right|_{v_{r, i}} \\
& =\left.\sum_{r \in \mathcal{R}} \sum_{i=1}^{m}\left(e_{g r} \otimes_{\mathbb{C}[H]} w_{i}\right)\right|_{e_{r} \otimes_{\mathbb{C}[H]} w_{i}} .
\end{aligned}
$$

Now observe that the terms for fixed $r \in \mathcal{R}$ will be zero unless $g r \in r H$, i.e. unless $g \cdot r=r$, since $e_{g r} \otimes_{\mathbb{C}[H]} w_{i} \in V_{g . r}$. Hence

$$
\begin{aligned}
\chi_{\pi}(g) & =\left.\sum_{r \in \mathcal{R}: g \cdot r=r} \sum_{i=1}^{m}\left(e_{r r^{-1} g r} \otimes_{\mathbb{C}[H]} w_{i}\right)\right|_{e_{r} \otimes_{\mathbb{C}[H]} w_{i}} \\
& =\left.\sum_{r \in \mathcal{R}: g \cdot r=r} \sum_{i=1}^{m}\left(e_{r} \otimes_{\mathbb{C}[H]} \theta\left(r^{-1} g r\right) w_{i}\right)\right|_{e_{r} \otimes_{\mathbb{C}[H]} w_{i}} \\
& =\left.\sum_{r \in \mathcal{R}: g \cdot r=r} \sum_{i=1}^{m} \theta\left(r^{-1} g r\right) w_{i}\right|_{w_{i}} \\
& =\sum_{r \in \mathcal{R}: g \cdot r=r} \chi_{\theta}\left(r^{-1} g r\right) \\
& =\operatorname{Ind}_{H}^{G}\left(\chi_{\theta}\right)(g)
\end{aligned}
$$

Exercise 3.2. Let $\chi \in F(H)$ and $\eta \in F(G)$. Denote by \cdot the pointwise multiplication on $F(H)$ and $F(G)$ respectively.
(i) Show that

$$
\operatorname{Ind}_{H}^{G}\left(\chi \cdot \operatorname{Res}_{H}^{G}(\eta)\right)=\operatorname{Ind}_{H}^{G}(\chi) \cdot \eta
$$

as identity in $F(G)$.
(ii) Conclude that the image of the induction map $\operatorname{Ind}_{H}^{G}: F(H) \rightarrow F(G)$ is an ideal in $(F(G), \cdot)$.

Recall the scalar product

$$
\left(f \mid f^{\prime}\right)_{G}:=\frac{1}{\# G} \sum_{g \in G} f(g) \overline{f^{\prime}(g)}
$$

on $F(G) \subseteq \operatorname{Fun}_{\mathbb{C}}(G)$. The following theorem shows that the maps $\operatorname{Ind}_{H}^{G}$ and $\operatorname{Res}_{H}^{G}$ on class functions are adjoint with respect to these scalar products:
Theorem 3.3 (Frobenius reciprocity). Let $\chi \in F(H)$ and $\eta \in F(G)$. Then

$$
\left(\operatorname{Ind}_{H}^{G}(\chi) \mid \eta\right)_{G}=\left(\chi \mid \operatorname{Res}_{H}^{G}(\eta)\right)_{H}
$$

Proof. This is a direct computation,

$$
\begin{aligned}
\left(\operatorname{Ind}_{H}^{G}(\chi) \mid \eta\right)_{G} & =\frac{1}{\# G} \sum_{g \in G} \operatorname{Ind}_{H}^{G}(\chi)(g) \overline{\eta(g)} \\
& =\frac{1}{\# G} \sum_{g \in G} \sum_{r \in \mathcal{R}: g \cdot r=r} \chi\left(r^{-1} g r\right) \overline{\eta(g)} \\
& =\frac{1}{\# G} \sum_{r \in \mathcal{R}} \sum_{g \in G: r^{-1} g r \in H} \chi\left(r^{-1} g r\right) \overline{\eta(g)} \\
& =\frac{1}{\# G} \sum_{r \in \mathcal{R}} \sum_{g \in G: r^{-1} g r \in H} \chi\left(r^{-1} g r\right) \overline{\eta\left(r^{-1} g r\right)} \\
& =\frac{1}{\# G} \sum_{r \in \mathcal{R}} \sum_{h \in H} \chi(h) \overline{\eta(h)} \\
& =\frac{(G: H) \# H}{\# G} \frac{1}{\# H} \sum_{h \in H} \chi(h) \overline{\eta(h)} \\
& =\left(\chi \mid \operatorname{Res}_{H}^{G}(\eta)\right)_{H}
\end{aligned}
$$

where we used that η is a class function on G in the fourth equality.
Corollary 3.4. Let $\theta \in \widehat{H}$ and $\pi \in \widehat{G}$ with corresponding irreducible characters $\chi_{\theta} \in F(H)$ and $\eta_{\pi} \in F(G)$ respectively. The number of times that the irreducible representation θ appears as constituent in an irreducible decomposition of $\operatorname{Res}_{H}^{G}(\pi)$ is equal to the number of times that the irreducible representation π appears as constituent in an irreducible decomposition of $\operatorname{Ind}_{H}^{G}(\theta)$.

Proof. Since the irreducible characters form an orthonormal basis of the class functions, it follows that
(1) the number of times that the irreducible representation θ appears as constituent in an irreducible decomposition of $\operatorname{Res}_{H}^{G}(\pi)$ is $\left(\chi_{\theta} \mid \operatorname{Res}_{H}^{G}\left(\eta_{\pi}\right)\right)_{H}$,
(2) the number of times that the irreducible representation π appears as constituent in an irreducible decomposition of $\operatorname{Ind}_{H}^{G}(\theta)$ is $\left(\operatorname{Ind}_{H}^{G}\left(\chi_{\theta}\right) \mid \eta_{\pi}\right)_{G}$.
Hence we need to prove that

$$
\left(\chi_{\theta} \mid \operatorname{Res}_{H}^{G}\left(\eta_{\pi}\right)\right)_{H}=\left(\operatorname{Ind}_{H}^{G}\left(\chi_{\theta}\right) \mid \eta_{\pi}\right)_{G},
$$

but this is what Frobenius reciprocity is telling us!
Example 3.5. Consider again Example 2.5. In particular, n is odd and $0 \leq t<n$. Note that

$$
\chi_{\sigma_{t}}\left(r^{m}\right)=e^{2 \pi i m t / n}+e^{-2 \pi i m t / n}
$$

We then have, by Frobenius reciprocity,

$$
\begin{aligned}
\left(\chi_{\sigma_{t}} \mid \chi_{\sigma_{t}}\right)_{D_{n}} & =\left(\chi_{t} \mid \operatorname{Res}_{\langle r\rangle}^{D_{n}}\left(\chi_{\sigma_{t}}\right)\right)_{\langle r\rangle} \\
& =\frac{1}{n} \sum_{m=0}^{n-1} \chi_{t}\left(r^{m}\right) \overline{\chi_{\sigma_{t}}\left(r^{m}\right)} \\
& =\frac{1}{n} \sum_{m=0}^{n-1} e^{2 \pi i m t / n}\left(e^{2 \pi i m t / n}+e^{-2 \pi i m t / n}\right) \\
& =\frac{1}{n} \sum_{m=0}^{n-1}\left(1+e^{4 \pi i m t / n}\right)
\end{aligned}
$$

This equals 1 if $1 \leq t<n$ and 2 if $t=0$ since

$$
\sum_{m=0}^{n-1}\left(e^{2 \pi i t / n}\right)^{m}= \begin{cases}\frac{1-\left(e^{4 \pi i t / n}\right)^{n}}{1-e^{4 \pi i t / n}}=0, & \text { if } 1 \leq t<n \\ n, & \text { if } t=0\end{cases}
$$

(here we use that n is odd, so that $e^{4 \pi i t / n} \neq 1$ for all $1 \leq t<n$). This shows that $\sigma_{t} \simeq \pi_{t} \simeq \pi_{t}^{\prime}$ is irreducible if $1 \leq t<n$, and that it decomposes in two one-dimensional irreducible representations if $t=0$.

We now translate Frobenius reciprocity to the setting of intertwiners. Let $\theta \in \widehat{H}$ and $\pi \in \widehat{G}$ with representation spaces W_{θ} and V_{π} and characters χ_{θ} and η_{π} respectively. Then Frobenius reciprocity says that

$$
\left(\chi_{\theta} \mid \operatorname{Res}_{H}^{G}\left(\eta_{\pi}\right)\right)_{H}=\left(\operatorname{Ind}_{H}^{G}\left(\chi_{\theta}\right) \mid \eta_{\pi}\right)_{G},
$$

on the other hand we have seen that

$$
\begin{aligned}
\left(\chi_{\theta} \mid \operatorname{Res}_{H}^{G}\left(\eta_{\pi}\right)\right)_{H} & =\operatorname{Dim}_{\mathbb{C}}\left(\operatorname{Hom}^{(H)}\left(W_{\theta}, \operatorname{Res}_{H}^{G}\left(V_{\pi}\right)\right)\right), \\
\left(\operatorname{Ind}_{H}^{G}\left(\chi_{\theta}\right) \mid \eta_{\pi}\right)_{G} & =\operatorname{Dim}_{\mathbb{C}}\left(\operatorname{Hom}^{(G)}\left(\operatorname{Ind}_{H}^{G}\left(W_{\theta}\right), V_{\pi}\right)\right) .
\end{aligned}
$$

The resulting equality of dimensions of intertwiner spaces,

$$
\begin{equation*}
\operatorname{Dim}_{\mathbb{C}}\left(\operatorname{Hom}^{(H)}\left(W_{\theta}, \operatorname{Res}_{H}^{G}\left(V_{\pi}\right)\right)\right)=\operatorname{Dim}_{\mathbb{C}}\left(\operatorname{Hom}^{(G)}\left(\operatorname{Ind}_{H}^{G}\left(W_{\theta}\right), V_{\pi}\right)\right) \tag{3.2}
\end{equation*}
$$

lifts to the following explicit linear isomorphism between the intertwiner spaces.
Proposition 3.6. Let $f \in \operatorname{Hom}^{(G)}\left(\operatorname{Ind}_{H}^{G}\left(W_{\theta}\right), V_{\pi}\right)$ and set

$$
\begin{equation*}
\tilde{f}(w):=f\left(e_{e} \otimes_{\mathbb{C}[H]} w\right), \quad w \in W_{\theta} . \tag{3.3}
\end{equation*}
$$

Then $f \mapsto \tilde{f}$ defines a linear isomorphism

$$
\operatorname{Hom}^{(G)}\left(\operatorname{Ind}_{H}^{G}\left(W_{\theta}\right), V_{\pi}\right) \xrightarrow{\sim} \operatorname{Hom}^{(H)}\left(W_{\theta}, \operatorname{Res}_{H}^{G}\left(V_{\pi}\right)\right)
$$

In other words, for any H-intertwiner $\widetilde{f}: W_{\theta} \rightarrow \operatorname{Res}_{H}^{G}\left(V_{\pi}\right)$ there exists a unique G intertwiner $f: \operatorname{Ind}_{H}^{G}\left(W_{\theta}\right) \rightarrow V_{\pi}$ such that (3.3) holds true.

Proof. A direct computation shows that \tilde{f} is an H-intertwiner,

$$
\begin{aligned}
\tilde{f}(\theta(h) w) & =f\left(e_{e} \otimes_{\mathbb{C}[H]} \theta(h) w\right) \\
& =f\left(e_{h} \otimes_{\mathbb{C}[H]} w\right) \\
& =f\left(h \cdot\left(e_{e} \otimes_{\mathbb{C}[H]} w\right)\right) \\
& =\pi(h)\left(f\left(e_{e} \otimes_{\mathbb{C}[H]} w\right)\right) \\
& =\pi(h) \widetilde{f}(w) .
\end{aligned}
$$

Suppose that $\tilde{f} \equiv 0$. Then

$$
f\left(e_{e} \otimes_{\mathbb{C}[H]} w\right)=\widetilde{f}(w)=0 \quad \forall w \in W
$$

Consequently, for $r \in \mathcal{R}$ and $w \in W$,

$$
f\left(e_{r} \otimes_{\mathbb{C}[H]} w\right)=f\left(r \cdot\left(e_{e} \otimes_{\mathbb{C}[H]} w\right)\right)=\pi(r)\left(f\left(e_{e} \otimes_{\mathbb{C}[H]} w\right)\right)=0
$$

Hence $f \equiv 0$. The map $f \mapsto \tilde{f}$ thus is injective. By (3.2) we conclude that $f \mapsto \tilde{f}$ is a linear isomorphism.
Exercise 3.7. Let $H \subseteq G$ be an inclusion of finite groups. Use Frobenius reciprocity to prove that each irreducible representation $\pi \in \widehat{G}$ of G is contained in $\operatorname{Ind}_{H}^{G}(\theta)$ for at least one $\theta \in \widehat{H}$. Derive from this fact that $\operatorname{dim}_{\mathbb{C}}\left(V_{\pi}\right) \leq(G: H)$ if H is abelian.

The following exercise is a preparation to [1, Exerc. 7.2].
Exercise 3.8. Suppose $H \subsetneq G$ is an inclusion of finite groups. Let \mathcal{R} be a complete set of representatives of the left H-coset space G / H and suppose that $e \in \mathcal{R}$ (with e the unit element of G). Recall that G acts transitively on G / H with action map $G \times G / H \rightarrow G / H$ given by $\left(g, g^{\prime} H\right) \mapsto g g^{\prime} H$.
(1) Prove that for all $r \in \mathcal{R} \backslash\{e\}$,

$$
\#\{h \in H \mid h r \in r H\} \geq \frac{\# H}{(G: H)-1}
$$

Hint: Loot at the G-orbit of $(H, r H) \in G / H \times G / H$ with respect to the diagonal G-action on $G / H \times G / H$ (cf. [1, Exerc. 2.6]).
(2) Prove that the following four statements are equivalent.
(a) G acts double transitively on G / H (see [1, Exerc. 2.6] for the terminology),
(b) there exists an $r \in \mathcal{R} \backslash\{e\}$ such that

$$
\#\{h \in H \mid h r \in r H\}=\frac{\# H}{(G: H)-1}
$$

(c) for all $r \in \mathcal{R} \backslash\{e\}$ we have

$$
\#\{h \in H \mid h r \in r H\}=\frac{\# H}{(G: H)-1}
$$

(d) $\sum_{r \in \mathcal{R} \backslash\{e\}} \#\{h \in H \mid h r \in r H\}=\# H$.

References

[1] J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, 42, SpringerVerlag, New York, 1977.

