ALGEBRA 3; REPRESENTATIE THEORIE. AANVULLING 3

1. INTRODUCTION

In this supplement to Serre $[1, \S 3.3 \& \S 7.1]$ we give an alternative construction of induced representations using tensor products over associative algebras (see the first supplement to the course for a detailed discussion of tensor products).

2. Induced representations

Let G be a group and H a subgroup. Let $\pi : G \to \operatorname{GL}_{\mathbb{C}}(V)$ be a linear representation of G. The restriction of π to H, denoted by $\operatorname{Res}^G_H(\pi)$ is the representation

$$\operatorname{Res}_{H}^{G}(\pi): H \to \operatorname{GL}_{\mathbb{C}}(V)$$

of H defined by $\operatorname{Res}_{H}^{G}(\pi) := \pi|_{H}$.

Starting with an irreducible representation π , it may well happen that $\operatorname{Res}_{H}^{G}(\pi)$ is reducible. Take for instance $H = \{e\}!$ More subtle examples arise as follows. If $\pi_i : G \to \operatorname{GL}_{\mathbb{C}}(V_i)$ (i = 1, 2) are two irreducible representations of G, then we have seen that the product representation $\pi := \pi_1 \otimes \pi_2 : G \times G \to \operatorname{GL}_{\mathbb{C}}(V_1 \otimes_{\mathbb{C}} V_2)$ is irreducible, but $\operatorname{Res}_{G}^{G \times G}(\pi)$ may be reducible. Here G is viewed as the diagonal subgroup of $G \times G$ via the group embedding $G \hookrightarrow G \times G$ given by $g \mapsto (g, g)$ for all $g \in G$.

We also write $\operatorname{Res}_{H}^{G}$ for the linear map $F(G) \to F(H)$ defined by

$$\operatorname{Res}_{H}^{G}(\chi) := \chi|_{H}, \qquad \chi \in F(G)$$

(in other words, it is restricting a class function on G to H). If $\chi_{\pi} \in F(G)$ is the character of the linear G-representation π , then $\operatorname{Res}_{H}^{G}(\chi_{\pi})$ is the character of $\operatorname{Res}_{H}^{G}(\pi)$,

$$\operatorname{Res}_{H}^{G}(\chi_{\pi}) = \chi_{\operatorname{Res}_{H}^{G}(\pi)}.$$

In this supplement we are going to make a converse construction: given a representation $\theta : H \to \operatorname{GL}_{\mathbb{C}}(W)$ of the subgroup $H \subseteq G$, we are going to induce ("lift") it to a representation of G.

For this we need to recall some facts on left coset spaces from Algebra 1. Let G/H be the left cosets of H in G. In other words, G/H is the set of equivalence classes of G with respect to the equivalence relation $g \sim g'$ iff $g^{-1}g' \in H$. The elements of G/H thus are the left cosets $gH = \{gh \mid h \in H\}$ $(g \in G)$. Recall that

$$(G:H) := \#(G/H) = \#G/\#H$$

is called the index of H in G. We write \mathcal{R} for a complete set of representatives of the left H-cosets in G. We assume throughout this section that the representative in \mathcal{R} for the left coset H is the unit element e of G.

View $\mathbb{C}[G]$ as a right $\mathbb{C}[H]$ -module by

$$\mathbb{C}[G] \times \mathbb{C}[H] \to \mathbb{C}[G], \qquad (a, b) \mapsto ab.$$

Then $\{e_r \mid r \in \mathcal{R}\}$ is a $\mathbb{C}[H]$ -basis of $\mathbb{C}[G]$, i.e. each $a \in \mathbb{C}[G]$ can be uniquely written as $a = \sum_{r \in \mathcal{R}} e_r b_r$ with $b_r \in \mathbb{C}[H]$. Indeed, $a = \sum_{g \in G} \lambda_g e_g$ for unique $\lambda_g \in \mathbb{C}$, hence

$$a = \sum_{r \in \mathcal{R}} e_r b_r, \qquad b_r := \sum_{h \in H} \lambda_{rh} e_h \in \mathbb{C}[H]$$

and clearly this is the only choice for the $b_r \in H$ such that $a = \sum_{r \in \mathcal{R}} e_r b_r$.

Proposition 2.1. Suppose that $\theta : H \to \operatorname{GL}_{\mathbb{C}}(W)$ is a finite dimensional linear representation of H. Suppose $\{w_i\}_{i=1}^m$ is a \mathbb{C} -basis of W. Consider W as left $\mathbb{C}[H]$ -module in the usual way,

$$\mathbb{C}[H] \times W \to W, \qquad \left(\sum_{h \in H} \mu_h e_h, w\right) \mapsto \sum_{h \in H} \mu_h \theta(h) w.$$

- **a.** The complex vector space $\operatorname{Ind}_{H}^{G}(W) := \mathbb{C}[G] \otimes_{\mathbb{C}[H]} W$ has $\{e_r \otimes_{\mathbb{C}[H]} w_i\}_{r \in \mathcal{R}, 1 \leq i \leq m}$ as a \mathbb{C} -basis.
- **b.** $\operatorname{Ind}_{H}^{G}(W)$ is a left $\mathbb{C}[G]$ -module with the action defined by

$$\mathbb{C}[G] \times \mathrm{Ind}_{H}^{G}(W) \to \mathrm{Ind}_{H}^{G}(W), \qquad (a, a' \otimes_{\mathbb{C}[H]} w) \mapsto (aa') \otimes_{\mathbb{C}[H]} w$$

Proof. **a.** $\{e_r \otimes_{\mathbb{C}[H]} w_i\}_{r \in \mathcal{R}, 1 \leq i \leq m}$ spans $\operatorname{Ind}_H^G(W)$. Indeed, for $a = \sum_{r \in \mathcal{R}} e_r b_r$ with $b_r \in \mathbb{C}[H]$ and for $w \in W$,

$$a \otimes_{\mathbb{C}[H]} w = \sum_{r \in \mathcal{R}} e_r \otimes_{\mathbb{C}[H]} b_r \cdot w = \sum_{r \in \mathcal{R}} \sum_{i=1}^m \lambda_i^{(r)} e_r \otimes_{\mathbb{C}[H]} w_i$$

with $\lambda_i^{(r)} \in \mathbb{C}$ such that $b_r \cdot w = \sum_{i=1}^m \lambda_i^{(r)} w_i$ (here we write $b \cdot w$ for the action of $b \in \mathbb{C}[H]$ on $w \in W$). For the linear independence, define for $r \in \mathcal{R}$ the map $\phi_r : \mathbb{C}[G] \times W \to W$ by

$$\phi_r(\sum_{r'\in\mathcal{R}} e_{r'}b_{r'}, w) := b_r \cdot w$$

with $b_{r'} \in \mathbb{C}[H]$ and $w \in W$. This is well defined by the remark preceding the proposition. Since ϕ_r is a $\mathbb{C}[H]$ -bilinear map, there exists a unique linear map

$$\overline{\phi}_r : \mathrm{Ind}_H^G(W) = \mathbb{C}[G] \otimes_{\mathbb{C}[H]} W \to W$$

satisfying $\overline{\phi}_r(a \otimes_{\mathbb{C}[H]} w) = \phi_r(a, w)$ for all $a \in \mathbb{C}[G]$ and $w \in W$ (due to the universal property of $\otimes_{\mathbb{C}[H]}$). Suppose now that

$$\sum_{r' \in \mathcal{R}} \sum_{i=1}^{m} \mu_i^{(r')} e_{r'} \otimes_{\mathbb{C}[H]} w_i = 0$$

in $\operatorname{Ind}_{H}^{G}(W)$ with $\mu_{i}^{(r')} \in \mathbb{C}$. Write $w^{(r')} = \sum_{i=1}^{m} \mu_{i}^{(r')} w_{i}$. Then for all $r \in \mathcal{R}$, $0 = \overline{\phi}_{r} \Big(\sum_{r' \in \mathcal{R}} \sum_{i=1}^{m} \mu_{i}^{(r')} e_{r'} \otimes_{\mathbb{C}[H]} w_{i} \Big)$ $= \overline{\phi}_{r} \Big(\sum_{r' \in \mathcal{R}} e_{r'} \otimes_{\mathbb{C}[H]} w^{(r')} \Big)$ $= w^{(r)}$

Hence $\mu_i^{(r)} = 0$ for all $1 \le i \le m$ and $r \in \mathcal{R}$, proving the linear independence. **b.** Define for $a \in \mathbb{C}[G]$,

$$\check{\tau}(a) : \mathbb{C}[G] \times W \to \mathrm{Ind}_H^G(W)$$

by $\tilde{\pi}(a)(a', w) := (aa') \otimes_{\mathbb{C}[H]} w$ for $a, a' \in \mathbb{C}[G]$ and $w \in W$. Then $\tilde{\pi}(a)$ is $\mathbb{C}[H]$ -bilinear, hence it gives rise to a complex linear endomorphism $\pi(a)$ of $\mathrm{Ind}_{H}^{G}(W)$ defined by

$$\pi(a)(a' \otimes_{\mathbb{C}[H]} w) = (aa') \otimes_{\mathbb{C}[H]} w$$

for $a, a' \in \mathbb{C}[G]$ and $w \in W$. It is straightforward to check that the map $\pi : \mathbb{C}[G] \to \operatorname{End}_{\mathbb{C}}(\operatorname{Ind}_{H}^{G}(W))$ is an algebra homomorphism. \Box

The $\mathbb{C}[G]$ -module structure on $\operatorname{Ind}_{H}^{G}(W)$ thus gives rise to a linear representation $\pi := \operatorname{Ind}_{H}^{G}(\theta) : G \to \operatorname{GL}_{\mathbb{C}}(\operatorname{Ind}_{H}^{G}(W))$, called the representation of G induced from θ . It is explicitly given by

$$\pi(g)(a \otimes_{\mathbb{C}[H]} w) := (e_g a) \otimes_{\mathbb{C}[H]} u$$

for $g \in G$, $a \in \mathbb{C}[G]$ and $w \in W$. Note that $\text{Dim}_{\mathbb{C}}(\text{Ind}_{H}^{G}(W)) = (G : H)\text{Dim}_{\mathbb{C}}(W)$.

The structure of the induced representation $\pi := \operatorname{Ind}_{H}^{G}(\theta)$ of G on $V := \operatorname{Ind}_{H}^{G}(W)$ is as follows. Define for $g \in G$ the subspace

$$V_g := e_g \otimes_{\mathbb{C}[H]} W \subseteq V.$$

It is linearly isomorphic to W by the linear isomorphism $\psi_g : W \xrightarrow{\sim} V_g$ defined by $\psi_g(w) := e_g \otimes_{\mathbb{C}[H]} w$. Note that V_g only depends on the left coset gH. Indeed, for $h \in H$,

$$V_{gh} = e_g e_h \otimes_{\mathbb{C}[H]} W = e_g \otimes_{\mathbb{C}[H]} \theta(h) W = e_g \otimes_{\mathbb{C}[H]} W = V_g.$$

Hence we write $V_{qH} = V_q$ for $g \in G$. Then

$$V = \bigoplus_{gH \in G/H} V_{gH}.$$

Note that $V_e \subseteq V$ is a *H*-invariant subspace with respect to the representation map $\operatorname{Res}_H^G(\pi) = \pi|_H$, isomorphic to *W* via the bijective *H*-intertwiner $\psi_e : W \xrightarrow{\sim} V_e$. In particular, $\operatorname{Ind}_H^H(W) \simeq W$.

Recall that G acts on G/H by

$$G \times G/H \to G/H, \qquad (g, g'H) \mapsto gg'H.$$

Corollary 2.2. We use the above notations. In particular we write $\pi = \operatorname{Ind}_{H}^{G}(\theta)$ and $V = \operatorname{Ind}_{H}^{G}(W)$.

(i) If $g \in G$ then $\pi(g) \in \operatorname{GL}_{\mathbb{C}}(V)$ permutes the subspaces $V_{g'H}$ $(g'H \in G/H)$. More precisely, $\pi(g)$ restricts to a complex linear isomorphism $\pi(g)|_{V_{g'H}} : V_{g'H} \xrightarrow{\sim} V_{gg'H}$.

(ii) If $H \leq G$ is a normal subgroup then $V_{gH} \subseteq V = \operatorname{Ind}_{H}^{G}(W)$ are *H*-invariant subspaces with respect to $\operatorname{Res}_{H}^{G}(\pi) = \pi|_{H}$ for all $gH \in G/H$.

Proof. (i) For $g, g' \in G$ we have

$$\pi(g)(V_{g'H}) = \pi(g)(e_{g'} \otimes_{\mathbb{C}[H]} W) = e_{gg'} \otimes_{\mathbb{C}[H]} W = V_{gg'H}.$$

Hence $\pi(g)|_{V_{g'H}}: V_{g'H} \to V_{gg'H}$. It is a linear isomorphism since its inverse is given by $\pi(g^{-1})|_{V_{gg'H}}$.

(ii) If $H \leq G$ then Hg = gH for all $g \in G$ hence, for $h \in H$,

$$\pi(h)|_{V_{gH}}: V_{gH} \xrightarrow{\sim} V_{hgH} = V_{gH}$$

Remark 2.3. Let $\theta : H \to \operatorname{GL}_{\mathbb{C}}(W)$ be a linear *H*-representation. If $H \leq G$ and $g \in G$, then V_{gH} as linear *H*-representation with respect to $\operatorname{Res}_{H}^{G}(\pi) = \pi | H$ is isomorphic to the linear *H*-representation $\theta^{g} : H \to \operatorname{GL}_{\mathbb{C}}(W)$, defined by $\theta^{g}(h) := \theta(g^{-1}hg)$ for all $h \in H$.

Example 2.4. Let $H \subseteq G$ be an inclusion of finite groups. Let $\rho_H : H \to \operatorname{GL}_{\mathbb{C}}(\mathbb{C}[H])$ be the regular representation, then $\{e_r \otimes_{\mathbb{C}[H]} e_h\}_{r \in \mathcal{R}, h \in H}$ is a \mathbb{C} -linear basis of the representation space $\operatorname{Ind}_H^G(\mathbb{C}[H])$ of the induced representation $\operatorname{Ind}_H^G(\rho_H)$. Let $\rho_G : G \to \operatorname{GL}_{\mathbb{C}}(\mathbb{C}[G])$ be the regular representation of G, then $\operatorname{Ind}_H^G(\rho_H) \simeq \rho_G$ as G-representations with the bijective intertwiner $\operatorname{Ind}_H^G(\mathbb{C}[H]) \xrightarrow{\sim} \mathbb{C}[G]$ defined by $e_r \otimes_{\mathbb{C}[H]} e_h \mapsto e_{rh}$ for all $r \in \mathcal{R}$ and $h \in H$.

Example 2.5. Consider the dihedral group D_n (n odd), generated by r, s and satisfying $r^n = e, s^2 = e$ and $srs = r^{-1}$. It has one-dimensional representations ρ_{\pm} and two dimensional representations π_t ($0 \le t < n$) defined by

$$\rho_{\pm}(r) = 1, \qquad \rho_{\pm}(s) = \pm 1,$$

and

$$\pi_t(r) = \begin{pmatrix} \cos(2\pi t/n) & -\sin(2\pi t/n) \\ \sin(2\pi t/n) & \cos(2\pi t/n) \end{pmatrix}, \qquad \pi_t(s) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(we have seen that the π_t $(1 \le t < \frac{n-1}{2})$ form a complete set of representatives of the equivalence classes of irreducible representations of D_n of degree two). Rewriting $\pi_t(\cdot)$ in terms of the basis $v_1 = \begin{pmatrix} 1/2 \\ -i/2 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1/2 \\ i/2 \end{pmatrix}$ we get $\pi_t \simeq \pi'_t$ with π'_t defined by $\pi'_t(r) = \begin{pmatrix} e^{2\pi i t/n} & 0 \\ 0 & e^{-2\pi i t/n} \end{pmatrix}$, $\pi'_t(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Note that the subgroup $H := \langle r \rangle$ of D_n generated by r is a normal, index two subgroup of D_n , isomorphic to $\mathbb{Z}/n\mathbb{Z}$. Take $\mathcal{R} = \{e, s\}$ as the set of representatives of the left cosets of $\langle r \rangle$ in D_n .

Consider the one dimensional representation χ_t of the subgroup $H = \langle r \rangle \subset D_n$, defined by $\chi_t(r) = e^{2\pi i t/n}$. Write \mathbb{C}_t for the representation space of χ_t and $1_t \in \mathbb{C}_t$ for a basis element of \mathbb{C}_t , so that $r \cdot 1_t = \chi_t(r) 1_t$. Set $\sigma_t := \operatorname{Ind}_{\langle r \rangle}^{D_n}(\chi_t)$. The representation space V of σ_t is two-dimensional. A linear basis of V is given by $u_1 := e_e \otimes_{\langle r \rangle} 1_t$ and $u_2 := e_s \otimes_{\langle r \rangle} 1_t$. We then have

$$\sigma_t(r)u_1 = e_e \otimes_{\langle r \rangle} \chi_t(r) 1_t = e^{2\pi i t/n} u_1,$$

$$\sigma_t(r)u_2 = e_{rs} \otimes_{\langle r \rangle} 1_t = e_{sr^{-1}} \otimes_{\langle r \rangle} 1_t = e_s \otimes_{\langle r \rangle} \chi_t(r^{-1}) 1_t = e^{-2\pi i t/n} u_2,$$

and

$$\sigma_t(s)u_1 = u_2, \qquad \sigma_t(s)u_2 = e_{s^2} \otimes_{\langle r \rangle} 1_t = e_e \otimes_{\langle r \rangle} 1_t = u_1$$

Hence $\sigma_t \simeq \pi'_t \simeq \pi_t$.

Exercise 2.6. Let $n \in \mathbb{N}$ and $\epsilon \in \{\pm 1\}$.

(i) Let V be a complex vector space of dimension n with linear basis $\{v_{\overline{m}}\}_{\overline{m}\in\mathbb{Z}/n\mathbb{Z}}$. Show that there exists a unique group homomorphism $\pi_{\epsilon}: D_n \to \operatorname{GL}_{\mathbb{C}}(V_{\epsilon})$ satisfying

 $\pi_{\epsilon}(r)v_{\overline{m}} = v_{\overline{m+1}}, \qquad \pi_{\epsilon}(s)v_{\overline{m}} = \epsilon v_{\overline{n-m}}.$

(ii) Let $\langle s \rangle \subset D_n$ be the subgroup of order 2 generated by s. Prove that $\pi_{\epsilon} \simeq \operatorname{Ind}_{\langle s \rangle}^{D_n}(\rho_{\epsilon})$, where ρ_{ϵ} is the one-dimensional representation of $\langle s \rangle$ defined by $\rho_{\epsilon}(s) = \epsilon$.

Exercise 2.7. Let $H \subseteq K \subseteq G$ be an inclusion of finite groups. (i) Let $\pi : G \to GL_{\mathbb{C}}(V)$ be a group homomorphism. Show that

$$\operatorname{Res}_{H}^{G}(\pi) \simeq \operatorname{Res}_{H}^{K}(\operatorname{Res}_{K}^{G}(\pi))$$

as linear representations of H.

(ii) Let $\theta: H \to \operatorname{GL}_{\mathbb{C}}(W)$ be a group homomorphism. Show that

$$\operatorname{Ind}_{H}^{G}(\theta) \simeq \operatorname{Ind}_{K}^{G}(\operatorname{Ind}_{H}^{K}(\theta))$$

as linear representations of G.

Exercise 2.8. Let $H \subseteq G$ be an inclusion of finite groups and let $\theta : H \to \operatorname{GL}_{\mathbb{C}}(W)$ and $\theta' : H \to \operatorname{GL}_{\mathbb{C}}(W')$ be finite dimensional linear representations of H. (i) Prove that $\operatorname{Ind}_{H}^{G}(\theta \oplus \theta') \simeq \operatorname{Ind}_{H}^{G}(\theta) \oplus \operatorname{Ind}_{H}^{G}(\theta')$ as G-representations. (ii) Show that $\operatorname{Ind}_{H}^{G}(\theta) \simeq \operatorname{Ind}_{H}^{G}(\theta')$ as G-representations if $\theta \simeq \theta'$ as H-representations.

3. Characters of induced representations

Let $H \subseteq G$ be an inclusion of finite groups. Let \mathcal{R} be a complete set of representatives of the set of left *H*-cosets in *G*. The left *G*-action on *G*/*H* gives rise to a left *G*-action on \mathcal{R} . Concretely, $g \cdot r$ for $g \in G$ and $r \in \mathcal{R}$ is the representative $r' \in \mathcal{R}$ such that $g \cdot r = r'$. Note that $g \cdot r = r$ iff $gr \in rH$ iff $r^{-1}gr \in H$. **Theorem 3.1.** Define for $\chi \in F(H)$,

(3.1)
$$\operatorname{Ind}_{H}^{G}(\chi)(g) := \frac{1}{\#H} \sum_{\substack{s \in G: \\ s^{-1}gs \in H}} \chi(s^{-1}gs).$$

(i) This defines a well defined linear map $\operatorname{Ind}_{H}^{G} : F(H) \to F(G)$. (ii) We have

$$\operatorname{Ind}_{H}^{G}(\chi)(g) = \sum_{r \in \mathcal{R}: g \cdot r = r} \chi(r^{-1}gr).$$

(iii) Let (W, θ) be a finite dimensional linear representation of H. Let $\chi_{\theta} \in F(H)$ be its character and $\chi_{\operatorname{Ind}_{H}^{G}(\theta)} \in F(G)$ the character of the corresponding induced representation of G. Then

$$\operatorname{Ind}_{H}^{G}(\chi_{\theta}) = \chi_{\operatorname{Ind}_{H}^{G}(\theta)}.$$

Proof. (i) We only need to verify that (3.1) defines a class function on G. Let $t, g \in G$. Then

$$Ind_{H}^{G}(\chi)(tgt^{-1}) = \frac{1}{\#H} \sum_{\substack{s \in G: \\ s^{-1}tgt^{-1}s \in H}} \chi(s^{-1}tgst^{-1})$$
$$= \frac{1}{\#H} \sum_{\substack{u \in G: \\ u^{-1}gu \in H}} \chi(u^{-1}gu) = Ind_{H}^{G}(\chi)(g),$$

where the group elements were reparametrized in the second equality by setting $u = t^{-1}s$ $(s \in G)$.

(ii) Since χ is a class function on H, we have

$$\begin{aligned} \frac{1}{\#H} \sum_{\substack{s \in G:\\ s^{-1}gs \in H}} \chi(s^{-1}gs) &= \frac{1}{\#H} \sum_{\substack{r \in \mathcal{R}:\\ r^{-1}gr \in H}} \sum_{h \in H} \chi(h^{-1}r^{-1}grh) \\ &= \frac{1}{\#H} \sum_{\substack{r \in \mathcal{R}:\\ r^{-1}gr \in H}} \sum_{h \in H} \chi(r^{-1}gr) \\ &= \sum_{r \in \mathcal{R}: g \cdot r = r} \chi(r^{-1}gr). \end{aligned}$$

(iii) Fix a linear basis $\{w_i\}_{i=1}^m$ of W and consider the corresponding linear basis $v_{r,i} := e_r \otimes_{\mathbb{C}[H]} w_i \ (1 \le i \le m)$ of $V_r \subseteq V = \operatorname{Ind}_H^G(W) \ (r \in \mathcal{R})$. We have seen that

$$\{v_{r,i} \mid r \in \mathcal{R}, 1 \le i \le m\}$$

is a linear basis of $V = \operatorname{Ind}_{H}^{G}(W) = \bigoplus_{r \in \mathcal{R}} V_{r}$. Write $\pi = \operatorname{Ind}_{H}^{G}(\theta)$. Then we have

$$\chi_{\pi}(g) = \sum_{r \in \mathcal{R}} \sum_{i=1}^{m} \pi(g) v_{r,i} |_{v_{r,i}}$$
$$= \sum_{r \in \mathcal{R}} \sum_{i=1}^{m} \left(e_{gr} \otimes_{\mathbb{C}[H]} w_i \right) |_{e_r \otimes_{\mathbb{C}[H]} w_i}.$$

Now observe that the terms for fixed $r \in \mathcal{R}$ will be zero unless $gr \in rH$, i.e. unless $g \cdot r = r$, since $e_{gr} \otimes_{\mathbb{C}[H]} w_i \in V_{g \cdot r}$. Hence

$$\chi_{\pi}(g) = \sum_{r \in \mathcal{R}: g \cdot r = r} \sum_{i=1}^{m} (e_{rr^{-1}gr} \otimes_{\mathbb{C}[H]} w_i) |_{e_r \otimes_{\mathbb{C}[H]} w_i}$$
$$= \sum_{r \in \mathcal{R}: g \cdot r = r} \sum_{i=1}^{m} (e_r \otimes_{\mathbb{C}[H]} \theta(r^{-1}gr) w_i) |_{e_r \otimes_{\mathbb{C}[H]} w_i}$$
$$= \sum_{r \in \mathcal{R}: g \cdot r = r} \sum_{i=1}^{m} \theta(r^{-1}gr) w_i |_{w_i}$$
$$= \sum_{r \in \mathcal{R}: g \cdot r = r} \chi_{\theta}(r^{-1}gr)$$
$$= \operatorname{Ind}_{H}^{G}(\chi_{\theta})(g).$$

Exercise 3.2. Let $\chi \in F(H)$ and $\eta \in F(G)$. Denote by \cdot the pointwise multiplication on F(H) and F(G) respectively. (i) Show that

$$\operatorname{Ind}_{H}^{G}\left(\chi \cdot \operatorname{Res}_{H}^{G}(\eta)\right) = \operatorname{Ind}_{H}^{G}(\chi) \cdot \eta$$

as identity in F(G).

(ii) Conclude that the image of the induction map $\operatorname{Ind}_{H}^{G} : F(H) \to F(G)$ is an ideal in $(F(G), \cdot)$.

Recall the scalar product

$$\left(f \mid f'\right)_G := \frac{1}{\#G} \sum_{g \in G} f(g) \overline{f'(g)}$$

on $F(G) \subseteq \operatorname{Fun}_{\mathbb{C}}(G)$. The following theorem shows that the maps $\operatorname{Ind}_{H}^{G}$ and $\operatorname{Res}_{H}^{G}$ on class functions are adjoint with respect to these scalar products:

Theorem 3.3 (Frobenius reciprocity). Let $\chi \in F(H)$ and $\eta \in F(G)$. Then

$$\left(\operatorname{Ind}_{H}^{G}(\chi) \mid \eta\right)_{G} = \left(\chi \mid \operatorname{Res}_{H}^{G}(\eta)\right)_{H}$$

Proof. This is a direct computation,

$$\begin{split} \left(\operatorname{Ind}_{H}^{G}(\chi) \mid \eta\right)_{G} &= \frac{1}{\#G} \sum_{g \in G} \operatorname{Ind}_{H}^{G}(\chi)(g) \overline{\eta(g)} \\ &= \frac{1}{\#G} \sum_{g \in G} \sum_{r \in \mathcal{R}: g \cdot r = r} \chi(r^{-1}gr) \overline{\eta(g)} \\ &= \frac{1}{\#G} \sum_{r \in \mathcal{R}} \sum_{g \in G: r^{-1}gr \in H} \chi(r^{-1}gr) \overline{\eta(g)} \\ &= \frac{1}{\#G} \sum_{r \in \mathcal{R}} \sum_{g \in G: r^{-1}gr \in H} \chi(r^{-1}gr) \overline{\eta(r^{-1}gr)} \\ &= \frac{1}{\#G} \sum_{r \in \mathcal{R}} \sum_{h \in H} \chi(h) \overline{\eta(h)} \\ &= \frac{(G:H) \#H}{\#G} \frac{1}{\#H} \sum_{h \in H} \chi(h) \overline{\eta(h)} \\ &= (\chi \mid \operatorname{Res}_{H}^{G}(\eta))_{H}, \end{split}$$

where we used that η is a class function on G in the fourth equality.

Corollary 3.4. Let $\theta \in \hat{H}$ and $\pi \in \hat{G}$ with corresponding irreducible characters $\chi_{\theta} \in F(H)$ and $\eta_{\pi} \in F(G)$ respectively. The number of times that the irreducible representation θ appears as constituent in an irreducible decomposition of $\operatorname{Res}_{H}^{G}(\pi)$ is equal to the number of times that the irreducible representation π appears as constituent in an irreducible decomposition of $\operatorname{Ind}_{H}^{G}(\theta)$.

Proof. Since the irreducible characters form an orthonormal basis of the class functions, it follows that

- (1) the number of times that the irreducible representation θ appears as constituent in an irreducible decomposition of $\operatorname{Res}_{H}^{G}(\pi)$ is $(\chi_{\theta} | \operatorname{Res}_{H}^{G}(\eta_{\pi}))_{H}$,
- (2) the number of times that the irreducible representation π appears as constituent in an irreducible decomposition of $\operatorname{Ind}_{H}^{G}(\theta)$ is $(\operatorname{Ind}_{H}^{G}(\chi_{\theta}) | \eta_{\pi})_{G}$.

Hence we need to prove that

$$\left(\chi_{\theta} \,|\, \operatorname{Res}_{H}^{G}(\eta_{\pi})\right)_{H} = \left(\operatorname{Ind}_{H}^{G}(\chi_{\theta}) \,|\, \eta_{\pi}\right)_{G}$$

but this is what Frobenius reciprocity is telling us!

Example 3.5. Consider again Example 2.5. In particular, n is odd and $0 \le t < n$. Note that

$$\chi_{\sigma_t}(r^m) = e^{2\pi i m t/n} + e^{-2\pi i m t/n}.$$

We then have, by Frobenius reciprocity,

$$\begin{aligned} \left(\chi_{\sigma_t} \mid \chi_{\sigma_t}\right)_{D_n} &= \left(\chi_t \mid \operatorname{Res}_{\langle r \rangle}^{D_n}(\chi_{\sigma_t})\right)_{\langle r \rangle} \\ &= \frac{1}{n} \sum_{m=0}^{n-1} \chi_t(r^m) \overline{\chi_{\sigma_t}(r^m)} \\ &= \frac{1}{n} \sum_{m=0}^{n-1} e^{2\pi i m t/n} (e^{2\pi i m t/n} + e^{-2\pi i m t/n}) \\ &= \frac{1}{n} \sum_{m=0}^{n-1} \left(1 + e^{4\pi i m t/n}\right). \end{aligned}$$

This equals 1 if $1 \le t < n$ and 2 if t = 0 since

$$\sum_{m=0}^{n-1} \left(e^{2\pi i t/n} \right)^m = \begin{cases} \frac{1 - \left(e^{4\pi i t/n} \right)^n}{1 - e^{4\pi i t/n}} = 0, & \text{if } 1 \le t < n, \\ n, & \text{if } t = 0 \end{cases}$$

(here we use that n is odd, so that $e^{4\pi i t/n} \neq 1$ for all $1 \leq t < n$). This shows that $\sigma_t \simeq \pi_t \simeq \pi'_t$ is irreducible if $1 \leq t < n$, and that it decomposes in two one-dimensional irreducible representations if t = 0.

We now translate Frobenius reciprocity to the setting of intertwiners. Let $\theta \in \widehat{H}$ and $\pi \in \widehat{G}$ with representation spaces W_{θ} and V_{π} and characters χ_{θ} and η_{π} respectively. Then Frobenius reciprocity says that

$$\left(\chi_{\theta} \,|\, \operatorname{Res}_{H}^{G}(\eta_{\pi})\right)_{H} = \left(\operatorname{Ind}_{H}^{G}(\chi_{\theta}) \,|\, \eta_{\pi}\right)_{G},$$

on the other hand we have seen that

$$(\chi_{\theta} | \operatorname{Res}_{H}^{G}(\eta_{\pi}))_{H} = \operatorname{Dim}_{\mathbb{C}} (\operatorname{Hom}^{(H)}(W_{\theta}, \operatorname{Res}_{H}^{G}(V_{\pi}))), (\operatorname{Ind}_{H}^{G}(\chi_{\theta}) | \eta_{\pi})_{G} = \operatorname{Dim}_{\mathbb{C}} (\operatorname{Hom}^{(G)}(\operatorname{Ind}_{H}^{G}(W_{\theta}), V_{\pi})).$$

The resulting equality of dimensions of intertwiner spaces,

(3.2)
$$\operatorname{Dim}_{\mathbb{C}}\left(\operatorname{Hom}^{(H)}(W_{\theta},\operatorname{Res}_{H}^{G}(V_{\pi}))\right) = \operatorname{Dim}_{\mathbb{C}}\left(\operatorname{Hom}^{(G)}(\operatorname{Ind}_{H}^{G}(W_{\theta}),V_{\pi})\right)$$

lifts to the following explicit linear isomorphism between the intertwiner spaces.

Proposition 3.6. Let $f \in \text{Hom}^{(G)}(\text{Ind}_{H}^{G}(W_{\theta}), V_{\pi})$ and set

(3.3) $\widetilde{f}(w) := f(e_e \otimes_{\mathbb{C}[H]} w), \qquad w \in W_{\theta}.$

Then $f \mapsto \widetilde{f}$ defines a linear isomorphism

 $\operatorname{Hom}^{(G)}(\operatorname{Ind}_{H}^{G}(W_{\theta}), V_{\pi}) \xrightarrow{\sim} \operatorname{Hom}^{(H)}(W_{\theta}, \operatorname{Res}_{H}^{G}(V_{\pi})).$

In other words, for any *H*-intertwiner $\tilde{f}: W_{\theta} \to \operatorname{Res}_{H}^{G}(V_{\pi})$ there exists a unique *G*-intertwiner $f: \operatorname{Ind}_{H}^{G}(W_{\theta}) \to V_{\pi}$ such that (3.3) holds true.

Proof. A direct computation shows that \tilde{f} is an *H*-intertwiner,

$$\widetilde{f}(\theta(h)w) = f(e_e \otimes_{\mathbb{C}[H]} \theta(h)w)$$

$$= f(e_h \otimes_{\mathbb{C}[H]} w)$$

$$= f(h \cdot (e_e \otimes_{\mathbb{C}[H]} w))$$

$$= \pi(h)(f(e_e \otimes_{\mathbb{C}[H]} w))$$

$$= \pi(h)\widetilde{f}(w).$$

Suppose that $\tilde{f} \equiv 0$. Then

$$f(e_e \otimes_{\mathbb{C}[H]} w) = \widetilde{f}(w) = 0 \qquad \forall w \in W.$$

Consequently, for $r \in \mathcal{R}$ and $w \in W$,

$$f(e_r \otimes_{\mathbb{C}[H]} w) = f(r \cdot (e_e \otimes_{\mathbb{C}[H]} w)) = \pi(r)(f(e_e \otimes_{\mathbb{C}[H]} w)) = 0.$$

Hence $f \equiv 0$. The map $f \mapsto \tilde{f}$ thus is injective. By (3.2) we conclude that $f \mapsto \tilde{f}$ is a linear isomorphism.

Exercise 3.7. Let $H \subseteq G$ be an inclusion of finite groups. Use Frobenius reciprocity to prove that each irreducible representation $\pi \in \widehat{G}$ of G is contained in $\operatorname{Ind}_{H}^{G}(\theta)$ for at least one $\theta \in \widehat{H}$. Derive from this fact that $\dim_{\mathbb{C}}(V_{\pi}) \leq (G:H)$ if H is abelian.

The following exercise is a preparation to [1, Exerc. 7.2].

Exercise 3.8. Suppose $H \subsetneq G$ is an inclusion of finite groups. Let \mathcal{R} be a complete set of representatives of the left H-coset space G/H and suppose that $e \in \mathcal{R}$ (with e the unit element of G). Recall that G acts transitively on G/H with action map $G \times G/H \to G/H$ given by $(g, g'H) \mapsto gg'H$.

(1) Prove that for all $r \in \mathcal{R} \setminus \{e\}$,

$$#\{h \in H \mid hr \in rH\} \ge \frac{\#H}{(G:H)-1}$$

Hint: Loot at the G-orbit of $(H, rH) \in G/H \times G/H$ with respect to the diagonal G-action on $G/H \times G/H$ (cf. [1, Exerc. 2.6]).

- (2) Prove that the following four statements are equivalent.
 - (a) G acts double transitively on G/H (see [1, Exerc. 2.6] for the terminology),
 - (b) there exists an $r \in \mathcal{R} \setminus \{e\}$ such that

$$#\{h \in H \mid hr \in rH\} = \frac{\#H}{(G:H) - 1}$$

(c) for all $r \in \mathcal{R} \setminus \{e\}$ we have

$$#\{h \in H \mid hr \in rH\} = \frac{#H}{(G:H) - 1}$$

(d) $\sum_{r \in \mathcal{R} \setminus \{e\}} #\{h \in H \mid hr \in rH\} = #H.$

References

 J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, 42, Springer-Verlag, New York, 1977.