
ALGEBRA 3; REPRESENTATIE THEORIE. AANVULLING 3

1. Introduction

In this supplement to Serre [1, §3.3 & §7.1] we give an alternative construction of induced
representations using tensor products over associative algebras (see the first supplement to
the course for a detailed discussion of tensor products).

2. Induced representations

Let G be a group and H a subgroup. Let π : G→ GLC(V ) be a linear representation of
G. The restriction of π to H, denoted by ResG

H(π) is the representation

ResG
H(π) : H → GLC(V )

of H defined by ResG
H(π) := π|H .

Starting with an irreducible representation π, it may well happen that ResG
H(π) is re-

ducible. Take for instance H = {e}! More subtle examples arise as follows. If πi :
G → GLC(Vi) (i = 1, 2) are two irreducible representations of G, then we have seen that
the product representation π := π1 ⊗ π2 : G × G → GLC(V1 ⊗C V2) is irreducible, but
ResG×G

G (π) may be reducible. Here G is viewed as the diagonal subgroup of G×G via the
group embedding G ↪→ G×G given by g 7→ (g, g) for all g ∈ G.

We also write ResG
H for the linear map F (G) → F (H) defined by

ResG
H(χ) := χ|H , χ ∈ F (G)

(in other words, it is restricting a class function on G to H). If χπ ∈ F (G) is the character
of the linear G-representation π, then ResG

H(χπ) is the character of ResG
H(π),

ResG
H(χπ) = χResG

H(π).

In this supplement we are going to make a converse construction: given a representa-
tion θ : H → GLC(W ) of the subgroup H ⊆ G, we are going to induce (“lift”) it to a
representation of G.

For this we need to recall some facts on left coset spaces from Algebra 1. Let G/H be
the left cosets of H in G. In other words, G/H is the set of equivalence classes of G with
respect to the equivalence relation g ∼ g′ iff g−1g′ ∈ H. The elements of G/H thus are the
left cosets gH = {gh |h ∈ H} (g ∈ G). Recall that

(G : H) := #(G/H) = #G/#H

is called the index of H in G. We write R for a complete set of representatives of the left
H-cosets in G. We assume throughout this section that the representative in R for the left
coset H is the unit element e of G.

1
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View C[G] as a right C[H]-module by

C[G]× C[H] → C[G], (a, b) 7→ ab.

Then {er | r ∈ R} is a C[H]-basis of C[G], i.e. each a ∈ C[G] can be uniquely written as
a =

∑
r∈R erbr with br ∈ C[H]. Indeed, a =

∑
g∈G λgeg for unique λg ∈ C, hence

a =
∑
r∈R

erbr, br :=
∑
h∈H

λrheh ∈ C[H]

and clearly this is the only choice for the br ∈ H such that a =
∑

r∈R erbr.

Proposition 2.1. Suppose that θ : H → GLC(W ) is a finite dimensional linear represen-
tation of H. Suppose {wi}m

i=1 is a C-basis of W . Consider W as left C[H]-module in the
usual way,

C[H]×W → W,
(∑

h∈H

µheh, w
)
7→

∑
h∈H

µhθ(h)w.

a. The complex vector space IndG
H(W ) := C[G]⊗C[H] W has {er ⊗C[H] wi}r∈R,1≤i≤m as

a C-basis.
b. IndG

H(W ) is a left C[G]-module with the action defined by

C[G]× IndG
H(W ) → IndG

H(W ),
(
a, a′ ⊗C[H] w

)
7→ (aa′)⊗C[H] w.

Proof. a. {er⊗C[H]wi}r∈R,1≤i≤m spans IndG
H(W ). Indeed, for a =

∑
r∈R erbr with br ∈ C[H]

and for w ∈ W ,

a⊗C[H] w =
∑
r∈R

er ⊗C[H] br · w =
∑
r∈R

m∑
i=1

λ
(r)
i er ⊗C[H] wi

with λ
(r)
i ∈ C such that br ·w =

∑m
i=1 λ

(r)
i wi (here we write b ·w for the action of b ∈ C[H]

on w ∈ W ). For the linear independence, define for r ∈ R the map φr : C[G] ×W → W
by

φr(
∑
r′∈R

er′br′ , w) := br · w

with br′ ∈ C[H] and w ∈ W . This is well defined by the remark preceding the proposition.
Since φr is a C[H]-bilinear map, there exists a unique linear map

φr : IndG
H(W ) = C[G]⊗C[H] W → W

satisfying φr(a ⊗C[H] w) = φr(a, w) for all a ∈ C[G] and w ∈ W (due to the universal
property of ⊗C[H]). Suppose now that∑

r′∈R

m∑
i=1

µ
(r′)
i er′ ⊗C[H] wi = 0
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in IndG
H(W ) with µ

(r′)
i ∈ C. Write w(r′) =

∑m
i=1 µ

(r′)
i wi. Then for all r ∈ R,

0 = φr

(∑
r′∈R

m∑
i=1

µ
(r′)
i er′ ⊗C[H] wi

)
= φr

(∑
r′∈R

er′ ⊗C[H] w
(r′)

)
= w(r).

Hence µ
(r)
i = 0 for all 1 ≤ i ≤ m and r ∈ R, proving the linear independence.

b. Define for a ∈ C[G],

π̃(a) : C[G]×W → IndG
H(W )

by π̃(a)(a′, w) := (aa′) ⊗C[H] w for a, a′ ∈ C[G] and w ∈ W . Then π̃(a) is C[H]-bilinear,

hence it gives rise to a complex linear endomorphism π(a) of IndG
H(W ) defined by

π(a)(a′ ⊗C[H] w) = (aa′)⊗C[H] w

for a, a′ ∈ C[G] and w ∈ W . It is straightforward to check that the map π : C[G] →
EndC

(
IndG

H(W )
)

is an algebra homomorphism. �

The C[G]-module structure on IndG
H(W ) thus gives rise to a linear representation π :=

IndG
H(θ) : G → GLC(IndG

H(W )), called the representation of G induced from θ. It is
explicitly given by

π(g)
(
a⊗C[H] w) := (ega)⊗C[H] w

for g ∈ G, a ∈ C[G] and w ∈ W . Note that DimC(IndG
H(W )) = (G : H)DimC(W ).

The structure of the induced representation π := IndG
H(θ) of G on V := IndG

H(W ) is as
follows. Define for g ∈ G the subspace

Vg := eg ⊗C[H] W ⊆ V.

It is linearly isomorphic to W by the linear isomorphism ψg : W
∼−→ Vg defined by

ψg(w) := eg ⊗C[H] w. Note that Vg only depends on the left coset gH. Indeed, for h ∈ H,

Vgh = egeh ⊗C[H] W = eg ⊗C[H] θ(h)W = eg ⊗C[H] W = Vg.

Hence we write VgH = Vg for g ∈ G. Then

V =
⊕

gH∈G/H

VgH .

Note that Ve ⊆ V is a H-invariant subspace with respect to the representation map
ResG

H(π) = π|H , isomorphic to W via the bijective H-intertwiner ψe : W
∼−→ Ve. In

particular, IndH
H(W ) ' W .

Recall that G acts on G/H by

G×G/H → G/H, (g, g′H) 7→ gg′H.
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Corollary 2.2. We use the above notations. In particular we write π = IndG
H(θ) and

V = IndG
H(W ).

(i) If g ∈ G then π(g) ∈ GLC(V ) permutes the subspaces Vg′H (g′H ∈ G/H). More

precisely, π(g) restricts to a complex linear isomorphism π(g)|Vg′H
: Vg′H

∼−→ Vgg′H .

(ii) If H � G is a normal subgroup then VgH ⊆ V = IndG
H(W ) are H-invariant subspaces

with respect to ResG
H(π) = π|H for all gH ∈ G/H.

Proof. (i) For g, g′ ∈ G we have

π(g)(Vg′H) = π(g)(eg′ ⊗C[H] W ) = egg′ ⊗C[H] W = Vgg′H .

Hence π(g)|Vg′H
: Vg′H → Vgg′H . It is a linear isomorphism since its inverse is given by

π(g−1)|Vgg′H
.

(ii) If H �G then Hg = gH for all g ∈ G hence, for h ∈ H,

π(h)|VgH
: VgH

∼−→ VhgH = VgH .

�

Remark 2.3. Let θ : H → GLC(W ) be a linear H-representation. If H � G and g ∈ G,
then VgH as linear H-representation with respect to ResG

H(π) = π|H is isomorphic to the
linear H-representation θg : H → GLC(W ), defined by θg(h) := θ(g−1hg) for all h ∈ H.

Example 2.4. Let H ⊆ G be an inclusion of finite groups. Let ρH : H → GLC(C[H]) be
the regular representation, then {er⊗C[H]eh}r∈R,h∈H is a C-linear basis of the representation

space IndG
H(C[H]) of the induced representation IndG

H(ρH). Let ρG : G→ GLC(C[G]) be the
regular representation of G, then IndG

H(ρH) ' ρG as G-representations with the bijective

intertwiner IndG
H(C[H])

∼−→ C[G] defined by er ⊗C[H] eh 7→ erh for all r ∈ R and h ∈ H.

Example 2.5. Consider the dihedral group Dn (n odd), generated by r, s and satisfying
rn = e, s2 = e and srs = r−1. It has one-dimensional representations ρ± and two dimen-
sional representations πt (0 ≤ t < n) defined by

ρ±(r) = 1, ρ±(s) = ±1,

and

πt(r) =

(
cos(2πt/n) − sin(2πt/n)
sin(2πt/n) cos(2πt/n)

)
, πt(s) =

(
1 0
0 −1

)
(we have seen that the πt (1 ≤ t < n−1

2
) form a complete set of representatives of the

equivalence classes of irreducible representations of Dn of degree two). Rewriting πt(·) in

terms of the basis v1 =

(
1/2
−i/2

)
and v2 =

(
1/2
i/2

)
we get πt ' π′t with π′t defined by

π′t(r) =

(
e2πit/n 0

0 e−2πit/n

)
, π′t(s) =

(
0 1
1 0

)
.
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Note that the subgroup H := 〈r〉 of Dn generated by r is a normal, index two subgroup of
Dn, isomorphic to Z/nZ. Take R = {e, s} as the set of representatives of the left cosets of
〈r〉 in Dn.

Consider the one dimensional representation χt of the subgroup H = 〈r〉 ⊂ Dn, defined
by χt(r) = e2πit/n. Write Ct for the representation space of χt and 1t ∈ Ct for a basis
element of Ct, so that r · 1t = χt(r)1t. Set σt := IndDn

〈r〉 (χt). The representation space V of

σt is two-dimensional. A linear basis of V is given by u1 := ee ⊗〈r〉 1t and u2 := es ⊗〈r〉 1t.
We then have

σt(r)u1 = ee ⊗〈r〉 χt(r)1t = e2πit/nu1,

σt(r)u2 = ers ⊗〈r〉 1t = esr−1 ⊗〈r〉 1t = es ⊗〈r〉 χt(r
−1)1t = e−2πit/nu2,

and
σt(s)u1 = u2, σt(s)u2 = es2 ⊗〈r〉 1t = ee ⊗〈r〉 1t = u1.

Hence σt ' π′t ' πt.

Exercise 2.6. Let n ∈ N and ε ∈ {±1}.
(i) Let V be a complex vector space of dimension n with linear basis {vm}m∈Z/nZ. Show
that there exists a unique group homomorphism πε : Dn → GLC(Vε) satisfying

πε(r)vm = vm+1, πε(s)vm = εvn−m.

(ii) Let 〈s〉 ⊂ Dn be the subgroup of order 2 generated by s. Prove that πε ' IndDn

〈s〉 (ρε),

where ρε is the one-dimensional representation of 〈s〉 defined by ρε(s) = ε.

Exercise 2.7. Let H ⊆ K ⊆ G be an inclusion of finite groups.
(i) Let π : G→ GLC(V ) be a group homomorphism. Show that

ResG
H(π) ' ResK

H(ResG
K(π))

as linear representations of H.
(ii) Let θ : H → GLC(W ) be a group homomorphism. Show that

IndG
H(θ) ' IndG

K(IndK
H(θ))

as linear representations of G.

Exercise 2.8. Let H ⊆ G be an inclusion of finite groups and let θ : H → GLC(W ) and
θ′ : H → GLC(W

′) be finite dimensional linear representations of H.
(i) Prove that IndG

H(θ ⊕ θ′) ' IndG
H(θ)⊕ IndG

H(θ′) as G-representations.
(ii) Show that IndG

H(θ) ' IndG
H(θ′) as G-representations if θ ' θ′ as H-representations.

3. Characters of induced representations

Let H ⊆ G be an inclusion of finite groups. Let R be a complete set of representatives
of the set of left H-cosets in G. The left G-action on G/H gives rise to a left G-action on
R. Concretely, g · r for g ∈ G and r ∈ R is the representative r′ ∈ R such that g · r = r′.
Note that g · r = r iff gr ∈ rH iff r−1gr ∈ H.
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Theorem 3.1. Define for χ ∈ F (H),

(3.1) IndG
H(χ)(g) :=

1

#H

∑
s∈G:

s−1gs∈H

χ(s−1gs).

(i) This defines a well defined linear map IndG
H : F (H) → F (G).

(ii) We have

IndG
H(χ)(g) =

∑
r∈R:g·r=r

χ(r−1gr).

(iii) Let (W, θ) be a finite dimensional linear representation of H. Let χθ ∈ F (H) be its
character and χIndG

H(θ) ∈ F (G) the character of the corresponding induced representation
of G. Then

IndG
H(χθ) = χIndG

H(θ).

Proof. (i) We only need to verify that (3.1) defines a class function on G. Let t, g ∈ G.
Then

IndG
H(χ)(tgt−1) =

1

#H

∑
s∈G:

s−1tgt−1s∈H

χ(s−1tgst−1)

=
1

#H

∑
u∈G:

u−1gu∈H

χ(u−1gu) = IndG
H(χ)(g),

where the group elements were reparametrized in the second equality by setting u = t−1s
(s ∈ G).
(ii) Since χ is a class function on H, we have

1

#H

∑
s∈G:

s−1gs∈H

χ(s−1gs) =
1

#H

∑
r∈R:

r−1gr∈H

∑
h∈H

χ(h−1r−1grh)

=
1

#H

∑
r∈R:

r−1gr∈H

∑
h∈H

χ(r−1gr)

=
∑

r∈R:g·r=r

χ(r−1gr).

(iii) Fix a linear basis {wi}m
i=1 of W and consider the corresponding linear basis vr,i :=

er ⊗C[H] wi (1 ≤ i ≤ m) of Vr ⊆ V = IndG
H(W ) (r ∈ R). We have seen that

{vr,i | r ∈ R, 1 ≤ i ≤ m}
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is a linear basis of V = IndG
H(W ) =

⊕
r∈R Vr. Write π = IndG

H(θ). Then we have

χπ(g) =
∑
r∈R

m∑
i=1

π(g)vr,i|vr,i

=
∑
r∈R

m∑
i=1

(
egr ⊗C[H] wi

)
|er⊗C[H]wi

.

Now observe that the terms for fixed r ∈ R will be zero unless gr ∈ rH, i.e. unless g ·r = r,
since egr ⊗C[H] wi ∈ Vg·r. Hence

χπ(g) =
∑

r∈R:g·r=r

m∑
i=1

(err−1gr ⊗C[H] wi

)
|er⊗C[H]wi

=
∑

r∈R:g·r=r

m∑
i=1

(
er ⊗C[H] θ(r

−1gr)wi

)
|er⊗C[H]wi

=
∑

r∈R:g·r=r

m∑
i=1

θ(r−1gr)wi|wi

=
∑

r∈R:g·r=r

χθ(r
−1gr)

= IndG
H(χθ)(g).

�

Exercise 3.2. Let χ ∈ F (H) and η ∈ F (G). Denote by · the pointwise multiplication on
F (H) and F (G) respectively.
(i) Show that

IndG
H

(
χ · ResG

H(η)
)

= IndG
H(χ) · η

as identity in F (G).
(ii) Conclude that the image of the induction map IndG

H : F (H) → F (G) is an ideal in
(F (G), ·).

Recall the scalar product (
f | f ′

)
G

:=
1

#G

∑
g∈G

f(g)f ′(g)

on F (G) ⊆ FunC(G). The following theorem shows that the maps IndG
H and ResG

H on class
functions are adjoint with respect to these scalar products:

Theorem 3.3 (Frobenius reciprocity). Let χ ∈ F (H) and η ∈ F (G). Then(
IndG

H(χ) | η
)

G
=

(
χ |ResG

H(η)
)

H
.
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Proof. This is a direct computation,(
IndG

H(χ) | η
)

G
=

1

#G

∑
g∈G

IndG
H(χ)(g)η(g)

=
1

#G

∑
g∈G

∑
r∈R:g·r=r

χ(r−1gr)η(g)

=
1

#G

∑
r∈R

∑
g∈G:r−1gr∈H

χ(r−1gr)η(g)

=
1

#G

∑
r∈R

∑
g∈G:r−1gr∈H

χ(r−1gr)η(r−1gr)

=
1

#G

∑
r∈R

∑
h∈H

χ(h)η(h)

=
(G : H)#H

#G

1

#H

∑
h∈H

χ(h)η(h)

=
(
χ |ResG

H(η)
)

H
,

where we used that η is a class function on G in the fourth equality. �

Corollary 3.4. Let θ ∈ Ĥ and π ∈ Ĝ with corresponding irreducible characters χθ ∈ F (H)
and ηπ ∈ F (G) respectively. The number of times that the irreducible representation θ ap-
pears as constituent in an irreducible decomposition of ResG

H(π) is equal to the number of
times that the irreducible representation π appears as constituent in an irreducible decom-
position of IndG

H(θ).

Proof. Since the irreducible characters form an orthonormal basis of the class functions, it
follows that

(1) the number of times that the irreducible representation θ appears as constituent in
an irreducible decomposition of ResG

H(π) is
(
χθ |ResG

H(ηπ)
)

H
,

(2) the number of times that the irreducible representation π appears as constituent in
an irreducible decomposition of IndG

H(θ) is
(
IndG

H(χθ) | ηπ

)
G
.

Hence we need to prove that(
χθ |ResG

H(ηπ)
)

H
=

(
IndG

H(χθ) | ηπ

)
G
,

but this is what Frobenius reciprocity is telling us! �

Example 3.5. Consider again Example 2.5. In particular, n is odd and 0 ≤ t < n. Note
that

χσt(r
m) = e2πimt/n + e−2πimt/n.
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We then have, by Frobenius reciprocity,(
χσt |χσt

)
Dn

=
(
χt |ResDn

〈r〉 (χσt)
)
〈r〉

=
1

n

n−1∑
m=0

χt(r
m)χσt(r

m)

=
1

n

n−1∑
m=0

e2πimt/n(e2πimt/n + e−2πimt/n)

=
1

n

n−1∑
m=0

(
1 + e4πimt/n

)
.

This equals 1 if 1 ≤ t < n and 2 if t = 0 since

n−1∑
m=0

(
e2πit/n

)m
=

{
1−(e4πit/n)n

1−e4πit/n = 0, if 1 ≤ t < n,

n, if t = 0

(here we use that n is odd, so that e4πit/n 6= 1 for all 1 ≤ t < n). This shows that
σt ' πt ' π′t is irreducible if 1 ≤ t < n, and that it decomposes in two one-dimensional
irreducible representations if t = 0.

We now translate Frobenius reciprocity to the setting of intertwiners. Let θ ∈ Ĥ and

π ∈ Ĝ with representation spaces Wθ and Vπ and characters χθ and ηπ respectively. Then
Frobenius reciprocity says that(

χθ |ResG
H(ηπ)

)
H

=
(
IndG

H(χθ) | ηπ

)
G
,

on the other hand we have seen that(
χθ |ResG

H(ηπ)
)

H
= DimC

(
Hom(H)(Wθ,ResG

H(Vπ))
)
,(

IndG
H(χθ) | ηπ

)
G

= DimC
(
Hom(G)(IndG

H(Wθ), Vπ)
)
.

The resulting equality of dimensions of intertwiner spaces,

(3.2) DimC
(
Hom(H)(Wθ,ResG

H(Vπ))
)

= DimC
(
Hom(G)(IndG

H(Wθ), Vπ)
)

lifts to the following explicit linear isomorphism between the intertwiner spaces.

Proposition 3.6. Let f ∈ Hom(G)(IndG
H(Wθ), Vπ) and set

(3.3) f̃(w) := f(ee ⊗C[H] w), w ∈ Wθ.

Then f 7→ f̃ defines a linear isomorphism

Hom(G)(IndG
H(Wθ), Vπ)

∼−→ Hom(H)(Wθ,ResG
H(Vπ)).

In other words, for any H-intertwiner f̃ : Wθ → ResG
H(Vπ) there exists a unique G-

intertwiner f : IndG
H(Wθ) → Vπ such that (3.3) holds true.
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Proof. A direct computation shows that f̃ is an H-intertwiner,

f̃(θ(h)w) = f(ee ⊗C[H] θ(h)w)

= f(eh ⊗C[H] w)

= f(h · (ee ⊗C[H] w))

= π(h)(f(ee ⊗C[H] w))

= π(h)f̃(w).

Suppose that f̃ ≡ 0. Then

f(ee ⊗C[H] w) = f̃(w) = 0 ∀w ∈ W.
Consequently, for r ∈ R and w ∈ W ,

f(er ⊗C[H] w) = f(r · (ee ⊗C[H] w)) = π(r)(f(ee ⊗C[H] w)) = 0.

Hence f ≡ 0. The map f 7→ f̃ thus is injective. By (3.2) we conclude that f 7→ f̃ is a
linear isomorphism. �

Exercise 3.7. Let H ⊆ G be an inclusion of finite groups. Use Frobenius reciprocity to

prove that each irreducible representation π ∈ Ĝ of G is contained in IndG
H(θ) for at least

one θ ∈ Ĥ. Derive from this fact that dimC(Vπ) ≤ (G : H) if H is abelian.

The following exercise is a preparation to [1, Exerc. 7.2].

Exercise 3.8. Suppose H ( G is an inclusion of finite groups. Let R be a complete set
of representatives of the left H-coset space G/H and suppose that e ∈ R (with e the unit
element of G). Recall that G acts transitively on G/H with action map G×G/H → G/H
given by (g, g′H) 7→ gg′H.

(1) Prove that for all r ∈ R \ {e},

#{h ∈ H |hr ∈ rH} ≥ #H

(G : H)− 1
.

Hint: Loot at the G-orbit of (H, rH) ∈ G/H × G/H with respect to the diagonal
G-action on G/H ×G/H (cf. [1, Exerc. 2.6]).

(2) Prove that the following four statements are equivalent.
(a) G acts double transitively on G/H (see [1, Exerc. 2.6] for the terminology),
(b) there exists an r ∈ R \ {e} such that

#{h ∈ H |hr ∈ rH} =
#H

(G : H)− 1
,

(c) for all r ∈ R \ {e} we have

#{h ∈ H |hr ∈ rH} =
#H

(G : H)− 1
.

(d)
∑

r∈R\{e} #{h ∈ H |hr ∈ rH} = #H.
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