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1. Introduction

In these lecture notes we locate the irreducible representations of
the symmetric group. A lot of information about the representation
theory of the symmetric group can be found in the book [1]. In the
lecture notes of next week we will explicitly construct the irreducible
representations.

2. The symmetric group and Young subgroups

Let n ≥ 1 and write Sn for the symmetric group in n letters. In
other words, Sn is the group of bijections Ωn

∼−→ Ωn, where Ωn :=
{1, . . . , n} → Ωn. Then #Sn = n!. Let I = {i1, . . . , ir} ⊆ Ωn be an
ordered subset of cardinality r. Then we have the cycle

(i1 i2 · · · ir) ∈ Sn,

of length r, which is the permutation ij 7→ ij+1 (1 ≤ j < r), ir 7→ i1 and
k 7→ k for k ∈ Ωn \ I. We call I the content of the cycle. Note that a
cycle (i) of length one is the identity element e of the symmetric group
Sn. We call two cycles disjoint if their contents have trivial intersection.
Note that disjoint cycles commute.

We recall the following basic fact.

Lemma 1. Any σ ∈ Sn can be written as product of disjoint cycles.

A composition λ of n is an infinite sequence λ = (λ1, λ2, . . .) of
nonnegative integers λi such that

∑
i λi = n. We write in this case

λ |= n, and we write l(λ) for the largest index m such that λm 6= 0 (it
is called the length of λ). We write λ ` n if, in addition, λ1 ≥ λ2 ≥
λ3 ≥ · · · . In this case we call λ a partition of n. Note that l(λ) ≤ n if
λ ` n.

Sometimes it is convenient to write λ as a finite sequence by forget-
ting the zeros to the right, λ = (λ1, . . . , λl(λ)).

1
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The Young diagram of a composition λ |= is the diagram of n boxes
placed in l(λ) rows, with λi boxes in the ith row.

Young diagram van (5, 4, 1)

The Young diagram of a partition has the property that the number of
boxes per row weakly increase from top to bottom. We will show that
the partitions of n naturally parametrize the conjugacy classes of the
symmetric group Sn.

Definition 1. Let σ ∈ Sn and write σ as a product of disjoint cycles,
such that each element i ∈ Ωn is in the content of one of the cycles.
Collecting the cycle lengths of the disjoint cycles gives a composition of
n. Permute the entries such that they are in nondecreasing order. The
resulting partition c(σ) of n is called the cycle type of σ.

It is clear that the cycle type c(σ) of σ ∈ Sn is well defined.
Consider the group homomorphism Ad : Sn → Aut(Sn) defined by

Ad(σ)(τ) := στσ−1. This turns Sn into a Sn-set. The corresponding
Sn-orbits are denoted by Ad(Sn)τ ∈ Sn/ ∼ ( τ ∈ Sn). They are the
conjugacy classes of Sn. Write Pn for the set of partitions of n.

Proposition 1. The map Sn/ ∼→ Pn, given by Ad(Sn)τ 7→ c(τ), is
well defined and bijective.

Proof. Note that

(1) σ(i1 i2 · · · ir)σ
−1 = (σ(i1) σ(i2) · · · σ(ir))

in Sn for all σ ∈ Sn and for all subsets I = {i1, . . . , ir} ⊆ Ωn of
cardinality r. It follows that

Ad(Sn)σ = {τ ∈ Sn | c(τ) = c(σ)}.

Hence Ad(Sn)σ 7→ c(σ) is a well defined injective map Sn/ ∼ ↪→ Pn.
Let λ = (λ1, . . . , λm) be a partition of n (m = l(λ)). Choose subsets

Ij = {ij1, i
j
2 . . . , ijλj

} ⊂ Ωn
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of cardinality λj such that Ij ∩ Ij′ = ∅ if 1 ≤ j 6= j′ ≤ m. Set

σj := (ij1 ij2 · · · i
j
λj

)

for the corresponding cycles of length λj (1 ≤ j ≤ m). Then

σ := σ1σ2 · · ·σm ∈ Sn

is a product of disjoint cycles such that c(σ) = λ. Hence Ad(Sn)σ 7→
c(σ) maps onto Pn. �

Corollary 1. #Ŝn = #Pn.

We will construct representatives of the isomorphy classes of irre-
ducible linear Sn-representations and parametrize them by the parti-
tions of n.

Lemma 2. Define for λ ` n and 1 ≤ i ≤ n set

λ′i := #{j ∈ {1, . . . , n} | λj ≥ i}.
(1) λ′ ` n (it is called the conjugate partition of n).
(2) l(λ′) = λ1.
(3) (λ′)′ = λ.

Proof. This is immediate by realizing that the transition λ 7→ λ′ corre-
sponds to reflecting the Young diagram of λ in its main diagonal. For
instance, in the example above, (5, 4, 1)′ = (3, 2, 2, 2, 1). �

Exercise 1. Define for λ, µ ` n,

λ � µ ⇔
i∑

j=1

λj ≤
i∑

j=1

µj ∀ i.

(1) Show that � defines a partial order on Pn.
(2) Prove that λ � µ ⇔ µ′ � λ′.

Exercise 2. For λ ` n and i ≥ 1 define

mi(λ) := #{j ≥ 1 |λj = i}.
Let σ ∈ Sn such that c(σ) = λ. Prove that

#
(
Ad(Sn)σ

)
=

n!∏
i≥1 imi(λ)mi(λ)!

Let λ |= n. A Young tableau Tλ is the Young diagram of λ together
with an arbitrary choice of an assignment of the numbers {1, . . . , n} to
the boxes of the Young diagram (each number assigned to exactly one
box). We write Tλ(i, j) for the number assigned to the box in row i
and column j (1 ≤ j ≤ λi).
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Definition 2. Let λ |= n and let Tλ be an λ-tableau. We call Tλ

(1) row standard if Tλ(i, j) < Tλ(i, j + 1) if Tλ(i, j) and Tλ(i, j + 1)
are defined,

(2) column standard if Tλ(i, j) < Tλ(k, j) if i < k and if both Tλ(i, j)
and Tλ(k, j) are defined,

(3) standard if Tλ is both row standard and column standard.

Example 3. (i) The λ-tableau tλ defined by

tλ(i, j) :=

{∑i−1
k=1 λk + j if i > 1,

j if i = 1

for 1 ≤ j ≤ λi, is a standard λ-tableau.
(ii) The λ-tableau tλ defined by putting in the jth column the numbers

{
∑j−1

k=1 λ′k + 1, . . . ,
∑j

k=1 λ′k}, increasing from top to bottom (and with
obvious adjustment for the first column). This is also a standard λ-
tableau.

For λ ` n let T (λ) be the set of λ-tableaux. If σ ∈ Sn and T ∈ T (λ)
then we define σT to be the λ-tableau with the number σ(T (i, j))
attached to the (i, j)th box of its underlying Young diagram (1 ≤ j ≤
λi). This turns T (λ) into a Sn-set (in other words, it defines a left
Sn-action Sn × T (λ) → T (λ) on T (λ)).

Any λ-tableau T gives rise to a decomposition of Ωn in disjoint sub-
sets Ωh

i (T ) of cardinality λi (i ≥ 1), where Ωh
i (T ) is the collection of

numbers in the ith row of the underlying Young tableau (i ≥ 1). We
write Ωh

i (λ) := Ωh
i (t

λ), so that

Ωh
i (λ) =


{1, . . . , λ1} if i = 1 and λ1 ≥ 1,

{
∑i−1

k=1 λk + 1, . . . ,
∑i

k=1 λk} if i > 1 and λi ≥ 1,

∅ if λi = 0

(the superscript h stands for horizontal). In a similar way, a λ-tableau
T gives rise to a decomposition of Ωn in disjoint subsets Ωv

j (T ) of
cardinality λ′j (j ≥ 1), where Ωv

j (T ) is the collection of numbers in the
jth column of the underlying Young tableau (j ≥ 1).

For T ∈ T (λ) define subgroups H(T ), V (T ) ⊆ Sn by

H(T ) = {σ ∈ Sn | σ(Ωh
i (T )) = Ωh

i (T ) ∀ i ≥ 1},
V (T ) = {σ ∈ Sn | σ(Ωv

j (T )) = Ωv
j (T ) ∀ j ≥ 1}.

We write Sλ := H(tλ).
Subgroups isomorphic to H(T ) for some λ-tableau T (λ ` n) are

called Young subgroups.
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Exercise 4. Fix λ ` n.
(i) Let Ωn = Ω′

1 ∪ Ω′
2 ∪ · · · ∪ Ω′

l(λ) be a disjoint union with #Ω′
i = λi

and define

S({Ω′
i}i) = {σ ∈ Sn | σ(Ω′

i) = Ω′
i ∀ i}.

Show that S({Ω′
i}i) is a Young subgroup of Sn.

(ii) Let σ ∈ Sn and T ∈ T (λ). Show that

H(σT ) = σH(T )σ−1, V (σT ) = σV (T )σ−1.

(iii) Let T ∈ T (λ). Show that

H(T ) ' Sλ1 × Sλ2 × · · · × Sλl(λ)
' S({Ω′

i}i)

as groups, where the Ω′
i are as in (i).

To apply Mackey’s machinery we need to analyze double (Sλ, Sµ)-
cosets of Sn in some detail. Of special importance for us to understand
double cosets with the so called trivial intersection property.

Definition 3. Let G be a finite group with unit element e and let
H, K ⊆ G be subgroups. A double (H, K)-coset HgK is set to have the
trivial intersection property if H ∩ gKg−1 = {e}.

Note that the trivial intersection property is well defined (it is inde-
pendent of the choice of representative of the double coset).

Lemma 3. Let λ, µ ` n and σ ∈ Sn. Then

τ ∈ SλσSµ ⇔ #
(
Ωh

i (λ) ∩ σ(Ωh
k(µ))

)
= #

(
Ωh

i (λ) ∩ τ(Ωh
k(µ))

)
for all i, k ≥ 1.

Proof. We have two disjoint unions

Ωn =
⋃

i,k≥1

Ωi,k =
⋃

i,k≥1

Ω′
i,k

with Ωi,k := Ωh
i (λ) ∩ σ(Ωh

k(µ)) and Ω′
i,k := Ωh

i (λ) ∩ τ(Ωh
k(µ)).

⇐: Since #Ωi,k = #Ω′
i,k for all i, k, there exists a ρ ∈ Sn such that

ρ(Ωi,k) = Ω′
i,k for all i, k ≥ 1. It follows that ρ(Ωh

i (λ)) = Ωh
i (λ) for all

i ≥ 1, hence ρ ∈ Sλ. Set ζ := σ−1ρ−1τ ∈ Sn. Then

ζ
(
τ−1(Ωh

i (λ)) ∩ Ωh
k(µ)

)
= σ−1ρ−1

(
Ω′

i,k

)
= σ−1(Ωi,k) = σ−1(Ωh

i (λ)) ∩ Ωh
k(µ)

for all i, k ≥ 1. In particular, ζ(Ωh
k(µ)) = Ωh

k(µ) for all k ≥ 1, hence
ζ ∈ Sµ. But then τ = ρσζ ∈ SλσSµ.
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⇒: Write τ = ρσζ with ρ ∈ Sλ and ζ ∈ Sµ. Then for all i, k ≥ 1,

Ω′
i,k = Ωh

i (λ) ∩ τ(Ωh
k(µ))

= ρ
(
Ωh

i (λ) ∩ σ(Ωh
k(µ))

)
= ρ(Ωi,k),

hence #Ω′
i,k = #Ωi,k for all i, k ≥ 1. �

Proposition 2. Let λ, µ ` n. Let M(λ, µ) be the set of n×n matrices(
zik

)n

i,k=1
with zik ∈ Z≥0 satisfying

n∑
k=1

zik = λi, 1 ≤ i ≤ n,

n∑
i=1

zik = µk, 1 ≤ k ≤ n.

Then the assignment

SλσSµ 7→
(
#

(
Ωh

i (λ) ∩ σ(Ωh
k(µ))

))n

i,k=1

defines a bijection Sλ \ Sn/Sµ
∼−→M(λ, µ).

Proof. By the previous lemma it is a well defined injective map

Sλ \ Sn/Sµ ↪→M(λ, µ).

It thus remains to show that it is a surjective map. Let (zik)
n
i,k=1 ∈

M(λ, µ). We need to construct a σ ∈ Sn such that

#
(
Ωh

i (λ) ∩ σ(Ωh
k(µ))

)
= zik

for 1 ≤ i, k ≤ n. The permutation σ can be constructed as follows.
First, for all i ∈ {1, . . . , n}, we decompose Ωh

i (λ) as a disjoint union

Ωh
i (λ) =

n⋃
k=1

Ωi,k(λ)

with #Ωi,k(λ) = zik (this is possible since
∑n

k=1 zik = λi = #Ωi(λ)).
Then

Ωn =
n⋃

i,k=1

Ωi,k(λ),

which is a disjoint union (since Ωh
i (λ)∩Ωh

i′(λ) = ∅ if i 6= i′). Now define
for 1 ≤ k ≤ n,

Ω′
k(µ) :=

n⋃
i=1

Ωi,k(λ).

It is a disjoint union, and Ωh
i (λ) ∩ Ω′

k(µ) = Ωi,k(λ) for all i, k.
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Note that #Ω′
k(µ) =

∑n
i=1 zik = µk = #Ωh

k(µ) and that

Ωn =
n⋃

k=1

Ω′
k(µ)

is a disjoint union, as well as Ωn =
⋃n

k=1 Ωh
k(µ). Hence there exists a

σ ∈ Sn such that σ(Ωh
k(µ)) = Ω′

k(µ) for all k ∈ {1, . . . , n}. But then
for 1 ≤ i, k ≤ n,

#
(
Ωh

i (λ) ∩ σ(Ωh
k(µ))

)
= #

(
Ωh

i (λ) ∩ Ω′
k(µ)

)
= #Ωi,k(λ) = zik

as desired. �

Corollary 2. Let λ, µ ` n. Then the double (Sλ, Sµ)-coset SλσSµ

has the trivial intersection property if and only if the associated matrix
(zik)

n
i,j=1 ∈ M(λ, µ) (as defined in the previous proposition) satisfies

zik ∈ {0, 1} for all 1 ≤ i, k ≤ n.

Proof. Note that

Sλ∩σSµσ
−1 = {τ ∈ Sλ | τ(σ(Ωh

k(µ))) = σ(Ωh
k(µ)) ∀ k}

={τ ∈ Sn | τ(Ωh
i (λ) ∩ σ(Ωh

k(µ))) = Ωh
i (λ) ∩ σ(Ωh

k(µ)) ∀ i, k}.
(2)

We conclude that SλσSµ has the trivial intersection property iff

Sλ ∩ σSµσ
−1 = {e}

iff
zik = #(Ωh

i (λ) ∩ σ(Ωh
k(µ)) ∈ {0, 1}

for all i, k ∈ {1, . . . , n}. �

Crucial for our purposes is the following proposition.

Proposition 3. Let λ ` n and let wλ ∈ Sn be the unique element
such that wλt

λ = tλ. The only double (Sλ, Sλ′)-coset with the trivial
intersection property is Sλw

−1
λ Sλ′.

Proof. For 1 ≤ i, k ≤ n we have

#
(
Ωh

i (λ) ∩ w−1
λ (Ωh

k(λ
′)) = #

(
Ωh

i (t
λ) ∩ w−1

λ Ωh
k(t

λ′
)
)

= #
(
Ωh

i (t
λ) ∩ w−1

λ Ωv
k(tλ)

)
= #

(
Ωh

i (t
λ) ∩ Ωv

k(t
λ)

)
which is one if 1 ≤ k ≤ λi and zero otherwise. Hence Sλw

−1
λ Sλ′ has the

trivial intersection property.
To show it is the only one, we prove that there exists a unique matrix

(zik)
n
i,k=1 with zik ∈ {0, 1} satisfying

∑n
k=1 zik = λi and

∑n
i=1 zik = λ′k.
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One such matrix (zik)
n
i,k=1 is clear (it is the one corresponding to the

double coset Sλw
−1
λ Sλ′): it is given by zik = 1 if 1 ≤ k ≤ λi and zero

otherwise.
Suppose (zik)

n
i,k=1 is another matrix satisfying these properties. Then

the first λ1 entries of the first row should be ones (and hence the re-
maining n− λ1 entries in the first row zeros). Indeed, if this is not the
case then there exists a λ1 < k ≤ n such that the z1k = 1. But then
λ′k =

∑n
i=1 zik ≥ 1. But l(λ′) = λ1 < k hence λ′k = 0, contradiction.

A similar argument shows that in the i′th row of (zik)i,k, the first λi′

entries should be ones (and the remaining entries zeros). This proves
the result. �

Exercise 5. Complete the argument from the proof of the previous
proposition. In other words, show that there exists a unique matrix
(zik)

n
i,k=1 with zik ∈ {0, 1} satisfying

∑n
k=1 zik = λi for all i and satis-

fying
∑n

i=1 zik = λ′k for all k.

3. Locating the irreducible Sn-representations

We start with the following general result.

Theorem 6 (The intertwining number theorem). Let H, K ⊆ G be
subgroups. Let θ : H → GL(V ) and ρ : K → GL(W ) be finite dimen-
sional representations of H and K respectively. Then

DimC
(
Hom(G)(IndG

H(θ), IndG
K(ρ)

)
=

∑
KgH∈K\G/H

DimC
(
Hom(Hg)(θg, ResK

Hg
(ρ))

)
,

where Hg = gHg−1 ∩K and θg : Hg → GL(V ) is defined by θg(x) :=
θ(g−1xg) (x ∈ Hg).

Proof. We know that

ResG
K

(
IndG

H(θ)
)
'

⊕
g∈S

IndK
Hg

(θg),
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with S a complete set of representatives of the double coset space
K \G/H. Hence, by two applications of Frobenius reciprocity,

DimC
(
Hom(G)(IndG

H(θ), IndG
K(ρ)

))
=

(
IndG

H(χθ), IndG
K(χρ)

)
G

=
(
ResG

K(IndG
H(χθ)), χρ

)
K

=
∑
g∈S

(
IndK

Hg
(χθg), χρ

)
K

=
∑
g∈S

(
χθg , ResK

Hg
(χρ)

)
Hg

=
∑
g∈S

DimC
(
Hom(Hg)(θg, ResK

Hg
(ρ))

)
.

�

We apply the intertwining number theorem to the case that (H, K) =
(Sµ, Sν) with µ, ν ` n. Let εµ : Sµ → C∗ the (restriction of the) alter-
nating representation (εµ(σ) = 1 if σ ∈ Sµ is an even permutation and
εµ(σ) = −1 otherwise) and let ρν : Sν → C∗ be the trivial representa-
tion (ρν(σ) = 1 for all σ ∈ Sν). Here we identify these one-dimensional
representations with their characters in the usual manner.

Corollary 3. Let µ, ν ` n. Then

DimC
(
Hom(Sn)(IndSn

Sµ
(εµ), IndSn

Sν
(ρν))

)
is the number of double (Sν , Sµ)-cosets with the trivial intersection prop-
erty.

Proof. Let S be a complete set of coset representatives of the double
(Sν , Sµ)-cosets in Sn. For σ ∈ S the twisted one-dimensional represen-
tation εµ,σ of Hσ := σSµσ

−1 ∩ Sν coincides with the restriction of the
alternating representation ε : Sn → C∗ to Hσ, while ResSν

Hσ
(ρν) is the

restriction of the trivial representation of Sn to Hσ. They are equiva-
lent if and only if they coincide (since they are one-dimensional), and
this is if and only if Hσ = {e} (see the exercise below). Now note that
Hσ = {e} iff the double (Sν , Sµ)-coset SνσSµ has the trivial intersection
property.

Finally, if εµ,σ and ResSν
Hσ

(ρν) coincide, then clearly

DimC
(
Hom(Hg)

(
εµ,g, ResSν

Hg
(ρν)

))
= 1,

and it is zero otherwise. The result now follows from the intertwining
number theorem. �
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Exercise 7. Using the notations of the corollary, show that εµ,σ =
ResSν

Hσ
(ρν) iff Hσ = {e}.

Hint: Use formula (2).

Corollary 4. Let λ ` n. Up to isomorphism there exists a unique
irreducible linear Sn-representation πλ : Sn → GLC(Vλ) such that

(3)
(
χλ, IndSn

Sλ
(ρλ)

)
Sn

= 1 =
(
χλ, IndSn

Sλ′ (ελ′)
)

Sn
,

where χλ := χπλ
∈ F (Sn) is the irreducible character of πλ.

Proof. By Proposition 3 and Corollary 3 we have(
IndSn

Sλ′ (ελ′), IndSn
Sλ

(ρλ)
)

Sn
= DimC

(
Hom(Sn)

(
IndSn

Sλ′ (ελ′), IndSn
Sλ

(ρλ)
))

= 1

(we interpret here the induction in the left term as induction of char-
acters, and for the middle term as induction of representations). On
the other hand,

(4)
(
IndSn

Sλ′ (ελ′), IndSn
Sλ

(ρλ)
)

Sn
=

∑
π∈Ŝn

dπeπ

with dπ, eπ ∈ Z≥0 (π ∈ Ŝn) such that

IndSn
Sλ′ (ελ′) =

∑
π∈Ŝn

dπχπ,

IndSn
Sλ

(ρλ) =
∑
π∈Ŝn

eπχπ

in F (Sn). Then (4) being one thus implies that the representations
IndSn

Sλ′ (ελ′) and IndSn
Sλ

(ρλ) have a unique common irreducible constituent

πλ ∈ Ŝn, whose irreducible character χλ satisfies (3) (in particular, πλ

occurs with multiplicity one in both IndSn
Sλ′ (ελ′) and IndSn

Sλ
(ρλ)). �

Next week we prove that {πλ}λ∈Pn is a complete set of representatives

of Ŝn.
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