ALGEBRA 3; REPRESENTATIE THEORIE. AANVULLING 4

1. INTRODUCTION

In these lecture notes we locate the irreducible representations of the symmetric group. A lot of information about the representation theory of the symmetric group can be found in the book [1]. In the lecture notes of next week we will explicitly construct the irreducible representations.

2. The symmetric group and Young subgroups

Let $n \geq 1$ and write S_n for the symmetric group in n letters. In other words, S_n is the group of bijections $\Omega_n \xrightarrow{\sim} \Omega_n$, where $\Omega_n :=$ $\{1, \ldots, n\} \rightarrow \Omega_n$. Then $\#S_n = n!$. Let $I = \{i_1, \ldots, i_r\} \subseteq \Omega_n$ be an ordered subset of cardinality r. Then we have the cycle

$$(i_1 \, i_2 \, \cdots \, i_r) \in S_n,$$

of length r, which is the permutation $i_j \mapsto i_{j+1}$ $(1 \leq j < r), i_r \mapsto i_1$ and $k \mapsto k$ for $k \in \Omega_n \setminus I$. We call I the content of the cycle. Note that a cycle (*i*) of length one is the identity element e of the symmetric group S_n . We call two cycles disjoint if their contents have trivial intersection. Note that disjoint cycles commute.

We recall the following basic fact.

Lemma 1. Any $\sigma \in S_n$ can be written as product of disjoint cycles.

A composition λ of n is an infinite sequence $\lambda = (\lambda_1, \lambda_2, \ldots)$ of nonnegative integers λ_i such that $\sum_i \lambda_i = n$. We write in this case $\lambda \models n$, and we write $l(\lambda)$ for the largest index m such that $\lambda_m \neq 0$ (it is called the length of λ). We write $\lambda \vdash n$ if, in addition, $\lambda_1 \ge \lambda_2 \ge$ $\lambda_3 \ge \cdots$. In this case we call λ a partition of n. Note that $l(\lambda) \le n$ if $\lambda \vdash n$.

Sometimes it is convenient to write λ as a finite sequence by forgetting the zeros to the right, $\lambda = (\lambda_1, \ldots, \lambda_{l(\lambda)})$. The Young diagram of a composition $\lambda \models$ is the diagram of *n* boxes placed in $l(\lambda)$ rows, with λ_i boxes in the *i*th row.

Young diagram van (5, 4, 1)

The Young diagram of a partition has the property that the number of boxes per row weakly increase from top to bottom. We will show that the partitions of n naturally parametrize the conjugacy classes of the symmetric group S_n .

Definition 1. Let $\sigma \in S_n$ and write σ as a product of disjoint cycles, such that each element $i \in \Omega_n$ is in the content of one of the cycles. Collecting the cycle lengths of the disjoint cycles gives a composition of n. Permute the entries such that they are in nondecreasing order. The resulting partition $c(\sigma)$ of n is called the cycle type of σ .

It is clear that the cycle type $c(\sigma)$ of $\sigma \in S_n$ is well defined.

Consider the group homomorphism $\operatorname{Ad} : S_n \to \operatorname{Aut}(S_n)$ defined by $\operatorname{Ad}(\sigma)(\tau) := \sigma \tau \sigma^{-1}$. This turns S_n into a S_n -set. The corresponding S_n -orbits are denoted by $\operatorname{Ad}(S_n)\tau \in S_n/\sim (\tau \in S_n)$. They are the conjugacy classes of S_n . Write \mathcal{P}_n for the set of partitions of n.

Proposition 1. The map $S_n / \sim \to \mathcal{P}_n$, given by $\operatorname{Ad}(S_n)\tau \mapsto c(\tau)$, is well defined and bijective.

Proof. Note that

(1)
$$\sigma(i_1 i_2 \cdots i_r) \sigma^{-1} = (\sigma(i_1) \sigma(i_2) \cdots \sigma(i_r))$$

in S_n for all $\sigma \in S_n$ and for all subsets $I = \{i_1, \ldots, i_r\} \subseteq \Omega_n$ of cardinality r. It follows that

$$\operatorname{Ad}(S_n)\sigma = \{\tau \in S_n \,|\, c(\tau) = c(\sigma)\}.$$

Hence $\operatorname{Ad}(S_n)\sigma \mapsto c(\sigma)$ is a well defined injective map $S_n/\sim \hookrightarrow \mathcal{P}_n$.

Let $\lambda = (\lambda_1, \dots, \lambda_m)$ be a partition of n $(m = l(\lambda))$. Choose subsets

$$I_j = \{i_1^j, i_2^j \dots, i_{\lambda_j}^j\} \subset \Omega_n$$

 $\mathbf{2}$

of cardinality λ_j such that $I_j \cap I_{j'} = \emptyset$ if $1 \leq j \neq j' \leq m$. Set

$$\sigma_j := (i_1^j \, i_2^j \cdots i_{\lambda_j}^j)$$

for the corresponding cycles of length λ_j $(1 \leq j \leq m)$. Then

$$\sigma := \sigma_1 \sigma_2 \cdots \sigma_m \in S_n$$

is a product of disjoint cycles such that $c(\sigma) = \lambda$. Hence $\operatorname{Ad}(S_n)\sigma \mapsto c(\sigma)$ maps onto \mathcal{P}_n .

Corollary 1. $\#\widehat{S_n} = \#\mathcal{P}_n$.

We will construct representatives of the isomorphy classes of irreducible linear S_n -representations and parametrize them by the partitions of n.

Lemma 2. Define for $\lambda \vdash n$ and $1 \leq i \leq n$ set

$$\lambda'_{i} := \#\{j \in \{1, \dots, n\} \mid \lambda_{j} \ge i\}.$$
(1) $\lambda' \vdash n$ (it is called the conjugate partition of n)
(2) $l(\lambda') = \lambda_{1}.$
(3) $(\lambda')' = \lambda.$

Proof. This is immediate by realizing that the transition $\lambda \mapsto \lambda'$ corresponds to reflecting the Young diagram of λ in its main diagonal. For instance, in the example above, (5, 4, 1)' = (3, 2, 2, 2, 1).

Exercise 1. Define for $\lambda, \mu \vdash n$,

$$\lambda \preceq \mu \quad \Leftrightarrow \quad \sum_{j=1}^{i} \lambda_j \leq \sum_{j=1}^{i} \mu_j \quad \forall i.$$

- (1) Show that \leq defines a partial order on \mathcal{P}_n .
- (2) Prove that $\lambda \preceq \mu \Leftrightarrow \mu' \preceq \lambda'$.

Exercise 2. For $\lambda \vdash n$ and $i \geq 1$ define

$$m_i(\lambda) := \#\{j \ge 1 \mid \lambda_j = i\}.$$

Let $\sigma \in S_n$ such that $c(\sigma) = \lambda$. Prove that

$$\#(\operatorname{Ad}(S_n)\sigma) = \frac{n!}{\prod_{i\geq 1} i^{m_i(\lambda)} m_i(\lambda)!}$$

Let $\lambda \models n$. A Young tableau T_{λ} is the Young diagram of λ together with an arbitrary choice of an assignment of the numbers $\{1, \ldots, n\}$ to the boxes of the Young diagram (each number assigned to exactly one box). We write $T_{\lambda}(i, j)$ for the number assigned to the box in row *i* and column *j* $(1 \le j \le \lambda_i)$. **Definition 2.** Let $\lambda \models n$ and let T_{λ} be an λ -tableau. We call T_{λ}

- (1) row standard if $T_{\lambda}(i,j) < T_{\lambda}(i,j+1)$ if $T_{\lambda}(i,j)$ and $T_{\lambda}(i,j+1)$ are defined,
- (2) column standard if $T_{\lambda}(i, j) < T_{\lambda}(k, j)$ if i < k and if both $T_{\lambda}(i, j)$ and $T_{\lambda}(k, j)$ are defined,
- (3) standard if T_{λ} is both row standard and column standard.

Example 3. (i) The λ -tableau t^{λ} defined by

$$t^{\lambda}(i,j) := \begin{cases} \sum_{k=1}^{i-1} \lambda_k + j & \text{if } i > 1, \\ j & \text{if } i = 1 \end{cases}$$

for $1 \leq j \leq \lambda_i$, is a standard λ -tableau.

(ii) The λ -tableau t_{λ} defined by putting in the *j*th column the numbers $\{\sum_{k=1}^{j-1} \lambda'_k + 1, \ldots, \sum_{k=1}^{j} \lambda'_k\}$, increasing from top to bottom (and with obvious adjustment for the first column). This is also a standard λ -tableau.

For $\lambda \vdash n$ let $\mathcal{T}(\lambda)$ be the set of λ -tableaux. If $\sigma \in S_n$ and $T \in \mathcal{T}(\lambda)$ then we define σT to be the λ -tableau with the number $\sigma(T(i, j))$ attached to the (i, j)th box of its underlying Young diagram $(1 \leq j \leq \lambda_i)$. This turns $\mathcal{T}(\lambda)$ into a S_n -set (in other words, it defines a left S_n -action $S_n \times \mathcal{T}(\lambda) \to \mathcal{T}(\lambda)$ on $\mathcal{T}(\lambda)$).

Any λ -tableau T gives rise to a decomposition of Ω_n in disjoint subsets $\Omega_i^h(T)$ of cardinality λ_i $(i \ge 1)$, where $\Omega_i^h(T)$ is the collection of numbers in the *i*th row of the underlying Young tableau $(i \ge 1)$. We write $\Omega_i^h(\lambda) := \Omega_i^h(t^{\lambda})$, so that

$$\Omega_i^h(\lambda) = \begin{cases} \{1, \dots, \lambda_1\} & \text{if } i = 1 \text{ and } \lambda_1 \ge 1, \\ \{\sum_{k=1}^{i-1} \lambda_k + 1, \dots, \sum_{k=1}^i \lambda_k\} & \text{if } i > 1 \text{ and } \lambda_i \ge 1, \\ \emptyset & \text{if } \lambda_i = 0 \end{cases}$$

(the superscript h stands for horizontal). In a similar way, a λ -tableau T gives rise to a decomposition of Ω_n in disjoint subsets $\Omega_j^v(T)$ of cardinality λ'_j $(j \ge 1)$, where $\Omega_j^v(T)$ is the collection of numbers in the *j*th column of the underlying Young tableau $(j \ge 1)$.

For $T \in \mathcal{T}(\lambda)$ define subgroups $H(T), V(T) \subseteq S_n$ by

$$H(T) = \{ \sigma \in S_n \mid \sigma(\Omega_i^h(T)) = \Omega_i^h(T) \quad \forall i \ge 1 \}, V(T) = \{ \sigma \in S_n \mid \sigma(\Omega_j^v(T)) = \Omega_j^v(T) \quad \forall j \ge 1 \}.$$

We write $S_{\lambda} := H(t^{\lambda})$.

Subgroups isomorphic to H(T) for some λ -tableau T ($\lambda \vdash n$) are called Young subgroups.

Exercise 4. Fix $\lambda \vdash n$.

(i) Let $\Omega_n = \Omega'_1 \cup \Omega'_2 \cup \cdots \cup \Omega'_{l(\lambda)}$ be a disjoint union with $\#\Omega'_i = \lambda_i$ and define

$$S(\{\Omega'_i\}_i) = \{ \sigma \in S_n \mid \sigma(\Omega'_i) = \Omega'_i \quad \forall i \}.$$

Show that $S({\Omega'_i}_i)$ is a Young subgroup of S_n . (ii) Let $\sigma \in S_n$ and $T \in \mathcal{T}(\lambda)$. Show that

$$H(\sigma T) = \sigma H(T)\sigma^{-1}, \qquad V(\sigma T) = \sigma V(T)\sigma^{-1}$$

(iii) Let $T \in \mathcal{T}(\lambda)$. Show that

$$H(T) \simeq S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_{l(\lambda)}} \simeq S(\{\Omega'_i\}_i)$$

as groups, where the Ω'_i are as in (i).

To apply Mackey's machinery we need to analyze double (S_{λ}, S_{μ}) cosets of S_n in some detail. Of special importance for us to understand
double cosets with the so called trivial intersection property.

Definition 3. Let G be a finite group with unit element e and let $H, K \subseteq G$ be subgroups. A double (H, K)-coset HgK is set to have the trivial intersection property if $H \cap gKg^{-1} = \{e\}$.

Note that the trivial intersection property is well defined (it is independent of the choice of representative of the double coset).

Lemma 3. Let $\lambda, \mu \vdash n$ and $\sigma \in S_n$. Then

$$\tau \in S_{\lambda} \sigma S_{\mu} \quad \Leftrightarrow \quad \# \left(\Omega_i^h(\lambda) \cap \sigma(\Omega_k^h(\mu)) \right) = \# \left(\Omega_i^h(\lambda) \cap \tau(\Omega_k^h(\mu)) \right)$$

for all $i, k \geq 1$.

Proof. We have two disjoint unions

$$\Omega_n = \bigcup_{i,k \ge 1} \Omega_{i,k} = \bigcup_{i,k \ge 1} \Omega'_{i,k}$$

with $\Omega_{i,k} := \Omega_i^h(\lambda) \cap \sigma(\Omega_k^h(\mu))$ and $\Omega'_{i,k} := \Omega_i^h(\lambda) \cap \tau(\Omega_k^h(\mu))$. $\Leftarrow:$ Since $\#\Omega_{i,k} = \#\Omega'_{i,k}$ for all i, k, there exists a $\rho \in S_n$ such that $\rho(\Omega_{i,k}) = \Omega'_{i,k}$ for all $i, k \ge 1$. It follows that $\rho(\Omega_i^h(\lambda)) = \Omega_i^h(\lambda)$ for all $i \ge 1$, hence $\rho \in S_\lambda$. Set $\zeta := \sigma^{-1} \rho^{-1} \tau \in S_n$. Then

$$\begin{aligned} \zeta \big(\tau^{-1}(\Omega_i^h(\lambda)) \cap \Omega_k^h(\mu) \big) &= \sigma^{-1} \rho^{-1} \big(\Omega_{i,k}' \big) \\ &= \sigma^{-1}(\Omega_{i,k}) = \sigma^{-1}(\Omega_i^h(\lambda)) \cap \Omega_k^h(\mu) \end{aligned}$$

for all $i, k \geq 1$. In particular, $\zeta(\Omega_k^h(\mu)) = \Omega_k^h(\mu)$ for all $k \geq 1$, hence $\zeta \in S_{\mu}$. But then $\tau = \rho \sigma \zeta \in S_{\lambda} \sigma S_{\mu}$.

 \Rightarrow : Write $\tau = \rho \sigma \zeta$ with $\rho \in S_{\lambda}$ and $\zeta \in S_{\mu}$. Then for all $i, k \geq 1$,

$$\Omega'_{i,k} = \Omega^h_i(\lambda) \cap \tau(\Omega^h_k(\mu))$$

= $\rho(\Omega^h_i(\lambda) \cap \sigma(\Omega^h_k(\mu))) = \rho(\Omega_{i,k}),$

hence $\#\Omega'_{i,k} = \#\Omega_{i,k}$ for all $i, k \ge 1$.

Proposition 2. Let $\lambda, \mu \vdash n$. Let $\mathcal{M}(\lambda, \mu)$ be the set of $n \times n$ matrices $(z_{ik})_{i,k=1}^n$ with $z_{ik} \in \mathbb{Z}_{\geq 0}$ satisfying

$$\sum_{k=1}^{n} z_{ik} = \lambda_i, \qquad 1 \le i \le n,$$
$$\sum_{i=1}^{n} z_{ik} = \mu_k, \qquad 1 \le k \le n.$$

Then the assignment

$$S_{\lambda}\sigma S_{\mu} \mapsto \left(\#\left(\Omega_i^h(\lambda) \cap \sigma(\Omega_k^h(\mu))\right)\right)_{i,k=1}^n$$

defines a bijection $S_{\lambda} \setminus S_n / S_{\mu} \xrightarrow{\sim} \mathcal{M}(\lambda, \mu).$

Proof. By the previous lemma it is a well defined injective map

$$S_{\lambda} \setminus S_n / S_{\mu} \hookrightarrow \mathcal{M}(\lambda, \mu).$$

It thus remains to show that it is a surjective map. Let $(z_{ik})_{i,k=1}^n \in \mathcal{M}(\lambda,\mu)$. We need to construct a $\sigma \in S_n$ such that

$$\#\big(\Omega_i^h(\lambda) \cap \sigma(\Omega_k^h(\mu))\big) = z_{ik}$$

for $1 \leq i, k \leq n$. The permutation σ can be constructed as follows. First, for all $i \in \{1, \ldots, n\}$, we decompose $\Omega_i^h(\lambda)$ as a disjoint union

$$\Omega_i^h(\lambda) = \bigcup_{k=1}^n \Omega_{i,k}(\lambda)$$

with $\#\Omega_{i,k}(\lambda) = z_{ik}$ (this is possible since $\sum_{k=1}^{n} z_{ik} = \lambda_i = \#\Omega_i(\lambda)$). Then

$$\Omega_n = \bigcup_{i,k=1}^n \Omega_{i,k}(\lambda),$$

which is a disjoint union (since $\Omega_i^h(\lambda) \cap \Omega_{i'}^h(\lambda) = \emptyset$ if $i \neq i'$). Now define for $1 \leq k \leq n$,

$$\Omega'_k(\mu) := \bigcup_{i=1}^n \Omega_{i,k}(\lambda).$$

It is a disjoint union, and $\Omega_i^h(\lambda) \cap \Omega_k'(\mu) = \Omega_{i,k}(\lambda)$ for all i, k.

Note that
$$\#\Omega'_k(\mu) = \sum_{i=1}^n z_{ik} = \mu_k = \#\Omega^h_k(\mu)$$
 and that
$$\Omega_n = \bigcup_{k=1}^n \Omega'_k(\mu)$$

is a disjoint union, as well as $\Omega_n = \bigcup_{k=1}^n \Omega_k^h(\mu)$. Hence there exists a $\sigma \in S_n$ such that $\sigma(\Omega_k^h(\mu)) = \Omega_k'(\mu)$ for all $k \in \{1, \ldots, n\}$. But then for $1 \le i, k \le n$,

$$# (\Omega_i^h(\lambda) \cap \sigma(\Omega_k^h(\mu))) = # (\Omega_i^h(\lambda) \cap \Omega_k'(\mu)) = # \Omega_{i,k}(\lambda) = z_{ik}$$

as desired.

Corollary 2. Let $\lambda, \mu \vdash n$. Then the double (S_{λ}, S_{μ}) -coset $S_{\lambda}\sigma S_{\mu}$ has the trivial intersection property if and only if the associated matrix $(z_{ik})_{i,j=1}^n \in \mathcal{M}(\lambda,\mu)$ (as defined in the previous proposition) satisfies $z_{ik} \in \{0,1\}$ for all $1 \leq i, k \leq n$.

Proof. Note that

(2)
$$S_{\lambda} \cap \sigma S_{\mu} \sigma^{-1} = \{ \tau \in S_{\lambda} \mid \tau(\sigma(\Omega_{k}^{h}(\mu))) = \sigma(\Omega_{k}^{h}(\mu)) \quad \forall k \} \\ = \{ \tau \in S_{n} \mid \tau(\Omega_{i}^{h}(\lambda) \cap \sigma(\Omega_{k}^{h}(\mu))) = \Omega_{i}^{h}(\lambda) \cap \sigma(\Omega_{k}^{h}(\mu)) \quad \forall i, k \}.$$

We conclude that $S_{\lambda}\sigma S_{\mu}$ has the trivial intersection property iff

$$S_{\lambda} \cap \sigma S_{\mu} \sigma^{-1} = \{e\}$$

iff

$$z_{ik} = \#(\Omega_i^h(\lambda) \cap \sigma(\Omega_k^h(\mu)) \in \{0, 1\}$$

for all $i, k \in \{1, ..., n\}$.

Crucial for our purposes is the following proposition.

Proposition 3. Let $\lambda \vdash n$ and let $w_{\lambda} \in S_n$ be the unique element such that $w_{\lambda}t^{\lambda} = t_{\lambda}$. The only double $(S_{\lambda}, S_{\lambda'})$ -coset with the trivial intersection property is $S_{\lambda}w_{\lambda}^{-1}S_{\lambda'}$.

Proof. For $1 \leq i, k \leq n$ we have

$$\begin{aligned} \# \big(\Omega_i^h(\lambda) \cap w_{\lambda}^{-1}(\Omega_k^h(\lambda')) &= \# \big(\Omega_i^h(t^{\lambda}) \cap w_{\lambda}^{-1}\Omega_k^h(t^{\lambda'}) \big) \\ &= \# \big(\Omega_i^h(t^{\lambda}) \cap w_{\lambda}^{-1}\Omega_k^v(t_{\lambda}) \big) \\ &= \# \big(\Omega_i^h(t^{\lambda}) \cap \Omega_k^v(t^{\lambda}) \big) \end{aligned}$$

which is one if $1 \leq k \leq \lambda_i$ and zero otherwise. Hence $S_{\lambda} w_{\lambda}^{-1} S_{\lambda'}$ has the trivial intersection property.

To show it is the only one, we prove that there exists a unique matrix $(z_{ik})_{i,k=1}^n$ with $z_{ik} \in \{0,1\}$ satisfying $\sum_{k=1}^n z_{ik} = \lambda_i$ and $\sum_{i=1}^n z_{ik} = \lambda'_k$.

One such matrix $(z_{ik})_{i,k=1}^n$ is clear (it is the one corresponding to the double coset $S_{\lambda}w_{\lambda}^{-1}S_{\lambda'}$): it is given by $z_{ik} = 1$ if $1 \leq k \leq \lambda_i$ and zero otherwise.

Suppose $(z_{ik})_{i,k=1}^n$ is another matrix satisfying these properties. Then the first λ_1 entries of the first row should be ones (and hence the remaining $n - \lambda_1$ entries in the first row zeros). Indeed, if this is not the case then there exists a $\lambda_1 < k \leq n$ such that the $z_{1k} = 1$. But then $\lambda'_k = \sum_{i=1}^n z_{ik} \geq 1$. But $l(\lambda') = \lambda_1 < k$ hence $\lambda'_k = 0$, contradiction. A similar argument shows that in the *i*'th row of $(z_{ik})_{i,k}$, the first $\lambda_{i'}$ entries should be ones (and the remaining entries zeros). This proves the result.

Exercise 5. Complete the argument from the proof of the previous proposition. In other words, show that there exists a unique matrix $(z_{ik})_{i,k=1}^{n}$ with $z_{ik} \in \{0,1\}$ satisfying $\sum_{k=1}^{n} z_{ik} = \lambda_i$ for all i and satisfying $\sum_{i=1}^{n} z_{ik} = \lambda'_k$ for all k.

3. Locating the irreducible S_n -representations

We start with the following general result.

Theorem 6 (The intertwining number theorem). Let $H, K \subseteq G$ be subgroups. Let $\theta : H \to \operatorname{GL}(V)$ and $\rho : K \to \operatorname{GL}(W)$ be finite dimensional representations of H and K respectively. Then

$$\operatorname{Dim}_{\mathbb{C}}\left(\operatorname{Hom}^{(G)}(\operatorname{Ind}_{H}^{G}(\theta), \operatorname{Ind}_{K}^{G}(\rho)\right) = \sum_{KgH \in K \setminus G/H} \operatorname{Dim}_{\mathbb{C}}\left(\operatorname{Hom}^{(H_{g})}(\theta_{g}, \operatorname{Res}_{H_{g}}^{K}(\rho))\right)$$

where $H_g = gHg^{-1} \cap K$ and $\theta_g : H_g \to \operatorname{GL}(V)$ is defined by $\theta_g(x) := \theta(g^{-1}xg)$ $(x \in H_g)$.

Proof. We know that

$$\operatorname{Res}_{K}^{G}\left(\operatorname{Ind}_{H}^{G}(\theta)\right) \simeq \bigoplus_{g \in \mathcal{S}} \operatorname{Ind}_{H_{g}}^{K}(\theta_{g}),$$

with S a complete set of representatives of the double coset space $K \setminus G/H$. Hence, by two applications of Frobenius reciprocity,

$$\operatorname{Dim}_{\mathbb{C}}\left(\operatorname{Hom}^{(G)}(\operatorname{Ind}_{H}^{G}(\theta), \operatorname{Ind}_{K}^{G}(\rho))\right) = \left(\operatorname{Ind}_{H}^{G}(\chi_{\theta}), \operatorname{Ind}_{K}^{G}(\chi_{\rho})\right)_{G}$$
$$= \left(\operatorname{Res}_{K}^{G}(\operatorname{Ind}_{H}^{G}(\chi_{\theta})), \chi_{\rho}\right)_{K}$$
$$= \sum_{g \in \mathcal{S}} \left(\operatorname{Ind}_{H_{g}}^{K}(\chi_{\theta_{g}}), \chi_{\rho}\right)_{K}$$
$$= \sum_{g \in \mathcal{S}} \left(\chi_{\theta_{g}}, \operatorname{Res}_{H_{g}}^{K}(\chi_{\rho})\right)_{H_{g}}$$
$$= \sum_{g \in \mathcal{S}} \operatorname{Dim}_{\mathbb{C}}\left(\operatorname{Hom}^{(H_{g})}(\theta_{g}, \operatorname{Res}_{H_{g}}^{K}(\rho))\right)$$

We apply the intertwining number theorem to the case that $(H, K) = (S_{\mu}, S_{\nu})$ with $\mu, \nu \vdash n$. Let $\epsilon_{\mu} : S_{\mu} \to \mathbb{C}^*$ the (restriction of the) alternating representation ($\epsilon_{\mu}(\sigma) = 1$ if $\sigma \in S_{\mu}$ is an even permutation and $\epsilon_{\mu}(\sigma) = -1$ otherwise) and let $\rho_{\nu} : S_{\nu} \to \mathbb{C}^*$ be the trivial representation ($\rho_{\nu}(\sigma) = 1$ for all $\sigma \in S_{\nu}$). Here we identify these one-dimensional representations with their characters in the usual manner.

Corollary 3. Let $\mu, \nu \vdash n$. Then

 $\operatorname{Dim}_{\mathbb{C}}(\operatorname{Hom}^{(S_n)}(\operatorname{Ind}_{S_{\mu}}^{S_n}(\epsilon_{\mu}), \operatorname{Ind}_{S_{\nu}}^{S_n}(\rho_{\nu})))$

is the number of double (S_{ν}, S_{μ}) -cosets with the trivial intersection property.

Proof. Let S be a complete set of coset representatives of the double (S_{ν}, S_{μ}) -cosets in S_n . For $\sigma \in S$ the twisted one-dimensional representation $\epsilon_{\mu,\sigma}$ of $H_{\sigma} := \sigma S_{\mu} \sigma^{-1} \cap S_{\nu}$ coincides with the restriction of the alternating representation $\epsilon : S_n \to \mathbb{C}^*$ to H_{σ} , while $\operatorname{Res}_{H_{\sigma}}^{S_{\nu}}(\rho_{\nu})$ is the restriction of the trivial representation of S_n to H_{σ} . They are equivalent if and only if they coincide (since they are one-dimensional), and this is if and only if $H_{\sigma} = \{e\}$ (see the exercise below). Now note that $H_{\sigma} = \{e\}$ iff the double (S_{ν}, S_{μ}) -coset $S_{\nu}\sigma S_{\mu}$ has the trivial intersection property.

Finally, if $\epsilon_{\mu,\sigma}$ and $\operatorname{Res}_{H_{\sigma}}^{S_{\nu}}(\rho_{\nu})$ coincide, then clearly

$$\operatorname{Dim}_{\mathbb{C}}\left(\operatorname{Hom}^{(H_g)}\left(\epsilon_{\mu,g},\operatorname{Res}_{H_g}^{S_{\nu}}(\rho_{\nu})\right)\right) = 1,$$

and it is zero otherwise. The result now follows from the intertwining number theorem. $\hfill \Box$

Exercise 7. Using the notations of the corollary, show that $\epsilon_{\mu,\sigma} = \operatorname{Res}_{H_{\sigma}}^{S_{\nu}}(\rho_{\nu})$ iff $H_{\sigma} = \{e\}$. **Hint:** Use formula (2).

Corollary 4. Let $\lambda \vdash n$. Up to isomorphism there exists a unique irreducible linear S_n -representation $\pi_{\lambda} : S_n \to \operatorname{GL}_{\mathbb{C}}(V_{\lambda})$ such that

(3)
$$\left(\chi_{\lambda}, \operatorname{Ind}_{S_{\lambda}}^{S_{n}}(\rho_{\lambda})\right)_{S_{n}} = 1 = \left(\chi_{\lambda}, \operatorname{Ind}_{S_{\lambda'}}^{S_{n}}(\epsilon_{\lambda'})\right)_{S_{n}}$$

where $\chi_{\lambda} := \chi_{\pi_{\lambda}} \in F(S_n)$ is the irreducible character of π_{λ} .

Proof. By Proposition 3 and Corollary 3 we have

$$\left(\mathrm{Ind}_{S_{\lambda'}}^{S_n}(\epsilon_{\lambda'}), \mathrm{Ind}_{S_{\lambda}}^{S_n}(\rho_{\lambda})\right)_{S_n} = \mathrm{Dim}_{\mathbb{C}}\left(\mathrm{Hom}^{(S_n)}\left(\mathrm{Ind}_{S_{\lambda'}}^{S_n}(\epsilon_{\lambda'}), \mathrm{Ind}_{S_{\lambda}}^{S_n}(\rho_{\lambda})\right)\right) = 1$$

(we interpret here the induction in the left term as induction of characters, and for the middle term as induction of representations). On the other hand,

(4)
$$\left(\operatorname{Ind}_{S_{\lambda'}}^{S_n}(\epsilon_{\lambda'}), \operatorname{Ind}_{S_{\lambda}}^{S_n}(\rho_{\lambda})\right)_{S_n} = \sum_{\pi \in \widehat{S_n}} d_{\pi} e_{\pi}$$

with $d_{\pi}, e_{\pi} \in \mathbb{Z}_{\geq 0}$ $(\pi \in \widehat{S_n})$ such that

$$\operatorname{Ind}_{S_{\lambda'}}^{S_n}(\epsilon_{\lambda'}) = \sum_{\pi \in \widehat{S_n}} d_\pi \chi_\pi,$$
$$\operatorname{Ind}_{S_{\lambda}}^{S_n}(\rho_{\lambda}) = \sum_{\pi \in \widehat{S_n}} e_\pi \chi_\pi$$

in $F(S_n)$. Then (4) being one thus implies that the representations $\operatorname{Ind}_{S_{\lambda'}}^{S_n}(\epsilon_{\lambda'})$ and $\operatorname{Ind}_{S_{\lambda}}^{S_n}(\rho_{\lambda})$ have a unique common irreducible constituent $\pi_{\lambda} \in \widehat{S_n}$, whose irreducible character χ_{λ} satisfies (3) (in particular, π_{λ} occurs with multiplicity one in both $\operatorname{Ind}_{S_{\lambda'}}^{S_n}(\epsilon_{\lambda'})$ and $\operatorname{Ind}_{S_{\lambda}}^{S_n}(\rho_{\lambda})$). \Box

Next week we prove that $\{\pi_{\lambda}\}_{\lambda \in \mathcal{P}_n}$ is a complete set of representatives of \widehat{S}_n .

References

- G. James, A, Kerber, The representation theory of the symmetric group, Encyclopedia of Math. and its Applications 16 (1981).
- [2] J.-P. Serre, *Linear Representations of Finite Groups*, Graduate Texts in Mathematics, 42, Springer-Verlag, New York, 1977.