ALGEBRA 3; REPRESENTATIE THEORIE.
AANVULLING 4

1. INTRODUCTION

In these lecture notes we locate the irreducible representations of
the symmetric group. A lot of information about the representation
theory of the symmetric group can be found in the book [1]. In the
lecture notes of next week we will explicitly construct the irreducible
representations.

2. THE SYMMETRIC GROUP AND YOUNG SUBGROUPS

Let n > 1 and write S, for the symmetric group in n letters. In
other words, S, is the group of bijections €2, — €, where €, :=
{1,...,n} — Q,. Then #S, = n!l. Let I = {iy,...,i,} € Q, be an
ordered subset of cardinality . Then we have the cycle

(1149 -+ i) € Sy,

of length r, which is the permutation i; — ;41 (1 < j <7r), 4, — i; and
ki k for k € Q, \ I. We call I the content of the cycle. Note that a
cycle (i) of length one is the identity element e of the symmetric group
Sy. We call two cycles disjoint if their contents have trivial intersection.
Note that disjoint cycles commute.

We recall the following basic fact.

Lemma 1. Any o € S,, can be written as product of disjoint cycles.

A composition A of n is an infinite sequence A = (A1, Ag,...) of
nonnegative integers A; such that >, A\; = n. We write in this case
A = n, and we write [(\) for the largest index m such that A, # 0 (it
is called the length of ). We write A - n if, in addition, A; > Ay >
A3 > ---. In this case we call A a partition of n. Note that I[(\) < n if
AFn.

Sometimes it is convenient to write A as a finite sequence by forget-
ting the zeros to the right, A = (A1,..., Ay)).
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The Young diagram of a composition A = is the diagram of n boxes
placed in [(\) rows, with A; boxes in the ith row.

Young diagram van (5,4, 1)
The Young diagram of a partition has the property that the number of
boxes per row weakly increase from top to bottom. We will show that
the partitions of n naturally parametrize the conjugacy classes of the
symmetric group S,.

Definition 1. Let 0 € S,, and write o as a product of disjoint cycles,
such that each element i € §, is in the content of one of the cycles.
Collecting the cycle lengths of the disjoint cycles gives a composition of
n. Permute the entries such that they are in nondecreasing order. The
resulting partition c(o) of n is called the cycle type of o.

It is clear that the cycle type ¢(o) of o € S, is well defined.

Consider the group homomorphism Ad : S,, — Aut(.S,) defined by
Ad(o)(7) := oro~!. This turns S, into a S,-set. The corresponding
Sp-orbits are denoted by Ad(S,)T € S,/ ~ (7 € S,). They are the
conjugacy classes of S,,. Write P, for the set of partitions of n.

Proposition 1. The map S,/ ~— P,, given by Ad(S,)T +— (1), is
well defined and bijective.

Proof. Note that
(1) o(ivig - i.)0 b = (0(i1) o(ia) -+ o(iy))

in S, for all ¢ € S, and for all subsets I = {iy,...,5,} C Q, of
cardinality r. It follows that

Ad(S,)o ={1 € S, |c(r) =c(o)}.

Hence Ad(S,)o — c¢(o) is a well defined injective map S,/ ~<— P,,.
Let A = (A1,...,An) be a partition of n (m = [(\)). Choose subsets

Li={il, i ..., i} C
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of cardinality A; such that I; N I;; =0 if 1 < j # 7/ < m. Set
o= (i} - i)
for the corresponding cycles of length A; (1 < j <m). Then
0:=0103 - 0Om €5,

is a product of disjoint cycles such that ¢(o) = A. Hence Ad(S,)o —
¢(o) maps onto P,,. O
Corollary 1. #S, = #P,.

We will construct representatives of the isomorphy classes of irre-
ducible linear S,,-representations and parametrize them by the parti-
tions of n.

Lemma 2. Define for A\b-n and 1 <i <n set

Noo=#{je{l,....,n} | \; >i}.
(1) N'En (it is called the conjugate partition of n).
(2) I(N) = Ay
(3) (V) = A
Proof. This is immediate by realizing that the transition A — X' corre-

sponds to reflecting the Young diagram of A in its main diagonal. For
instance, in the example above, (5,4,1) = (3,2,2,2,1). O

Exercise 1. Define for A\, u - n,

j=1 j=1

(1) Show that < defines a partial order on P,.
(2) Prove that A 2 p < p/ = \.

Exercise 2. For A\Fn and i > 1 define
Let 0 € S,, such that c¢(c) = X. Prove that
n!
Ad(S,)o) =
#( ( )U) Hi21 i N m (M)

Let A = n. A Young tableau T) is the Young diagram of A together
with an arbitrary choice of an assignment of the numbers {1,...,n} to
the boxes of the Young diagram (each number assigned to exactly one
box). We write Ty(i,7) for the number assigned to the box in row i
and column j (1 <j < \).
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Definition 2. Let A\ |=n and let T\ be an A-tableau. We call T)
(1) row standard if To(i,5) < Tr(i,7+1) if T\(i,7) and T\(i,j+ 1)
are defined,
(2) column standard if T\(i,7) < Ta(k, j) ifi < k and if both Tx(i, j)
and Tx(k, j) are defined,

(3) standard if Ty is both row standard and column standard.

Example 3. (i) The A-tableau t* defined by

i—1 . o
P g) = {2 M td =L
7 ifi=1

for 1 <5 <\, is a standard A-tableau.
(i) The \-tableau ty defined by putting in the jth column the numbers
(SN 1,500 N Y, increasing from top to bottom (and with
obvious adjustment for the first column). This is also a standard \-
tableau.

For A - n let 7(A) be the set of A-tableaux. If o € S, and T' € T ()
then we define 0T to be the A-tableau with the number o(7'(i, j))
attached to the (i, 7)th box of its underlying Young diagram (1 < j <
Ai). This turns 7 (A) into a S,-set (in other words, it defines a left
Sp-action S, X T(A) — T(\) on T(N)).

Any M-tableau T gives rise to a decomposition of €2, in disjoint sub-
sets QF(T) of cardinality ); (i > 1), where QF(T) is the collection of
numbers in the ith row of the underlying Young tableau (i > 1). We
write QF(\) == Q4 (t}), so that

{].,...,/\1} 1fz:1and)\121,
QLN = 0 N+ 1,50 ) ifi>1and )\ >1,
0 if \; =0

(the superscript h stands for horizontal). In a similar way, a A-tableau
T gives rise to a decomposition of €, in disjoint subsets Q3(7T') of
cardinality A} (j > 1), where Q(T') is the collection of numbers in the
jth column of the underlying Young tableau (j > 1).

For T' € T (\) define subgroups H(T),V(T) C S,, by

H(T) = {0 € S, | o((T)) = Q(T) Vix1},
V(T) ={o €5, | o((T)) = Q(T) Vj =1}
We write Sy := H(t).

Subgroups isomorphic to H(T') for some A-tableau 7' (A F n) are
called Young subgroups.
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Exercise 4. Fiz A Fn.
(1) Let 2, = QU U--- Uy, be a disjoint union with #; = A;
and define
S{Q}) ={o € S8p | o() =Q; Vi}.
Show that S({.};) is a Young subgroup of S,,.
(ii) Let o € S, and T € T(N). Show that

H(oT)=0cH(T)o ™, V(eT)=coV(T)o .
(iii) Let T € T(X). Show that
H(T) == Sy, x Sy, X -+ X Sy, = S{Q 1)
as groups, where the Y, are as in (i).

To apply Mackey’s machinery we need to analyze double (Sy,S,)-
cosets of S, in some detail. Of special importance for us to understand
double cosets with the so called trivial intersection property.

Definition 3. Let G be a finite group with unit element e and let
H, K C G be subgroups. A double (H, K)-coset HgK is set to have the
trivial intersection property if H N gKg™ = {e}.

Note that the trivial intersection property is well defined (it is inde-
pendent of the choice of representative of the double coset).

Lemma 3. Let \,utn and o € S,,. Then
TESNS, & #H(UN)Na(Q(w)) = #(QFN) N (k)
foralli,k > 1.

Proof. We have two disjoint unions

Q= J Qn=J
ik>1 ik>1
with Q; 5 := QFN) Na(Qh(w)) and Q, := QL) N7 (QR(1)).
«: Since #; ), = #;, for all i, k, there exists a p € 5, such that
p(Qix) = @, for all i,k > 1. It follows that p(Q(X)) = Q()) for all
i > 1, hence p € Sy. Set ( :==071p~lr € S,. Then

COr MU N) N Q) = o~ p ()
o (Qig) = o (QN) N ()

for all 4,k > 1. In particular, ((QF (1)) = QF(p) for all k > 1, hence
¢ € S,. But then 7 = po¢ € SyoS,,.
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=: Write 7 = po¢ with p € S\ and ¢ € S,. Then for all i,k > 1,
Qi = AN N T((n))
= p(Q V) Na(Q(w)) = p(Qig),
hence #; ; = #Q; for all i,k > 1. O
Proposition 2. Let A\, = n. Let M(\, p) be the set of n X n matrices
(Zik)Zk:1 with zy, € Z>o satisfying

n

Zzikz)\z‘, 1<i<n,
=1
n

i=1
Then the assignment
30y = (# (L) N o (1)),
defines a bijection Sy \ Sn/S, — M(X, p).
Proof. By the previous lemma it is a well defined injective map
S\ S0 /Su > M(A, ).

It thus remains to show that it is a surjective map. Let (zi)7—; €
M(A, ). We need to construct a o € S, such that

#(Q4 (N N (L) = 7
for 1 < i,k < n. The permutation ¢ can be constructed as follows.
First, for all i € {1,...,n}, we decompose Q7()\) as a disjoint union

Q?O‘) = U szO\)

with #€; x(A) = z; (this is possible since Y ,_, zir = A = #Q(N)).
Then

Q= Qix(V),

i,k=1
which is a disjoint union (since QF(A\)NQL(N) = 0 if i # ). Now define
for 1 <k <mn,

() 1= alV)

It is a disjoint union, and QF(\) N Q. (1) = Qi () for all i, k.
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Note that #Q (1) = i zi = pr = #QP (1) and that
Q, = U Q. (w)
k=1

is a disjoint union, as well as Q,, = J;_, QF(1). Hence there exists a
o € S, such that o(Qp(u)) = Q)(u) for all k € {1,...,n}. But then
for 1 <i,k <n,

# () (V) N () = #(2(\) N Q(w)

as desired. O
Corollary 2. Let A\, ;i = n. Then the double (Sy,S,)-coset S\aS,

has the trivial intersection property if and only if the associated matrix
(zik)ij=1 € M(A, 1) (as defined in the previous proposition) satisfies
zik € {0,1} for all1 <i k <mn.
Proof. Note that
S\NoS,o~ = {1 € Sy | T(o(Q(n) = o(A(w)) Yk}
={r €S, [ T(U ) Na () = BN Na(Q(n) Vi, k}.
We conclude that SyoS, has the trivial intersection property iff
SyNoS,ot = {e}
iff
2 = #(Q(N) N (2 (w) € {0,1}
for all i,k € {1,...,n}. O

Crucial for our purposes is the following proposition.

Proposition 3. Let A = n and let wy € S, be the unique element
such that wxt* = ty. The only double (Sy, Sx)-coset with the trivial
intersection property 1s SAwA_lS,\/.
Proof. For 1 < i,k < n we have

Q1) N QL)) = Q) Ny QL))
() Ny Q)
= #(Q(Y) N Q)

which is one if 1 < k < \; and zero otherwise. Hence S Aw/(lS v has the
trivial intersection property.

To show it is the only one, we prove that there exists a unique matrix
(zik )iy With z, € {0, 1} satisfying 37, zip = Ay and D77 2 = Aj..
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One such matrix (zi)j,—; is clear (it is the one corresponding to the
double coset SAw/(lSX): it is given by z;, = 1 if 1 < k < \; and zero
otherwise.

Suppose ()i - is another matrix satisfying these properties. Then
the first A\; entries of the first row should be ones (and hence the re-
maining n — A; entries in the first row zeros). Indeed, if this is not the
case then there exists a \; < k < n such that the z;;, = 1. But then
N, = > ow zip > 1. But [(N) = Ay < k hence X, = 0, contradiction.
A similar argument shows that in the i'th row of (2;):x, the first Ay
entries should be ones (and the remaining entries zeros). This proves
the result. U

Exercise 5. Complete the argument from the proof of the previous
proposition. In other words, show that there exists a unique matrix
(2ik )iy with zg € {0,1} satisfying S zik = A for all i and satis-
fying >0 zip = N, for all k.

3. LOCATING THE IRREDUCIBLE S,,-REPRESENTATIONS

We start with the following general result.

Theorem 6 (The intertwining number theorem). Let H, K C G be
subgroups. Let 0 : H — GL(V) and p : K — GL(W) be finite dimen-

sional representations of H and K respectively. Then

Dim¢ (Hom(G) (Ind% (), Ind%. (p)) = Z Dim¢ (Hom(Hg) (0,, Resgg (1)),
KgHeK\G/H

where Hy = gHg™ ' N K and 6, : H, — GL(V) s defined by 0,(x) :=
0(g~'zg) (v € Hy).

Proof. We know that

Res. (Indg(é’)) ~ @ Indgg((‘)g),

geS
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with & a complete set of representatives of the double coset space
K\ G/H. Hence, by two applications of Frobenius reciprocity,

Dim¢ (Hom(G) (Ind§(9)71nd§’§(p))) = (Indg(xg),lndg(Xp))G
= (Res?{(lndg(Xe))aXp)K
- Z(Indgg()(eg% Xp)K

geS

— Z (xo, Resgg (X)) H,
geS

= Z Dlm(c (HOm(Hg) (997 Resgg (p>>) '

geS

O

We apply the intertwining number theorem to the case that (H, K) =
(Su,Sy) with p,v = n. Let €, : S, — C* the (restriction of the) alter-
nating representation (e,(0) =1if o € S, is an even permutation and
€,(0) = —1 otherwise) and let p, : S, — C* be the trivial representa-
tion (p,(0) =1 for all 0 € S,). Here we identify these one-dimensional
representations with their characters in the usual manner.

Corollary 3. Let p,vFn. Then
Dim¢ (Hom(s") (Indgz (€u), Indg’: (pv)))

is the number of double (S,, S,,)-cosets with the trivial intersection prop-
erty.

Proof. Let § be a complete set of coset representatives of the double
(Sy,S,)-cosets in S,,. For o € S the twisted one-dimensional represen-
tation €, , of H, := O’Su(f_l NS, coincides with the restriction of the
alternating representation € : S,, — C* to H,, while Resffg (py) is the
restriction of the trivial representation of S,, to H,. They are equiva-
lent if and only if they coincide (since they are one-dimensional), and
this is if and only if H, = {e} (see the exercise below). Now note that
H, = {e} iff the double (S,, S,)-coset S, 0.5, has the trivial intersection
property.
Finally, if €, , and Resffa (py,) coincide, then clearly

Dim¢ (Hom(H") (EM,ga Resffg (Pu))) =1,

and it is zero otherwise. The result now follows from the intertwining
number theorem. 0
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Exercise 7. Using the notations of the corollary, show that €,, =

Resyy (p) iff Hy = {e}.
Hint: Use formula (2).

Corollary 4. Let A\ = n. Up to isomorphism there exists a unique
irreducible linear S, -representation my : S, — GL¢(V)) such that

(3) (on Indgz (p2) g, = 1= (o, Indg:, (ex)) g
where X 1= Xr, € F(S,) is the irreducible character of .

Proof. By Proposition 3 and Corollary 3 we have
(IndS“ (ex), IndSA (p)\)) = DlmC(Hom (IndS" (ex), IndSA(pA))) =1

(we interpret here the 1nduction in the left term as induction of char-
acters, and for the middle term as induction of representations). On
the other hand,

(4) (Ind (ex), IndsA ) Z dren

with d, e, € Z>o (7 € S’;) such that
IndS 6)\/ Z d7rX7ra

WGSn

Indg (p2) = ) €xXa

reS,
in F(S,). Then (4) being one thus implies that the representations
Indg’;/ (ex) and Indg’; (p) have a unique common irreducible constituent

Ty € S’;, whose irreducible character y, satisfies (3) (in particular, m
occurs with multiplicity one in both Indg’;/ (ex) and Indi;1 (pr))- O

Next week we prove that {7 }rep, is a complete set of representatives

of :9\”‘
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