
ALGEBRA 3; REPRESENTATIE THEORIE.
AANVULLING 5

1. Introduction

We keep the notations of Aanvulling 4. Recall that we have con-
structed for λ ∈ Pn an irreducible linear representation πλ : Sn →
GLC(Vλ) of Sn as the unique irreducible constituent occurring in both
IndSn

Sλ
(ρλ) and IndSn

Sλ′
(ελ′). In these lecture notes we show that {πλ}λ∈Pn

is a complete set of representatives of Ŝn.

2. Locating Vλ inside of the group algebra

We know that the regular representation ρ : Sn → GLC(C[Sn]) con-
tains all the irreducible Sn-representations as irreducible components,
in particular it contains πλ.

We first realize IndSn
Sλ

(ρλ) and IndSn
Sλ′

(ελ′) inside C[Sn]. Define for
λ, µ ` n,

Hλ :=
∑
σ∈Sλ

eσ ∈ C[Sn],

Vµ :=
∑
σ∈Sµ

ε(σ)eσ ∈ C[Sn]

(recall that ε(σ) is the sign of σ ∈ Sn). The elements Hλ and Vµ are
called Young projectors. Their basic property is

τHλ = Hλ = Hλτ, ∀ τ ∈ Sλ,

τVµ = ε(τ)Vµ = Vµτ, ∀ τ ∈ Sµ.
(1)

Hence CHλ ⊆ ResSn
Sλ

(C[Sn]) is isomorphic to ρλ and CVµ ⊆ ResSn
Sµ

(C[Sn])

is isomorphic to εµ. The left ideals C[Sn]Hλ ⊆ C[Sn] and C[Sn]Vµ ⊆
C[Sn] are subrepresentations of the regular representation. Write Cρλ

(respectively Cεµ) for the (one-dimensional) representation space of ρλ

(respectively εµ).

Lemma 1. (i) C[Sn]Hλ is isomorphic to IndSn
Sλ

(Cρλ
).

(ii) C[Sn]Vµ is isomorphic to IndSn
Sµ

(Cεµ).

1
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Proof. (i) The unique bilinear map

f̃ : C[Sn]× Cρλ
→ C[Sn]Hλ

satisfying

f̃(eτ , 1) := eτHλ

for all τ ∈ Sn is C[Sλ]-bilinear, hence it gives rise to a linear map

f : IndSn
Sλ

(Cρλ
) → C[Sn]Hλ

satisfying f(eτ ⊗C[Sλ] 1) = eτHλ for all τ ∈ Sn. It is clear that f ∈
Hom(Sn)(IndSn

Sλ
(Cρλ

), C[Sn]Hλ), hence it suffices to prove that f is an
isomorphism. Let S be a complete set of representatives of the left
coset space Sn/Sλ. Then {eτ ⊗C[Sλ] 1}τ∈S is a linear basis of IndSn

Sλ
(Cρλ

)
which is mapped to {eτHλ}τ∈S by f . It thus remains to show that
{eτHλ}τ∈S is a linear basis of C[Sn]Hλ. But this follows directly from
the definition of Hλ and (1).
(ii) The proof is similar to the proof of (i). �

Recall that wλ ∈ Sn is the unique element such that wλt
λ = tλ (recall

from last time that Sλw
−1
λ Sλ′ is the unique double (Sλ, Sλ′)-coset with

the trivial intersection property).

Exercise 1. Let λ ` n.
(i) Show that w−1

λ′ = wλ.
(ii) Show that w−1

λ Sλ′wλ = V (tλ).

We define

p̃λ := ew−1
λ
Vλ′ewλ

Hλ ∈ C[Sn]

and

Mλ := C[Sn]p̃λ

for the left ideal in C[Sn] it generates. Note that

(2) σp̃λτ = ε(σ)p̃λ, ∀σ ∈ V (tλ), ∀ τ ∈ Sλ = H(tλ)

(cf. the previous exercise). Clearly Mλ ⊆ C[Sn] is a subrepresentation
of the regular Sn-representation. It is called a Specht module.

Lemma 2. (i) Mλ 6= {0}.
(ii) Hom(Sn)(C[Sn]Hλ, Mλ) 6= 0.

(iii) Hom(Sn)(C[Sn]Vλ′ , Mλ) 6= 0.
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Proof. (i) It suffices to show that p̃λ 6= 0. By the previous exercise we
have

p̃λ = ew−1
λ
Vλ′ewλ

Hλ

=
∑

σ∈H(tλ′ )

∑
τ∈H(tλ)

ε(σ)ew−1
λ σwλτ

=
∑

σ∈V (tλ)

∑
τ∈H(tλ)

ε(σ)eστ .

The map V (tλ)×H(tλ) → Sn defined by (σ, τ) 7→ στ is injective since
V (tλ) ∩H(tλ) = {e}. Hence p̃λ 6= 0.
(ii) This is clear from (i) since Mλ ⊂ C[Sn]Hλ.
(iii) By Frobenius reciprocity,

Hom(Sn)(C[Sn]Vλ′ , Mλ) ' Hom(Sλ′ )(Cελ′
, ResSn

Sλ′
(Mλ)).

By (i) and (1),
Cελ′

' Cewλ
p̃λ ⊆ ResSn

Sλ′
(Mλ)

as Sλ′-representations, hence

Hom(Sn)(C[Sn]Vλ′ , Mλ) 6= {0}.
�

We will show in the next section that Mλ ' Vλ as Sn-representations
which, in view of the previous lemma, will immediately follow if we
show that Mλ is irreducible.

3. Irreducibility and mutual inequivalence

For λ ` n we write

pλ :=
dim(Mλ)

n!
p̃λ =

dim(Mλ)

n!
ew−1

λ
Vλ′ewλ

Hλ.

We will show that the pλ ∈ C[Sn] (λ ` n) are mutually orthogonal
primitive idempotents of C[Sn]. We defined before orthogonal idempo-
tents in a commutative ring. It extends to arbitrary rings as follows.

Definition 1. Let R be a ring. An element p ∈ R is called an idem-
potent if p2 = p. Two idempotents p1, p2 ∈ R are called mutually
orthogonal if p1p2 = 0 = p2p1. An idempotent p ∈ R is called primitive
if p = p1 + p2 with p1, p2 mutually orthogonal idempotents imply that
p1 = 0 or p2 = 0.

Exercise 2. Let p ∈ C[Sn] be an idempotent. Show that C[Sn]p is
an irreducible Sn-representation of the regular representation iff p is a
primitive idempotent.
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Lemma 3. Let p ∈ C[Sn] be an idempotent. Then p is primitive iff
pC[Sn]p = Cp.

Proof. ⇒ If p is primitive then M := C[Sn]p is irreducible hence

End(Sn)(M) = CIdM . For h ∈ C[Sn] the linear map φh : M → M
defined by

φh(m) := mphp, m ∈ M = C[Sn]p

is an intertwiner, hence φh = chIdM for some ch ∈ C. Then php =
φh(p) = chp.
⇐ Suppose p = p1 + p2 with pi pairwise orthogonal idempotents. By
the assumption there exist c1, c2 ∈ C such ppip = cip (i = 1, 2). On the
other hand (p1 + p2)pi(p1 + p2) = pi, hence pi = cip (i = 1, 2). Then
0 = p1p2 = c1c2p, i.e. c1c2 = 0. Then p1 = c1p = 0 or p2 = c2p = 0,
contradiction. �

In addition we will use

Lemma 4. Let p1, p2 ∈ C[Sn] be primitive idempotents. Then C[Sn]p1 '
C[Sn]p2 ⇔ p1C[Sn]p2 6= {0}.

Proof. ⇒ Let T : C[Sn]p1 → C[Sn]p2 be a bijective intertwiner. Then
0 6= T (p1) = hp2 for some h ∈ C[Sn]. This implies that

0 6= T (p1) = T (p2
1) = p1T (p1) = p1hp2.

⇐ Let h ∈ C[Sn] such that p1hp2 6= 0. Define φh : C[Sn]p1 → C[Sn]p2

by

φh(m) := mp1hp2.

Then φh is an intertwiner, and it is nonzero since φh(p1) = p1hp2 6=
0. Since C[Sn]pi (i = 1, 2) is irreducible we conclude that φh is an
isomorphism. �

Lemma 5. For λ, µ ` n and σ ∈ Sn we have
(i) Vλ′eσHµ = 0 if Sλ′σSµ does not have the trivial intersection prop-
erty.
(ii) Vλ′eσHλ = 0 unless σ ∈ Sλ′wλSλ.

Proof. (i) If Sλ′σSµ does not have the trivial intersection property then

H := Sλ′ ∩ σSµσ
−1 6= {e}.

But H is a Young subgroup of Sn (cf. formula (2) in Aanvulling 4),
hence there exists 1 ≤ a < b ≤ n such that the corresponding transpo-
sition τ := (a b) is in H ⊆ Sλ′ . Since ε(τ) = −1 we can write

Vλ′ = Y (ee − eτ )
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with Y =
∑

ξ∈S ε(ξ)eξ and S a complete set of representatives of the

left coset space Sλ′/〈τ〉. Then

Vλ′eσHµ = Y (ee − eτ )eσHµ

= Y eσ(ee − eσ−1τσ)Hµ = 0

where we use that σ−1τσ ∈ Sµ and hHµ = Hµ for all h ∈ Sµ.
(ii) In aanvulling 4, Proposition 3 we have seen that the only dou-
ble (Sλ′ , Sλ)-coset with the trivial intersection property is Sλ′w

−1
λ′ Sλ =

Sλ′wλSλ. For the second equality we use that w−1
λ′ = wλ, see Exercise

1. The result now follows from (i). �

Let σ ∈ Sn. By the previous lemma, if σ 6∈ Sλ′wλSλ then

Vλ′eσHλ = 0

and if σ ∈ Sλ′wλSλ then

Vλ′eσHλ = ±ewλ
pλ 6= 0

since Vλ′eξ = ε(ξ)Vλ′ for ξ ∈ Sλ′ and eηHλ = Hλ for η ∈ Sλ. In
particular,

(3) pλC[Sn]pλ ⊆ ew−1
λ
Vλ′C[Sn]Hλ = span{pλ}.

This leads to the following result.

Theorem 3. Let λ ` n.
(i) pλ ∈ C[Sn] is a primitive idempotent.
(ii) The irreducible Sn-subrepresentation Mλ = C[Sn]pλ of the regular
representation is isomorphic to Vλ.

Proof. (i) Step 1: pλ is an idempotent.
In view of (3) we have

p2
λ = cpλ

for some c ∈ C. We need to show that c = 1. Let φ ∈ End(Sn)(C[Sn])
be the map

φ(h) := hp̃λ, h ∈ C[Sn].

We compute the trace of φ in two different ways. Recall that

p̃λ =
∑

σ∈V (tλ)

∑
τ∈H(tλ)

ε(σ)eστ

and the map V (tλ) × H(tλ) → Sn, given by (σ, τ) 7→ στ , is injective.
Consequently, if ξ ∈ Sn then ξστ = ξ for σ ∈ H(tλ) and τ ∈ V (tλ) iff
σ = e = τ . Consequently

TrC[Sn](φ) =
∑
ξ∈Sn

eξp̃λ|eξ
= n!.
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On the other hand, there exists a Sn-subrepresentation V ⊂ C[Sn] such
that

C[Sn] = Mλ ⊕ V.

The intertwiner φ : C[Sn] → C[Sn] clearly maps onto Mλ. Hence,
choosing a basis of Mλ and a basis of V and computing the trace Tr(φ)
with respect to this choice of basis, we get

(4) TrC[Sn](φ) = TrMλ
(φ).

But for h = apλ ∈ Mλ (a ∈ C[Sn]) we have

(5) φ(h) = apλp̃λ =
cn!

dim(Mλ)
apλ =

cn!

dim(Mλ)
h,

hence φ|Mλ
= cn!

dim(Mλ)
IdMλ

. Combining the two observations (4) and

(5) we get
TrC[Sn](φ) = cn!.

Hence c = 1.
Step 2: pλ is primitive.
This follows from (3) and Lemma 3.
(ii) Mλ = C[Sn]pλ is an irreducible Sn-subrepresentation of the regular
representation in view of Exercise 2. By Lemma 1 the representation
Mλ is an irreducible constituent of both IndSn

Sλ
(Cρλ

) and IndSn
Sλ′

(Cελ′
).

But this was the characterization of Vλ, hence Mλ ' Vλ. �

Remark 4. We normalized p̃λ using the degree Dim(Mλ)(= Dim(Vλ))
of the irreducible representation in order to turn it into the idempotent
pλ. Remarkably we do not need to know the degree explicitly in order to
prove that the resulting normalized element pλ is indeed an idempotent.
It is possible to prove that

Dim(Vλ) = #{standard Young tableaux of shape λ}.
A proof of this formula requires quite some work, see e.g. [1].

Theorem 5. Let λ, µ ` n. Then Mλ ' Mµ as Sn-representations iff
λ = µ.

Proof. Suppose that λ 6= µ. Without loss of generality we may assume
that µ 6� λ. By Lemma 4 it suffices to show that pλC[Sn]pµ = {0}. By
the explicit expression of the primitive idempotents pλ and pµ this is
true iff

Vλ′C[Sn]Hµ = {0}.
By Lemma 5 this is equivalent to the condition that there do not ex-
ist double (Sλ′ , Sµ)-cosets with the trivial intersection property. This
follows from Lemma 6 below (see also Exercise 6). �
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Corollary 1. {Vλ}λ`n is a complete set of representatives of the iso-
morphy classes of irreducible linear Sn-representations.

Lemma 6. Let λ, µ ` n. If there exists a double (Sλ, Sµ)-coset with
the trivial intersection property then λ � µ′.

Proof. Let σ ∈ Sn such that SλσSµ has the trivial intersection property.
Then Sλ ∩ σSµσ

−1 = {e} i.e., in view of formula (2) of Aanvulling 4,

Ωh
i (λ) ∩ σ(Ωh

k(µ))

consists of zero or one elements for all i and k. But

Ωh
i (λ) ∩ σ(Ωh

k(µ)) = Ωh
i (t

λ) ∩ σΩh
k(t

µ)

= Ωh
i (t

λ) ∩ σΩv
k(tµ′)

= Ωh
i (t

λ) ∩ Ωv
k(σtµ′).

Hence we conclude that if 1 ≤ r < s ≤ n are two numbers in the same
row of tλ, then they are in different columns of σtµ′ .

Fix now r ≥ 1. Then we conclude that for all k, the set Ωv
k(σtµ′) of

numbers in the kth column of σtµ′ contains at most r numbers from
the first r rows of tλ for all r ≥ 1. Thus we can find a τ ∈ V (σtµ′) such
that all the numbers in the first r rows of tλ are contained in the first
r rows of τσtµ′ . In particular

#{boxes in the first r rows of tλ} ≤ #{boxes in the first r rows of τσtµ′},
i.e.

r∑
i=1

λi ≤
r∑

i=1

µ′i.

This is valid for all r ≥ 1, hence λ � µ′. �

Exercise 6. Complete the last step of the proof of Theorem 5 using
Lemma 6.

Let λ ` n. Remark 4 suggests that it might be possible to make
the irreducible Sn-representation Vλ explicit by realizing it in terms of
a Sn-action on the formal complex vector space with canonical basis
the standard Young tableaux of shape λ. This is indeed possible. We
sketch it in the following section.

4. Polytabloids

Let λ ` n. We say that two Young tableaux T and T ′ of shape
λ ` n are row equivalent, T ∼ T ′, if there exists a σ ∈ H(T ) such
that σT = T ′. The corresponding equivalence class {T} of a Young
tableaux T of shape λ is called a λ-taboid. Write Tabl(λ) for the set
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of λ-tabloids. Note that {T} ∈ Tabl(λ) has a unique row standard
representative T .

Let Nλ be the formal vector space with basis the λ-tabloids {T} ∈
Tabl(λ). An element m ∈ Nλ thus is m =

∑
{T}∈Tabl(λ) c{T}{T} for

unique c{T} ∈ C. By the previous paragraph,

Dim(Nλ) = #{row standard Young tableau of shape λ}.

Lemma 7. (i) The assignment (σ, {T}) 7→ {σT} for σ ∈ Sn and
{T} ∈ Tabl(λ) gives rise to a linear Sn-representation Sn → GLC(Nλ).
(ii) Nλ ' IndSn

Sλ
(Cρλ

).

Proof. (i) It suffices to show that {σT} = {σT ′} if {T} = {T ′}. In-
deed, {T} = {T ′} implies Ωh

i (T ) = Ωh
i (T

′) (as unordered sets). Since
σΩh

i (T ) = Ωh
i (σT ) this implies {σT} = {σT ′}.

(ii) It is clear that the degrees of IndSn
Sλ

(Cρλ
) and Nλ coincide (it is

n!/(λ1!λ2! · · ·λn!)). Consider the bilinear map C[Sn] × Cρλ
→ Nλ de-

fined by (eσ, 1) 7→ {σtλ}. It is surjective and C[Sλ]-bilinear, hence it
defines a surjective intertwiner IndSn

Sλ
(Cρλ

) → Nλ. This implies the
result. �

Definition 2. Let T be a Young tableaux of shape λ. The polytabloid
fλ ∈ Nλ is defined by

fT :=
∑

τ∈V (T )

ε(τ){τT}

(warning: it is not true that fT only depends on {T}).

Lemma 8. The span Pλ of the polytabloids of shape λ is a Sn-subre-
presentation of Nλ. In fact,

σfT = fσT

for σ ∈ Sn and for a Young tableau T of shape λ.

Proof. Let σ ∈ Sn and T a Young tableau of shape λ. Then, since
σV (T )σ−1 = V (σT ),

σfT =
∑

τ∈V (T )

ε(στσ−1){(στσ−1)σT}

=
∑

τ∈V (σT )

ε(τ){τσT} = fσT .

�

Theorem 7. Pλ is isomorphic to the Specht module Mλ ' Vλ.
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Proof. As in the proof that pλ 6= 0, one shows that ftλ 6= 0. Hence
Pλ 6= {0}. In addition, since σfT = fσT for σ ∈ Sn and T a Young
tableau of shape λ, we have Pλ = C[Sn]ftλ . Since

pλ =
dim(Mλ)

n!

∑
σ∈V (tλ)

∑
τ∈H(tλ)

ε(σ)eστ

and τ{fλ} = {fλ} for all τ ∈ H(tλ) we have

ftλ =
1

λ1! · · ·λn!
pλ{tλ}.

Hence Pλ = C[Sn]pλftλ = Mλftλ . Thus the Sn-intertwiner

Mλ → Pλ, h 7→ hftλ

is surjective. It is also injective since Mλ is irreducible and Pλ 6= {0}.
Hence Mλ ' Pλ. �

The following result we state without proof (for details, see e.g. [1]).

Proposition 1. {fT |T standard Young tableau of shape λ} is a lin-
ear basis of Pλ. In particular, the degree of the Specht module Vλ is the
number of standard tableaux of shape λ.

Exercise 8. (i) Let Cn be the permutation representation of Sn. Show
that

N(n−1,1) ' Cn.

(ii) Consider the Sn-invariant subspace

U := {v ∈ Cn |
n∑

i=1

vi = 0} ⊂ V.

Show that
P(n−1,1) ' U.
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