ALGEBRA 3; REPRESENTATIE THEORIE. AANVULLING 5

1. Introduction

We keep the notations of Aanvulling 4. Recall that we have constructed for $\lambda \in \mathcal{P}_n$ an irreducible linear representation $\pi_{\lambda} : S_n \to \operatorname{GL}_{\mathbb{C}}(V_{\lambda})$ of S_n as the unique irreducible constituent occurring in both $\operatorname{Ind}_{S_{\lambda}}^{S_n}(\rho_{\lambda})$ and $\operatorname{Ind}_{S_{\lambda'}}^{S_n}(\epsilon_{\lambda'})$. In these lecture notes we show that $\{\pi_{\lambda}\}_{{\lambda}\in\mathcal{P}_n}$ is a complete set of representatives of \widehat{S}_n .

2. Locating V_{λ} inside of the group algebra

We know that the regular representation $\rho: S_n \to \mathrm{GL}_{\mathbb{C}}(\mathbb{C}[S_n])$ contains all the irreducible S_n -representations as irreducible components, in particular it contains π_{λ} .

We first realize $\operatorname{Ind}_{S_{\lambda}}^{S_n}(\rho_{\lambda})$ and $\operatorname{Ind}_{S_{\lambda'}}^{S_n}(\epsilon_{\lambda'})$ inside $\mathbb{C}[S_n]$. Define for $\lambda, \mu \vdash n$,

$$\mathcal{H}_{\lambda} := \sum_{\sigma \in S_{\lambda}} e_{\sigma} \in \mathbb{C}[S_n],$$

$$\mathcal{V}_{\mu} := \sum_{\sigma \in S_{\lambda}} \epsilon(\sigma) e_{\sigma} \in \mathbb{C}[S_n]$$

(recall that $\epsilon(\sigma)$ is the sign of $\sigma \in S_n$). The elements \mathcal{H}_{λ} and \mathcal{V}_{μ} are called Young projectors. Their basic property is

(1)
$$\tau \mathcal{H}_{\lambda} = \mathcal{H}_{\lambda} = \mathcal{H}_{\lambda} \tau, \quad \forall \tau \in S_{\lambda},$$
$$\tau \mathcal{V}_{\mu} = \epsilon(\tau) \mathcal{V}_{\mu} = \mathcal{V}_{\mu} \tau, \quad \forall \tau \in S_{\mu}.$$

Hence $\mathbb{C}\mathcal{H}_{\lambda} \subseteq \operatorname{Res}_{S_{\lambda}}^{S_n}(\mathbb{C}[S_n])$ is isomorphic to ρ_{λ} and $\mathbb{C}\mathcal{V}_{\mu} \subseteq \operatorname{Res}_{S_{\mu}}^{S_n}(\mathbb{C}[S_n])$ is isomorphic to ϵ_{μ} . The left ideals $\mathbb{C}[S_n]\mathcal{H}_{\lambda} \subseteq \mathbb{C}[S_n]$ and $\mathbb{C}[S_n]\mathcal{V}_{\mu} \subseteq \mathbb{C}[S_n]$ are subrepresentations of the regular representation. Write $\mathbb{C}_{\rho_{\lambda}}$ (respectively $\mathbb{C}_{\epsilon_{\mu}}$) for the (one-dimensional) representation space of ρ_{λ} (respectively ϵ_{μ}).

Lemma 1. (i) $\mathbb{C}[S_n]\mathcal{H}_{\lambda}$ is isomorphic to $\operatorname{Ind}_{S_{\lambda}}^{S_n}(\mathbb{C}_{\rho_{\lambda}})$. (ii) $\mathbb{C}[S_n]\mathcal{V}_{\mu}$ is isomorphic to $\operatorname{Ind}_{S_{\mu}}^{S_n}(\mathbb{C}_{\epsilon_{\mu}})$. *Proof.* (i) The unique bilinear map

$$\widetilde{f}: \mathbb{C}[S_n] \times \mathbb{C}_{\rho_{\lambda}} \to \mathbb{C}[S_n] \mathcal{H}_{\lambda}$$

satisfying

$$\widetilde{f}(e_{\tau},1) := e_{\tau} \mathcal{H}_{\lambda}$$

for all $\tau \in S_n$ is $\mathbb{C}[S_{\lambda}]$ -bilinear, hence it gives rise to a linear map

$$f: \operatorname{Ind}_{S_{\lambda}}^{S_n}(\mathbb{C}_{\rho_{\lambda}}) \to \mathbb{C}[S_n]\mathcal{H}_{\lambda}$$

satisfying $f(e_{\tau} \otimes_{\mathbb{C}[S_{\lambda}]} 1) = e_{\tau}\mathcal{H}_{\lambda}$ for all $\tau \in S_n$. It is clear that $f \in \text{Hom}^{(S_n)}(\text{Ind}_{S_{\lambda}}^{S_n}(\mathbb{C}_{\rho_{\lambda}}), \mathbb{C}[S_n]\mathcal{H}_{\lambda})$, hence it suffices to prove that f is an isomorphism. Let \mathcal{S} be a complete set of representatives of the left coset space S_n/S_{λ} . Then $\{e_{\tau} \otimes_{\mathbb{C}[S_{\lambda}]} 1\}_{\tau \in \mathcal{S}}$ is a linear basis of $\text{Ind}_{S_{\lambda}}^{S_n}(\mathbb{C}_{\rho_{\lambda}})$ which is mapped to $\{e_{\tau}\mathcal{H}_{\lambda}\}_{\tau \in \mathcal{S}}$ by f. It thus remains to show that $\{e_{\tau}\mathcal{H}_{\lambda}\}_{\tau \in \mathcal{S}}$ is a linear basis of $\mathbb{C}[S_n]\mathcal{H}_{\lambda}$. But this follows directly from the definition of \mathcal{H}_{λ} and (1).

(ii) The proof is similar to the proof of (i).
$$\Box$$

Recall that $w_{\lambda} \in S_n$ is the unique element such that $w_{\lambda}t^{\lambda} = t_{\lambda}$ (recall from last time that $S_{\lambda}w_{\lambda}^{-1}S_{\lambda'}$ is the unique double $(S_{\lambda}, S_{\lambda'})$ -coset with the trivial intersection property).

Exercise 1. Let $\lambda \vdash n$.

- (i) Show that $w_{\lambda'}^{-1} = w_{\lambda}$.
- (ii) Show that $w_{\lambda}^{-1} S_{\lambda'} w_{\lambda} = V(t^{\lambda}).$

We define

$$\widetilde{p}_{\lambda} := e_{w_{\lambda}^{-1}} \mathcal{V}_{\lambda'} e_{w_{\lambda}} \mathcal{H}_{\lambda} \in \mathbb{C}[S_n]$$

and

$$M_{\lambda} := \mathbb{C}[S_n]\widetilde{p}_{\lambda}$$

for the left ideal in $\mathbb{C}[S_n]$ it generates. Note that

(2)
$$\sigma \widetilde{p}_{\lambda} \tau = \epsilon(\sigma) \widetilde{p}_{\lambda}, \quad \forall \sigma \in V(t^{\lambda}), \forall \tau \in S_{\lambda} = H(t^{\lambda})$$

(cf. the previous exercise). Clearly $M_{\lambda} \subseteq \mathbb{C}[S_n]$ is a subrepresentation of the regular S_n -representation. It is called a Specht module.

Lemma 2. (i) $M_{\lambda} \neq \{0\}$.

- (ii) $\operatorname{Hom}^{(S_n)}(\mathbb{C}[S_n]\mathcal{H}_{\lambda}, M_{\lambda}) \neq 0.$
- (iii) $\operatorname{Hom}^{(S_n)}(\mathbb{C}[S_n]\mathcal{V}_{\lambda'}, M_{\lambda}) \neq 0.$

Proof. (i) It suffices to show that $\widetilde{p}_{\lambda} \neq 0$. By the previous exercise we have

$$\widetilde{p}_{\lambda} = e_{w_{\lambda}^{-1}} \mathcal{V}_{\lambda'} e_{w_{\lambda}} \mathcal{H}_{\lambda}$$

$$= \sum_{\sigma \in H(t^{\lambda'})} \sum_{\tau \in H(t^{\lambda})} \epsilon(\sigma) e_{w_{\lambda}^{-1} \sigma w_{\lambda} \tau}$$

$$= \sum_{\sigma \in V(t^{\lambda})} \sum_{\tau \in H(t^{\lambda})} \epsilon(\sigma) e_{\sigma \tau}.$$

The map $V(t^{\lambda}) \times H(t^{\lambda}) \to S_n$ defined by $(\sigma, \tau) \mapsto \sigma \tau$ is injective since $V(t^{\lambda}) \cap H(t^{\lambda}) = \{e\}$. Hence $\widetilde{p}_{\lambda} \neq 0$.

- (ii) This is clear from (i) since $M_{\lambda} \subset \mathbb{C}[S_n]\mathcal{H}_{\lambda}$.
- (iii) By Frobenius reciprocity,

$$\operatorname{Hom}^{(S_n)}(\mathbb{C}[S_n]\mathcal{V}_{\lambda'},M_{\lambda}) \simeq \operatorname{Hom}^{(S_{\lambda'})}(\mathbb{C}_{\epsilon_{\lambda'}},\operatorname{Res}_{S_{\lambda'}}^{S_n}(M_{\lambda})).$$

By (i) and (1),

$$\mathbb{C}_{\epsilon_{\lambda'}} \simeq \mathbb{C}e_{w_{\lambda}}\widetilde{p}_{\lambda} \subseteq \mathrm{Res}_{S_{\lambda'}}^{S_n}(M_{\lambda})$$

as $S_{\lambda'}$ -representations, hence

$$\operatorname{Hom}^{(S_n)}(\mathbb{C}[S_n]\mathcal{V}_{\lambda'}, M_{\lambda}) \neq \{0\}.$$

We will show in the next section that $M_{\lambda} \simeq V_{\lambda}$ as S_n -representations which, in view of the previous lemma, will immediately follow if we show that M_{λ} is irreducible.

3. Irreducibility and mutual inequivalence

For $\lambda \vdash n$ we write

$$p_{\lambda} := \frac{\dim(M_{\lambda})}{n!} \widetilde{p}_{\lambda} = \frac{\dim(M_{\lambda})}{n!} e_{w_{\lambda}^{-1}} \mathcal{V}_{\lambda'} e_{w_{\lambda}} \mathcal{H}_{\lambda}.$$

We will show that the $p_{\lambda} \in \mathbb{C}[S_n]$ ($\lambda \vdash n$) are mutually orthogonal primitive idempotents of $\mathbb{C}[S_n]$. We defined before orthogonal idempotents in a commutative ring. It extends to arbitrary rings as follows.

Definition 1. Let R be a ring. An element $p \in R$ is called an idempotent if $p^2 = p$. Two idempotents $p_1, p_2 \in R$ are called mutually orthogonal if $p_1p_2 = 0 = p_2p_1$. An idempotent $p \in R$ is called primitive if $p = p_1 + p_2$ with p_1, p_2 mutually orthogonal idempotents imply that $p_1 = 0$ or $p_2 = 0$.

Exercise 2. Let $p \in \mathbb{C}[S_n]$ be an idempotent. Show that $\mathbb{C}[S_n]p$ is an irreducible S_n -representation of the regular representation iff p is a primitive idempotent.

Lemma 3. Let $p \in \mathbb{C}[S_n]$ be an idempotent. Then p is primitive iff $p\mathbb{C}[S_n]p = \mathbb{C}p$.

Proof. \Rightarrow If p is primitive then $M := \mathbb{C}[S_n]p$ is irreducible hence $\mathrm{End}^{(S_n)}(M) = \mathbb{C}\mathrm{Id}_M$. For $h \in \mathbb{C}[S_n]$ the linear map $\phi_h : M \to M$ defined by

$$\phi_h(m) := mphp, \qquad m \in M = \mathbb{C}[S_n]p$$

is an intertwiner, hence $\phi_h = c_h \mathrm{Id}_M$ for some $c_h \in \mathbb{C}$. Then $php = \phi_h(p) = c_h p$.

 \Leftarrow Suppose $p = p_1 + p_2$ with p_i pairwise orthogonal idempotents. By the assumption there exist $c_1, c_2 \in \mathbb{C}$ such $pp_ip = c_ip$ (i = 1, 2). On the other hand $(p_1 + p_2)p_i(p_1 + p_2) = p_i$, hence $p_i = c_ip$ (i = 1, 2). Then $0 = p_1p_2 = c_1c_2p$, i.e. $c_1c_2 = 0$. Then $p_1 = c_1p = 0$ or $p_2 = c_2p = 0$, contradiction.

In addition we will use

Lemma 4. Let $p_1, p_2 \in \mathbb{C}[S_n]$ be primitive idempotents. Then $\mathbb{C}[S_n]p_1 \simeq \mathbb{C}[S_n]p_2 \Leftrightarrow p_1\mathbb{C}[S_n]p_2 \neq \{0\}.$

Proof. \Rightarrow Let $T : \mathbb{C}[S_n]p_1 \to \mathbb{C}[S_n]p_2$ be a bijective intertwiner. Then $0 \neq T(p_1) = hp_2$ for some $h \in \mathbb{C}[S_n]$. This implies that

$$0 \neq T(p_1) = T(p_1^2) = p_1 T(p_1) = p_1 h p_2.$$

 \Leftarrow Let $h \in \mathbb{C}[S_n]$ such that $p_1hp_2 \neq 0$. Define $\phi_h : \mathbb{C}[S_n]p_1 \to \mathbb{C}[S_n]p_2$ by

$$\phi_h(m) := mp_1hp_2.$$

Then ϕ_h is an intertwiner, and it is nonzero since $\phi_h(p_1) = p_1hp_2 \neq 0$. Since $\mathbb{C}[S_n]p_i$ (i = 1, 2) is irreducible we conclude that ϕ_h is an isomorphism.

Lemma 5. For $\lambda, \mu \vdash n$ and $\sigma \in S_n$ we have

- (i) $V_{\lambda'}e_{\sigma}\mathcal{H}_{\mu}=0$ if $S_{\lambda'}\sigma S_{\mu}$ does not have the trivial intersection property.
- (ii) $V_{\lambda'}e_{\sigma}\mathcal{H}_{\lambda} = 0 \text{ unless } \sigma \in S_{\lambda'}w_{\lambda}S_{\lambda}.$

Proof. (i) If $S_{\lambda'}\sigma S_{\mu}$ does not have the trivial intersection property then

$$H := S_{\lambda'} \cap \sigma S_{\mu} \sigma^{-1} \neq \{e\}.$$

But H is a Young subgroup of S_n (cf. formula (2) in Aanvulling 4), hence there exists $1 \le a < b \le n$ such that the corresponding transposition $\tau := (a b)$ is in $H \subseteq S_{\lambda'}$. Since $\epsilon(\tau) = -1$ we can write

$$\mathcal{V}_{\lambda'} = Y(e_e - e_\tau)$$

with $Y = \sum_{\xi \in \mathcal{S}} \epsilon(\xi) e_{\xi}$ and \mathcal{S} a complete set of representatives of the left coset space $S_{\lambda'}/\langle \tau \rangle$. Then

$$V_{\lambda'}e_{\sigma}\mathcal{H}_{\mu} = Y(e_e - e_{\tau})e_{\sigma}\mathcal{H}_{\mu}$$
$$= Ye_{\sigma}(e_e - e_{\sigma^{-1}\tau\sigma})\mathcal{H}_{\mu} = 0$$

where we use that $\sigma^{-1}\tau\sigma\in S_{\mu}$ and $h\mathcal{H}_{\mu}=\mathcal{H}_{\mu}$ for all $h\in S_{\mu}$.

(ii) In annulling 4, Proposition 3 we have seen that the only double $(S_{\lambda'}, S_{\lambda})$ -coset with the trivial intersection property is $S_{\lambda'}w_{\lambda'}^{-1}S_{\lambda} = S_{\lambda'}w_{\lambda}S_{\lambda}$. For the second equality we use that $w_{\lambda'}^{-1} = w_{\lambda}$, see Exercise 1. The result now follows from (i).

Let $\sigma \in S_n$. By the previous lemma, if $\sigma \notin S_{\lambda'} w_{\lambda} S_{\lambda}$ then

$$\mathcal{V}_{\lambda'}e_{\sigma}\mathcal{H}_{\lambda}=0$$

and if $\sigma \in S_{\lambda'} w_{\lambda} S_{\lambda}$ then

$$\mathcal{V}_{\lambda'}e_{\sigma}\mathcal{H}_{\lambda} = \pm e_{w_{\lambda}}p_{\lambda} \neq 0$$

since $V_{\lambda'}e_{\xi} = \epsilon(\xi)V_{\lambda'}$ for $\xi \in S_{\lambda'}$ and $e_{\eta}\mathcal{H}_{\lambda} = \mathcal{H}_{\lambda}$ for $\eta \in S_{\lambda}$. In particular,

(3)
$$p_{\lambda}\mathbb{C}[S_n]p_{\lambda} \subseteq e_{w_{\lambda}^{-1}}\mathcal{V}_{\lambda'}\mathbb{C}[S_n]\mathcal{H}_{\lambda} = \operatorname{span}\{p_{\lambda}\}.$$

This leads to the following result.

Theorem 3. Let $\lambda \vdash n$.

- (i) $p_{\lambda} \in \mathbb{C}[S_n]$ is a primitive idempotent.
- (ii) The irreducible S_n -subrepresentation $M_{\lambda} = \mathbb{C}[S_n]p_{\lambda}$ of the regular representation is isomorphic to V_{λ} .

Proof. (i) Step 1: p_{λ} is an idempotent.

In view of (3) we have

$$p_{\lambda}^2 = cp_{\lambda}$$

for some $c \in \mathbb{C}$. We need to show that c = 1. Let $\phi \in \operatorname{End}^{(S_n)}(\mathbb{C}[S_n])$ be the map

$$\phi(h) := h\widetilde{p}_{\lambda}, \qquad h \in \mathbb{C}[S_n].$$

We compute the trace of ϕ in two different ways. Recall that

$$\widetilde{p}_{\lambda} = \sum_{\sigma \in V(t^{\lambda})} \sum_{\tau \in H(t^{\lambda})} \epsilon(\sigma) e_{\sigma\tau}$$

and the map $V(t^{\lambda}) \times H(t^{\lambda}) \to S_n$, given by $(\sigma, \tau) \mapsto \sigma \tau$, is injective. Consequently, if $\xi \in S_n$ then $\xi \sigma \tau = \xi$ for $\sigma \in H(t^{\lambda})$ and $\tau \in V(t^{\lambda})$ iff $\sigma = e = \tau$. Consequently

$$\operatorname{Tr}_{\mathbb{C}[S_n]}(\phi) = \sum_{\xi \in S_n} e_{\xi} \widetilde{p}_{\lambda}|_{e_{\xi}} = n!.$$

On the other hand, there exists a S_n -subrepresentation $V \subset \mathbb{C}[S_n]$ such that

$$\mathbb{C}[S_n] = M_{\lambda} \oplus V.$$

The intertwiner $\phi : \mathbb{C}[S_n] \to \mathbb{C}[S_n]$ clearly maps onto M_{λ} . Hence, choosing a basis of M_{λ} and a basis of V and computing the trace $\text{Tr}(\phi)$ with respect to this choice of basis, we get

(4)
$$\operatorname{Tr}_{\mathbb{C}[S_n]}(\phi) = \operatorname{Tr}_{M_{\lambda}}(\phi).$$

But for $h = ap_{\lambda} \in M_{\lambda}$ $(a \in \mathbb{C}[S_n])$ we have

(5)
$$\phi(h) = ap_{\lambda}\widetilde{p}_{\lambda} = \frac{cn!}{\dim(M_{\lambda})}ap_{\lambda} = \frac{cn!}{\dim(M_{\lambda})}h,$$

hence $\phi|_{M_{\lambda}} = \frac{cn!}{\dim(M_{\lambda})} \mathrm{Id}_{M_{\lambda}}$. Combining the two observations (4) and (5) we get

$$\operatorname{Tr}_{\mathbb{C}[S_n]}(\phi) = cn!.$$

Hence c = 1.

Step 2: p_{λ} is primitive.

This follows from (3) and Lemma 3.

(ii) $M_{\lambda} = \mathbb{C}[S_n]p_{\lambda}$ is an irreducible S_n -subrepresentation of the regular representation in view of Exercise 2. By Lemma 1 the representation M_{λ} is an irreducible constituent of both $\operatorname{Ind}_{S_{\lambda}}^{S_n}(\mathbb{C}_{\rho_{\lambda}})$ and $\operatorname{Ind}_{S_{\lambda'}}^{S_n}(\mathbb{C}_{\epsilon_{\lambda'}})$. But this was the characterization of V_{λ} , hence $M_{\lambda} \simeq V_{\lambda}$.

Remark 4. We normalized \widetilde{p}_{λ} using the degree $\operatorname{Dim}(M_{\lambda})(=\operatorname{Dim}(V_{\lambda}))$ of the irreducible representation in order to turn it into the idempotent p_{λ} . Remarkably we do not need to know the degree explicitly in order to prove that the resulting normalized element p_{λ} is indeed an idempotent. It is possible to prove that

 $Dim(V_{\lambda}) = \#\{\text{standard Young tableaux of shape } \lambda\}.$

A proof of this formula requires quite some work, see e.g. [1].

Theorem 5. Let $\lambda, \mu \vdash n$. Then $M_{\lambda} \simeq M_{\mu}$ as S_n -representations iff $\lambda = \mu$.

Proof. Suppose that $\lambda \neq \mu$. Without loss of generality we may assume that $\mu \not\preceq \lambda$. By Lemma 4 it suffices to show that $p_{\lambda}\mathbb{C}[S_n]p_{\mu} = \{0\}$. By the explicit expression of the primitive idempotents p_{λ} and p_{μ} this is true iff

$$\mathcal{V}_{\lambda'}\mathbb{C}[S_n]\mathcal{H}_{\mu} = \{0\}.$$

By Lemma 5 this is equivalent to the condition that there do not exist double $(S_{\lambda'}, S_{\mu})$ -cosets with the trivial intersection property. This follows from Lemma 6 below (see also Exercise 6).

Corollary 1. $\{V_{\lambda}\}_{{\lambda}\vdash n}$ is a complete set of representatives of the isomorphy classes of irreducible linear S_n -representations.

Lemma 6. Let $\lambda, \mu \vdash n$. If there exists a double (S_{λ}, S_{μ}) -coset with the trivial intersection property then $\lambda \leq \mu'$.

Proof. Let $\sigma \in S_n$ such that $S_{\lambda} \sigma S_{\mu}$ has the trivial intersection property. Then $S_{\lambda} \cap \sigma S_{\mu} \sigma^{-1} = \{e\}$ i.e., in view of formula (2) of Aanvulling 4,

$$\Omega_i^h(\lambda) \cap \sigma(\Omega_k^h(\mu))$$

consists of zero or one elements for all i and k. But

$$\Omega_i^h(\lambda) \cap \sigma(\Omega_k^h(\mu)) = \Omega_i^h(t^\lambda) \cap \sigma\Omega_k^h(t^\mu)$$
$$= \Omega_i^h(t^\lambda) \cap \sigma\Omega_k^v(t_{\mu'})$$
$$= \Omega_i^h(t^\lambda) \cap \Omega_k^v(\sigma t_{\mu'}).$$

Hence we conclude that if $1 \le r < s \le n$ are two numbers in the same row of t^{λ} , then they are in different columns of $\sigma t_{\mu'}$.

Fix now $r \geq 1$. Then we conclude that for all k, the set $\Omega_k^v(\sigma t_{\mu'})$ of numbers in the kth column of $\sigma t_{\mu'}$ contains at most r numbers from the first r rows of t^{λ} for all $r \geq 1$. Thus we can find a $\tau \in V(\sigma t_{\mu'})$ such that all the numbers in the first r rows of t^{λ} are contained in the first r rows of $\tau \sigma t_{\mu'}$. In particular

 $\#\{\text{boxes in the first r rows of } t^{\lambda}\} \leq \#\{\text{boxes in the first r rows of } \tau \sigma t_{\mu'}\},\$ i.e.

$$\sum_{i=1}^{r} \lambda_i \le \sum_{i=1}^{r} \mu_i'.$$

This is valid for all $r \geq 1$, hence $\lambda \leq \mu'$.

Exercise 6. Complete the last step of the proof of Theorem 5 using Lemma 6.

Let $\lambda \vdash n$. Remark 4 suggests that it might be possible to make the irreducible S_n -representation V_{λ} explicit by realizing it in terms of a S_n -action on the formal complex vector space with canonical basis the standard Young tableaux of shape λ . This is indeed possible. We sketch it in the following section.

4. Polytabloids

Let $\lambda \vdash n$. We say that two Young tableaux T and T' of shape $\lambda \vdash n$ are row equivalent, $T \sim T'$, if there exists a $\sigma \in H(T)$ such that $\sigma T = T'$. The corresponding equivalence class $\{T\}$ of a Young tableaux T of shape λ is called a λ -taboid. Write Tabl(λ) for the set

of λ -tabloids. Note that $\{T\} \in \text{Tabl}(\lambda)$ has a unique row standard representative T.

Let N_{λ} be the formal vector space with basis the λ -tabloids $\{T\} \in \text{Tabl}(\lambda)$. An element $m \in N_{\lambda}$ thus is $m = \sum_{\{T\} \in \text{Tabl}(\lambda)} c_{\{T\}} \{T\}$ for unique $c_{\{T\}} \in \mathbb{C}$. By the previous paragraph,

 $Dim(N_{\lambda}) = \#\{\text{row standard Young tableau of shape } \lambda\}.$

Lemma 7. (i) The assignment $(\sigma, \{T\}) \mapsto \{\sigma T\}$ for $\sigma \in S_n$ and $\{T\} \in \text{Tabl}(\lambda)$ gives rise to a linear S_n -representation $S_n \to \text{GL}_{\mathbb{C}}(N_{\lambda})$. (ii) $N_{\lambda} \simeq \text{Ind}_{S_{\lambda}}^{S_n}(\mathbb{C}_{\rho_{\lambda}})$.

Proof. (i) It suffices to show that $\{\sigma T\} = \{\sigma T'\}$ if $\{T\} = \{T'\}$. Indeed, $\{T\} = \{T'\}$ implies $\Omega_i^h(T) = \Omega_i^h(T')$ (as unordered sets). Since $\sigma \Omega_i^h(T) = \Omega_i^h(\sigma T)$ this implies $\{\sigma T\} = \{\sigma T'\}$.

(ii) It is clear that the degrees of $\operatorname{Ind}_{S_{\lambda}}^{S_n}(\mathbb{C}_{\rho_{\lambda}})$ and N_{λ} coincide (it is $n!/(\lambda_1!\lambda_2!\cdots\lambda_n!)$). Consider the bilinear map $\mathbb{C}[S_n]\times\mathbb{C}_{\rho_{\lambda}}\to N_{\lambda}$ defined by $(e_{\sigma},1)\mapsto \{\sigma t^{\lambda}\}$. It is surjective and $\mathbb{C}[S_{\lambda}]$ -bilinear, hence it defines a surjective intertwiner $\operatorname{Ind}_{S_{\lambda}}^{S_n}(\mathbb{C}_{\rho_{\lambda}})\to N_{\lambda}$. This implies the result.

Definition 2. Let T be a Young tableaux of shape λ . The polytabloid $f_{\lambda} \in N_{\lambda}$ is defined by

$$f_T := \sum_{\tau \in V(T)} \epsilon(\tau) \{ \tau T \}$$

(warning: it is not true that f_T only depends on $\{T\}$).

Lemma 8. The span P_{λ} of the polytabloids of shape λ is a S_n -subrepresentation of N_{λ} . In fact,

$$\sigma f_T = f_{\sigma T}$$

for $\sigma \in S_n$ and for a Young tableau T of shape λ .

Proof. Let $\sigma \in S_n$ and T a Young tableau of shape λ . Then, since $\sigma V(T)\sigma^{-1} = V(\sigma T)$,

$$\sigma f_T = \sum_{\tau \in V(T)} \epsilon(\sigma \tau \sigma^{-1}) \{ (\sigma \tau \sigma^{-1}) \sigma T \}$$
$$= \sum_{\tau \in V(\sigma T)} \epsilon(\tau) \{ \tau \sigma T \} = f_{\sigma T}.$$

Theorem 7. P_{λ} is isomorphic to the Specht module $M_{\lambda} \simeq V_{\lambda}$.

Proof. As in the proof that $p_{\lambda} \neq 0$, one shows that $f_{t^{\lambda}} \neq 0$. Hence $P_{\lambda} \neq \{0\}$. In addition, since $\sigma f_T = f_{\sigma T}$ for $\sigma \in S_n$ and T a Young tableau of shape λ , we have $P_{\lambda} = \mathbb{C}[S_n]f_{t^{\lambda}}$. Since

$$p_{\lambda} = \frac{\dim(M_{\lambda})}{n!} \sum_{\sigma \in V(t^{\lambda})} \sum_{\tau \in H(t^{\lambda})} \epsilon(\sigma) e_{\sigma\tau}$$

and $\tau\{f^{\lambda}\}=\{f^{\lambda}\}$ for all $\tau\in H(t^{\lambda})$ we have

$$f_{t^{\lambda}} = \frac{1}{\lambda_1! \cdots \lambda_n!} p_{\lambda} \{t^{\lambda}\}.$$

Hence $P_{\lambda} = \mathbb{C}[S_n]p_{\lambda}f_{t^{\lambda}} = M_{\lambda}f_{t^{\lambda}}$. Thus the S_n -intertwiner

$$M_{\lambda} \to P_{\lambda}, \qquad h \mapsto h f_{t^{\lambda}}$$

is surjective. It is also injective since M_{λ} is irreducible and $P_{\lambda} \neq \{0\}$. Hence $M_{\lambda} \simeq P_{\lambda}$.

The following result we state without proof (for details, see e.g. [1]).

Proposition 1. $\{f_T \mid T \text{ standard Young tableau of shape } \lambda\}$ is a linear basis of P_{λ} . In particular, the degree of the Specht module V_{λ} is the number of standard tableaux of shape λ .

Exercise 8. (i) Let \mathbb{C}^n be the permutation representation of S_n . Show that

$$N_{(n-1,1)} \simeq \mathbb{C}^n$$
.

(ii) Consider the S_n -invariant subspace

$$U := \{ v \in \mathbb{C}^n \mid \sum_{i=1}^n v_i = 0 \} \subset V.$$

Show that

$$P_{(n-1,1)} \simeq U$$
.

References

- [1] G. James, A, Kerber, *The representation theory of the symmetric group*, Encyclopedia of Math. and its Applications **16** (1981).
- [2] J.-P. Serre, *Linear Representations of Finite Groups*, Graduate Texts in Mathematics, **42**, Springer-Verlag, New York, 1977.