ALGEBRA 3; REPRESENTATIE THEORIE. AANVULLING 5

1. Introduction

We keep the notations of Aanvulling 4. Recall that we have constructed for $\lambda \in \mathcal{P}_{n}$ an irreducible linear representation $\pi_{\lambda}: S_{n} \rightarrow$ $\mathrm{GL}_{\mathbb{C}}\left(V_{\lambda}\right)$ of S_{n} as the unique irreducible constituent occurring in both $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(\rho_{\lambda}\right)$ and $\operatorname{Ind}_{S_{\lambda^{\prime}}}^{S_{n}}\left(\epsilon_{\lambda^{\prime}}\right)$. In these lecture notes we show that $\left\{\pi_{\lambda}\right\}_{\lambda \in \mathcal{P}_{n}}$ is a complete set of representatives of \widehat{S}_{n}.

2. Locating V_{λ} inside of the group algebra

We know that the regular representation $\rho: S_{n} \rightarrow \mathrm{GL}_{\mathbb{C}}\left(\mathbb{C}\left[S_{n}\right]\right)$ contains all the irreducible S_{n}-representations as irreducible components, in particular it contains π_{λ}.

We first realize $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(\rho_{\lambda}\right)$ and $\operatorname{Ind}_{S_{\lambda^{\prime}}}^{S_{n}}\left(\epsilon_{\lambda^{\prime}}\right)$ inside $\mathbb{C}\left[S_{n}\right]$. Define for $\lambda, \mu \vdash n$,

$$
\begin{aligned}
\mathcal{H}_{\lambda} & :=\sum_{\sigma \in S_{\lambda}} e_{\sigma} \in \mathbb{C}\left[S_{n}\right], \\
\mathcal{V}_{\mu} & :=\sum_{\sigma \in S_{\mu}} \epsilon(\sigma) e_{\sigma} \in \mathbb{C}\left[S_{n}\right]
\end{aligned}
$$

(recall that $\epsilon(\sigma)$ is the sign of $\sigma \in S_{n}$). The elements \mathcal{H}_{λ} and \mathcal{V}_{μ} are called Young projectors. Their basic property is

$$
\begin{align*}
\tau \mathcal{H}_{\lambda} & =\mathcal{H}_{\lambda}=\mathcal{H}_{\lambda} \tau, \quad \forall \tau \in S_{\lambda}, \\
\tau \mathcal{V}_{\mu} & =\epsilon(\tau) \mathcal{V}_{\mu}=\mathcal{V}_{\mu} \tau, \quad \forall \tau \in S_{\mu} . \tag{1}
\end{align*}
$$

Hence $\mathbb{C} \mathcal{H}_{\lambda} \subseteq \operatorname{Res}_{S_{\lambda}}^{S_{n}}\left(\mathbb{C}\left[S_{n}\right]\right)$ is isomorphic to ρ_{λ} and $\mathbb{C} \mathcal{V}_{\mu} \subseteq \operatorname{Res}_{S_{\mu}}^{S_{n}}\left(\mathbb{C}\left[S_{n}\right]\right)$ is isomorphic to ϵ_{μ}. The left ideals $\mathbb{C}\left[S_{n}\right] \mathcal{H}_{\lambda} \subseteq \mathbb{C}\left[S_{n}\right]$ and $\mathbb{C}\left[S_{n}\right] \mathcal{V}_{\mu} \subseteq$ $\mathbb{C}\left[S_{n}\right]$ are subrepresentations of the regular representation. Write $\mathbb{C}_{\rho_{\lambda}}$ (respectively $\mathbb{C}_{\epsilon_{\mu}}$) for the (one-dimensional) representation space of ρ_{λ} (respectively ϵ_{μ}).

Lemma 1. (i) $\mathbb{C}\left[S_{n}\right] \mathcal{H}_{\lambda}$ is isomorphic to $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(\mathbb{C}_{\rho_{\lambda}}\right)$.
(ii) $\mathbb{C}\left[S_{n}\right] \mathcal{V}_{\mu}$ is isomorphic to $\operatorname{Ind}_{S_{\mu}}^{S_{n}}\left(\mathbb{C}_{\epsilon_{\mu}}\right)$.

Proof. (i) The unique bilinear map

$$
\tilde{f}: \mathbb{C}\left[S_{n}\right] \times \mathbb{C}_{\rho_{\lambda}} \rightarrow \mathbb{C}\left[S_{n}\right] \mathcal{H}_{\lambda}
$$

satisfying

$$
\widetilde{f}\left(e_{\tau}, 1\right):=e_{\tau} \mathcal{H}_{\lambda}
$$

for all $\tau \in S_{n}$ is $\mathbb{C}\left[S_{\lambda}\right]$-bilinear, hence it gives rise to a linear map

$$
f: \operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(\mathbb{C}_{\rho_{\lambda}}\right) \rightarrow \mathbb{C}\left[S_{n}\right] \mathcal{H}_{\lambda}
$$

satisfying $f\left(e_{\tau} \otimes_{\mathbb{C}\left[S_{\lambda}\right]} 1\right)=e_{\tau} \mathcal{H}_{\lambda}$ for all $\tau \in S_{n}$. It is clear that $f \in$ $\operatorname{Hom}^{\left(S_{n}\right)}\left(\operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(\mathbb{C}_{\rho_{\lambda}}\right), \mathbb{C}\left[S_{n}\right] \mathcal{H}_{\lambda}\right)$, hence it suffices to prove that f is an isomorphism. Let \mathcal{S} be a complete set of representatives of the left coset space S_{n} / S_{λ}. Then $\left\{e_{\tau} \otimes_{\mathbb{C}\left[S_{\lambda}\right]} 1\right\}_{\tau \in \mathcal{S}}$ is a linear basis of $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(\mathbb{C}_{\rho_{\lambda}}\right)$ which is mapped to $\left\{e_{\tau} \mathcal{H}_{\lambda}\right\}_{\tau \in \mathcal{S}}$ by f. It thus remains to show that $\left\{e_{\tau} \mathcal{H}_{\lambda}\right\}_{\tau \in \mathcal{S}}$ is a linear basis of $\mathbb{C}\left[S_{n}\right] \mathcal{H}_{\lambda}$. But this follows directly from the definition of \mathcal{H}_{λ} and (1).
(ii) The proof is similar to the proof of (i).

Recall that $w_{\lambda} \in S_{n}$ is the unique element such that $w_{\lambda} t^{\lambda}=t_{\lambda}$ (recall from last time that $S_{\lambda} w_{\lambda}^{-1} S_{\lambda^{\prime}}$ is the unique double ($S_{\lambda}, S_{\lambda^{\prime}}$)-coset with the trivial intersection property).

Exercise 1. Let $\lambda \vdash n$.
(i) Show that $w_{\lambda^{\prime}}^{-1}=w_{\lambda}$.
(ii) Show that $w_{\lambda}^{-1} S_{\lambda^{\prime}} w_{\lambda}=V\left(t^{\lambda}\right)$.

We define

$$
\widetilde{p}_{\lambda}:=e_{w_{\lambda}^{-1}} \mathcal{V}_{\lambda^{\prime}} e_{w_{\lambda}} \mathcal{H}_{\lambda} \in \mathbb{C}\left[S_{n}\right]
$$

and

$$
M_{\lambda}:=\mathbb{C}\left[S_{n}\right] \widetilde{p}_{\lambda}
$$

for the left ideal in $\mathbb{C}\left[S_{n}\right]$ it generates. Note that

$$
\begin{equation*}
\sigma \widetilde{p}_{\lambda} \tau=\epsilon(\sigma) \widetilde{p}_{\lambda}, \quad \forall \sigma \in V\left(t^{\lambda}\right), \forall \tau \in S_{\lambda}=H\left(t^{\lambda}\right) \tag{2}
\end{equation*}
$$

(cf. the previous exercise). Clearly $M_{\lambda} \subseteq \mathbb{C}\left[S_{n}\right]$ is a subrepresentation of the regular S_{n}-representation. It is called a Specht module.

Lemma 2. (i) $M_{\lambda} \neq\{0\}$.
(ii) $\operatorname{Hom}^{\left(S_{n}\right)}\left(\mathbb{C}\left[S_{n}\right] \mathcal{H}_{\lambda}, M_{\lambda}\right) \neq 0$.
(iii) $\operatorname{Hom}^{\left(S_{n}\right)}\left(\mathbb{C}\left[S_{n}\right] \mathcal{V}_{\lambda^{\prime}}, M_{\lambda}\right) \neq 0$.

Proof. (i) It suffices to show that $\widetilde{p}_{\lambda} \neq 0$. By the previous exercise we have

$$
\begin{aligned}
\widetilde{p}_{\lambda} & =e_{w_{\lambda}^{-1}} \mathcal{V}_{\lambda^{\prime}} e_{w_{\lambda}} \mathcal{H}_{\lambda} \\
& =\sum_{\sigma \in H\left(t^{\lambda^{\prime}}\right)} \sum_{\tau \in H\left(t^{\lambda}\right)} \epsilon(\sigma) e_{w_{\lambda}^{-1} \sigma w_{\lambda} \tau} \\
& =\sum_{\sigma \in V\left(t^{\lambda}\right)} \sum_{\tau \in H\left(t^{\lambda}\right)} \epsilon(\sigma) e_{\sigma \tau} .
\end{aligned}
$$

The map $V\left(t^{\lambda}\right) \times H\left(t^{\lambda}\right) \rightarrow S_{n}$ defined by $(\sigma, \tau) \mapsto \sigma \tau$ is injective since $V\left(t^{\lambda}\right) \cap H\left(t^{\lambda}\right)=\{e\}$. Hence $\widetilde{p}_{\lambda} \neq 0$.
(ii) This is clear from (i) since $M_{\lambda} \subset \mathbb{C}\left[S_{n}\right] \mathcal{H}_{\lambda}$.
(iii) By Frobenius reciprocity,

$$
\operatorname{Hom}^{\left(S_{n}\right)}\left(\mathbb{C}\left[S_{n}\right] \mathcal{V}_{\lambda^{\prime}}, M_{\lambda}\right) \simeq \operatorname{Hom}^{\left(S_{\lambda^{\prime}}\right)}\left(\mathbb{C}_{\epsilon_{\lambda^{\prime}}}, \operatorname{Res}_{S_{\lambda^{\prime}}}^{S_{n}}\left(M_{\lambda}\right)\right)
$$

By (i) and (1),

$$
\mathbb{C}_{\epsilon_{\lambda^{\prime}}} \simeq \mathbb{C} e_{w_{\lambda}} \widetilde{p}_{\lambda} \subseteq \operatorname{Res}_{S_{\lambda^{\prime}}}^{S_{n}}\left(M_{\lambda}\right)
$$

as $S_{\lambda^{\prime}-\text { representations, hence }}$

$$
\operatorname{Hom}^{\left(S_{n}\right)}\left(\mathbb{C}\left[S_{n}\right] \mathcal{V}_{\lambda^{\prime}}, M_{\lambda}\right) \neq\{0\}
$$

We will show in the next section that $M_{\lambda} \simeq V_{\lambda}$ as S_{n}-representations which, in view of the previous lemma, will immediately follow if we show that M_{λ} is irreducible.

3. Irreducibility and mutual inequivalence

For $\lambda \vdash n$ we write

$$
p_{\lambda}:=\frac{\operatorname{dim}\left(M_{\lambda}\right)}{n!} \widetilde{p}_{\lambda}=\frac{\operatorname{dim}\left(M_{\lambda}\right)}{n!} e_{w_{\lambda}^{-1}} \mathcal{V}_{\lambda^{\prime}} e_{w_{\lambda}} \mathcal{H}_{\lambda} .
$$

We will show that the $p_{\lambda} \in \mathbb{C}\left[S_{n}\right](\lambda \vdash n)$ are mutually orthogonal primitive idempotents of $\mathbb{C}\left[S_{n}\right]$. We defined before orthogonal idempotents in a commutative ring. It extends to arbitrary rings as follows.

Definition 1. Let R be a ring. An element $p \in R$ is called an idempotent if $p^{2}=p$. Two idempotents $p_{1}, p_{2} \in R$ are called mutually orthogonal if $p_{1} p_{2}=0=p_{2} p_{1}$. An idempotent $p \in R$ is called primitive if $p=p_{1}+p_{2}$ with p_{1}, p_{2} mutually orthogonal idempotents imply that $p_{1}=0$ or $p_{2}=0$.

Exercise 2. Let $p \in \mathbb{C}\left[S_{n}\right]$ be an idempotent. Show that $\mathbb{C}\left[S_{n}\right] p$ is an irreducible S_{n}-representation of the regular representation iff p is a primitive idempotent.

Lemma 3. Let $p \in \mathbb{C}\left[S_{n}\right]$ be an idempotent. Then p is primitive iff $p \mathbb{C}\left[S_{n}\right] p=\mathbb{C} p$.

Proof. \Rightarrow If p is primitive then $M:=\mathbb{C}\left[S_{n}\right] p$ is irreducible hence $\operatorname{End}^{\left(S_{n}\right)}(M)=\mathbb{C I d}_{M}$. For $h \in \mathbb{C}\left[S_{n}\right]$ the linear map $\phi_{h}: M \rightarrow M$ defined by

$$
\phi_{h}(m):=m p h p, \quad m \in M=\mathbb{C}\left[S_{n}\right] p
$$

is an intertwiner, hence $\phi_{h}=c_{h} \operatorname{Id}_{M}$ for some $c_{h} \in \mathbb{C}$. Then $p h p=$ $\phi_{h}(p)=c_{h} p$.
\Leftarrow Suppose $p=p_{1}+p_{2}$ with p_{i} pairwise orthogonal idempotents. By the assumption there exist $c_{1}, c_{2} \in \mathbb{C}$ such $p p_{i} p=c_{i} p(i=1,2)$. On the other hand $\left(p_{1}+p_{2}\right) p_{i}\left(p_{1}+p_{2}\right)=p_{i}$, hence $p_{i}=c_{i} p(i=1,2)$. Then $0=p_{1} p_{2}=c_{1} c_{2} p$, i.e. $c_{1} c_{2}=0$. Then $p_{1}=c_{1} p=0$ or $p_{2}=c_{2} p=0$, contradiction.

In addition we will use
Lemma 4. Let $p_{1}, p_{2} \in \mathbb{C}\left[S_{n}\right]$ be primitive idempotents. Then $\mathbb{C}\left[S_{n}\right] p_{1} \simeq$ $\mathbb{C}\left[S_{n}\right] p_{2} \Leftrightarrow p_{1} \mathbb{C}\left[S_{n}\right] p_{2} \neq\{0\}$.
Proof. \Rightarrow Let $T: \mathbb{C}\left[S_{n}\right] p_{1} \rightarrow \mathbb{C}\left[S_{n}\right] p_{2}$ be a bijective intertwiner. Then $0 \neq T\left(p_{1}\right)=h p_{2}$ for some $h \in \mathbb{C}\left[S_{n}\right]$. This implies that

$$
0 \neq T\left(p_{1}\right)=T\left(p_{1}^{2}\right)=p_{1} T\left(p_{1}\right)=p_{1} h p_{2} .
$$

\Leftarrow Let $h \in \mathbb{C}\left[S_{n}\right]$ such that $p_{1} h p_{2} \neq 0$. Define $\phi_{h}: \mathbb{C}\left[S_{n}\right] p_{1} \rightarrow \mathbb{C}\left[S_{n}\right] p_{2}$ by

$$
\phi_{h}(m):=m p_{1} h p_{2} .
$$

Then ϕ_{h} is an intertwiner, and it is nonzero since $\phi_{h}\left(p_{1}\right)=p_{1} h p_{2} \neq$ 0 . Since $\mathbb{C}\left[S_{n}\right] p_{i}(i=1,2)$ is irreducible we conclude that ϕ_{h} is an isomorphism.

Lemma 5. For $\lambda, \mu \vdash n$ and $\sigma \in S_{n}$ we have
(i) $\mathcal{V}_{\lambda^{\prime}} e_{\sigma} \mathcal{H}_{\mu}=0$ if $S_{\lambda^{\prime}} \sigma S_{\mu}$ does not have the trivial intersection property.
(ii) $\mathcal{V}_{\lambda^{\prime}} e_{\sigma} \mathcal{H}_{\lambda}=0$ unless $\sigma \in S_{\lambda^{\prime}} w_{\lambda} S_{\lambda}$.

Proof. (i) If $S_{\lambda^{\prime}} \sigma S_{\mu}$ does not have the trivial intersection property then

$$
H:=S_{\lambda^{\prime}} \cap \sigma S_{\mu} \sigma^{-1} \neq\{e\} .
$$

But H is a Young subgroup of S_{n} (cf. formula (2) in Aanvulling 4), hence there exists $1 \leq a<b \leq n$ such that the corresponding transposition $\tau:=(a b)$ is in $H \subseteq S_{\lambda^{\prime}}$. Since $\epsilon(\tau)=-1$ we can write

$$
\mathcal{V}_{\lambda^{\prime}}=Y\left(e_{e}-e_{\tau}\right)
$$

with $Y=\sum_{\xi \in \mathcal{S}} \epsilon(\xi) e_{\xi}$ and \mathcal{S} a complete set of representatives of the left coset space $S_{\lambda^{\prime}} /\langle\tau\rangle$. Then

$$
\begin{aligned}
\mathcal{V}_{\lambda^{\prime}} e_{\sigma} \mathcal{H}_{\mu} & =Y\left(e_{e}-e_{\tau}\right) e_{\sigma} \mathcal{H}_{\mu} \\
& =Y e_{\sigma}\left(e_{e}-e_{\sigma^{-1} \tau \sigma}\right) \mathcal{H}_{\mu}=0
\end{aligned}
$$

where we use that $\sigma^{-1} \tau \sigma \in S_{\mu}$ and $h \mathcal{H}_{\mu}=\mathcal{H}_{\mu}$ for all $h \in S_{\mu}$.
(ii) In aanvulling 4, Proposition 3 we have seen that the only double $\left(S_{\lambda^{\prime}}, S_{\lambda}\right)$-coset with the trivial intersection property is $S_{\lambda^{\prime}} w_{\lambda^{\prime}}^{-1} S_{\lambda}=$ $S_{\lambda^{\prime}} w_{\lambda} S_{\lambda}$. For the second equality we use that $w_{\lambda^{\prime}}^{-1}=w_{\lambda}$, see Exercise 1. The result now follows from (i).

Let $\sigma \in S_{n}$. By the previous lemma, if $\sigma \notin S_{\lambda^{\prime}} w_{\lambda} S_{\lambda}$ then

$$
\mathcal{V}_{\lambda^{\prime}} e_{\sigma} \mathcal{H}_{\lambda}=0
$$

and if $\sigma \in S_{\lambda^{\prime}} w_{\lambda} S_{\lambda}$ then

$$
\mathcal{V}_{\lambda^{\prime}} e_{\sigma} \mathcal{H}_{\lambda}= \pm e_{w_{\lambda}} p_{\lambda} \neq 0
$$

since $\mathcal{V}_{\lambda^{\prime}} e_{\xi}=\epsilon(\xi) \mathcal{V}_{\lambda^{\prime}}$ for $\xi \in S_{\lambda^{\prime}}$ and $e_{\eta} \mathcal{H}_{\lambda}=\mathcal{H}_{\lambda}$ for $\eta \in S_{\lambda}$. In particular,

$$
\begin{equation*}
p_{\lambda} \mathbb{C}\left[S_{n}\right] p_{\lambda} \subseteq e_{w_{\lambda}^{-1}} \mathcal{V}_{\lambda^{\prime}} \mathbb{C}\left[S_{n}\right] \mathcal{H}_{\lambda}=\operatorname{span}\left\{p_{\lambda}\right\} \tag{3}
\end{equation*}
$$

This leads to the following result.
Theorem 3. Let $\lambda \vdash n$.
(i) $p_{\lambda} \in \mathbb{C}\left[S_{n}\right]$ is a primitive idempotent.
(ii) The irreducible S_{n}-subrepresentation $M_{\lambda}=\mathbb{C}\left[S_{n}\right] p_{\lambda}$ of the regular representation is isomorphic to V_{λ}.

Proof. (i) Step 1: p_{λ} is an idempotent.
In view of (3) we have

$$
p_{\lambda}^{2}=c p_{\lambda}
$$

for some $c \in \mathbb{C}$. We need to show that $c=1$. Let $\phi \in \operatorname{End}^{\left(S_{n}\right)}\left(\mathbb{C}\left[S_{n}\right]\right)$ be the map

$$
\phi(h):=h \widetilde{p}_{\lambda}, \quad h \in \mathbb{C}\left[S_{n}\right] .
$$

We compute the trace of ϕ in two different ways. Recall that

$$
\widetilde{p}_{\lambda}=\sum_{\sigma \in V\left(t^{\lambda}\right)} \sum_{\tau \in H\left(t^{\lambda}\right)} \epsilon(\sigma) e_{\sigma \tau}
$$

and the map $V\left(t^{\lambda}\right) \times H\left(t^{\lambda}\right) \rightarrow S_{n}$, given by $(\sigma, \tau) \mapsto \sigma \tau$, is injective. Consequently, if $\xi \in S_{n}$ then $\xi \sigma \tau=\xi$ for $\sigma \in H\left(t^{\lambda}\right)$ and $\tau \in V\left(t^{\lambda}\right)$ iff $\sigma=e=\tau$. Consequently

$$
\operatorname{Tr}_{\mathbb{C}\left[S_{n}\right]}(\phi)=\left.\sum_{\xi \in S_{n}} e_{\xi} \widetilde{p}_{\lambda}\right|_{e_{\xi}}=n!
$$

On the other hand, there exists a S_{n}-subrepresentation $V \subset \mathbb{C}\left[S_{n}\right]$ such that

$$
\mathbb{C}\left[S_{n}\right]=M_{\lambda} \oplus V .
$$

The intertwiner $\phi: \mathbb{C}\left[S_{n}\right] \rightarrow \mathbb{C}\left[S_{n}\right]$ clearly maps onto M_{λ}. Hence, choosing a basis of M_{λ} and a basis of V and computing the trace $\operatorname{Tr}(\phi)$ with respect to this choice of basis, we get

$$
\begin{equation*}
\operatorname{Tr}_{\mathbb{C}\left[S_{n}\right]}(\phi)=\operatorname{Tr}_{M_{\lambda}}(\phi) \tag{4}
\end{equation*}
$$

But for $h=a p_{\lambda} \in M_{\lambda}\left(a \in \mathbb{C}\left[S_{n}\right]\right)$ we have

$$
\begin{equation*}
\phi(h)=a p_{\lambda} \widetilde{p}_{\lambda}=\frac{c n!}{\operatorname{dim}\left(M_{\lambda}\right)} a p_{\lambda}=\frac{c n!}{\operatorname{dim}\left(M_{\lambda}\right)} h, \tag{5}
\end{equation*}
$$

hence $\left.\phi\right|_{M_{\lambda}}=\frac{c n!}{\operatorname{dim}\left(M_{\lambda}\right)} \operatorname{Id}_{M_{\lambda}}$. Combining the two observations (4) and (5) we get

$$
\operatorname{Tr}_{\mathbb{C}\left[S_{n}\right]}(\phi)=c n!.
$$

Hence $c=1$.
Step 2: p_{λ} is primitive.
This follows from (3) and Lemma 3.
(ii) $M_{\lambda}=\mathbb{C}\left[S_{n}\right] p_{\lambda}$ is an irreducible S_{n}-subrepresentation of the regular representation in view of Exercise 2. By Lemma 1 the representation M_{λ} is an irreducible constituent of both $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(\mathbb{C}_{\rho_{\lambda}}\right)$ and $\operatorname{Ind}_{S_{\lambda^{\prime}}}^{S_{n}}\left(\mathbb{C}_{\epsilon_{\lambda^{\prime}}}\right)$. But this was the characterization of V_{λ}, hence $M_{\lambda} \simeq V_{\lambda}$.
Remark 4. We normalized \widetilde{p}_{λ} using the degree $\operatorname{Dim}\left(M_{\lambda}\right)\left(=\operatorname{Dim}\left(V_{\lambda}\right)\right)$ of the irreducible representation in order to turn it into the idempotent p_{λ}. Remarkably we do not need to know the degree explicitly in order to prove that the resulting normalized element p_{λ} is indeed an idempotent. It is possible to prove that

$$
\operatorname{Dim}\left(V_{\lambda}\right)=\#\{\text { standard Young tableaux of shape } \lambda\}
$$

A proof of this formula requires quite some work, see e.g. [1].
Theorem 5. Let $\lambda, \mu \vdash n$. Then $M_{\lambda} \simeq M_{\mu}$ as S_{n}-representations iff $\lambda=\mu$.

Proof. Suppose that $\lambda \neq \mu$. Without loss of generality we may assume that $\mu \npreceq \lambda$. By Lemma 4 it suffices to show that $p_{\lambda} \mathbb{C}\left[S_{n}\right] p_{\mu}=\{0\}$. By the explicit expression of the primitive idempotents p_{λ} and p_{μ} this is true iff

$$
\mathcal{V}_{\lambda^{\prime}} \mathbb{C}\left[S_{n}\right] \mathcal{H}_{\mu}=\{0\}
$$

By Lemma 5 this is equivalent to the condition that there do not exist double $\left(S_{\lambda^{\prime}}, S_{\mu}\right)$-cosets with the trivial intersection property. This follows from Lemma 6 below (see also Exercise 6).

Corollary 1. $\left\{V_{\lambda}\right\}_{\lambda \vdash n}$ is a complete set of representatives of the isomorphy classes of irreducible linear S_{n}-representations.

Lemma 6. Let $\lambda, \mu \vdash n$. If there exists a double $\left(S_{\lambda}, S_{\mu}\right)$-coset with the trivial intersection property then $\lambda \preceq \mu^{\prime}$.
Proof. Let $\sigma \in S_{n}$ such that $S_{\lambda} \sigma S_{\mu}$ has the trivial intersection property. Then $S_{\lambda} \cap \sigma S_{\mu} \sigma^{-1}=\{e\}$ i.e., in view of formula (2) of Aanvulling 4,

$$
\Omega_{i}^{h}(\lambda) \cap \sigma\left(\Omega_{k}^{h}(\mu)\right)
$$

consists of zero or one elements for all i and k. But

$$
\begin{aligned}
\Omega_{i}^{h}(\lambda) \cap \sigma\left(\Omega_{k}^{h}(\mu)\right) & =\Omega_{i}^{h}\left(t^{\lambda}\right) \cap \sigma \Omega_{k}^{h}\left(t^{\mu}\right) \\
& =\Omega_{i}^{h}\left(t^{\lambda}\right) \cap \sigma \Omega_{k}^{v}\left(t_{\mu^{\prime}}\right) \\
& =\Omega_{i}^{h}\left(t^{\lambda}\right) \cap \Omega_{k}^{v}\left(\sigma t_{\mu^{\prime}}\right) .
\end{aligned}
$$

Hence we conclude that if $1 \leq r<s \leq n$ are two numbers in the same row of t^{λ}, then they are in different columns of $\sigma t_{\mu^{\prime}}$.

Fix now $r \geq 1$. Then we conclude that for all k, the set $\Omega_{k}^{v}\left(\sigma t_{\mu^{\prime}}\right)$ of numbers in the k th column of $\sigma t_{\mu^{\prime}}$ contains at most r numbers from the first r rows of t^{λ} for all $r \geq 1$. Thus we can find a $\tau \in V\left(\sigma t_{\mu^{\prime}}\right)$ such that all the numbers in the first r rows of t^{λ} are contained in the first r rows of $\tau \sigma t_{\mu^{\prime}}$. In particular
$\#\left\{\right.$ boxes in the first r rows of $\left.t^{\lambda}\right\} \leq \#\left\{\right.$ boxes in the first r rows of $\left.\tau \sigma t_{\mu^{\prime}}\right\}$, i.e.

$$
\sum_{i=1}^{r} \lambda_{i} \leq \sum_{i=1}^{r} \mu_{i}^{\prime} .
$$

This is valid for all $r \geq 1$, hence $\lambda \preceq \mu^{\prime}$.
Exercise 6. Complete the last step of the proof of Theorem 5 using Lemma 6.

Let $\lambda \vdash n$. Remark 4 suggests that it might be possible to make the irreducible S_{n}-representation V_{λ} explicit by realizing it in terms of a S_{n}-action on the formal complex vector space with canonical basis the standard Young tableaux of shape λ. This is indeed possible. We sketch it in the following section.

4. Polytabloids

Let $\lambda \vdash n$. We say that two Young tableaux T and T^{\prime} of shape $\lambda \vdash n$ are row equivalent, $T \sim T^{\prime}$, if there exists a $\sigma \in H(T)$ such that $\sigma T=T^{\prime}$. The corresponding equivalence class $\{T\}$ of a Young tableaux T of shape λ is called a λ-taboid. Write $\operatorname{Tabl}(\lambda)$ for the set
of λ-tabloids. Note that $\{T\} \in \operatorname{Tabl}(\lambda)$ has a unique row standard representative T.

Let N_{λ} be the formal vector space with basis the λ-tabloids $\{T\} \in$ $\operatorname{Tabl}(\lambda)$. An element $m \in N_{\lambda}$ thus is $m=\sum_{\{T\} \in \operatorname{Tabl}(\lambda)} c_{\{T\}}\{T\}$ for unique $c_{\{T\}} \in \mathbb{C}$. By the previous paragraph,
$\operatorname{Dim}\left(N_{\lambda}\right)=\#\{$ row standard Young tableau of shape $\lambda\}$.
Lemma 7. (i) The assignment $(\sigma,\{T\}) \mapsto\{\sigma T\}$ for $\sigma \in S_{n}$ and $\{T\} \in \operatorname{Tabl}(\lambda)$ gives rise to a linear S_{n}-representation $S_{n} \rightarrow \operatorname{GL}_{\mathbb{C}}\left(N_{\lambda}\right)$. (ii) $N_{\lambda} \simeq \operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(\mathbb{C}_{\rho_{\lambda}}\right)$.

Proof. (i) It suffices to show that $\{\sigma T\}=\left\{\sigma T^{\prime}\right\}$ if $\{T\}=\left\{T^{\prime}\right\}$. Indeed, $\{T\}=\left\{T^{\prime}\right\}$ implies $\Omega_{i}^{h}(T)=\Omega_{i}^{h}\left(T^{\prime}\right)$ (as unordered sets). Since $\sigma \Omega_{i}^{h}(T)=\Omega_{i}^{h}(\sigma T)$ this implies $\{\sigma T\}=\left\{\sigma T^{\prime}\right\}$.
(ii) It is clear that the degrees of $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(\mathbb{C}_{\rho_{\lambda}}\right)$ and N_{λ} coincide (it is $\left.n!/\left(\lambda_{1}!\lambda_{2}!\cdots \lambda_{n}!\right)\right)$. Consider the bilinear map $\mathbb{C}\left[S_{n}\right] \times \mathbb{C}_{\rho_{\lambda}} \rightarrow N_{\lambda}$ defined by $\left(e_{\sigma}, 1\right) \mapsto\left\{\sigma t^{\lambda}\right\}$. It is surjective and $\mathbb{C}\left[S_{\lambda}\right]$-bilinear, hence it defines a surjective intertwiner $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(\mathbb{C}_{\rho_{\lambda}}\right) \rightarrow N_{\lambda}$. This implies the result.

Definition 2. Let T be a Young tableaux of shape λ. The polytabloid $f_{\lambda} \in N_{\lambda}$ is defined by

$$
f_{T}:=\sum_{\tau \in V(T)} \epsilon(\tau)\{\tau T\}
$$

(warning: it is not true that f_{T} only depends on $\{T\}$).
Lemma 8. The span P_{λ} of the polytabloids of shape λ is a S_{n}-subrepresentation of N_{λ}. In fact,

$$
\sigma f_{T}=f_{\sigma T}
$$

for $\sigma \in S_{n}$ and for a Young tableau T of shape λ.
Proof. Let $\sigma \in S_{n}$ and T a Young tableau of shape λ. Then, since $\sigma V(T) \sigma^{-1}=V(\sigma T)$,

$$
\begin{aligned}
\sigma f_{T} & =\sum_{\tau \in V(T)} \epsilon\left(\sigma \tau \sigma^{-1}\right)\left\{\left(\sigma \tau \sigma^{-1}\right) \sigma T\right\} \\
& =\sum_{\tau \in V(\sigma T)} \epsilon(\tau)\{\tau \sigma T\}=f_{\sigma T} .
\end{aligned}
$$

Theorem 7. P_{λ} is isomorphic to the Specht module $M_{\lambda} \simeq V_{\lambda}$.

Proof. As in the proof that $p_{\lambda} \neq 0$, one shows that $f_{t^{\lambda}} \neq 0$. Hence $P_{\lambda} \neq\{0\}$. In addition, since $\sigma f_{T}=f_{\sigma T}$ for $\sigma \in S_{n}$ and T a Young tableau of shape λ, we have $P_{\lambda}=\mathbb{C}\left[S_{n}\right] f_{t^{\lambda}}$. Since

$$
p_{\lambda}=\frac{\operatorname{dim}\left(M_{\lambda}\right)}{n!} \sum_{\sigma \in V\left(t^{\lambda}\right)} \sum_{\tau \in H\left(t^{\lambda}\right)} \epsilon(\sigma) e_{\sigma \tau}
$$

and $\tau\left\{f^{\lambda}\right\}=\left\{f^{\lambda}\right\}$ for all $\tau \in H\left(t^{\lambda}\right)$ we have

$$
f_{t^{\lambda}}=\frac{1}{\lambda_{1}!\cdots \lambda_{n}!} p_{\lambda}\left\{t^{\lambda}\right\} .
$$

Hence $P_{\lambda}=\mathbb{C}\left[S_{n}\right] p_{\lambda} f_{t^{\lambda}}=M_{\lambda} f_{t^{\lambda}}$. Thus the S_{n}-intertwiner

$$
M_{\lambda} \rightarrow P_{\lambda}, \quad h \mapsto h f_{t^{\lambda}}
$$

is surjective. It is also injective since M_{λ} is irreducible and $P_{\lambda} \neq\{0\}$. Hence $M_{\lambda} \simeq P_{\lambda}$.

The following result we state without proof (for details, see e.g. [1]).
Proposition 1. $\left\{f_{T} \mid T\right.$ standard Young tableau of shape $\left.\lambda\right\}$ is a linear basis of P_{λ}. In particular, the degree of the Specht module V_{λ} is the number of standard tableaux of shape λ.

Exercise 8. (i) Let \mathbb{C}^{n} be the permutation representation of S_{n}. Show that

$$
N_{(n-1,1)} \simeq \mathbb{C}^{n}
$$

(ii) Consider the S_{n}-invariant subspace

$$
U:=\left\{v \in \mathbb{C}^{n} \mid \sum_{i=1}^{n} v_{i}=0\right\} \subset V .
$$

Show that

$$
P_{(n-1,1)} \simeq U .
$$

References

[1] G. James, A, Kerber, The representation theory of the symmetric group, Encyclopedia of Math. and its Applications 16 (1981).
[2] J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, 42, Springer-Verlag, New York, 1977.

