Extra exercises
 Algebra 3; Representation theory
 september 5, 2011

Exercise 1. (a) Prove that $\operatorname{Aut}((\mathbb{Z} / n \mathbb{Z},+, \overline{0})) \simeq(\mathbb{Z} / n \mathbb{Z})^{*}$ as groups.
(b) Prove that the subgroup of $\operatorname{Aut}((\mathbb{Z} / n \mathbb{Z},+, \overline{0}))$ consisting of ring automorphisms of $\mathbb{Z} / n \mathbb{Z}$ is the trivial group.

Exercise 2. Let G be a group and X a set. Write $S(X)$ for the group of bijective maps $X \rightarrow X$. Consider the map
$\{$ group homomorphisms $G \rightarrow S(X)\} \rightarrow\{$ left actions $G \curvearrowright X\}$
sending the group homomorphism $\phi: G \rightarrow S(X)$ to the left action $(g, x) \mapsto \phi(g)(x)$. Prove that this is a bijection.

Exercise 3. Let G and N be groups with unit elements e_{G} and e_{N} respectively. Suppose G acts on N by group automorphisms. In other words, the action is of the form $g \cdot n:=\phi(g)(n)$ with group homomorphism $\phi: G \rightarrow \operatorname{Aut}(N)$.
(a) Let $G \ltimes N=G \ltimes_{\phi} N$ be the triple $\left(G \times N, \cdot,\left(e_{G}, e_{N}\right)\right)$ with operation

$$
\left(g_{1}, n_{1}\right) \cdot\left(g_{2}, n_{2}\right):=\left(g_{1} g_{2},\left(g_{2}^{-1} \cdot n_{1}\right) n_{2}\right)
$$

Prove that $G \ltimes N$ is a group (it is called the semidirect product of G and N).
(b) Prove that $G \times\left\{e_{N}\right\}$ and $\left\{e_{G}\right\} \times N$ are subgroups of $G \ltimes N$, isomorphic to G and N respectively.
(c) Show that $N \unlhd G \ltimes N$.
(d) For which ϕ is it true that $G \ltimes N \simeq G \times N$ as groups?

Exercise 4. Let D_{n} be the dihedral group of order $2 n$.
(a) Give an interpretation of D_{n} as the group of symmetries of a regular polygon with n sides.
(b) Prove that D_{n} has two one-dimensional linear representations if n is odd and four one-dimensional linear representations if n is even.

Exercise 5. Let X be a finite set and G a finite group acting on X. Let A be another group. Consider the direct product group

$$
K:=\prod_{x \in X} A_{x}
$$

with each direct summand A_{x} isomorphic to A.
(a) Show that

$$
g \cdot\left\{a_{x}\right\}_{x \in X}:=\left\{a_{g^{-1} x}\right\}_{x \in X}
$$

defines an action of G on K by group automorphisms.

The associated semidirect product group $G \ltimes K$ is denoted by $A \imath_{X} G$. It is called the wreath product of A by G.
(b) Consider the semidirect product group $S_{n} \ltimes A^{\times n}$ with respect to the action

$$
\sigma \cdot\left(a_{1}, a_{2}, \ldots, a_{n}\right):=\left(a_{\sigma^{-1}(1)}, a_{\sigma^{-1}(2)}, \ldots, a_{\sigma^{-1}(n)}\right)
$$

of S_{n} on $A^{\times n}$ by group automorphisms. Describe the group $S_{n} \ltimes A^{\times n}$ as a wreath product.

Exercise 6. (a) Show that the symmetric group S_{n} in n letters $(n \geq 2)$ is generated by the neighboring transpositions $\sigma_{i}:=(i, i+1)(1 \leq i<n)$.
(b) Show that

$$
\begin{aligned}
\sigma_{i}^{2} & =e \\
\sigma_{k} \sigma_{k+1} \sigma_{k} & =\sigma_{k+1} \sigma_{k} \sigma_{k+1} \\
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i}
\end{aligned}
$$

for $1 \leq i, j<n, 1 \leq k<n-1$ and $|i-j|>1$.
(c) Prove that S_{n} has precisely two one-dimensional linear representations.
(d) Show that the two one-dimensional linear representations of S_{n} are subrepresentations of the regular representation of S_{n}.

