Extra exercises

Algebra 3; Representation theory
september 12, 2011

Exercise 1. Let U be a vector space and suppose that $V, W \subseteq U$ are vector subspaces. Prove that the following two statements are equivalent:
(a) $U=V \oplus W$ (in other words, each $u \in U$ can be written in a unique way as $u=v+w$ with $v \in V$ and $w \in W)$,
(b) $V \cap W=\{0\}$ and $\operatorname{dim}(U)=\operatorname{dim}(V)+\operatorname{dim}(W)$.

Exercise 2. Let $n \in \mathbb{Z}_{\geq 2}$ and let t be an integer satisfying $0 \leq t<n$. Recall that the assignments

$$
\pi_{t}(r):=\left(\begin{array}{cc}
\cos \left(\frac{2 \pi t}{n}\right) & -\sin \left(\frac{2 \pi t}{n}\right) \\
\sin \left(\frac{2 \pi t}{n}\right) & \cos \left(\frac{2 \pi t}{n}\right)
\end{array}\right), \quad \pi_{t}(s):=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

give rise to a two-dimensional representation $\pi_{t}: D_{n} \rightarrow \mathrm{GL}\left(\mathbb{C}^{2}\right)$.
(a) For which t is π_{t} an irreducible representation of D_{n} ?
(b) If π_{t} is not irreducible, determine then two one-dimensional D_{n}-invariant subspaces $U, V \subset \mathbb{C}^{2}$ such that $\mathbb{C}^{2}=U \oplus V$.

Exercise 3. Let $\chi, \chi^{\prime}: G \rightarrow \mathbb{C}^{*}$ be two one-dimensional representations of a fixed finite group G. Show that $\chi \simeq \chi^{\prime}$ iff $\chi=\chi^{\prime}$.

Exercise 4. (a) Determine all the one-dimensional representations of the four-group V_{4} of Klein.
(b) Give the decomposition of the regular representation of V_{4} as a direct sum of irreducible representations.

See the other side for the last exercise

Exercise 5. (a) Let G be a group and $H \subseteq G$ a subgroup. Let $\pi: G \rightarrow \mathrm{GL}(V)$ be a representation of G. Show that the restriction $\operatorname{Res}_{H}^{G}(\pi): H \rightarrow \mathrm{GL}(V)$ of π to H is a representation of H.
(b) Let $\pi: G \rightarrow \mathrm{GL}(V)$ and $\pi^{\prime}: G^{\prime} \rightarrow \mathrm{GL}\left(V^{\prime}\right)$ be two representations. Show that the formula
$\left(\pi \boxplus \pi^{\prime}\right)\left(g, g^{\prime}\right)\left(v, v^{\prime}\right):=\left(\pi(g) v, \pi^{\prime}\left(g^{\prime}\right) v^{\prime}\right), \quad g \in G, g^{\prime} \in G^{\prime}, v \in V, v^{\prime} \in V^{\prime}$ defines a representation $\pi \boxplus \pi^{\prime}: G \times G^{\prime} \rightarrow \mathrm{GL}\left(V \oplus V^{\prime}\right)$.
(c) Let $\pi: G \rightarrow \mathrm{GL}(U)$ and $\rho: G \rightarrow \mathrm{GL}(W)$ be two representations of the same finite group G. Identify G as group with the diagonal subgroup $\Delta(G):=$ $\{(g, g)\}_{g \in G}$ of $G \times G$ by the map $g \mapsto(g, g)(g \in G)$. Show that

$$
\pi \oplus \rho \simeq \operatorname{Res}_{\Delta(G)}^{G \times G}(\pi \boxplus \rho) .
$$

