Extra exercises Algebra 3; Representation theory september 12, 2011

Exercise 1. Let U be a vector space and suppose that $V, W \subseteq U$ are vector subspaces.

Prove that the following two statements are equivalent:

- (a) $U = V \oplus W$ (in other words, each $u \in U$ can be written in a unique way as u = v + w with $v \in V$ and $w \in W$),
- (b) $V \cap W = \{0\}$ and $\dim(U) = \dim(V) + \dim(W)$.

Exercise 2. Let $n \in \mathbb{Z}_{\geq 2}$ and let t be an integer satisfying $0 \leq t < n$. Recall that the assignments

$$\pi_t(r) := \begin{pmatrix} \cos\left(\frac{2\pi t}{n}\right) & -\sin\left(\frac{2\pi t}{n}\right) \\ \sin\left(\frac{2\pi t}{n}\right) & \cos\left(\frac{2\pi t}{n}\right) \end{pmatrix}, \qquad \pi_t(s) := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

give rise to a two-dimensional representation $\pi_t : D_n \to \mathrm{GL}(\mathbb{C}^2)$.

- (a) For which t is π_t an irreducible representation of D_n ?
- (b) If π_t is not irreducible, determine then two one-dimensional D_n -invariant subspaces $U, V \subset \mathbb{C}^2$ such that $\mathbb{C}^2 = U \oplus V$.
- **Exercise 3.** Let $\chi, \chi' : G \to \mathbb{C}^*$ be two one-dimensional representations of a fixed finite group G. Show that $\chi \simeq \chi'$ iff $\chi = \chi'$.
- **Exercise 4.** (a) Determine all the one-dimensional representations of the four-group V_4 of Klein.
 - (b) Give the decomposition of the regular representation of V_4 as a direct sum of irreducible representations.

See the other side for the last exercise

2

- **Exercise 5.** (a) Let G be a group and $H \subseteq G$ a subgroup. Let $\pi : G \to \operatorname{GL}(V)$ be a representation of G. Show that the restriction $\operatorname{Res}_{H}^{G}(\pi) : H \to \operatorname{GL}(V)$ of π to H is a representation of H.
 - (b) Let $\pi : G \to \operatorname{GL}(V)$ and $\pi' : G' \to \operatorname{GL}(V')$ be two representations. Show that the formula

$$(\pi \boxplus \pi')(g,g')(v,v') := (\pi(g)v,\pi'(g')v'), \qquad g \in G, g' \in G', v \in V, v' \in V'$$

defines a representation $\pi \boxplus \pi' : G \times G' \to \operatorname{GL}(V \oplus V').$

(c) Let $\pi : G \to \operatorname{GL}(U)$ and $\rho : G \to \operatorname{GL}(W)$ be two representations of the same finite group G. Identify G as group with the diagonal subgroup $\Delta(G) := \{(g,g)\}_{g\in G}$ of $G \times G$ by the map $g \mapsto (g,g) \ (g \in G)$. Show that

$$\pi \oplus \rho \simeq \operatorname{Res}_{\Delta(G)}^{G \times G} (\pi \boxplus \rho).$$