Extra exercises

Algebra 3; Representation theory

October 3, 2011

Exercise 1. Let $x=\left\{x_{g}\right\}_{g \in G}$ be a collection of complex numbers. Frobenius' group determinant is defined by

$$
D_{G}(x):=\operatorname{det}\left(\left(x_{g g^{\prime}}\right)_{g, g^{\prime} \in G}\right),
$$

where we order the group elements of G by fixing a total order on G.
(a) Show that $D_{G}(x)$ does not depend on the choice of total order on G.

Consider the linear endomorphism $L_{G}(x)$ of the group algebra $\mathbb{C}[G]$, uniquely characterized by

$$
L_{G}(x) e_{y}:=\sum_{g \in G} x_{g} e_{g y}, \quad y \in G
$$

(b) Show that the matrix of $L_{G}(x)$ with respect to the linear basis $\left\{e_{g}\right\}_{g \in G}$ of $\mathbb{C}[G]$ is given by $\left(x_{g^{\prime} g-1}\right)_{g, g^{\prime} \in G}$.
(c) Let \widehat{G} be a complete set of representatives of the isomorphism classes of irreducible linear G-representations. Let $\pi \in \widehat{G}$. Define the linear endomorphism $L_{G, \pi}(x)$ of the representation space V_{π} of π by

$$
L_{G, \pi}(x)=\sum_{g \in G} x_{g} \pi(g)
$$

and write $P_{\pi}(x)=\operatorname{det}\left(L_{G, \pi}(x)\right)$. Show that

$$
\operatorname{det}\left(L_{G}(x)\right)=\prod_{\pi \in \widehat{G}} P_{\pi}(x)^{\operatorname{dim}\left(V_{\pi}\right)}
$$

Hint: Express L_{G} in terms of the regular action of G on $\mathbb{C}[G]$ and use the decomposition of the regular representation in irreducible subrepresentations.
(d) Prove that the group determinant for $G:=\mathbb{Z} / n \mathbb{Z}=\{\bar{m}\}_{m=0}^{n-1}$ factorizes as

$$
D_{\mathbb{Z} / n \mathbb{Z}}(x)=(-1)^{\binom{n-1}{2}} \prod_{r=0}^{n-1}\left(\sum_{s=0}^{n-1} e^{2 \pi \sqrt{-1} r s / n} x_{\bar{s}}\right)
$$

Historical note: Dedekind defined the group determinant and conjectured that it always factorizes as

$$
D_{G}(x)=\prod_{j=1}^{h} p_{j}(x)^{\operatorname{deg}\left(p_{j}\right)}
$$

with the p_{j} relative prime irreducible polynomials and h the number of conjugacy classes of G. He wrote a letter to Frobenius in 1896 in which he explained the conjecture. Frobenius' subsequent research on the group determinant led him to
the concept of group representations, and ultimately to a proof of the conjecture (from exercise $1(\mathrm{c})$ it is no surprise that, up to sign, the $P_{\pi}(\pi \in \widehat{G})$ will be the irreducible factors $p_{j}(1 \leq j \leq h)$, keeping in mind that \widehat{G} is a set of cardinality $\left.h\right)$. For further details and historical notes, see $[1, \S 4.10$ and $\S 4.11]$.

Exercise 2. Give a complete set of representatives of the equivalence classes of irreducible representations of the dihedral group D_{n} if $n \in \mathbb{N}$ is an even integer.

Exercise 3. Let $\pi: G \rightarrow \mathrm{GL}\left(V_{\pi}\right)$ be an irreducible linear representation of the finite group G. Let χ_{π} be the character of π. Show that

$$
\begin{equation*}
\frac{\operatorname{dim}\left(V_{\pi}\right)}{\# G} \sum_{x \in G} \chi_{\pi}(x) \overline{\chi_{\pi}\left(x z^{-1}\right)}=\chi_{\pi}(z) \tag{2}
\end{equation*}
$$

for all $z \in G$.
Hint: Choose a scalar product on V_{π} turning π into a unitary representation. Let $\left\{e_{i}\right\}_{i}$ be an orthonormal basis of V_{π}. Write χ_{π} in terms of the associated matrix coefficients $\pi_{i j}=\pi_{e_{i}^{*}, e_{j}}$ and use the orthogonality relations of the matrix coefficients.

Exercise 4. Let G be a finite group and let \widehat{G} be the isomorphism classes of irreducible linear G-representations. Let $\operatorname{Fun}(\widehat{G})$ be the space of complex valued functions on \widehat{G}, and $F(G)$ the space of class functions on G (i.e. functions $f: G \rightarrow \mathbb{C}$ satisfying $f\left(g g^{\prime} g^{-1}\right)=f\left(g^{\prime}\right)$ for all $\left.g, g^{\prime} \in G\right)$. Define a linear map

$$
\mathcal{F}: F(G) \rightarrow \operatorname{Fun}(\widehat{G})
$$

by

$$
(\mathcal{F} f)(\pi):=\left(f \mid \chi_{\pi}\right), \quad f \in F(G) .
$$

(a) Show that \mathcal{F} is a linear bijection.
(b) Show that the inverse of \mathcal{F} is given by

$$
\left(\mathcal{F}^{-1} h\right)(g):=\sum_{\pi \in \widehat{G}} h(\pi) \chi_{\pi}(g), \quad h \in \operatorname{Fun}(\widehat{G}) .
$$

(c) Let $\langle\cdot, \cdot\rangle$ be the scalar product on $\operatorname{Fun}(\widehat{G})$ defined by

$$
\left\langle h, h^{\prime}\right\rangle:=\sum_{\pi \in \widehat{G}} h(\pi) \overline{h^{\prime}(\pi)}, \quad h, h^{\prime} \in \operatorname{Fun}(\widehat{G}) .
$$

Show that

$$
\left\langle\mathcal{F} f, \mathcal{F} f^{\prime}\right\rangle=\left(f \mid f^{\prime}\right), \quad f, f^{\prime} \in F(G)
$$

(d) For $x \in G$ write $c(x)$ for the number of elements in the conjugatie class $C(x):=$ $\left\{g x g^{-1} \mid g \in G\right\}$ containing x. Prove that

$$
\sum_{\pi \in \widehat{G}} \chi_{\pi}(x) \overline{\chi_{\pi}(y)}= \begin{cases}\frac{\# G}{c(x)} & \text { if } y \in C(x) \\ 0 & \text { if } y \notin C(x)\end{cases}
$$

Hint: Write $\left\{s_{1}, \ldots, s_{h}\right\}$ for a complete set of representatives of the conjugacy classes in G. Let $\left\{\delta_{i}\right\}_{i=1}^{h}$ be the linear basis of $F(G)$ with $\delta_{i} \in F(G)$ uniquely characterized by

$$
\delta_{i}\left(s_{j}\right)=\frac{\# G}{c\left(s_{i}\right)} \delta_{i, j}, \quad 1 \leq j \leq h .
$$

Then compute $\left(\delta_{i} \mid \delta_{j}\right)$ in two different ways.

Exercise 5. The space $\operatorname{Fun}(G)$ of complex valued functions on a finite group G is a commutative algebra with respect to pointwise multiplication. It has also a (in general noncommutative) associative algebra structure, which will be explored in this exercise.
(a) For $f, h \in \operatorname{Fun}(G)$ set

$$
(f * h)(z):=\sum_{x, y \in G: x y=z} f(x) h(y), \quad z \in G .
$$

It is called the convolution product of f and h. Show that $\operatorname{Fun}(G)$ is an associative algebra with respect to the convolution product, with unit element $\delta_{e}(x):=\delta_{e, x}$ for $x \in G$.
(b) Prove that the assignment

$$
\begin{equation*}
f \mapsto \sum_{g \in G} f(g) e_{g} \tag{3}
\end{equation*}
$$

defines an isomorphism $\operatorname{Fun}(G) \xrightarrow{\sim} \mathbb{C}[G]$ of algebras (here we view $\operatorname{Fun}(G)$ as algebra with respect to the convolution product).
(c) Let $F(G) \subseteq \operatorname{Fun}(G)$ be the subspace of class functions on G. Show that $F(G)$ is a commutative subalgebra of $\operatorname{Fun}(G)$ with respect to the convolution product.
(d) Let $Z(\mathbb{C}[G]) \subset \mathbb{C}[G]$ be the center of $\mathbb{C}[G]$ (i.e. it is the commutative subalgebra of $\mathbb{C}[G]$ consisting of elements $a \in \mathbb{C}[G]$ commuting with all other elements of $\mathbb{C}[G])$. Show that (3) restricts to an isomorphism $F(G) \xrightarrow{\sim} Z(\mathbb{C}[G])$ of commutative algebras.

References

[1] P. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, E. Yudovina, Introduction to Representation Theory, with historical interludes by S. Gerovitch. Student Mathematical Library 59, AMS, 2011.

