
QUANTUM GROUPS AND KNOT THEORY: WEEK 39

The basic text of this week’s lecture is [2, Chapter 2]. We will concentrate on monoidal
categories and on some additional foundational material for this subject. Unexplained
notations in this syllabus refer by default to [2]. In [1] one finds more details for this
material.

1. Universal constructions and their applications.

1.1. Universal properties. At various places in this course we (implicitly) use universal
properties of objects in categories. This is a common way to characterize an object Y
in a category D by describing the sets of morphisms in D to (or from) Y . Granted the
existence of such an object Y , this information determines Y up to unique isomorphism. It
is often elegant and e�cient to understand objects through their universal characterization.
Examples include tensor products, free algebras, universal enveloping algebras etc. It
will be useful to understand and recognize these constructions. Therefore we will pay
some attention to universal properties here and discuss some examples. There are many
variations on these constructions, but we will only discuss here the limited set of examples
which are of immediate use to us.

1.2. Natural transformations. Before we enter the discussion, let us recall the notion of
a natural transformation � : F ! G between two functors F,G : C ! D. By this we
mean a family of morphisms �V 2 HomD(F (V ), G(V )) indexed by the objects V 2 C such
that for all morphisms f 2 HomC(V,W ) we have �W � F (f) = G(f) � �V . We say that
�V : F (V ) ! G(V ) is a natural family of morphisms. If these are all isomorphisms we
speak of a natural isomorphism from F to G.

1.3. Tensor products. To illustrate the characterization of objects by universal properties
let us consider the example of the tensor product of vector spaces. Let V1, V2, . . . , Vn 2
Vectk be k-vector spaces. A tensor product of V1, V2, . . . , Vn is a pair (S,�0) consisting
of a k-vector space S and a multilinear map �0 : V1 ⇥ V2 ⇥ · · · ⇥ Vn ! S such that for
any k-vector space X and any multilinear map � : V1 ⇥ V2 ⇥ · · ·⇥ Vn ! X there exists a
unique linear map � 2 Homk(S,X) such that � factorizes as � = � � �0. This is called the
universal property of the pair (S,�0).

1.4. Representation of functors. We give an equivalent formulation for the universal prop-
erty of a pair (S,�0) as above: The pair (S,�0) has the above universal property i↵ the
natural family of linear maps �X given by

�X : Homk(S,X)
⇠�! Hom(n)

k (V1 ⇥ · · ·⇥ Vn, X)(1.1)

�! � � �0
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(where Hom(n)
k (V1 ⇥ · · · ⇥ Vn, X) denotes the vector space of k-multilinear maps from

V1 ⇥ · · ·⇥ Vn to X) consists of linear isomorphisms. Conversely, if T 2 Vectk and we are
given a natural isomorphism

(1.2)  : Homk(T, ?)
⇠�! Hom(n)

k (V1 ⇥ · · ·⇥ Vn, ?)

of functors from Vectk to Vectk we set  0 =  T (IdT ). It is then easy to see that for
all X 2 Vectk we have  X(�) = � �  0, i.e. the pair (T, 0) has the universal property
(1.1). Hence the universal property (1.1) for the pair (T, 0) is equivalent to giving the
natural isomorphism  of (1.2). One expresses (1.2) by saying that the tensor product T

of V1, V2, . . . , Vn should (co-)represent the functor Hom(n)
k (V1 ⇥ · · ·⇥ Vn, ?) from Vectk to

Vectk via a natural isomorphism  .
A tensor product of V1, V2, . . . , Vn always exists (but we will not discuss such construc-

tions here). The tensor product is determined up to unique isomorphism by the above
universal property:

Exercise (a). Prove that if (S,�0) and (T, 0) are both tensor products of V1, V2, . . . , Vn

then there exists a unique isomorphism ↵ : S ! T such that  0 = ↵ � �0.

We denote the tensor product as S = V1 ⌦ V2 ⌦ · · · ⌦ Vn, and the multilinear map �0

is denoted by �0(v1, v2 . . . , vn) = v1 ⌦ v2 ⌦ · · · ⌦ vn. In particular the following rules are
satisfied for all i:

(1.3) v1⌦ · · ·⌦(�v0i+µv00i )⌦ · · ·⌦vn = �(v1⌦ · · ·⌦v0i⌦ · · ·⌦vn)+µ(v1⌦ · · ·⌦v00i ⌦ · · ·⌦vn)

Exercise (b). Let (S,�0) be a tensor product of V1, V2 . . . , Vn. Prove that S is equal to the
linear span of the image of �0.

Exercise (c). Let U, V be finite dimensional vector space over k, and consider the bilin-
ear map U⇤ ⇥ V ! Homk(U, V ). Prove that the corresponding linear map U⇤ ⌦ V !
Homk(U, V ) is a linear isomorphism (hint: prove surjectivity, and use Exercise (b) to
conclude the desired result by a dimension count).

By the previous exercise we see that if U, V are finite dimensional then

(1.4) dim(U ⌦ V ) = dim(U) dim(V )

Moreover, if (ei)ni=1 is a basis of U and (fj)mj=1 is a basis of V then ei ⌦ fj is a basis of
U ⌦ V . The main conclusions of the above discussion are:

(1) Tensor products of k-vector spaces exist (but we did not discuss the construction).
(2) For each multilinear map � : V1⇥V2⇥· · ·⇥Vn ! X there exists a unique linear map

� : V1⌦V2⌦ · · ·⌦Vn ! X such that for all vi 2 Vi: �(v1⌦ · · ·⌦vn) = �(v1, . . . , vn).
This is the “universal characterization” of the tensor product.

(3) Equivalently, V1 ⌦ V2 ⌦ · · ·⌦ Vn represents the functor Hom(n)
k (V1 ⇥ · · ·⇥ Vn, ?).
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1.5. Associativity, commutativity and the unit of the tensor product. A typical application
of the universal property of the tensor product is the construction of natural isomorphisms
expressing associativity, commutativity of the tensor functor ⌦ : Vectk⇥Vectk ! Vectk.
In the paragraph we will discuss these matters. We will use the notion of the Cartesian
product C ⇥ D of two categories C and D. This is the category defined by Ob(C ⇥ D) =
Ob(C) ⇥ Ob(D), and HomC⇥D((A,B), (A0, B0)) = HomC(A,A0) ⇥ HomD(B,B0) with com-
position (f, g)� (f 0, g0) = (f �f 0, g �g0). We will also use the Cartesian product C1⇥ · · ·⇥Ck
of a finite collection C1, . . . , Ck of categories below.

For instance, let us consider the commutativity of the tensor functor. Let � : Vectk ⇥
Vectk ! Vectk ⇥Vectk be the functor given by �(V,W ) = (W,V ) and �(f, g) = (g, f).
Let ⌧ : ⌦ ! ⌦ � � (“the flip”) characterized by the property that ⌧(v ⌦ w) = w ⌦ v.
Indeed, the map � : V ⇥ W ! W ⌦ V defined by �(v, w) = w ⌦ v is bilinear. Hence
there exists a unique linear map ⌧V,W : V ⌦ W ! W ⌦ V such that � = ⌧V,W � �0, i.e.
⌧V,W (v ⌦ w) = w ⌦ v. The uniqueness assertion in such factorizations makes it clear that
⌧W,V ⌧V,W = idV⌦W . Hence ⌧V,W is an isomorphism. It is easy to see from this construction
that for all linear maps f : V ! V 0 and g : W ! W 0 we have ⌧V 0,W 0�(f⌦g) = (g⌦f)�⌧V,W ,
i.e. ⌧V,W : V ⌦ W ! W ⌦ V is a natural family of isomorphisms. We call this natural
isomorphism the commutativity constraint of Vectk.

Let us now consider associativity of the tensor product of vector spaces. Consider
the functors T 3, T 2,1, T 1,2 from Vect⇥3

k := Vectk ⇥ Vectk ⇥ Vectk to Vectk defined by
T 3(U, V,W ) = U ⌦ V ⌦ W , by T 2,1(U, V,W ) = (U ⌦ V ) ⌦ W , and by T 1,2(U, V,W ) =
U ⌦ (V ⌦ W ). We prove that ⇠2,1 : T 3 ⇠�! T 2,1 (characterized by ⇠2,1U,V,W (u ⌦ v ⌦ w) =

(u⌦ v)⌦w) and also ⇠1,2 : T 3 ⇠�! T 1,2 (characterized by ⇠1,2U,V,W (u⌦ v⌦w) = u⌦ (v⌦w))
are natural families of isomorphisms. The existence of these natural transformations
is easily established by the universal properties of the tensor products involved. To
show that ⇠2,1 is an isomorphism we remark that the pair ((U ⌦ V ) ⌦ W,�2,1), where

�2,1 2 Hom(2)
k (U⇥V,Homk(W, (U⌦V )⌦W )) is defined by �2,1 : (u, v) ! {w ! (u⌦v)⌦w},

gives a representation �2,1 : Homk((U ⌦ V )⌦W, ?)
⇠�! Hom(2)

k (U ⇥ V,Homk(W, ?)) of the

functor X ! Hom(2)
k (U⇥V,Homk(W,X)) from Vectk ! Vectk via �2,1(�) = ���2,1. But

there exists a natural isomorphism  : Hom(2)
k (U⇥V,Homk(W, ?))

⇠�! Hom(3)
k (U⇥V ⇥W, ?)

(the inverse transformation is given by sending a trilinear map ↵ on U ⇥ V ⇥ W to
the bilinear map mapping (u, v) to the linear map w ! ↵(u, v, w)). Hence the pair

((U ⌦ V ) ⌦ W, (�2,1)) represents the functor Hom(3)
k (U ⇥ V ⇥ W, ?). In particular, the

trilinear map �(u, v, w) = u ⌦ v ⌦ w factors through the trilinear map  (�2,1)(u, v, w) =
(u⌦v)⌦w, giving rise to the inverse of ⇠2,1U,V,W . The proof that ⇠1,2 is a natural isomorphism
is similar.

Exercise (d). Prove the above assertion for ⇠1,2.

Combined these natural isomorphisms yield a natural isomorphism aU,V,W = ⇠1,2U,V,W �
(⇠2,1(U,V,W ))

�1 : (U ⌦ V )⌦W ! U ⌦ (V ⌦W ) called the associativity constraint of Vectk.
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In addition we have natural families of isomorphisms lV : k ⌦ V
⇠�! V (given by

lV (� ⌦ v) = �v) and rV : V ⌦ k
⇠�! V (given by rV (v ⌦ �) = �v). These are called

the left and right unit constraints of Vectk.
The associativity constraints and the unit constraints satisfy the following compatibility

rules: The pentagon axiom says that for all U, V,W,X 2 Vectk

(1.5) aU,V,W⌦X � aU⌦V,W,X = (IdU ⌦aV,W,X) � aU,(V⌦W ),X � (aU,V,W ⌦ IdX)

and the triangle axiom says that for all U, V 2 Vectk one has

(1.6) rU ⌦ IdV = (IdU ⌦lV ) � aU,k,V
For the proof of these identities it su�ces to verify that both hand sides coincide on
elementary tensors, which is trivial. This gives Vectk the structure of a monoidal category
(see the next section). The commutativity constraint ⌧ on Vectk gives Vectk the structure
of a “braided monoidal category”, as it satisfies the so-called braiding axioms or hexagonal
axioms (this will be discussed in next week’s lecture).

1.6. Vectk as a monoidal category. Amonoidal category (or tensor category) (C,⌦, I, a, l, r)
consists of the following structures: A category C, a functor ⌦ : C ⇥ C ! C (called the
tensor product) with a natural isomorphism a : ⌦� (⌦⇥ IdC)

⇠�! ⌦� (IdC ⇥⌦) of functors
C ⇥ C ⇥ C ! C (called the associativity constraint), and a unit object I 2 C with natural
isomorphisms l : ⌦(I ⇥ IdC)

⇠�! IdC and r : ⌦(IdC ⇥I)
⇠�! IdC of functors C ! C (the

left and right unit constraints). These structures are subject to the pentagon axiom (1.5)
and the triangle axiom (1.6). By what we have seen above it is obvious that Vectk is an
example of a monoidal category, with it unit object being given by k.

1.7. The tensor algebra. Let V 2 Vectk. The bilinear map �k,l : V ⌦k ⇥ V ⌦l ! V ⌦(k+l)

given by �k,l(a, b) = a ⌦ b gives rise to a linear map µk,l : V ⌦k ⌦ V ⌦l ! V ⌦(k+l) which
satisfies the associativity rule µk+l,m(µk,l(a⌦ b)⌦ c) = µk,l+m(a⌦ µl,m(b⌦ c)). We use this
to define an associative k-algebra structure on

(1.7) T (V ) =
1M

n=0

V ⌦n

where we put V ⌦0 := k. Let us write i : V ! T (V ) for the linear embedding of V in T (V )
given by i(v) = v. Then T (V ) is a unital associative algebra (with unit 1 2 k) which is
graded and which is generated by i(V ) ⇢ T (V ).

If A is any unital associative algebra and ↵ : V ! A is a linear map, then we define
multilinear maps ↵n : V ⇥ · · · ⇥ V ! A by ↵n(v1, . . . , vn) = ↵(v1) . . .↵(vn) 2 A. By
the universal property of V ⌦n and the definition of T (V ) we obtain a unique linear map
� : T (V ) ! A such that ↵ = � � i. We make the important observation that since A
is associative, the map � : T (V ) ! A is in fact a homomorphism of algebras (check it!).
Hence we see that the pair (T (V ), i) has the following universal property:

Theorem 1.1. For all associative, unital algebras A and linear maps ↵ : V ! A there
exists a unique homomorphism of algebras � : T (V ) ! A such that ↵ = � � i.



QUANTUM GROUPS AND KNOT THEORY: WEEK 39 5

1.8. Adjoint functors. Functorial constructions of universal objects Y 2 D often arise in
the context of adjoint functors. Let G : D ! C be a functor. We call F : C ! D a left
adjoint of G (and G a right adjoint of F ) if there exists a natural isomorphism

(1.8) � : HomD(F (X), ?)
⇠�! HomC(X,G(?))

of functors from D to (a subcategory of) Set. In this situation for all X 2 C the pair
(Y = F (X),�0), where the morphism �0 is defined by �0 = �Y (IdY ) 2 HomC(X,G(Y )),
has the following universal property: For each object W 2 D and for each morphism
� 2 HomC(X,G(W )) there exists a unique morphism � 2 HomD(F (X),W ) such that
there is a factorization � = G(�) � �0(= �W (�)).

We see that for any X 2 C, the object F (X) 2 D represents the functor from D to
(a subcategory of) Set given by Y ! HomC(X,G(Y )). Such a functorial map producing
objects in D satisfying a universal description is very useful. Often the functor G : D ! C
is a functor forgetting some structure. For instance, if G : Vectk ! Set is the functor
associating to a vector space its underlying set, then a left adjoint F exists, and is the
functor associating to a set X the free vector space k[X] over k with basis X.

1.9. Examples. There are many important examples of such universal constructions that
will be relevant to us:

(1) The tensor algebra T (V ). Let C = Vectk, the category of k-vector spaces, and let
D = Algk, the category of (associative, unital) k-algebras. Let G : D ! C be the
forgetful functor (forget the algebra structure). By Theorem 1.1 this functor has a
left adjoint F : C ! D which assigns to a vector space V its tensor algebra T (V ).

Indeed, the algebra T (V ) comes equipped with a linear map i : V ! T (V ), and
for each linear map ↵ : V ! G(A) where A is any associative k-algebra, there
exists a unique algebra homomorphism � : T (V ) ! A such that � = G(�) � i. This
determines the pair (T (V ), i) uniquely up to unique isomorphism.

(2) The symmetric algebra S(V ). As above, but now we let D = Algcom
k be the

category of associative, unital, commutative k-algebras. It is easy to see that we
can construct S(V ) from T (V ) taking the quotient by the two-sided ideal I in
T (V ) generated by xy� yx (with x, y 2 i(V )). Indeed, if A is a unital, associative,
commutative algebra and ↵ : V ! A is any linear map, then the corresponding
algebra homomorphism � : T (V ) ! A factors through I.

(3) More generally, let us construct the universal enveloping algebra of a Lie algebra g.
Here we let C be the category of Lie algebras (over k), and D the category of unital,
associative k-algebras. The functor G : D ! C associates to an associative algebra
A the Lie algebra whose underlying vector space is A, and whose Lie bracket is
given by [X, Y ] = XY � Y X (so G keeps the Lie algebra structure, but forgets
the associative algebra structure which gave rise to the Lie bracket). It is known
that G has a left adjoint, which assigns to a Lie algebra g its “universal enveloping
algebra” U(g). It comes equipped with a Lie algebra map j : g ! U(g) such that
for all Lie algebra morphisms ↵ : g ! G(A) (where A is an associative algebra)
there exists a unique algebra morphism � : U(g) ! A such that ↵ = G(�) � j.
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Using the universal property of the tensor algebra (T (g), i) it is in fact easy to
construct U(g). Indeed, let U(g) be the quotient of T (g) by the two-sided ideal J
generated in T (g) by the elements of the form i(X)i(Y )� i(Y )i(X)� i([XY ]) (with
X, Y 2 g), and let j be the composition of i with the quotient map. If ↵ : g ! A is
a Lie algebra map then it is easy to see that the corresponding algebra morphism
�̃ : T (g) ! A factors through U(g). Hence this defines � : U(g) ! A, and it is easy
to see that the pair (U(g), j) satisfies the required universal property.

1.10. Yoneda’s lemma. In this paragraph we discuss Yoneda’s lemma, which is of fun-
damental importance for understanding natural transformations of functors, and there-
fore touches on several subjects discussed in this subsection. The class of all functors
Fun(C,D) between two categories C and D can itself be equipped with the structure of a
category in which morphisms are natural transformations. We define “Yoneda’s functor”
Yon : X ! hX from Cop to Fun(C,Set) by hX(Y ) := HomC(X, Y ) (remark: we need to
assume that HomC(X, Y ) is always a set. Such category C is called locally small).

Theorem 1.2. (Yoneda’s lemma) Given G 2 Fun(C,Set) and X 2 C, the map

HomFun(C,Set)(hX , G) ! G(X)

�! �X(IdX)

is a bijection. The inverse map sends u 2 G(X) to �u 2 HomFun(C,Set)(hX , G) defined by
�u

Y (↵) = G(↵)(u) for ↵ 2 hX(Y ) = HomC(X, Y ).

Proof. Let us check that the map � ! u = �X(IdX) is injective. Let Y 2 C and let
↵ 2 hX(Y ). Observe that ↵ = hX(↵)(IdX). Hence we have the formula

(1.9) �Y (↵) = �Y (hX(↵)(IdX)) = G(↵)(u)

showing that � = �u. The surjectivity of Yoneda’s map amounts to showing that the
collection of maps �u

Y : hX(Y ) ! G(Y ) (with X 2 C) defined as above is natural for any
u 2 G(X). This is easy and left to the reader. ⇤
Corollary 1.3. We have a natural bijection

HomFun(C,Set)(hX , hY )
⇠�! HomC(Y,X)

�! �X(IdX)

In this situation, the inverse map sends u 2 hY (X) = HomC(Y,X) to �u = Yon(u), the
natural transformation such that for all Z 2 C, �u

Z : hX(Z) ! hY (Z) is given by ↵ ! ↵�u.

An embedding of categories F : C ! D is a fully faithful functor, which means that the
maps HomC(X, Y ) to HomD(F (X), F (Y )) are bijective for all X, Y 2 C. An equivalence of
categories is an embedding F which is moreover essentially surjective, i.e. every object of
D is isomorphic to an object in the image of F .

Corollary 1.4. (Yoneda’s embedding) Yoneda’s functor Yon : Cop ! Fun(C,Set) is an
embedding. This defines an equivalence of C with the category of representable functors
from C to Set.
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2. Hopf algebras and moniodal categories

1. Hopf algebras. Let k be a field. A Hopf algebra H = (H,µ, ⌘,�, ✏, S) over k is a
bi-algebra over k in which IdH 2 Endk(H) has a (left and right) inverse S with respect to
the convolution product on Endk(H). We call S the antipode of H.

The following is a useful lemma (cf. [1, Lemma III.3.6]):

Lemma 1.12. Suppose that A is a bi-algebra and that A is generated as a k-algebra by a
set X ⇢ A. Suppose that S : A ! Aop is an algebra homomorphism such that

(1.1) (S ⇤ IdA)(x) = (IdA ⇤S)(x) = ✏(h)1

for all x 2 X. Then A is a Hopf algebra with antipode S.

Proof. If x, y 2 A are such that (1.1) holds for h = x and h = y. We show that in that
case (1.1) holds as well for h = xy. Indeed,

(S ⇤ IdA)(xy) =
X

(xy)

S((xy)0)(xy)00

=
X

(x)(y)

S(x0y0)x00y00

=
X

(x)(y)

S(y0)S(x0)x00y00

= ✏(x)
X

(y)

S(y0)y00

= ✏(xy)1

and similarly for IdA ⇤S(xy). Clearly this implies the result. ⇤
Let us now look at Example 1.11:

(b) Let G be a group and let A = k[G] with the group algebra of G equipped with
the usual bi-algebra structure. It is a Hopf algebra and the antipode is given by
S(x) = x�1 for all x 2 G. Indeed, (S ⇤ Id)(x) = xS(x) = ✏(x)1 = 1 for all x 2 G,
and similarly (Id ⇤S)(x) = xS(x) = 1.

(c) Let V be a vector space, and consider the tensor algebra T (V ) equipped with its
usual bi-algebra structure. It is a Hopf algebra with antipode S determined by
S(v) = �v for all v 2 V . Indeed, the universal property of the tensor algebra T (V )
states that there is a natural isomorphism

(1.2) Homalg(T (V ), A) ⇡ Homk(V,G(A))

for all algebras A (here G(A) denotes the underlying vector space of A). In par-
ticular, the exists a unique algebra homomorphism S : T (V ) ! T (V )op such that
S(v) = �v for all v 2 V . By the above Lemma all we need to check is that
(S ⇤ Id)(v) = (Id ⇤S)(v) = 0, which is trivial.

Jasper Stokman oud

Jasper Stokman oud

Jasper Stokman oud
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Recall (Week 39; Exercise (e)). If H = (H,µ, ⌘,�, ✏, S) is a Hopf algebra, and I ⇢ H is
an ideal such that S(I) ⇢ I, ✏(I) = 0, and �(I) ⇢ H ⌦ I + I ⌦H then H is itself a Hopf
algebra with respect to the induced structures S, ✏, and �. Indeed, it is an easy check that
the composition of the structural maps of H with the algebra homomorphisms of the form

⇡k : H⌦k ! H
⌦k

factor to define structural maps S, ✏ and � for H, satisfying the axioms
of a Hopf algebra (because H is a Hopf algebra).

This yields some important examples of Hopf algebras:

Example 1.13. Let g be a finite dimensional Lie algebra over k. We define the universal
enveloping algebra U(g) of g by

(1.3) U(g) = T (g)/I

where I is the two-sided ideal generated by xy � yx � [x, y] (with x, y 2 g). This ideal
satisfies S(I) ⇢ I (since S(xy� yx� [x, y]) = yx�xy+[x, y] 2 I), ✏(xy� yx� [x, y]) = 0,
and finally

�(xy � yx� [x, y]) = (xy � yx� [x, y])⌦+1⌦ (xy � yx� [x, y])

⇢ I ⌦ T (g) + T (g)⌦ I

This shows that the universal enveloping algebra is a Hopf algebra U(g). Notice the special
case where g is an abelian Lie algebra, i.e. [x, y] = 0 for all x, y 2 g. In this case we have
U(g) = S(g), the symmetric algebra on g.

2. Monoidal categories. We will not discuss monoidal categories and their properties in
detail at this point. The two main examples for us are Vectk and so called strict monoidal
categories (in both cases the compatibility axioms are trivially satisfied). The monoidal
category Vectk was discussed in the previous subsection.

Definition 2.14. A strict monoidal category is a monoidal category in witch the associa-
tivity constraint and the unit constraints are identities.

We remark that Vectk is not strict. Strict monoidal categories play a predominant role
because of the Coherence Theorem of Mac Lane.

Theorem 2.15. Every monoidal category is tensor equivalent to a strict monoidal category.

We will not pay anymore attention to this important theorem at this point, but in the
background it plays an important role. It explains why we may restrict our attention to
strict monoidal categories for most developments.

We have seen that if A = (A, µ, ⌘,�, ✏) is a bi-algebra then the (vector space) tensor
product V ⌦W of two A-modules V,W can be equipped in a natural way with the structure
of an A-module by putting

(2.1) a(v ⌦ w) =
X

(a)

a0v ⌦ a00w

Using the co-associativity and co-unit axioms we see easily that the usual vector space
associativity constraints and unit constraints lV : k ⌦ V

⇠�! V and rV : V ⌦ k ! V are
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A-module maps. For example, the tensor unit k of Vectk becomes an A-module by the
algebra morphism ✏ : A ! k, and we have

lV (a(1⌦ v)) = lV (
X

(a)

✏(a0)⌦ a00v)

=
X

(a)

✏(a0)a00v

= av

= alV (1⌦ v)

In the same way we can easily show that the other vector space constraints rV and aU,V,W
are A-module maps. Hence we obtain:

Theorem 2.16. Let A be a bi-algebra over k. The category A-mod naturally becomes a
monoidal subcategory of the monoidal category Vectk.

3. Braidings. The commutativity constraint ⌧ of Vectk is a braiding, since

(3.1) ⌧U⌦V,W = (⌧U,W ⌦ IdW ) � (IdU ⌦⌧V,W )

and

(3.2) ⌧U,V⌦W = (IdV ⌦⌧U,W ) � (⌧U,V ⌦ IdW )

It is involutive, which makes is not so interesting for our purposes.

Exercise (e). [2, Exercise 3.5(a)]

Exercise (f). [2, Exercise 3.5(b)]
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