QUANTUM GROUPS AND KNOT THEORY LECTURE: WEEK 41

This week we discuss braided Hopf algebras and braided monoidal categories. See [2,
Chapter 2, sections 3 and 4].

1. BRAIDED MONOIDAL CATEGORIES, BRAIDED BI-ALGEBRAS AND HoPF ALGEBRAS

1. Bi-algebras and monoidal categories. Let k be a field and let A be a k-algebra.
Recall that an A-module is an ordered pair (V,m) where V' is a k-vector space and m :
A — Endg (V) is a homomorphism of k-algebras. Often we do not write the homomorphism
m explicitly, so we simple speak of the A-module V. Given an A-module V' we define a
“scalar multiplication” map p: A®V — V by pu(a ® v) := m(a)(v). It is common to use
the shorthand notation av := p(a®wv). Notice that 1v = v for all v € V| and a(bv) = (ab)v
for all a,b € A and v € V. Conversely, if we are given a linear map u: A® V — V such
that 1v = v for all v € V' and also a(bv) = (ab)v for all a,b € A and v € V then (V,m),
with m : A — Endy (V) defined by m(a)(v) = p(a ® v) = av, is an A-module.

If V,W are A-modules and f : V — W is a k-linear map then we say that f is A-linear
(notation f € Ends(V,W)) if f(av) = af(v) for all @ € A. Alternatively we say that f is
a homomorphism of A-modules. For example the identity map idy is always an A-linear
map if V' is an A-module.

Let Mod, denote the category of A-modules, i.e. the category whose objects are A-
modules and whose morphisms are A-linear maps between A-modules. Let Modﬁ be the
full subcategory whose objects are the A-modules which are finite dimensional as a k-vector
space.

We denote Modj, by Vecty; recall that we have equipped this category with a (non-
strict) monoidal structure with tensor unit & (see week 40). Recall the notion of a bi-algebra
from week 40 (in particular week 40, Theorem 2.16):

Theorem 1.1. Let A be a bi-algebra over a field k. The category Mod 4 is a monoidal
subcategory of the monoidal category Vecty. Here the tensor unit k = (k,€) is equipped
with the A-module structure obtained from the counit ¢ : A — k, and if V,W € Mod,
then the A-action on V. ® W is defined by

(1.1) alv@w)=A(a)(v®@w) = Za'v@a"w
(a)

The converse is also true: if Mod, is a monoidal subcategory of Vecty then there
exists a unique bi-algebra structure on A such that the monoidal structure of Mod 4 arises
from the bi-algebra structure of A (but we will largely ignore this and similar “converse
statements” in this syllabus).

2. Braidings.
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2.1. Braided monoidal categories. We refer to the textbook [2, Chapter 2, section 3].

2.2. Braided Hopf algebras. Now let us assume in addition that our Hopf algebra A is
braided and has an invertible antipode S. Braided means that A has a universal R-matrix,
i.e. an invertible element R € A ® A such that for all a« € A we have

(2.1) A(a) = RA(a)R™
and such that R satisfies the braiding axioms

(2.2) (A®1ida)(R) = Ri3R23
(2.3) (ida ® A)(R) = Ri13R12

Let us write R = ) . s; ® t;. Then the braiding relations take the following form in the
Sweedler notation:

(2.5) ZSZ(X)A ZSz@t ®t”_Zs,s]®t Rt

Recall [2, Proposition 4.2, Ch. 2]:

Proposition 2.2. If A is a braided Hopf algebra with invertible antipode S then
(a) RipRi3Ry3 = RyzRi3Ry .
(b) (e ®1dA)(R) =1=(ids ® €)(R).
(c) (5®1dA)(R) R™ = (ida ® S7H)(R).
(d) R=(5®S5)(R).
Proof. (a): We compute
R1,2R1,3R2,3 = Rl,Q(A ® idA)(R)
= (A? ®id4)(R)R1
= (T X ldA)(A (059 idA)<R)R1,2
= (’7’ X idA)(RLgRQ,g)R
= Ry3R1 3R 0

where 7 denotes the flip of the two tensor legs involved.

(b): We have by the co-unit axiom:
R=(e®idy ®id)(A ®ids)(R)
= (e®idy ®ida)(R13Ra3)
= (e®idg ®id4)(R13)(e ®id4 ® ida)(Ra3)
=(1®(e®ida)(R))R
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and since R is invertible this implies that (e®id4)(R) = 1. The other identity has a similar
proof (left to the reader).

(c): By (b) and the definition of the antipode:

1®1=(p®ids)(S ®ids ®ida)(A ®id)(R)
= (;L & ldA)(S ®idg ® idA)(Rl,gRZg)
= (S®ida)(R)R

hence the invertibility of R implies the result.
Similarly we have

(ida ® p)(ida ® ids ® S™1)(ids ® AP)(R)
(ida @ p)(ida ®idg ® S™Y)(R1 2Ry 3)
R(idy ® ST (R)

proving the second identity.

(d): We combine the two identities of (c):

(S® S)(R) = (idx ® S)(S ®id4)(R)
(idy ® S)(R™Y)
(idy ® S)(idy ® S™H)(R)

R

U

2.3. The braiding of Mod 4. Let A be a braided Hopf algebra with universal R-matrix R.
For V.W € Mod, we define k-linear maps

CV7V[/2V®W—)W®V
v@w — 7(R(v®w))

Here 7 denotes the flip of the two tensor legs as usual, and the action of AQ Aon VW
is defined by (a ® b)(v @ w) = av ® bw.

Proposition 2.3. The k-linear maps cyw are A-linear isomorphims. The family cyw
defines a commutativity constraint on Mod . In other words, ¢ is a natural family of
A-module isomorphisms in the sense that for any two A-module morphisms f :V — X
and g : W =Y we have

(2.6) (9@ flevw = exy(f ®g)
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Proof. Let us check the A-linearity:
cvw(a(v @ w)) = cvw(Ala)(v @ w))
= 7(RA(a)(v @ w))
= 7(A%(a)R(v © w))
= A(a)T(R(v @ w))

= acyw (v ® w)

Because R is invertible it is clear that cyy is an isomorphism. Finally we need to show
the naturality:

(9@ flevw(v@w) = (9@ [)T(R(v @ w))
7((f @ 9)(R(v @ w)))
T(R(f(v) © g(w)))

= cxy (f(v) @ g(w))

Theorem 2.4. The commutativity constraint ¢ is a braiding of Mod 4.
Proof. In a strict monoidal category we need to show the following identities:
cuvew = (idv ® cuw)(cry @ idw)

cvevw = (cow ®@1idy)(idy @ cyw)

In the situation at hand we need to adapt these identities by inserting associativity con-
straints (as before, this can be done in a unique way). Let us write R = ). s;®t;. Observe
that the braiding axioms imply that

iv(ti) Zv]
Using this equality we have
ayyp (idv ® cow)avow(coy @ idw)agyy (u @ (v @ w))
= Z(tiv ® tjw) ® s;js;u
i3
= TU,V@W(Z s;siu @ (tiv @ tjw))
1,J
= TU’V®W(Z Siu X (t;U & t;'w))
= TU7V®W(R<U & (’U & w))
= cuyvew(u® (v @ w))
The other braiding identity is handled in a similar fashion. U
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Exercise (a). See [2, Chapter 2, Section 4.4, Exercise (a) |.
Exercise (b). See [2, Chapter 2, Section 4.4, Exercise (b) |.

2.4. The square of the antipode. Let A be a braided (or quasi triangular) Hopf algebra
with invertible antipode S and universal R-matrix R = ). s; ® t;. We define

(2.8) U—ZS )si € A

Theorem 2.5. (see [1, Proposition VIII.4.1]) The element u is invertible with inverse
(2.9) w=) s

The square of the antipode is the inner automorphism of A obtained by conjugating with
w: we have S?*(a) = uau™" for all a € A.

Proof. We first show that S?(a)u = ua for all a € A. Using the commutativity constraint
we have:

(210) Z SZ‘CL/ ® tia" ® a/// = Z CL//Si ® a’tl- ® CLH/
i,(a) i,(a)

We apply to this identity the linear map A A® A — A defined by (a®@b®c) — S?(c)S(b)a
to obtain:

(2.11) ZSQ(QIH) S(t;a")sia" = ZSQ " )a"s;

or

(2’12) ZS( //S( /// S a = 25«2 /// )a//Si
i,(a) i,(a)

Using the defining property of S this gives

(2.13) Z S(e(a”)1)S(t;)sia’ = Z S%(a")S(t;)e(d)s;
i,(a)

i,(a)

and by co-unitality and the fact that S is an anti—algebra isomorphism we get

(2.14) ZS sa_ZS2

v=> .57 (yl)xl Then

uv—ZuS (yi)x; ZSyZuxl
—ZS yi)S(t;)s;x; = ZS JYi)s;x; =1
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where the last equality follows from the observation that 1® 1 = RR™! = ZZ ;i 8iTi @ LY.
Now apply the linear map A ® A — A defined by a ® b — S(b)a to this identity.
Finally we use R~ = (S ®id4)(R) to obtain the explicit expression for u . O

Corollary 2.6. The element D = uS(u) = S(u)u is central in A.

Proof. For all a € A we have uS™'(a) = S(a)u. Now apply S to this identity to get
aS(u) = S(u)S?*(a). By the previous theorem we have aS(u) = S(u)uau™, or a(S(u)u) =
(S(u)u)a. Thus S(u)u is central. In particular, S(u)u = u(S(u)u)u™" = uS(u), as was
claimed. 0

The element u and the central element D play an important role in the theory of ribbon
algebras. We discuss some useful properties of these elements:

Proposition 2.7. (see [1, Proposition VIIL.4.5]).

(a) e(u) = 1.

(b) A(u) = (RoaR) u®@wu) = (u@u)(Ren R)™

(c) A(S(u)) = (R2lR) '(S(u) ® S(u)) = (S(u )®5(U))(32,1R)71
(d) A(D) = (R31R)*(D® D) = (D ® D)(Ry1R) >

Proof. (a): By Proposition 2.2(b) it follows that

= (Y elst) = e((e®ida)(R)) = 1

(b): This is a rather involved computation. We want to show that

First observe that 7 applied to (2.1) yields the relation A(a) = Ry1A%(a)R; 1. Hence the
element Ry R € A ® A commutes with A(A). This proves the first equality of (2.15).
Moreover, using this property of Ry ;R we see that

u)(Ro 1 R) = ZA si)Ro 1 R
— Z S ® S)(A%(t;))A(s;)Roa R
- Z(s ® S)(A”(t:)) Roa RA(s:)

Let us define a right action o of AR AR A® Aon A® A as follows: If XY, Z € A A
we define

(2.16) Xo(Y®Z)=(5S®92)XY
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(this is indeed a right action because S ® S is an anti-algebra homomorphism of A ® A).
Then it is clear that we can rewrite the preceding expression for A(u)(Rs1R) in terms of
this action as follows:

(217) A(U) (RQJR) = R271 < (RLQ(A & Agp)(R))
First we compute (A ® A%)(R) using (2.4),(2.5):

(A®AP)(R)=(A® idA@A)TZS(Z 5 @ A(t;))

= (A® idA®A)(Z 5i5; Dt; D 1)

,J
_ZA )Rt @t

= Z SiSj ® SES| ® titk ® tjtl
i?j7k7l

= R1,3R1,4R2,3R2,4

= R1,3R2,3R1,4RQ,4

Next we list some useful identities for the diamond operation. These are simple reformu-
lations of Proposition 2.2 and of the definition of the element wu:

(a®@1)R)oRiy=a®1Vae A
(1®b)Rep)oRas=10bVbe A
(I1®b)oRiz3=ubVbe A
(a®@1l)oRyy=a®@uVaec A

For instance, the first of these is proved as follows using Proposition 2.2(c):

(@®1)R)o Riy =Y asis; @ S(t;)t;
2
= (ida ® S)()_asis; @ S~ (ta)t;)
i,
= (ids ® S)(a®1)
=a®]1
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and the others have similar proofs. Using all this we compute:

A(u)(RpaR) = (S @ S)(A%(t;)) Ry 1 RA(s;)

= Ro1 0 (R12(A®AP)(R))
= Ro10(RipRi 3Ry 3R 4Ry 4)
= Rz,1 <& (32,331,331,231,432,4)
= (R2,1 <& R2,3) ¢ (Rl,3R1,2Rl,4Rz,4)
=(1®1)o(RigRi2R14R24)
=(u®1l)o(RiaR14Ro4)
= (u@1)R) o (Ry4Rsy)
=(u®1)o Ryy
=uQRuU
which is what we had set out to prove.
(c): Using that S : A — A% is a bi-algebra homomorphism and using Proposition
2.2(d) we see that this identity arises from the preceding one by applying 7o (S ® S):
S(u) @ S(u) =7((S®9)(uu))
=7((S® S)(R21R)A(u))
= T(AP(5(u)) (S © S)(R)(S © 5)(Ra,1))
= 7(A”(S(u))(RR2,))
= A(S(w)(R21 R)

\]

(d): Take the product of identities (b) and (c). O
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