
QUANTUM GROUPS AND KNOT THEORY LECTURE: WEEK 41

This week we discuss braided Hopf algebras and braided monoidal categories. See [2,
Chapter 2, sections 3 and 4].

1. braided monoidal categories, braided bi-algebras and Hopf algebras

1. Bi-algebras and monoidal categories. Let k be a field and let A be a k-algebra.
Recall that an A-module is an ordered pair (V,m) where V is a k-vector space and m :
A→ Endk(V ) is a homomorphism of k-algebras. Often we do not write the homomorphism
m explicitly, so we simple speak of the A-module V . Given an A-module V we define a
“scalar multiplication” map µ : A⊗ V → V by µ(a⊗ v) := m(a)(v). It is common to use
the shorthand notation av := µ(a⊗v). Notice that 1v = v for all v ∈ V , and a(bv) = (ab)v
for all a, b ∈ A and v ∈ V . Conversely, if we are given a linear map µ : A ⊗ V → V such
that 1v = v for all v ∈ V and also a(bv) = (ab)v for all a, b ∈ A and v ∈ V then (V,m),
with m : A→ Endk(V ) defined by m(a)(v) = µ(a⊗ v) = av, is an A-module.

If V,W are A-modules and f : V → W is a k-linear map then we say that f is A-linear
(notation f ∈ EndA(V,W )) if f(av) = af(v) for all a ∈ A. Alternatively we say that f is
a homomorphism of A-modules. For example the identity map idV is always an A-linear
map if V is an A-module.

Let ModA denote the category of A-modules, i.e. the category whose objects are A-
modules and whose morphisms are A-linear maps between A-modules. Let Modf

A be the
full subcategory whose objects are the A-modules which are finite dimensional as a k-vector
space.

We denote Modk by Vectk; recall that we have equipped this category with a (non-
strict) monoidal structure with tensor unit k (see week 40). Recall the notion of a bi-algebra
from week 40 (in particular week 40, Theorem 2.16):

Theorem 1.1. Let A be a bi-algebra over a field k. The category ModA is a monoidal
subcategory of the monoidal category Vectk. Here the tensor unit k = (k, ε) is equipped
with the A-module structure obtained from the counit ε : A → k, and if V,W ∈ ModA

then the A-action on V ⊗W is defined by

(1.1) a(v ⊗ w) = ∆(a)(v ⊗ w) =
∑
(a)

a′v ⊗ a′′w

The converse is also true: if ModA is a monoidal subcategory of Vectk then there
exists a unique bi-algebra structure on A such that the monoidal structure of ModA arises
from the bi-algebra structure of A (but we will largely ignore this and similar “converse
statements” in this syllabus).

2. Braidings.
1
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2.1. Braided monoidal categories. We refer to the textbook [2, Chapter 2, section 3].

2.2. Braided Hopf algebras. Now let us assume in addition that our Hopf algebra A is
braided and has an invertible antipode S. Braided means that A has a universal R-matrix,
i.e. an invertible element R ∈ A⊗ A such that for all a ∈ A we have

(2.1) ∆op(a) = R∆(a)R−1

and such that R satisfies the braiding axioms

(∆⊗ idA)(R) = R1,3R2,3(2.2)

(idA ⊗∆)(R) = R1,3R1,2(2.3)

Let us write R =
∑

i si ⊗ ti. Then the braiding relations take the following form in the
Sweedler notation: ∑

i

∆(si)⊗ ti =
∑
i,(si)

s′i ⊗ s′′i ⊗ ti =
∑
i,j

si ⊗ sj ⊗ titj(2.4)

∑
i

si ⊗∆(ti) =
∑
i,(ti)

si ⊗ t′i ⊗ t′′i =
∑
i,j

sisj ⊗ tj ⊗ ti(2.5)

Recall [2, Proposition 4.2, Ch. 2]:

Proposition 2.2. If A is a braided Hopf algebra with invertible antipode S then

(a) R1,2R1,3R2,3 = R2,3R1,3R1,2.
(b) (ε⊗ idA)(R) = 1 = (idA ⊗ ε)(R).
(c) (S ⊗ idA)(R) = R−1 = (idA ⊗ S−1)(R).
(d) R = (S ⊗ S)(R).

Proof. (a): We compute

R1,2R1,3R2,3 = R1,2(∆⊗ idA)(R)

= (∆op ⊗ idA)(R)R1,2

= (τ ⊗ idA)(∆⊗ idA)(R)R1,2

= (τ ⊗ idA)(R1,3R2,3)R1,2

= R2,3R1,3R1,2

where τ denotes the flip of the two tensor legs involved.

(b): We have by the co-unit axiom:

R = (ε⊗ idA ⊗ idA)(∆⊗ idA)(R)

= (ε⊗ idA ⊗ idA)(R1,3R2,3)

= (ε⊗ idA ⊗ idA)(R1,3)(ε⊗ idA ⊗ idA)(R2,3)

= (1⊗ (ε⊗ idA)(R))R
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and since R is invertible this implies that (ε⊗ idA)(R) = 1. The other identity has a similar
proof (left to the reader).

(c): By (b) and the definition of the antipode:

1⊗ 1 = (µ⊗ idA)(S ⊗ idA ⊗ idA)(∆⊗ idA)(R)

= (µ⊗ idA)(S ⊗ idA ⊗ idA)(R1,3R2,3)

= (S ⊗ idA)(R)R

hence the invertibility of R implies the result.
Similarly we have

1⊗ 1 = (idA ⊗ µ)(idA ⊗ idA ⊗ S−1)(idA ⊗∆op)(R)

= (idA ⊗ µ)(idA ⊗ idA ⊗ S−1)(R1,2R1,3)

= R(idA ⊗ S−1)(R)

proving the second identity.

(d): We combine the two identities of (c):

(S ⊗ S)(R) = (idA ⊗ S)(S ⊗ idA)(R)

= (idA ⊗ S)(R−1)

= (idA ⊗ S)(idA ⊗ S−1)(R)

= R

�

2.3. The braiding of ModA. Let A be a braided Hopf algebra with universal R-matrix R.
For V,W ∈ModA we define k-linear maps

cV,W : V ⊗W → W ⊗ V
v ⊗ w → τ(R(v ⊗ w))

Here τ denotes the flip of the two tensor legs as usual, and the action of A⊗A on V ⊗W
is defined by (a⊗ b)(v ⊗ w) = av ⊗ bw.

Proposition 2.3. The k-linear maps cV,W are A-linear isomorphims. The family cV,W
defines a commutativity constraint on ModA. In other words, c is a natural family of
A-module isomorphisms in the sense that for any two A-module morphisms f : V → X
and g : W → Y we have

(2.6) (g ⊗ f)cV,W = cX,Y (f ⊗ g)
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Proof. Let us check the A-linearity:

cV,W (a(v ⊗ w)) = cV,W (∆(a)(v ⊗ w))

= τ(R∆(a)(v ⊗ w))

= τ(∆op(a)R(v ⊗ w))

= ∆(a)τ(R(v ⊗ w))

= acV,W (v ⊗ w)

Because R is invertible it is clear that cV,W is an isomorphism. Finally we need to show
the naturality:

(g ⊗ f)cV,W (v ⊗ w) = (g ⊗ f)τ(R(v ⊗ w))

= τ((f ⊗ g)(R(v ⊗ w)))

= τ(R(f(v)⊗ g(w)))

= cX,Y (f(v)⊗ g(w))

�

Theorem 2.4. The commutativity constraint c is a braiding of ModA.

Proof. In a strict monoidal category we need to show the following identities:

cU,V⊗W = (idV ⊗ cU,W )(cU,V ⊗ idW )

cU⊗V,W = (cU,W ⊗ idV )(idU ⊗ cV,W )

In the situation at hand we need to adapt these identities by inserting associativity con-
straints (as before, this can be done in a unique way). Let us write R =

∑
i si⊗ti. Observe

that the braiding axioms imply that

(2.7)
∑
i,(ti)

si ⊗ t′i ⊗ t′′i =
∑
i,j

sisj ⊗ tj ⊗ ti

Using this equality we have

a−1V,W,U(idV ⊗ cU,W )aV,U,W (cU,V ⊗ idW )a−1U,V,W (u⊗ (v ⊗ w))

=
∑
i,j

(tiv ⊗ tjw)⊗ sjsiu

= τU,V⊗W (
∑
i,j

sjsiu⊗ (tiv ⊗ tjw))

= τU,V⊗W (
∑
i

siu⊗ (t′iv ⊗ t′′iw))

= τU,V⊗W (R(u⊗ (v ⊗ w))

= cU,V⊗W (u⊗ (v ⊗ w))

The other braiding identity is handled in a similar fashion. �
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Exercise (a). See [2, Chapter 2, Section 4.4, Exercise (a) ].

Exercise (b). See [2, Chapter 2, Section 4.4, Exercise (b) ].

2.4. The square of the antipode. Let A be a braided (or quasi triangular) Hopf algebra
with invertible antipode S and universal R-matrix R =

∑
i si ⊗ ti. We define

(2.8) u :=
∑
i

S(ti)si ∈ A

Theorem 2.5. (see [1, Proposition VIII.4.1]) The element u is invertible with inverse

(2.9) u−1 =
∑
i

S−1(ti)S(si)

The square of the antipode is the inner automorphism of A obtained by conjugating with
u: we have S2(a) = uau−1 for all a ∈ A.

Proof. We first show that S2(a)u = ua for all a ∈ A. Using the commutativity constraint
we have:

(2.10)
∑
i,(a)

sia
′ ⊗ tia′′ ⊗ a′′′ =

∑
i,(a)

a′′si ⊗ a′ti ⊗ a′′′

We apply to this identity the linear map A⊗A⊗A→ A defined by (a⊗b⊗c)→ S2(c)S(b)a
to obtain:

(2.11)
∑
i,(a)

S2(a′′′)S(tia
′′)sia

′ =
∑
i,(a)

S2(a′′′)S(a′ti)a
′′si

or

(2.12)
∑
i,(a)

S(a′′S(a′′′))S(ti)sia
′ =

∑
i,(a)

S2(a′′′)S(ti)S(a′)a′′si

Using the defining property of S this gives

(2.13)
∑
i,(a)

S(ε(a′′)1)S(ti)sia
′ =

∑
i,(a)

S2(a′′)S(ti)ε(a
′)si

and by co-unitality and the fact that S is an anti-algebra isomorphism we get

(2.14)
∑
i

S(ti)sia =
∑
i

S2(a)S(ti)si

or S2(a)u = ua. It remains to show that u is invertible. Let R−1 =
∑

i xi ⊗ yi and put
v =

∑
i S
−1(yi)xi. Then

uv =
∑
i

uS−1(yi)xi =
∑
i

S(yi)uxi

=
∑
i,j

S(yi)S(tj)sjxi =
∑
i,j

S(tjyi)sjxi = 1
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where the last equality follows from the observation that 1⊗ 1 = RR−1 =
∑

i,j sjxi ⊗ tjyi.
Now apply the linear map A⊗ A→ A defined by a⊗ b→ S(b)a to this identity.

Finally we use R−1 = (S ⊗ idA)(R) to obtain the explicit expression for u−1. �

Corollary 2.6. The element D = uS(u) = S(u)u is central in A.

Proof. For all a ∈ A we have uS−1(a) = S(a)u. Now apply S to this identity to get
aS(u) = S(u)S2(a). By the previous theorem we have aS(u) = S(u)uau−1, or a(S(u)u) =
(S(u)u)a. Thus S(u)u is central. In particular, S(u)u = u(S(u)u)u−1 = uS(u), as was
claimed. �

The element u and the central element D play an important role in the theory of ribbon
algebras. We discuss some useful properties of these elements:

Proposition 2.7. (see [1, Proposition VIII.4.5]).

(a) ε(u) = 1.
(b) ∆(u) = (R2,1R)−1(u⊗ u) = (u⊗ u)(R2,1R)−1.
(c) ∆(S(u)) = (R2,1R)−1(S(u)⊗ S(u)) = (S(u)⊗ S(u))(R2,1R)−1.
(d) ∆(D) = (R2,1R)−2(D ⊗D) = (D ⊗D)(R2,1R)−2.

Proof. (a): By Proposition 2.2(b) it follows that

ε(u) =
∑
i

ε(S(ti))ε(si) =
∑
i

ε(ti)ε(si)

= ε(
∑
i

ε(si)ti) = ε((ε⊗ idA)(R)) = 1

(b): This is a rather involved computation. We want to show that

(2.15) (R2,1R)∆(u) = ∆(u)(R2,1R) = u⊗ u

First observe that τ applied to (2.1) yields the relation ∆(a) = R2,1∆
op(a)R−12,1. Hence the

element R2,1R ∈ A ⊗ A commutes with ∆(A). This proves the first equality of (2.15).
Moreover, using this property of R2,1R we see that

∆(u)(R2,1R) =
∑
i

∆(S(ti))∆(si)R2,1R

=
∑
i

(S ⊗ S)(∆op(ti))∆(si)R2,1R

=
∑
i

(S ⊗ S)(∆op(ti))R2,1R∆(si)

Let us define a right action � of A⊗ A⊗ A⊗ A on A⊗ A as follows: If X, Y, Z ∈ A⊗ A
we define

(2.16) X � (Y ⊗ Z) := (S ⊗ S)(Z)XY
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(this is indeed a right action because S ⊗ S is an anti-algebra homomorphism of A ⊗ A).
Then it is clear that we can rewrite the preceding expression for ∆(u)(R2,1R) in terms of
this action as follows:

(2.17) ∆(u)(R2,1R) = R2,1 � (R1,2(∆⊗∆op)(R))

First we compute (∆⊗∆op)(R) using (2.4),(2.5):

(∆⊗∆op)(R) = (∆⊗ idA⊗A)τ2,3(
∑
i

si ⊗∆(ti))

= (∆⊗ idA⊗A)(
∑
i,j

sisj ⊗ ti ⊗ tj)

=
∑
i,j

∆(si)∆(sj)⊗ ti ⊗ tj

=
∑
i,j,k,l

sisj ⊗ sksl ⊗ titk ⊗ tjtl

= R1,3R1,4R2,3R2,4

= R1,3R2,3R1,4R2,4

Next we list some useful identities for the diamond operation. These are simple reformu-
lations of Proposition 2.2 and of the definition of the element u:

((a⊗ 1)R) �R1,4 = a⊗ 1 ∀a ∈ A
((1⊗ b)R2,1) �R2,3 = 1⊗ b ∀b ∈ A

(1⊗ b) �R1,3 = u⊗ b ∀b ∈ A
(a⊗ 1) �R2,4 = a⊗ u ∀a ∈ A

For instance, the first of these is proved as follows using Proposition 2.2(c):

((a⊗ 1)R) �R1,4 =
∑
i,j

asisj ⊗ S(tj)ti

= (idA ⊗ S)(
∑
i,j

asisj ⊗ S−1(ti)tj)

= (idA ⊗ S)(a⊗ 1)

= a⊗ 1
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and the others have similar proofs. Using all this we compute:

∆(u)(R2,1R) =
∑
i

(S ⊗ S)(∆op(ti))R2,1R∆(si)

= R2,1 � (R1,2(∆⊗∆op)(R))

= R2,1 � (R1,2R1,3R2,3R1,4R2,4)

= R2,1 � (R2,3R1,3R1,2R1,4R2,4)

= (R2,1 �R2,3) � (R1,3R1,2R1,4R2,4)

= (1⊗ 1) � (R1,3R1,2R1,4R2,4)

= (u⊗ 1) � (R1,2R1,4R2,4)

= ((u⊗ 1)R) � (R1,4R2,4)

= (u⊗ 1) �R2,4

= u⊗ u
which is what we had set out to prove.

(c): Using that S : A → Aop,coop is a bi-algebra homomorphism and using Proposition
2.2(d) we see that this identity arises from the preceding one by applying τ ◦ (S ⊗ S):

S(u)⊗ S(u) = τ((S ⊗ S)(u⊗ u))

= τ((S ⊗ S)(R2,1R)∆(u))

= τ(∆op(S(u))(S ⊗ S)(R)(S ⊗ S)(R2,1))

= τ(∆op(S(u))(RR2,1))

= ∆(S(u))(R2,1R)

(d): Take the product of identities (b) and (c). �
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