QUANTUM GROUPS AND KNOT THEORY LECTURE: WEEK 41

This week we discuss braided Hopf algebras and braided monoidal categories. See [2, Chapter 2, sections 3 and 4].

1. BRAIDED MONOIDAL CATEGORIES, BRAIDED BI-ALGEBRAS AND Hopf ALGEBRAS

1. Bi-algebras and monoidal categories. Let k be a field and let A be a k-algebra. Recall that an A-module is an ordered pair (V, m) where V is a k-vector space and m : $A \rightarrow \operatorname{End}_{k}(V)$ is a homomorphism of k-algebras. Often we do not write the homomorphism m explicitly, so we simple speak of the A-module V. Given an A-module V we define a "scalar multiplication" map $\mu: A \otimes V \rightarrow V$ by $\mu(a \otimes v):=m(a)(v)$. It is common to use the shorthand notation $a v:=\mu(a \otimes v)$. Notice that $1 v=v$ for all $v \in V$, and $a(b v)=(a b) v$ for all $a, b \in A$ and $v \in V$. Conversely, if we are given a linear map $\mu: A \otimes V \rightarrow V$ such that $1 v=v$ for all $v \in V$ and also $a(b v)=(a b) v$ for all $a, b \in A$ and $v \in V$ then (V, m), with $m: A \rightarrow \operatorname{End}_{k}(V)$ defined by $m(a)(v)=\mu(a \otimes v)=a v$, is an A-module.

If V, W are A-modules and $f: V \rightarrow W$ is a k-linear map then we say that f is A-linear (notation $f \in \operatorname{End}_{A}(V, W)$) if $f(a v)=a f(v)$ for all $a \in A$. Alternatively we say that f is a homomorphism of A-modules. For example the identity map id_{V} is always an A-linear map if V is an A-module.

Let Mod_{A} denote the category of A-modules, i.e. the category whose objects are A modules and whose morphisms are A-linear maps between A-modules. Let $\operatorname{Mod}_{A}^{f}$ be the full subcategory whose objects are the A-modules which are finite dimensional as a k-vector space.

We denote Mod_{k} by $\operatorname{Vect}_{\mathbf{k}}$; recall that we have equipped this category with a (nonstrict) monoidal structure with tensor unit k (see week 40). Recall the notion of a bi-algebra from week 40 (in particular week 40, Theorem 2.16):

Theorem 1.1. Let A be a bi-algebra over a field k. The category Mod_{A} is a monoidal subcategory of the monoidal category Vect $_{k}$. Here the tensor unit $k=(k, \epsilon)$ is equipped with the A-module structure obtained from the counit $\epsilon: A \rightarrow k$, and if $V, W \in \operatorname{Mod}_{A}$ then the A-action on $V \otimes W$ is defined by

$$
\begin{equation*}
a(v \otimes w)=\Delta(a)(v \otimes w)=\sum_{(a)} a^{\prime} v \otimes a^{\prime \prime} w \tag{1.1}
\end{equation*}
$$

The converse is also true: if Mod_{A} is a monoidal subcategory of Vect $_{\mathbf{k}}$ then there exists a unique bi-algebra structure on A such that the monoidal structure of Mod_{A} arises from the bi-algebra structure of A (but we will largely ignore this and similar "converse statements" in this syllabus).
2. Braidings.
2.1. Braided monoidal categories. We refer to the textbook [2, Chapter 2, section 3].
2.2. Braided Hopf algebras. Now let us assume in addition that our Hopf algebra A is braided and has an invertible antipode S. Braided means that A has a universal R-matrix, i.e. an invertible element $R \in A \otimes A$ such that for all $a \in A$ we have

$$
\begin{equation*}
\Delta^{o p}(a)=R \Delta(a) R^{-1} \tag{2.1}
\end{equation*}
$$

and such that R satisfies the braiding axioms

$$
\begin{align*}
\left(\Delta \otimes \operatorname{id}_{A}\right)(R) & =R_{1,3} R_{2,3} \tag{2.2}\\
\left(\operatorname{id}_{A} \otimes \Delta\right)(R) & =R_{1,3} R_{1,2} \tag{2.3}
\end{align*}
$$

Let us write $R=\sum_{i} s_{i} \otimes t_{i}$. Then the braiding relations take the following form in the Sweedler notation:

$$
\begin{align*}
& \sum_{i} \Delta\left(s_{i}\right) \otimes t_{i}=\sum_{i,\left(s_{i}\right)} s_{i}^{\prime} \otimes s_{i}^{\prime \prime} \otimes t_{i}=\sum_{i, j} s_{i} \otimes s_{j} \otimes t_{i} t_{j} \tag{2.4}\\
& \sum_{i} s_{i} \otimes \Delta\left(t_{i}\right)=\sum_{i,\left(t_{i}\right)} s_{i} \otimes t_{i}^{\prime} \otimes t_{i}^{\prime \prime}=\sum_{i, j} s_{i} s_{j} \otimes t_{j} \otimes t_{i} \tag{2.5}
\end{align*}
$$

Recall [2, Proposition 4.2, Ch. 2]:
Proposition 2.2. If A is a braided Hopf algebra with invertible antipode S then
(a) $R_{1,2} R_{1,3} R_{2,3}=R_{2,3} R_{1,3} R_{1,2}$.
(b) $\left(\epsilon \otimes \mathrm{id}_{A}\right)(R)=1=\left(\mathrm{id}_{A} \otimes \epsilon\right)(R)$.
(c) $\left(S \otimes \operatorname{id}_{A}\right)(R)=R^{-1}=\left(\mathrm{id}_{A} \otimes S^{-1}\right)(R)$.
(d) $R=(S \otimes S)(R)$.

Proof. (a): We compute

$$
\begin{aligned}
R_{1,2} R_{1,3} R_{2,3} & =R_{1,2}\left(\Delta \otimes \operatorname{id}_{A}\right)(R) \\
& =\left(\Delta^{o p} \otimes \operatorname{id}_{A}\right)(R) R_{1,2} \\
& =\left(\tau \otimes \operatorname{id}_{A}\right)\left(\Delta \otimes \operatorname{id}_{A}\right)(R) R_{1,2} \\
& =\left(\tau \otimes \operatorname{id}_{A}\right)\left(R_{1,3} R_{2,3}\right) R_{1,2} \\
& =R_{2,3} R_{1,3} R_{1,2}
\end{aligned}
$$

where τ denotes the flip of the two tensor legs involved.
(b): We have by the co-unit axiom:

$$
\begin{aligned}
R & =\left(\epsilon \otimes \operatorname{id}_{A} \otimes \operatorname{id}_{A}\right)\left(\Delta \otimes \operatorname{id}_{A}\right)(R) \\
& =\left(\epsilon \otimes \mathrm{id}_{A} \otimes \mathrm{id}_{A}\right)\left(R_{1,3} R_{2,3}\right) \\
& =\left(\epsilon \otimes \mathrm{id}_{A} \otimes \mathrm{id}_{A}\right)\left(R_{1,3}\right)\left(\epsilon \otimes \operatorname{id}_{A} \otimes \operatorname{id}_{A}\right)\left(R_{2,3}\right) \\
& =\left(1 \otimes\left(\epsilon \otimes \operatorname{id}_{A}\right)(R)\right) R
\end{aligned}
$$

and since R is invertible this implies that $\left(\epsilon \otimes \mathrm{id}_{A}\right)(R)=1$. The other identity has a similar proof (left to the reader).
(c): By (b) and the definition of the antipode:

$$
\begin{aligned}
1 \otimes 1 & =\left(\mu \otimes \operatorname{id}_{A}\right)\left(S \otimes \operatorname{id}_{A} \otimes \operatorname{id}_{A}\right)\left(\Delta \otimes \operatorname{id}_{A}\right)(R) \\
& =\left(\mu \otimes \operatorname{id}_{A}\right)\left(S \otimes \operatorname{id}_{A} \otimes \operatorname{id}_{A}\right)\left(R_{1,3} R_{2,3}\right) \\
& =\left(S \otimes \operatorname{id}_{A}\right)(R) R
\end{aligned}
$$

hence the invertibility of R implies the result.
Similarly we have

$$
\begin{aligned}
1 \otimes 1 & =\left(\mathrm{id}_{A} \otimes \mu\right)\left(\mathrm{id}_{A} \otimes \mathrm{id}_{A} \otimes S^{-1}\right)\left(\mathrm{id}_{A} \otimes \Delta^{o p}\right)(R) \\
& =\left(\mathrm{id}_{A} \otimes \mu\right)\left(\mathrm{id}_{A} \otimes \mathrm{id}_{A} \otimes S^{-1}\right)\left(R_{1,2} R_{1,3}\right) \\
& =R\left(\mathrm{id}_{A} \otimes S^{-1}\right)(R)
\end{aligned}
$$

proving the second identity.
(d): We combine the two identities of (c):

$$
\begin{aligned}
(S \otimes S)(R) & =\left(\operatorname{id}_{A} \otimes S\right)\left(S \otimes \operatorname{id}_{A}\right)(R) \\
& =\left(\operatorname{id}_{A} \otimes S\right)\left(R^{-1}\right) \\
& =\left(\operatorname{id}_{A} \otimes S\right)\left(\mathrm{id}_{A} \otimes S^{-1}\right)(R) \\
& =R
\end{aligned}
$$

2.3. The braiding of Mod_{A}. Let A be a braided Hopf algebra with universal R-matrix R. For $V, W \in \operatorname{Mod}_{A}$ we define k-linear maps

$$
\begin{aligned}
c_{V, W}: V \otimes W & \rightarrow W \otimes V \\
v \otimes w & \rightarrow \tau(R(v \otimes w))
\end{aligned}
$$

Here τ denotes the flip of the two tensor legs as usual, and the action of $A \otimes A$ on $V \otimes W$ is defined by $(a \otimes b)(v \otimes w)=a v \otimes b w$.

Proposition 2.3. The k-linear maps $c_{V, W}$ are A-linear isomorphims. The family $c_{V, W}$ defines a commutativity constraint on Mod_{A}. In other words, c is a natural family of A-module isomorphisms in the sense that for any two A-module morphisms $f: V \rightarrow X$ and $g: W \rightarrow Y$ we have

$$
\begin{equation*}
(g \otimes f) c_{V, W}=c_{X, Y}(f \otimes g) \tag{2.6}
\end{equation*}
$$

Proof. Let us check the A-linearity:

$$
\begin{aligned}
c_{V, W}(a(v \otimes w)) & =c_{V, W}(\Delta(a)(v \otimes w)) \\
& =\tau(R \Delta(a)(v \otimes w)) \\
& =\tau\left(\Delta^{o p}(a) R(v \otimes w)\right) \\
& =\Delta(a) \tau(R(v \otimes w)) \\
& =a c_{V, W}(v \otimes w)
\end{aligned}
$$

Because R is invertible it is clear that $c_{V, W}$ is an isomorphism. Finally we need to show the naturality:

$$
\begin{aligned}
(g \otimes f) c_{V, W}(v \otimes w) & =(g \otimes f) \tau(R(v \otimes w)) \\
& =\tau((f \otimes g)(R(v \otimes w))) \\
& =\tau(R(f(v) \otimes g(w))) \\
& =c_{X, Y}(f(v) \otimes g(w))
\end{aligned}
$$

Theorem 2.4. The commutativity constraint c is a braiding of Mod_{A}.
Proof. In a strict monoidal category we need to show the following identities:

$$
\begin{aligned}
& c_{U, V \otimes W}=\left(\mathrm{id}_{V} \otimes c_{U, W}\right)\left(c_{U, V} \otimes \mathrm{id}_{W}\right) \\
& c_{U \otimes V, W}=\left(c_{U, W} \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{U} \otimes c_{V, W}\right)
\end{aligned}
$$

In the situation at hand we need to adapt these identities by inserting associativity constraints (as before, this can be done in a unique way). Let us write $R=\sum_{i} s_{i} \otimes t_{i}$. Observe that the braiding axioms imply that

$$
\begin{equation*}
\sum_{i,\left(t_{i}\right)} s_{i} \otimes t_{i}^{\prime} \otimes t_{i}^{\prime \prime}=\sum_{i, j} s_{i} s_{j} \otimes t_{j} \otimes t_{i} \tag{2.7}
\end{equation*}
$$

Using this equality we have

$$
\begin{aligned}
a_{V, W, U}^{-1}\left(\mathrm{id}_{V} \otimes c_{U, W}\right) a_{V, U, W}\left(c_{U, V} \otimes \operatorname{id}_{W}\right) & a_{U, V, W}^{-1}(u \otimes(v \otimes w)) \\
& =\sum_{i, j}\left(t_{i} v \otimes t_{j} w\right) \otimes s_{j} s_{i} u \\
& =\tau_{U, V \otimes W}\left(\sum_{i, j} s_{j} s_{i} u \otimes\left(t_{i} v \otimes t_{j} w\right)\right) \\
& =\tau_{U, V \otimes W}\left(\sum_{i} s_{i} u \otimes\left(t_{i}^{\prime} v \otimes t_{i}^{\prime \prime} w\right)\right) \\
& =\tau_{U, V \otimes W}(R(u \otimes(v \otimes w)) \\
& =c_{U, V \otimes W}(u \otimes(v \otimes w))
\end{aligned}
$$

The other braiding identity is handled in a similar fashion.

Exercise (a). See [2, Chapter 2, Section 4.4, Exercise (a)].
Exercise (b). See [2, Chapter 2, Section 4.4, Exercise (b)].
2.4. The square of the antipode. Let A be a braided (or quasi triangular) Hopf algebra with invertible antipode S and universal R-matrix $R=\sum_{i} s_{i} \otimes t_{i}$. We define

$$
\begin{equation*}
u:=\sum_{i} S\left(t_{i}\right) s_{i} \in A \tag{2.8}
\end{equation*}
$$

Theorem 2.5. (see [1, Proposition VIII.4.1]) The element u is invertible with inverse

$$
\begin{equation*}
u^{-1}=\sum_{i} S^{-1}\left(t_{i}\right) S\left(s_{i}\right) \tag{2.9}
\end{equation*}
$$

The square of the antipode is the inner automorphism of A obtained by conjugating with u : we have $S^{2}(a)=u a u^{-1}$ for all $a \in A$.

Proof. We first show that $S^{2}(a) u=u a$ for all $a \in A$. Using the commutativity constraint we have:

$$
\begin{equation*}
\sum_{i,(a)} s_{i} a^{\prime} \otimes t_{i} a^{\prime \prime} \otimes a^{\prime \prime \prime}=\sum_{i,(a)} a^{\prime \prime} s_{i} \otimes a^{\prime} t_{i} \otimes a^{\prime \prime \prime} \tag{2.10}
\end{equation*}
$$

We apply to this identity the linear map $A \otimes A \otimes A \rightarrow A$ defined by $(a \otimes b \otimes c) \rightarrow S^{2}(c) S(b) a$ to obtain:

$$
\begin{equation*}
\sum_{i,(a)} S^{2}\left(a^{\prime \prime \prime}\right) S\left(t_{i} a^{\prime \prime}\right) s_{i} a^{\prime}=\sum_{i,(a)} S^{2}\left(a^{\prime \prime \prime}\right) S\left(a^{\prime} t_{i}\right) a^{\prime \prime} s_{i} \tag{2.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{i,(a)} S\left(a^{\prime \prime} S\left(a^{\prime \prime \prime}\right)\right) S\left(t_{i}\right) s_{i} a^{\prime}=\sum_{i,(a)} S^{2}\left(a^{\prime \prime \prime}\right) S\left(t_{i}\right) S\left(a^{\prime}\right) a^{\prime \prime} s_{i} \tag{2.12}
\end{equation*}
$$

Using the defining property of S this gives

$$
\begin{equation*}
\sum_{i,(a)} S\left(\epsilon\left(a^{\prime \prime}\right) 1\right) S\left(t_{i}\right) s_{i} a^{\prime}=\sum_{i,(a)} S^{2}\left(a^{\prime \prime}\right) S\left(t_{i}\right) \epsilon\left(a^{\prime}\right) s_{i} \tag{2.13}
\end{equation*}
$$

and by co-unitality and the fact that S is an anti-algebra isomorphism we get

$$
\begin{equation*}
\sum_{i} S\left(t_{i}\right) s_{i} a=\sum_{i} S^{2}(a) S\left(t_{i}\right) s_{i} \tag{2.14}
\end{equation*}
$$

or $S^{2}(a) u=u a$. It remains to show that u is invertible. Let $R^{-1}=\sum_{i} x_{i} \otimes y_{i}$ and put $v=\sum_{i} S^{-1}\left(y_{i}\right) x_{i}$. Then

$$
\begin{aligned}
u v & =\sum_{i} u S^{-1}\left(y_{i}\right) x_{i}=\sum_{i} S\left(y_{i}\right) u x_{i} \\
& =\sum_{i, j} S\left(y_{i}\right) S\left(t_{j}\right) s_{j} x_{i}=\sum_{i, j} S\left(t_{j} y_{i}\right) s_{j} x_{i}=1
\end{aligned}
$$

where the last equality follows from the observation that $1 \otimes 1=R R^{-1}=\sum_{i, j} s_{j} x_{i} \otimes t_{j} y_{i}$. Now apply the linear map $A \otimes A \rightarrow A$ defined by $a \otimes b \rightarrow S(b) a$ to this identity.

Finally we use $R^{-1}=\left(S \otimes \operatorname{id}_{A}\right)(R)$ to obtain the explicit expression for u^{-1}.
Corollary 2.6. The element $D=u S(u)=S(u) u$ is central in A.
Proof. For all $a \in A$ we have $u S^{-1}(a)=S(a) u$. Now apply S to this identity to get $a S(u)=S(u) S^{2}(a)$. By the previous theorem we have $a S(u)=S(u) u a u^{-1}$, or $a(S(u) u)=$ $(S(u) u) a$. Thus $S(u) u$ is central. In particular, $S(u) u=u(S(u) u) u^{-1}=u S(u)$, as was claimed.

The element u and the central element D play an important role in the theory of ribbon algebras. We discuss some useful properties of these elements:

Proposition 2.7. (see [1, Proposition VIII.4.5]).
(a) $\epsilon(u)=1$.
(b) $\Delta(u)=\left(R_{2,1} R\right)^{-1}(u \otimes u)=(u \otimes u)\left(R_{2,1} R\right)^{-1}$.
(c) $\Delta(S(u))=\left(R_{2,1} R\right)^{-1}(S(u) \otimes S(u))=(S(u) \otimes S(u))\left(R_{2,1} R\right)^{-1}$.
(d) $\Delta(D)=\left(R_{2,1} R\right)^{-2}(D \otimes D)=(D \otimes D)\left(R_{2,1} R\right)^{-2}$.

Proof. (a): By Proposition 2.2(b) it follows that

$$
\begin{aligned}
\epsilon(u) & =\sum_{i} \epsilon\left(S\left(t_{i}\right)\right) \epsilon\left(s_{i}\right)=\sum_{i} \epsilon\left(t_{i}\right) \epsilon\left(s_{i}\right) \\
& =\epsilon\left(\sum_{i} \epsilon\left(s_{i}\right) t_{i}\right)=\epsilon\left(\left(\epsilon \otimes \operatorname{id}_{A}\right)(R)\right)=1
\end{aligned}
$$

(b): This is a rather involved computation. We want to show that

$$
\begin{equation*}
\left(R_{2,1} R\right) \Delta(u)=\Delta(u)\left(R_{2,1} R\right)=u \otimes u \tag{2.15}
\end{equation*}
$$

First observe that τ applied to (2.1) yields the relation $\Delta(a)=R_{2,1} \Delta^{o p}(a) R_{2,1}^{-1}$. Hence the element $R_{2,1} R \in A \otimes A$ commutes with $\Delta(A)$. This proves the first equality of (2.15). Moreover, using this property of $R_{2,1} R$ we see that

$$
\begin{aligned}
\Delta(u)\left(R_{2,1} R\right) & =\sum_{i} \Delta\left(S\left(t_{i}\right)\right) \Delta\left(s_{i}\right) R_{2,1} R \\
& =\sum_{i}(S \otimes S)\left(\Delta^{o p}\left(t_{i}\right)\right) \Delta\left(s_{i}\right) R_{2,1} R \\
& =\sum_{i}(S \otimes S)\left(\Delta^{o p}\left(t_{i}\right)\right) R_{2,1} R \Delta\left(s_{i}\right)
\end{aligned}
$$

Let us define a right action \diamond of $A \otimes A \otimes A \otimes A$ on $A \otimes A$ as follows: If $X, Y, Z \in A \otimes A$ we define

$$
\begin{equation*}
X \diamond(Y \otimes Z):=(S \otimes S)(Z) X Y \tag{2.16}
\end{equation*}
$$

(this is indeed a right action because $S \otimes S$ is an anti-algebra homomorphism of $A \otimes A$). Then it is clear that we can rewrite the preceding expression for $\Delta(u)\left(R_{2,1} R\right)$ in terms of this action as follows:

$$
\begin{equation*}
\Delta(u)\left(R_{2,1} R\right)=R_{2,1} \diamond\left(R_{1,2}\left(\Delta \otimes \Delta^{o p}\right)(R)\right) \tag{2.17}
\end{equation*}
$$

First we compute $\left(\Delta \otimes \Delta^{o p}\right)(R)$ using (2.4),(2.5):

$$
\begin{aligned}
\left(\Delta \otimes \Delta^{o p}\right)(R) & =\left(\Delta \otimes \operatorname{id}_{A \otimes A}\right) \tau_{2,3}\left(\sum_{i} s_{i} \otimes \Delta\left(t_{i}\right)\right) \\
& =\left(\Delta \otimes \operatorname{id}_{A \otimes A}\right)\left(\sum_{i, j} s_{i} s_{j} \otimes t_{i} \otimes t_{j}\right) \\
& =\sum_{i, j} \Delta\left(s_{i}\right) \Delta\left(s_{j}\right) \otimes t_{i} \otimes t_{j} \\
& =\sum_{i, j, k, l} s_{i} s_{j} \otimes s_{k} s_{l} \otimes t_{i} t_{k} \otimes t_{j} t_{l} \\
& =R_{1,3} R_{1,4} R_{2,3} R_{2,4} \\
& =R_{1,3} R_{2,3} R_{1,4} R_{2,4}
\end{aligned}
$$

Next we list some useful identities for the diamond operation. These are simple reformulations of Proposition 2.2 and of the definition of the element u :

$$
\begin{aligned}
& ((a \otimes 1) R) \diamond R_{1,4}=a \otimes 1 \forall a \in A \\
& \left((1 \otimes b) R_{2,1}\right) \diamond R_{2,3}=1 \otimes b \forall b \in A \\
& (1 \otimes b) \diamond R_{1,3}=u \otimes b \forall b \in A \\
& (a \otimes 1) \diamond R_{2,4}=a \otimes u \forall a \in A
\end{aligned}
$$

For instance, the first of these is proved as follows using Proposition 2.2(c):

$$
\begin{aligned}
((a \otimes 1) R) \diamond R_{1,4} & =\sum_{i, j} a s_{i} s_{j} \otimes S\left(t_{j}\right) t_{i} \\
& =\left(\operatorname{id}_{A} \otimes S\right)\left(\sum_{i, j} a s_{i} s_{j} \otimes S^{-1}\left(t_{i}\right) t_{j}\right) \\
& =\left(\operatorname{id}_{A} \otimes S\right)(a \otimes 1) \\
& =a \otimes 1
\end{aligned}
$$

and the others have similar proofs. Using all this we compute:

$$
\begin{aligned}
\Delta(u)\left(R_{2,1} R\right) & =\sum_{i}(S \otimes S)\left(\Delta^{o p}\left(t_{i}\right)\right) R_{2,1} R \Delta\left(s_{i}\right) \\
& =R_{2,1} \diamond\left(R_{1,2}\left(\Delta \otimes \Delta^{o p}\right)(R)\right) \\
& =R_{2,1} \diamond\left(R_{1,2} R_{1,3} R_{2,3} R_{1,4} R_{2,4}\right) \\
& =R_{2,1} \diamond\left(R_{2,3} R_{1,3} R_{1,2} R_{1,4} R_{2,4}\right) \\
& =\left(R_{2,1} \diamond R_{2,3} \diamond\left(R_{1,3} R_{1,2} R_{1,4} R_{2,4}\right)\right. \\
& =(1 \otimes 1) \diamond\left(R_{1,3} R_{1,2} R_{1,4} R_{2,4}\right) \\
& =(u \otimes 1) \diamond\left(R_{1,2} R_{1,4} R_{2,4}\right) \\
& =((u \otimes 1) R) \diamond\left(R_{1,4} R_{2,4}\right) \\
& =(u \otimes 1) \diamond R_{2,4} \\
& =u \otimes u
\end{aligned}
$$

which is what we had set out to prove.
(c): Using that $S: A \rightarrow A^{o p, c o o p}$ is a bi-algebra homomorphism and using Proposition $2.2(\mathrm{~d})$ we see that this identity arises from the preceding one by applying $\tau \circ(S \otimes S)$:

$$
\begin{aligned}
S(u) \otimes S(u) & =\tau((S \otimes S)(u \otimes u)) \\
& =\tau\left((S \otimes S)\left(R_{2,1} R\right) \Delta(u)\right) \\
& =\tau\left(\Delta^{o p}(S(u))(S \otimes S)(R)(S \otimes S)\left(R_{2,1}\right)\right) \\
& =\tau\left(\Delta^{o p}(S(u))\left(R R_{2,1}\right)\right) \\
& =\Delta(S(u))\left(R_{2,1} R\right)
\end{aligned}
$$

(d): Take the product of identities (b) and (c).

References

[1] C. Kassel, Quantum groups, Springer GTM 155 (1995)
[2] C. Kassel, M. Rosso, and V. Turaev, Quantum groups and knot invariants, Panoramas et syntheses 5, Soc. Math. de France (1997)

