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Chapter 1

Introduction

1.1 Background

The UNU/IIST Course DesCaRTeS is a series of lectures on SDL, its use in software
development, and selected research topics of the DesCaRTeS Programme. These notes are
the accompanying lecture notes.

The UNU/IIST research project DesCaRTeS is concerned with more rigorous approaches
to software development in telecommunications. It concentrates on formal techniques, and
tools in support of them, to complement SDL (Specification and Description Language),
which is an ITU recommendation widely used for specification and design in the telecom-
munications field [59].

The project addresses research topics aimed at enhancing the possibilities for ad-
vanced analysis of behavioural properties of systems described in SDL, thus enabling
better grounded validation of initial specifications, and at turning SDL into a full-fledged
design calculus, thus enabling design steps made using SDL to be justified by formal
verification. The research topics of the DesCaRTeS Programme include:

e a process algebraic underpinning of the time related features in SDL;

e an operational semantics of SDL that permits to link up with logics that are intended
to express the behavioural properties of systems;

e logics that are suitable to express behavioural properties of systems described in
SDL;

e tools that permit to check whether properties expressed in such a logic hold for a
particular system described in SDL;

e models for a more abstract semantics of SDL that match the concepts around which
SDL has been set up well;

e asemantics of SDL, based on such a model, that is more abstract than its operational
semantics;

e rules of reasoning for SDL which are sound with respect to this semantics.



4 Background

The achievements on these topics so far have been reported on in [18, 19, 20, 23, 24, 43].

In [18], a new semantics of an interesting subset of the specification language SDL is
given. The strength of the chosen subset, called ¢SDL, is its close connection with full
SDL, despite its dramatically reduced size. All behavioural aspects of SDL are covered
by ¢SDL, including communication via delaying channels, timing, and process creation.

In [19], process creation is left out and only communication without delaying chan-
nels is considered. Thus we could concentrate on the process algebraic underpinning of
SDL’s most distinctive features: communication and timing. A small example is given to
illustrate that the process algebra semantics can be used for analysis of time dependent
behavioural aspects of systems specified using this subset of ¢SDL.

In [20] we propose a process algebra model of asynchronous dataflow networks as a
semantic foundation for SDL. We extend a model proposed earlier for a theory captur-
ing the basic algebraic properties of asynchronous dataflow networks. Thus we obtain a
model that is close to the concepts concerning storage, communication and timing around
which SDL has been set up and that is well suited as the underlying model for an abstract
semantics of ¢SDL. Such a semantics is expected to be a suitable starting point for de-
vising rules of reasoning for ¢SDL. Besides, this report provides convincing mathematical
arguments in favor of the choice of concepts around which SDL has been set up.

In [23], we propose a revision of the semantics of ¢SDL presented in [18]. The revision
includes the correction of earlier mistakes and technical changes — such as the removal
of unbounded non-determinism — which facilitate the generation of transition systems
from pSDL descriptions. The latter is needed to enable validation of initial specifications.
For this semantics, an extension of discrete relative time process algebra is used which
combines various features. The axioms and operational semantics of this extension is
presented as well.

In [24] a timed frame model for the discrete time process algebra that has been used
for the process algebra semantics of pSDL is given, but with recursion restricted to linear
recursion. Timed frames [14] are transition systems of the kind that generally underlies
models for the theories that can supply a semantic basis for languages aimed at pro-
gramming such as SDL. The timed frame model allows us to check whether a discrete
time process specified using linear recursion satisfies a property expressed in TFL [15],
a standard first-order logic proposed for timed frames. The choice for linear recursion
is motivated by the observation that linearization is the main technique for generating
transition systems from process definitions.

Duration Calculus (DC) [52] is intended for the expression and refinement of the
real-time requirements for systems. The systems concerned usually have one or more
embedded software components. Languages aimed at programming, and rules of reasoning
to match, should subsequently be used for the stepwise development of these software
components. A promising approach to elaborate the semantic connections between DC
and such languages is to start with investigating the connection of DC with timed frames.
In [43] this connection is studied. The connection can relatively easy be lifted to timed
processes as described in languages such as SDL.
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Organization of the lecture notes 5

1.2 Organization of the lecture notes

Design calculi, also known as formal methods, allow to express descriptions of software
systems formally, i.e. in a mathematically precise way, and to calculate properties of single
descriptions and relations between pairs of them. In last section of this chapter, the nature
of formal descriptions and the importance of the ability to calculate properties of them
are explained. The widespread resistance to use design calculi is discussed as well. The
rest of this section describes the remaining chapters in broad outline.

In Chapter 2, we give an overview of an interesting subset of the specification language
SDL. This subset does not cover structural concepts such as blocks and channels. The
strength of the chosen subset, called ¢SDL, is its close connection with full SDL, despite
its dramatically reduced size. For example, apart from the data type definitions, SDL
specifications can be transformed to ¢SDL specifications.

In Chapter 3, the basic elements of MSCs (Message Sequence Charts) are introduced
and their semantics is outlined by means of examples. MSCs allow simple properties of
systems described using SDL to be represented graphically.

In Chapter 4, an overview is given of how SDL is currently used and what comple-
menting tools and techniques are available. We also describe in broad outline the current
possibilities for validation of SDL specifications.

In Chapter 5, we present the axioms and a structured operational semantics of ACP”
(Algebra of Communicating Processes with abstraction) and its extension to a discrete
time process algebra with relative timing. Additionally the extensions to processes with
propositional signals and processes interacting with states in the discrete time setting are
presented in brief. Thus the process algebra underlying the process algebra semantics
given for pSDL is largely covered.

In Chapter 6, a detailed presentation is given of a semantics of SDL without delaying
channels. This semantics describes the meaning of constructs in this language precisely
using process algebra. Leaving out delaying channels simplifies the presentation. Besides,
the process algebra semantics of full pSDL presented in [18] made clear that ¢SDL system
definitions can always be transformed to a semantically equivalent one in ¢SDL without
delaying channels.

In Chapter 7, we give a survey of simple timed frame algebra, its extension with signal
insertion, and a first-order logic for signal inserted timed frames. Signal inserted timed
frames are used for an operational semantics of ¢SDL. The logic for signal inserted timed
frames is meant to be taken as the starting point for devising a logic that is suitable to
express behavioural properties of systems described in ¢SDL. We also present a timed
frame model for discrete relative time process algebra with finite linear recursion that
is isomorphic to the standard model. This allows us to check whether a discrete time
process specified using finite linear recursion satisfies a property expressed in TFL.

In Chapter 8, the truth of duration calculus formulae in timed frames is studied. This
issue is relevant to the problem of verifying whether the implementation of a software
system obeys certain real-time requirements expressed for it. Two approaches are pre-
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6 Design calculi in theory and practice

sented and related: (1) extracting interpretations of state variables from paths in frames,
and (2) relating duration calculus formulae directly to paths in frames. The embedding
of duration calculus into TFL is considered as well.

In Chapter 9, dataflow networks are introduced as objects that represent systems as
networks of nodes that consume and produce data and channels between them to pass the
data through. A process algebra model for asynchronous dataflow networks is presented.

In Chapter 10, we adapt the process algebra model of the previous chapter and add
some standard atomic components to obtain a model that is close to the concepts around
which SDL has been set up and well suited as the underlying model for an abstract
semantics of @SDL.

1.3 Design calculi in theory and practice

Design calculi, also known as formal methods, allow to express descriptions of software
systems formally, i.e. in a mathematically precise way, and to calculate properties of
single descriptions and relations between pairs of them. Theoretical computer science has
provided the foundations of practically useful design calculi, such as RAISE (Rigorous
Approach to Industrial Software Engineering) [34, 35]. It has been demonstrated that
the software development process and the resulting product can be improved by using
such design calculi. In particular, design calculi facilitate the development of reliable,
adaptable and reusable software systems. Nevertheless, there is still much resistance to
use them.

First of all, the nature of formal descriptions, and the importance of the ability to
calculate properties of them and relations between them, is explained. Thereafter, the
existing resistance to use design calculi, and a policy to take away this resistance, is
discussed. The policy concerned is pursued at UNU/IIST and at a few places in Europe.

A design calculus offers the possibility to start the actual development of a software
system by creating a formal specification for it. A formal specification of a software system
is a formal description that:

e arises before the software system is constructed by a suitable abstraction from an
application;

e conveys all that we may legitimately expect from the software system to be con-
structed;

e serves as a frame of reference against which the correctness of the eventual software
system can be established.

A design calculus provides means to calculate properties of the formal specification and
thus to validate it, i.e. to check whether it meets the requirements for the system.

The result of subsequent design steps, also known as refinements, can be recorded
in more concrete formal descriptions, containing more implementation details. For each
design step, we are able to calculate relations between the old description and the new
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Design calculi in theory and practice 7

one and thus to verify the design step, i.e. to check whether the properties represented
by the old description are preserved in the new one. After a number of steps, a formal
description arises that can be automatically implemented — whether this implementation
is efficient depends upon the design decisions made.

Summarizing, a typical sequence of stages in development using a design calculus is:

e specification;
e validation of the specification;
e design steps consisting of:

— refinement of a previous description,
— verification of the refinement;

e implementation of the final description.

It is easy to see that in this way we can ascertain, in an early stage of development and
to a high degree of precision, that the software system to be developed will match the
user’s requirements; and that we can establish, while developing the software system, a
high degree of certainty that it will satisfy its specification, i.e. that it will be reliable.
Besides, all details relevant to the adaptation of the system and the re-use of parts of the
system or their design are recorded in a fully precise way.

Why is there so much resistance to use design calculi? The following remarks indicate
some of the main reasons in various areas including telecommunications. The informal,
in particular graphically based, techniques used in existing practice, are intuitively com-
prehensible to their user community. This is much less the case with most existing design
calculi. Besides, introducing design calculi amounts to revolutionizing industrial practice.
The conclusion is that acceptance requires a smooth evolution from techniques used in
existing practice towards full-fledged design calculi.

The following is an example from existing practice. In the telecommunications field,
SDL (Specification and Description Language) [11, 46] is widely used for specification and
design. It originated from an informal graphical description technique already commonly
used in the telecommunications field at the time of the first computer controlled telephone
switches. SDL is currently used for describing structure and behaviour of generally com-
plex telecommunication systems, including switching systems, services and protocols, at
different levels of abstraction. In the telecommunications field, it has survived description
techniques that are more design calculus oriented, such as LOTOS (Language of Tem-
poral Ordering Specification) [56], and it will presumably still be used for a long time.
Figure 1.1 gives a description, using SDL’s graphical representation, of the controller of
a simple telephone answering machine.

Given the complementing tools and techniques (see further Section 4.2), it is not
surprising that current practice in development using SDL differs from the one described
above. A typical sequence of stages in development using SDL is:

e specification;
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Figure 1.1: SDL description of a telephone answering machine controller

e limited validation of the specification;

e design steps consisting of refinement of a previous description;
e implementation of the final description;

e limited validation of the implementation.

This current practice is not in accordance with the needs in the development of telecom-
munications software using SDL. The intrinsic highly reactive and distributed nature of
the systems developed in telecommunications demands more advanced validation of initial
specifications than currently possible. Besides, the increasing complexity is becoming a
compelling reason to use, at least to a certain extent, formal verification to justify design
steps. This means that, since SDL will presumably not be replaced for a long time in
the telecommunications field, it is desirable to complement SDL with techniques which
would turn it into a full-fledged design calculus. Prerequisites for this are a dramatically
simplified version of SDL and an adequate semantics for it. Only after that possibilities
for advanced analysis can be elaborated and proof rules for formal verification devised.

Work in this area is, for example, being done at KPN Research and Utrecht University
in the Netherlands and at UNU/IIST in Macau. At UNU/IIST we have the research project
DesCaRTeS. To get an impression of what is involved here, see the list of research topics
given in Section 1.1.

Similar research projects, with respect to other techniques used in existing practice,
are currently carried at a few places in Europe. This is an important development. Soft-
ware engineering depends for its success on applying relevant computing science theory.
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Design calculi in theory and practice 9

For a long time, computing science was studying issues that were further and further
ahead of the actual practical problems instead of, for example, trying to understand the
concepts used in practice. The times are changing and here is an important area for
academic and industrial research institutes in industrialized and developing countries to
work together on the narrowing of gaps between theory and practice that are impeding
software engineering to mature.
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Chapter 2
Survey of Flat SDL

2.1 Introduction

SDL is used for describing structure and behaviour of systems. Structuring in SDL means
dividing the system into a number of blocks, each of which consists of processes. Processes
in the same block communicate with each other via signal routes. For communication
between processes in different blocks, blocks are linked by (possibly delaying) channels,
and these channels are connected to signal routes in the blocks concerned. The semantic
force of these structuring facilities is very limited.

In this chapter, we give an overview of an interesting subset of the specification lan-
guage SDL. This subset does not cover structural concepts such as blocks and channels.
The strength of the chosen subset, called ¢SDL, is its close connection with full SDL,
despite its dramatically reduced size. For example, apart from the data type definitions,
SDL specifications can be transformed to ¢SDL specifications.

©SDL is roughly a subset of Basic SDL.! The following simplifications have been made:

e blocks are removed and consequently channels and signal routes are merged — making
channel to route connections obsolete;

e variables are treated more liberal: all variables are revealed and they can be viewed
freely;

e timer setting is regarded as just a special use of signals;

e timer setting is based on discrete time.

Besides, ¢SDL does not deal with the specification of abstract data types. An algebraic
specification of all data types used in a ¢SDL specification is assumed as well as an
initial algebra semantics for it. The pre-defined data types Boolean and Natural, with the
obvious interpretation, should be included; and besides, Pld and Time should be included
as copies of Natural.

! This subset is called ¢SDL, where ¢ stands for flat, as it does not cover the structural aspects of
SDL. Throughout these lecture notes, we will write SDL for the version of SDL defined in [59], the ITU-T
Recommendation Z.100 of 1992.

11



12 Introduction

We decided to focus in ¢SDL on the behavioural aspects of SDL. We did so for the
following two reasons. Firstly, the structural aspects of SDL are mostly of a static nature
and therefore not very relevant from a semantic point of view. Secondly, the part of SDL
that deals with the specification of abstract data types is well understood — besides, it
can easily be isolated and treated as a parameter.? For practical reasons, we also chose
not to include initially procedures, syntypes with a range condition and process types
with a bound on the number of instances that may exist simultaneously. Similarly, the
any expression is omitted as well. Services are not supported by ¢SDL for the following
reasons: the semantics of services is hard to understand, ETSI forbids for this reason
their use in European telecommunication standards (see [55]), and the SDL community
currently discusses its usefulness (see [44]).

Apart from the data type definitions, SDL system definitions can be transformed to
©SDL system definitions, provided that no use is made of facilities that are not included
initially. The transformation concerned has, apart from some minor adaptations, already
been given. The first part of the transformation is the mapping for the shorthand notations
of SDL which is given informally in the ITU-T Recommendation Z.100 [59] and defined
in a fully precise manner in its Annex F.2 [61]. The second and final part is essentially
the mapping eztract-dict defined in its Annex F.3 [62].

In the telecommunications field, SDL is increasingly used for describing generally com-
plex telecommunications systems, including switching systems, services and protocols, at
different levels of abstraction — from initial specification till implementation. Initial spec-
ification of systems is done with the intention to analyse the behavioural properties of
these systems and thus to validate the specification. There is also a growing need to
verify whether the properties represented by one specification are preserved in another,
more concrete, specification and thus to justify design steps. However, SDL nor the tools
and techniques that are used in conjunction with SDL provide appropriate support for
validation of SDL specifications and verification of design steps made using SDL. The
main reason is that the semantics of SDL according to the ITU recommendation [59] is
at some points inadequate for advanced validation and formal verification. In particular,
the semantics of time related features, such as timers and channels with delay, is insuffi-
ciently precise. Moreover, the semantics is at some other points unnecessarily complex.
Consequently, rules of logical reasoning, indispensable for formal verification, have not
yet been developed and most existing analysis tools, e.g. GEODE [1] and SDT [65], offer
at best a limited kind of model checking for validation.

Prerequisites for advanced validation and formal verification is a dramatically sim-
plified version of SDL and an adequate semantics for it. Only after that possibilities for
advanced validation can be elaborated and proof rules for formal verification devised. The
language ©SDL, and the semantics for it presented in [18], are primarily intended to come

2The following is also worth noticing: (1) ETSI discourages the use of abstract data types other than
the pre-defined ones in European telecommunication standards (see [55]); (2) ASN.1 [57] is widely used for
data type specification in the telecommunications field, and there is an emerging ITU-T Recommendation,
Z.105, for combining SDL and ASN.1 (see [64]).
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Overview of flat SDL 13

up to these prerequisites.

The structure of this chapter is as follows. First, we give an overview of ¢SDL (Sec-
tion 2.2). After that, we give an example to illustrate how time related behavioural
aspects of systems can be specified in ¢SDL (Section 2.3). Finally, we summarize the
syntactic differences between ¢SDL and SDL (Section 2.4).

2.2 Overview of flat SDL

This section gives an overview of ¢SDL. Recall that ¢SDL covers all behavioural aspects
of SDL, but structural concepts such as blocks are not covered. Its syntax is described
by means of production rules in the form of an extended BNF grammar (the extensions
are explained in Appendix 6.7.1). The meaning of the language constructs of the various
forms distinguished by these production rules is explained informally. Some peculiar
details, inherited from full SDL, are left out to improve the comprehensibility of the
overview. These details are, however, made mention of in Chapter 6, where a process
algebra semantics of SDL is presented.

2.2.1 Systems

First of all, the ¢SDL view of a system is explained in broad outline.

Basically, a system consists of processes which communicate with each other and the
environment by sending and receiving signals via signal routes. A process proceeds in
parallel with the other processes in the system and communicates with these processes
in an asynchronous manner. This means that a process sending a signal does not wait
until the receiving process consumes it, but it proceeds immediately. A process may also
use local variables for storage of values. A variable is associated with a value that may
change by assigning a new value to it. A variable can only be assigned new values by the
process to which it is local, but it may be viewed by other processes. Processes can be
distinguished by unique addresses, called pid values (process identification values), which
they get with their creation.

A signal can be sent from the environment to a process, from a process to the envi-
ronment or from one process to another process. A signal may carry values to be passed
from the sender to the receiver; on consumption of the signal, these values are assigned to
local variables of the receiver. A signal route is a unidirectional communication path for
sending signals from the environment to a process, from one process to another process or
from a process to the environment. A signal route may contain a channel® A channel is
able to buffer an arbitrary amount of signals and let signals pass through it with a delay.
If a signal is sent to a process via a signal route that does not contain a channel, it will
be instantaneously delivered to that process. Otherwise it may be delivered with a delay.

3The original channels have been merged with signal routes, but the term channel is reused in pSDL
(see also Section 2.4).
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14 Overview of flat SDL

Signals always leave a channel in the order in which they have entered it. A channel may
be contained in more than one signal route.

Syntax:

<system definition> ::=
system <system nm> ; { <definition>}* endsystem ;

<definition> ::=
dcl <variable nm> <sort nm>;
| signal <signal nm> [ ( <sort nm> {, <sort nm>}*)1];
| channel <channel nm>;

| signalroute <signalroute nm>
from { <process nm> | env} to {<process nm> | env}
with <signal nm> {, <signal nm>}* [ delayed by <channel nm>];
| process <process nm> ( <natural ground expr>);
[ fpar <variable nm> {, <variable nm>}*;]
start ; <transition> {<state def>}*
endprocess;

A system definition consists of definitions of the types of processes present in the
system, the local variables used by the processes for storage of values, the types of signals
used by the processes for communication, the signal routes via which the signals are
conveyed and the channels contained in signal routes to delay signals.

A variable definition dclv T'; defines a variable v that may be assigned values of sort
T.

A signal definition signal s( T4, . . ., T},); defines a type of signals s of which the instances
carry values of the sorts Ty,..., T,,. If (T4, ...,T,) is absent, the signals of type s do not
carry any value.

A channel definition channel ¢ defines a channel that delays signals that pass through
it.

A signal route definition signalroute r from X; to X5 with sy, . . . ,s,; defines a signal route
r that delivers without a delay signals sent by processes of type X; to processes of type
Xs, for signals of the types s;,...,s,. The process types X; and X, are called the sender
type of r and the receiver type of r, respectively. A signal route from the environment
can be defined by replacing from X; by from env. A signal route to the environment can
be defined analogously. A signal route delivering signals with an arbitrary delay can be
defined by adding delayed by ¢, where c is the channel causing the delay.

A process definition process X (k); fpar vy, . . . ,v,; start; tr dy ... d, endprocess; defines a
type of processes X of which k instances will be created during the start-up of the system.
On creation of a process of type X after the start-up, the creating process passes values
to it which are assigned to the local variables vy, ..., v,. If fparwvy,...,v, is absent, no
values are passed on creation. The process body start; tr d; ... d, describes the behaviour
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Overview of flat SDL 15

of the processes of type X in terms of states and transitions (see further Section 2.2.2).
Each process will start by making the transition ¢r, called its start transition, to enter
one of its states. The state definitions dy, ..., d, define all the states in which the process
may come while it proceeds.

We give a very small example to illustrate how systems are specified in ¢SDL. The
example concerns a simple repeater, i.e. a system that simply passes on what it receives.
The system, called Repeater, consists of only one process, viz. rep, which communicates
signals s with the environment via the signal routes fromenv and toenv.

system Repeater
signal s;

signalroute fromenv from env to rep with s;
signalroute toenv from rep to env with s;

process rep (1);
start;
nextstate pass;
state pass;
input s;
output s via toenv;
nextstate pass;
endprocess;
endsystem;

2.2.2 Process behaviours

First of all, the ¢SDL view of a process is briefly explained.

To begin with, a process is either in a state or making a transition to another state.
Besides, when a signal arrives at a process, it is put into the unique input queue associated
with the process until it is consumed by the process. The states of a process are the points
in its behaviour where a signal may be consumed. However, a state may have signals that
have to be saved, i.e. withhold from being consumed in that state. The signal consumed
in a state of a process is the first one in its input queue that has not to be saved for that
state. If there is no signal to consume, the process waits until there is a signal to consume.
So if a process is in a state, it is either waiting to consume a signal or consuming a signal.

A transition from a state of a process is initiated by the consumption of a signal, unless
it is a spontaneous transition. The start transition is not initiated by the consumption of
a signal either. A transition is made by performing certain actions: signals may be sent,
variables may be assigned new values, new processes may be created and timers may be
set and reset. A transition may at some stage also take one of a number of branches, but it
will eventually come to an end and bring the process to a next state or to its termination.

A timer can be set which sends at its expiration time a signal to the process setting it.
A timer is identified with the type and carried values of the signal it sends on expiration.
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Thus an active timer can be set to a new time or reset; if this is done between the sending
of the signal noticing expiration and its consumption, the signal is removed from the
input queue concerned. A timer is de-activated when it is reset or the signal it sends on
expiration is consumed.

Syntax:

<state def> ::=
state <state nm>;
- . * . .- . *
[save <signal nm> {, <signal nm>}* ;] {<transition alt>}

<transition alt> ::=
{<input guard> |input none;} <transition>

<input guard> ::=
input <signal nm> [ ( <variable nm> {, <variable nm>1}*)];

<transition> ::=
{<action>}* {nextstate <state nm> | stop | <decision>} ;

<action> =
output <signal nm> [ ( <expr> {, <expr>}*)]
[to <pid expr>] via <signalroute nm> {, <signalroute nm>}*;
| set ( <time expr>, <signal nm> [ ( <expr> {, <expr>}*)]);
| reset ( <signal nm> [ (<expr> {, <expr>}*)1);
| task <variable nm> 1= <expr>;
| create <process nm> [ ( <expr> {, <expr>}*)];

<decision> =
decision {<expr>|any};
([<ground expr>]): <transition>
{([<ground expr>]): <transition>}*
enddecision

A state definition state st;save sy, ...,spjalt; ... alt, defines a state st. The signals
of the types si,..., s, are saved for the state. The input guard of each of the transition
alternatives altq, ..., alt, gives a type of signals that may be consumed in the state; the
corresponding transition is the one that is initiated on consumption of a signal of that type.
The alternatives with input none; instead of an input guard are the spontaneous transitions
that may be made from the state. No signals are saved for the state if save s, ...,s,; is
absent.

An input guard input s(v, . ..,v,); may consume a signal of type s and, on consump-
tion, it assigns the carried values to the variables vy, ..., v,. If the signals of type s carry
no value, (v, ...,v,) is left out.
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A transition a; ... a, nextstate st; performs the actions a4, ..., a, in sequential order
and ends with entering the state st. Replacing nextstate st by the keyword stop yields a
transition ending with process termination. Replacing it by the decision dec leads instead
to transfer of control to one of two or more transition branches.

An output action output s(ey, . ..,e,) toeviary, .. .,r,; sends a signal of type s carrying
the current values of the expressions ey, ..., e, to the process with the current (pid) value
of the expression e as its address, via one of the signal routes 7y, ..., r,. If the signals
of type s carry no value, (eg,...,e,) is left out. If toe is absent, the signal is sent via
one of the signal routes 7, ..., r, to an arbitrary process of its receiver type. The output
action is called an output action with explicit addressing if to e is present. Otherwise, it
is called an output action with implicit addressing.

A set action set (e,s(ey,...,e,)); sets a timer that expires, unless it is set again or
reset, at the current (time) value of the expression e with sending a signal of type s that
carries the current values of the expressions ey, ..., e,.

A reset action reset (s(e1,...,e,)); de-activates the timer identified with the signal
type s and the current values of the expressions ey, ..., €,.

An assignment task action task v:=e; assigns the current value of the expression e to
the local variable v.

A create action create X (e, .. .,€,); creates a process of type X and passes the current
values of the expressions ey, ..., e, to the newly created process. If no values are passed
on creation of processes of type X, (e,...,6,) is left out.

A decision decision e;(ey):try . .. (€,):tr, enddecision transfers control to the transition
branch ¢r; (1<i<n) for which the value of the expression e; equals the current value of
the expression e. Non-existence and non-uniqueness of such a branch result in an error.
A non-deterministic choice can be obtained by replacing the expression e by the keyword
any and removing all the expressions e;.

We give another very small example. This example concerns a simple router, i.e. a
system that directs what it receives to a repeater according to a given address. The
system, called Router, consists of three processes, one instance of rtr and two instances
of rep. Each of these processes have only one state. The process rtr consumes signals
s(a), delivered via signal route fromenv and pass them to one of the instances of rep
(via signal route rs) depending on the value a. The instances of rep then pass the signals
received from rtr to the environment via the signal routes toenv.

system Router
signal s(Bool);

signalroute fromenv from env to rtr with s;
signalroute rs from rtr to rep with s;
signalroute toenv from rep to env with s;

dcl a Bool; dcl repl Nat; dcl rep2 Nat;

process rtr (1);
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start;
create rep; task repl := offspring;
create rep; task rep2 := offspring;

nextstate route;
state route;
input s(a);
decision a;
(false):
output s(a) to repl via rs;
nextstate route;
(true):
output s(a) to rep2 via rs;
nextstate route;
enddecision;
endprocess;

process rep (0);
start;
nextstate pass;
state pass;
input s(a);
output s(a) via toenv;
nextstate pass;
endprocess;
endsystem;

2.2.3 Values

The value of expressions in ¢SDL may vary according to the last values assigned to
variables, including local variables of other processes. It may also depend on the system
state, e.g. on timers being active or the system time.

Syntax:

<expr> =
<operator nm> [ ( <expr> {, <expr>}*)]
| if <boolean expr> then <expr> else <expr> fi
| <variable nm>
| view ( <variable nm>, <pid expr>)
| active ( <signal nm> [ ( <expr> {, <expr>}*)])
| now | self | parent | offspring | sender

An operator application op(es, .. .,e,) evaluates to the value yielded by applying the
operation op to the current values of the expressions ey, ..., e,.
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A conditional expression if ¢; then e; else e; fi evaluates to the current value of the ex-
pression ey if the current (Boolean) value of the expression e; is true, and the current
value of the expression e; otherwise.

A variable access v evaluates to the current value of the local variable v of the process
evaluating the expression.

A view expression view (v,e) evaluates to the current value of the local variable v of
the process with the current (pid) value of the expression e as its address.

An active expression active (s(ey,...,e,)) evaluates to the Boolean value true if the
timer identified with the signal type s and the current values of the expressions ey, ..., e,
is currently active, and false otherwise.

The expression now evaluates to the current system time.

The expressions self, parent, offspring and sender evaluate to the pid values of the
process evaluating the expression, the process by which it was created, the last process
created by it, and the sender of the last signal consumed by it.

2.3 Example

We give a small example to illustrate how time related behavioural aspects of systems can
be specified in ¢SDL. The example concerns the control component of a simple telephone
answering machine. The specification is due to Mauw [40].

In order to control the telephone answering, the control component of the answering
machine has to communicate with the recorder component of the answering machine, the
telephone connected with the answering machine, and the telephone network. When an
incoming call is detected, the answering is not started immediately. If the incoming call
is broken off or the receiver of the telephone is lifted within a period of 10 time units,
answering is discontinued. Otherwise, an off-hook signal is issued to the network when
this period has elapsed and a pre-recorded message is played. Upon termination of the
message, a beep signal is issued to the network and the recorder is started. The recorder
is stopped when the call is broken off, or when 30 time units have passed in case the call
has not been broken off earlier. Thereafter, an on-hook signal is issued to the network.

It is obvious that the behaviour of the controller is time dependent. We will use timers
to describe this time dependent behaviour in ¢SDL.

system AnsweringControl
signal inccall;
signal endcall;
signal offhook;
signal onhook;
signal beep;
signal rcvlifted;
signal playmsg;
signal endmsg;
signal startrec;
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signal stoprec;
signal wtimer;
signal rtimer;

signalroute fromnetwork from env to AMC
with inccall, endcall;

signalroute tonetwork from AMC to env
with offhook, onhook, beep;

signalroute fromtelephone from env to AMC
with rcvlifted;

signalroute torecorder from AMC to env
with playmsg, startrec, stoprec;

signalroute fromrecorder from env to AMC
with endmsg;

process AMC (1);
start;
nextstate begin;
state begin;
input inccall;
set(10,wtimer) ;
nextstate waiting;
state waiting;
input endcall;
reset (wtimer) ;
nextstate begin;
input rcvlifted;
reset (wtimer) ;
nextstate begin;
input wtimer;
output offhook via tonetwork;
output playmsg via torecorder;
nextstate answering;
state answering;
input endcall;
nextstate end;
input endmsg;
output beep via tonetwork;
output startrec via torecorder;
set(30,rtimer);
nextstate recording;
state recording;
input endcall;
reset (rtimer);
output stoprec via torecorder;
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nextstate end;
input rtimer;
output stoprec via torecorder;
nextstate end;
state end;
input none;
output onhook via tonetwork;
nextstate begin;
endprocess;
endsystem;

The following are some of the time related properties of the telephone answering machine
that are respected by this behaviour:

1. when the off-hook signal is issued to the network, nothing has happened since the
detection of the last incoming call and meanwhile 10 time units have passed;

2. when the recorder of the answering machine is stopped, at most 30 time units have
passed since it was started.

In Figure 1.1, the process AMC is presented using the graphical representation of SDL
processes.

2.4 Differences with SDL

Syntactically, ¢SDL is not exactly a subset of SDL. The syntactic differences are as follows:

e variable definitions occur at the system level instead of inside process definitions;

e signal route definitions and process definitions occur at the system level instead of
inside block definitions;

e channel paths in channel definitions are absent;

e the option delayed by c in signal route definitions is new;

e formal parameters in process definitions are variable names instead of pairs of vari-
able names and sort names;

e signal names are used as timer names.

These differences are all due to the simplifications mentioned in Section 2.1.

Recall that channels and signal routes have been merged. Because the resulting com-
munication paths connect processes with one another or with the environment, like the
original signal routes, we chose to call them signal routes as well. However, the new signal
routes may have delaying parts which are reminiscent of the original channels. Therefore,
we chose to reuse their name for these delaying parts.
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Chapter 3

Message Sequence Charts

3.1 Introduction

MSCs complement SDL. They are used for (1) statement of system requirements, (2)
specification of interfaces, (3) description of test purpose. MSCs allow simple properties
of systems described using SDL to be represented graphically. The basic elements of MSCs
are: instances, messages, and the environment. A basic MSC describes the communication
behaviour of a number of instances. What is regarded as relevant to an instance is its
communication of messages with the other instances and the environment. Like in SDL,
only asynchronous communication is considered. Other elements are available to deal
with local actions, timers (timer set, timer reset, and time-out), and dynamic instances
(creation and termination). Additionally, MSCs permit to decompose instances by means
of sub-MSCs.

In this chapter, the formal semantics of MSCs is sketched by means of examples. The
formal semantics of MSCs is based on untimed process algebra, roughly ACP without
communication extended with the state operator (for a survey of process algebra, see
Chapter 5). In practice, an MSC is usually considered to describe a set of traces, viz. the
traces of the process corresponding to the MSC.

The structure of this chapter is as follows. First, we give an overview of the semantics
of MSCs by means of examples (Section 3.2). After that, a scenario of the communica-
tion between a subscriber and a simple subscriber-line is given in the form of an MSC
(Section 3.3).

The material in this chapter is largely taken from [41].

3.2 Semantics of MSCs

3.2.1 One instance

First we look at an MSC with one single instance. The MSC Onelnstance given in
Figure 3.1 describes instance ¢ having three communications with the environment. An
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msc Onelnstance
L]

k

Figure 3.1: One instance

MSC describes a set of sequences of events, called traces. Onelnstance describes only one
trace: first there is an output of message k£ to the environment, after that there is an
output of message [ to the environment, and finally there is an input of message m from
the environment. In process algebra this is expressed as follows:

out(i,env, k) - out(i, env,l) - in(env, i, m)

The operator - stands for sequential composition. So the meaning of Onelnstance is
the sequential composition of a number of actions — we use the notation in(i,d',m) for
receiving m from ¢ by ¢, and out(i,4’', m) for sending m by i to 7.

3.2.2 Two messages

Next we look at the MSC given in Figure 3.2, where two instances exchange messages.
Instance i behaves as the process out(i,j, k) - in(j,7,1) and instance j as the process

msc TwoMessages

T e N

Figure 3.2: Two messages

in(i, 3, k) - out(j,1,1). The meaning of TwoMessages seems to be the parallel composition
of these two processes, which is expressed as follows:

(Out(i’j, k) ’ Zn(],zal)) ” (Z’n(l,j, k) ) OUt(]azvl))
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Here parallel composition means that the two processes proceed in an interleaved manner.
In consequence, the above expression can be expanded, using the nondeterministic choice
operator +. However, parallel composition does not take into account that a message
can only be received after it has been sent. We use an operator A, usually called a state
operator, to ensure that messages have been sent before they are received. Thus, we get

)‘((OUt(Zvjv k) ) ZTL(],Z,Z)) || (’L’I’L(Z,], k) ’ OUt(]vlaZ)))

which is equal to

3.2.3 Independent messages

In Figure 3.3 we give an example where messages are not causally related. The instances

msc IndependentMessages

T H T e A T

Figure 3.3: Independent messages

i, j, g and h behave simply as out(i, j, k), in(i, j, k), out(g,h,l) and in(g, h,l), respec-
tively. The meaning of IndependentMessages is again obtained by first taking the parallel
composition to the instances and then applying the state operator to ensure that messages
have been sent before they are received:

A(out(i, 5, k) || in(i, j, k) || out(g, h,1) [ in(g, h,1))
which is equal to

OUt(Za.]a k) ’ (OUt(gv hvl) ) (m(z,], k) ’ Zn(ga hal)+
in(iaja k) ) OUt(ga hal) ) in(ga hal))
+

k
in(i, j, k) - in(g, h, 1))+
in(gv hvl) : O’U’t(iaja k) : Z’/L(Z, " ))
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msc Timer

ai
n
L

]

Figure 3.4: Timer

3.2.4 Timers

Timers can be dealt with by MSCs as well. An example is given in Figure 3.4. We use
the notation set(i, T') for setting timer 7" on instance i, timeout(i,T') for expiring of timer
T on instance i, and reset(i, T) for resetting timer 7' on instance i. The instances i and
J behave as set(i,T) - out(i, j, k) - timeout(i,T) and in(i, j, k), respectively. The meaning
of Timer is:

A(set(i,T) - out(i, g, k) - timeout (i, T)) || in(i, 7, k))

which is equal to
set(i,T) - out(i, 7, k) - (in(i, 3, k) - timeout (i, T)+
timeout (i, T) - in(i, j, k))
3.2.5 Actions and dynamic instances

In the same vein, MSCs deal with actions (e.g. assignments) and instance creation and
termination. See Figure 3.5 and Figure 3.6, respectively. The meaning of Action is simply

msc Action

)

k

Figure 3.5: Action

out(i,env, k) - action(i, a)
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In the case of instance creation, a distinction is made between the creation of a new
instance by an old one and the starting of the new instance in parallel with the old ones.

The meaning of Create is

msc Create

Figure 3.6: Create

create(i, j) - start(j) - out (3,1, k)-
(in(j, 4, k) - stop(5) + stop(j) - in(j, i, k))

3.2.6 Coregions

By means of a coregion, an arbitrary ordering of some events of one instance can be
represented. An example is given in Figure 3.7. Instance i behaves as out(i,j, k) ||

msc Coregion

?E

Figure 3.7: Coregion

out(i, 7,1) and instance j behaves as in(i, j, k) - in(i, j,1). The meaning of Coregion is
obtained in the usual way by parallel composition and state operator application; and is

equal to
(

(i,J

ZTL(Z,], k) ) OUt(Zajal) - an(t, al))
+

O’Ut(i,j,l) ’ Out(ivjv k) ’ m(z,], k) : m(z,],l)
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3.2.7 Sub-MSCs

MSCs also permit to decompose instances in sub-MSCs. The meaning is obtained by

msc Decomp

L]

d

Eecomposed

]

submsc d

Figure 3.8: Decomposition and sub-MSC

taking as the behaviour of the decomposed instances the behaviour of the corresponding
sub-MSCs. Thus, the meaning of Decomp given in Figure 3.8 becomes

O’U’t(iagv k) ) in(ivga k) ) OUt(ga ham)

Zn(ga ham) : OUt(ha]aZ) ’ Zn(ha]al)

3.3 Example

Figure 3.10 gives an MSC which can be viewed as a scenario of the communication be-
tween a subscriber and the simple subscriber-line of which an SDL description is given in

Figure 3.9.
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Figure 3.9: SDL description of a subscriber line

msc SubscrLine-A

=

a-off-hook
connect-digit-rec
connection
dial-tone
dialled-digit
dial-tone-off
digit
feteh-next-digit
dialled-digit

digit

end-ring-tone

ring-tone-to-a

disconn-digit-rec

b-answer

ring-tone-a-off
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Figure 3.10: MSC description of a subscriber line scenario
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Chapter 4

Software Development Using SDL

4.1 Introduction

In this chapter, we give an idea of how software is currently developed in telecommuni-
cations using SDL. Additionally, we describe in broad outline the current possibilities for
validation of SDL specifications.

In the telecommunications field, the language SDL [11, 46] is widely used for describ-
ing structure and behaviour of generally complex telecommunication systems, including
switching systems, services and protocols, at different levels of abstraction. However, SDL
nor the tools and techniques that are used in conjunction with SDL provide appropriate
support for validation of SDL specifications and verification of design steps made using
SDL. In this chapter we also relate the existing practice with respect to validation of SDL
specifications with the current possibilities.

The structure of this chapter is as follows. First, it is sketched how SDL is currently
used in practice (Section 4.2). After that, the outlooks on advanced validation of SDL
specifications is described (Section 4.3).

4.2 Using SDL

In the telecommunications field, SDL is widely used for specification and design. The first
version of SDL became a recommendation of the ITU (International Telecommunication
Union) in 1976. Since it has been extended several times. It originated from an informal
graphical description technique already commonly used in the telecommunications field at
the time of the first computer controlled telephone switches. In Figure 4.1, we show once
more the description, using SDL’s graphical representation, of the controller process of a
simple telephone answering machine. The start symbol O corresponds to the keyword
start and the state symbol () to the keywords state and nextstate. The input symbol
[ < corresponds to the keyword input and the output symbol < lto the keyword output.
For actions other than output actions, the symbol [ is used.
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@

inccall ‘ endcall revlifted ‘ wtimer ‘ endcall ‘endmsg ‘ endcall rtimer none
‘ (10 wtimer) ‘ reset(wtimer) reset(wtlmer)‘ offhook ‘ < end > beep ‘ rm(mmer)‘ stoprec ‘

| |

| - T ]
(o) (o) (o)

Startrec ‘ stoprec ‘ end > < begin

L |

an in st d
Sverng (30,rtimer) en

Figure 4.1: SDL description of a telephone answering machine controller

It is interesting to see what tools and techniques there exist to complement SDL. At
present tools are available for:

e syntax-directed editing, syntax checking, etc.;
e simulation and limited checking of properties, test case generation;
e code generation.

Besides, one complementing technique is available: MSC (Message Sequence Chart) [58],
allowing very simple properties of SDL descriptions to be represented graphically. Fig-
ure 4.2 gives graphical representations of two properties, using MSCs, of the description
given in Figure 4.1. MSCs are used for:

e statement of system requirements;
e specification of interfaces;
e description of test purpose.

Because of the diverse purposes for which MSCs are used, more than one meaning is
in circulation for certain elements of MSCs. The formal semantics of MSCs, given in
an Annex to [58], describes the meaning of all elements in a precise and unambiguous
way. This semantics is based on untimed process algebra in the form of ACP (Algebra of
Communicating Processes) [10, 16]. In practice, an MSC is usually considered to describe
a set of traces, viz. the traces of the process! corresponding to the MSC. In connection

!In process algebra, a process has zero or more capabilities to perform an atomic action and to behave
as another process after that. A trace of a process is a sequence of atomic actions that it can thus perform.
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msc AutomaticAnswering msc ManualAnswering

amc amc

inccall inccall

wtimer(10) wtimer(10)

revlifted

offhook

Figure 4.2: MSC representation of two simple properties

with a certain system described in SDL, the traces of the process corresponding to an
MSC are usually taken in one of following ways:

1. each of them must occur as a subtrace of some trace of the system;
2. each of them must not occur as a subtrace of any trace of the system.

In the first, mostly taken, way, the MSC concerned is viewed as representing a scenario,
a use case or a test case, depending on the purpose for which it is used.
A typical sequence of stages in development using SDL is:

specification;

limited validation of the specification;

design steps consisting of refinement of a previous description;

implementation of the final description;
e limited validation of the implementation.

To give an idea of what is meant here by limited validation, I will mention some properties
of the telephone answering machine which should be respected by the behaviour described
in Figure 4.1, but which can not be checked by means of current tools:

e when the off-hook signal is issued to the network, nothing has happened since the
detection of the last incoming call and meanwhile 10 time units have passed;

e when the recorder of the answering machine is stopped, at most 30 time units have
passed since it was started.

In design steps made using SDL, refinements of SDL descriptions are based on practically
useful ideas such as state splitting, transition elimination, and process decomposition.
Of course, each of them gives only rise to a correct refinement on certain conditions.
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Working knowledge about these conditions is virtually absent in the SDL user community.
Such knowledge would require a dramatically simplified version of SDL and an adequate
semantics for it.

Practising software development using SDL as described above, one can not ascertain
to a reasonably high degree of precision that the software system will match the user’s
requirements; and one can only establish, after having developed the software system, a
very low degree of certainty that it satisfies its specification. Some people advocating the
use of SDL for software development in telecommunications seem to be ignorant of the
more rigorous approaches by which improvement with respect to these issues can be made.
In the SDL Methodology Guidelines [63] — an official ITU publication — it is stated that
“verification can be seen as part of validation” and “testing can be seen as a technique to
be used in validation”.

This current practice is not in accordance with the needs in the development of
telecommunications software using SDL. Practice indicates that SDL should be comple-
mented with techniques which would turn it into a full-fledged design calculus. Finding
sound rules of reasoning for SDL, enabling design steps to be justified by formal verifica-
tion, is a relatively long-term undertaking. Rather advanced validation will probably be
possible much sooner than formal verification.

4.3 Validating SDL specifications

In order to validate an SDL specification, we need a language for expressing properties of
the system described in SDL. Notice that this language need to be semantically related to
SDL. Checking whether required properties hold for the system described can in principle
be done manually or automatically by a computer. In practice, manual checking is often
unfeasible.

For expressing properties, MSCs and the languages of various temporal logics have
been proposed. Process algebra can also be used, but it is often an inconvenient alter-
native. For automatic checking of some general properties of systems described in SDL,
such as freedom of deadlock, suitable tools are available. For automatic checking of special
properties of specific systems, there is not much available but tools that are not practically
useful because of too severe restrictions on SDL, the language for expressing properties,
or the size and complexity of the SDL descriptions to be checked. Checking by means of
observers (see below), although not very convenient, is the main alternative.

We will first outline the use of process algebra for expressing the first of the two
properties mentioned in Section 4.2. Next, the same property will be expressed in the
languages of two temporal logics. Thereafter, the use of MSCs and observers will be
explained.

Recall that ©SDL is an SDL subset that covers all the behavioural aspects of full
SDL. In Chapter 6 a semantics of ¢SDL without channels is presented which is based
on discrete relative time process algebra in the form of ACP [6, 7]. The process algebra
concerned is presented in Chapter 5. According to this semantics the process described
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in Figure 4.1 is the process AMC recursively defined by the following set of equations:

AMC = BEGIN

BEGIN = - (input(inccall,(,2) - set(now+10, wtimer,2) - WAITING+
waiting(2) :— o (BEGIN))

- (input(endcall, 0, 2) - reset(wtimer,2) - BEGIN +
@(rcvlifted, 0,2) - reset(wtimer,2) - BEGIN +
@(wtimsr, 0,2) - output(offhook,2,1)-

output(playmsg,2,1) - ANSWERING+
waiting(2) :— o ( WAITING))

- (input(endcall, 9,2) - END+
input(endmsg, 0,2) - output(beep,2,1) - output(startrec,2,1)-

set(now+30, rtimer, 2) - RECORDING+
waiting(2) :— o (ANSWERING))

- (input(endcall, ), 2) - reset(rtimer, 2) - output(stoprec,2,1) - END+
@(rtimer, 0,2) - output(stoprec,2,1) - END+
waiting(2) :— ove(RECORDING))

- (&t - output(onhook,2,1) - BEGIN +
waiting(2) :— ol (END))

WAITING =

153

ANSWERING =

|ls

RECORDING =

|ls

END =

(53

We will not explain the notation of the process algebra used here, but it is clear that the
definition of AMC using process algebra has many similarities with the original descrip-
tion in SDL. There is an equation for each state, the right hand side of each equation
has alternatives — seperated by the choice operator (4) — that are reminiscent of the
transition alternatives of the corresponding states, etc. In addition, the equations have
an alternative in which the delay operator (o, ) appears; this alternative allows a delay
to a future time slice to occur if there is no input to be read from the input queue of the
process AMC. The main difference between the SDL description and this definition is
that the latter can be subjected to equational reasoning — using the axioms of the discrete
time process algebra used.

The complete SDL description of the system consisting of the process described in
Figure 4.1 only is given in Section 2.3. The meaning of that SDL description according
to the process algebra semantics of ¢SDL is the process S defined as follows:

$ = 71045 (Ao (AMC || Eno))

This means that the system behaves as the process AMC executed, in parallel with the
environment process Env, in state Go. Besides, the actions in the set I U {t} are hidden
in this behaviour. The initial state Gy is the state where the system time is zero and the
local state of the process AMC is such that there are no variables with a value assigned
to it, the input queue is empty and there are no active timers. Env and I are parameters
of the semantics, as explained in Section 6.5.1.

Lecture Notes: DesCaRTeS Course, August 1997 UNU/IIST, P.O. Box 3058, Macau



36 Validating SDL specifications

Let output'(sig) be the action that appears when action output(sig) has been executed
in a state, and let Snd be the set of actions output’(sig) where the sender of sig is the
environment env. Then we can express the above-mentioned property using an equation:

TSnd\{output’(ojj‘hook,2,1)}(S) =5
where S’ is recursively defined by

S" = T5n4(S) + output'(inccall, 1,2) - o1} (output'(offhook,2,1)) - S’

rel

We claim that this identity can be proved by means of the axioms of discrete time process
algebra, if we consider the meaning of the system description obtained by taking the
environment process EnvSt and the set of actions I** for Fnv and I, respectively. Both
Env®* and I** are presented in Chapter 6. If one takes Env®® for Env, one gets an open
meaning corresponding to the viewpoint that the only assumptions about the environment
that the system can rely on, are the ones made explicit in the signal route definitions.
If one takes I%* for I, one gets an abstract meaning corresponding to the viewpoint that
only the communication of the system with the environment is observable.

This approach to analyse properties of a process is very convenient for properties that
concern its behaviour as a whole. However, it may be inconvenient or even impossible
to express a property that covers only one detail of the behaviour of a process using an
equation. It is generally more convenient to use the language of some temporal logic to
express such a property. The specific property expressed above using an equation requires
a temporal logic for dealing with quantitative temporal properties, such as TFL (Timed
Frame Logic) [15], MTL (Metric Temporal Logic) [39] or DC (Duration Calculus) [52]. In
the language of MTL this property is expressed as follows:?

O (r(inccall) A O(=r(inccall) U s(offhook)) =
O(( A\ —a) U= s(offhook)))

acA

In the language of MVC (Mean Value Calculus) [53] — an extension of DC — it is expressed
as follows:

[r(inccall)]’ ; [—r(inccall)] ; [s(offhook)s(playmsg)]® =
0= 10 A [r(inccall)]’; [= \/ €] ; [s(offhook)s(playmsg)]°

ecAt

In Section 7.3, the same property is expressed in TFL.

In Figure 4.3, attempts are made to represent the same property graphically using
MSCs. The left-hand MSC is an attempt to represent the property itself and the right-
hand MSC is an attempt to represent its opposite — recall the two ways, mentioned in

2In the remainder of this section, we write r(sig) and s(sig) for output’(sig,1,2) and output'(sig,2,1),
respectively.
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msc RightOffhook msc WrongOffhook
amc amc

inccall )

inccall
wtimer(10)
wtimer(10)

offhook

offhook

Figure 4.3: MSC representation of required property

Section 4.2, in which the traces characterized by an MSC are usually related to a system
described in SDL. However, neither the property nor its opposite can be represented by an
MSC. Note further that time constraints have to be translated to timer setting, resetting
and expiration when using MSCs.

An observer is essentially a deterministic automaton accepting certain traces. The
principle of model checking by means of observers is that, for a temporal formula ¢ to
be checked, a deterministic automaton is constructed that accepts a trace if and only if
@ is true of that trace. This means that, for the formula ¢ to hold for all traces, each
of them must be accepted by the corresponding observer. Such an observer can always
be constructed for a propositional linear-time temporal formula. The use of observers
is supported by the SDL-toolsets GEODE [1] and SDT [65], but the construction of
observers from temporal formulae has still to be done manually when using these toolsets.
There exists an experimental tool, developed on top of SDT, which can construct the
observers corresponding to the formulae of a simple language for expressing properties
of telecommunication systems introduced in [42]. However, this language has limited
expressive power and quantative temporal properties are not covered.

The observer for the formula

O(r(inccall) = O(—r(incecall) U s(offhook)))

is shown in Figure 4.4, where transition p is labelled with —r(inccall), ¢ with r(inccall),
r with —(r(inccall) V s(offhook)) and s with s(offhook). The observer will start in state 0
and it will keep this state as long as —r(inccall) holds. It will pass to state 1 as soon as
r(inccall) holds and it will keep this state as long as —(r(inccall) V s(offhook)) holds. It
will pass back to state 0 as soon as s(offhook) holds. Thereafter, this pattern of behaviour
will repeat itself indefinitely. Thus, it will accept exactly the traces that satisfy the above
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oD

Figure 4.4: Observer for a simple temporal formula

formula.
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Chapter 5

Survey of Discrete-time Process
Algebra

5.1 Introduction

We present the signature, axioms and a structured operational semantics of ACP” (Al-
gebra of Communicating Processes with abstraction) and its extension to a discrete-time
process algebra with relative timing. Additionally the extensions to processes with propo-
sitional signals and to processes interacting with states in the discrete-time setting are
presented in brief. We also present the extension for conditional processes in broad out-
line. Thus the process algebra underlying the process algebra semantics given for an
interesting subset of SDL, called ¢SDL, is largely covered.

We will first outline ACP™ [10, 16]. After that ACPJ,,, the discrete-time extension of
ACPT™ with relative timing [6, 7], will be outlined. We confine ourgelves to a survey of the
axioms of ACP7, and an operational semantics. The constant § (immediate deadlock)
of ACP},, is not included in this survey. We refer to [6, 7] for further details on ACPJ,.
By means of the axioms of ACP},,, discrete-time processes with relative timing can be
subject to algebraic reasoning.

We will further pay attention to the root signal emission operator ~* and the state
operator A\s —introduced for the time free case in [8] and [3], respectively — on discrete-time
processes with relative timing. The expression ¢ ~* x stands for the process = where the
proposition ¢ is made to hold at its start. The expression As(z) stands for the process z
executed in state s. We will also pay attention to the conditional operator :— — introduced
for the time free case in [8] as well. The expression ¢ :— z is read as if ¢ then z. We refer
to [8] and [3] for further details on these extensions in the time free case.

ACP],, is introduced in [6] as an extension of BPA 4., the discrete-time extension of
BPA; with relative timing, and BPA],, (BPAg,; with silent step). Correspondingly, ACP”
is an extension of BPA; and BPAJ. It is convenient to distinguish BPA4,y and BPAJ,, in
this survey as well.

In BPA 4,4-ID (the postfix -ID denotes the absence of the immediate deadlock constant),
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40 Algebra of communicating processes

we have the constants a and cts(a) (for each action a), 6 and cts(d), the unary operator
orel (relative discrete-time unit delay), and the binary operators - (sequential composition)
and + (alternative composition). The constants a stand for a in any time slice and the
constants cts(a) stand for a in the current time slice. Similarly, the constant ¢ stands for
a deadlock in any time slice and the constant cts(d) stands for a deadlock in the current
time slice. The process o.(P) will start P in the next time slice.

In BPA],,-ID, we have the additional constants 7 and cts(7). These constants stand
for a silent step in any time slice and a silent step in the current time slice, respectively.
In [6], the constants a, 7 and § are consistently referred to as ats(a), ats(r) and ats(d),
respectively.

We mention here that we will use in Chapters 6 and 10, instead of the notations cts(a),
cts(7) and cts(d), the older, but more concise, notations g, r and ¢ from [4].

In ACP},-ID, we have, in addition to the sequential and alternative composition, the
parallel composition ||, involving synchronous communications between processes, and
furthermore the encapsulation operator 0y to encapsulate communication via a given set
of actions H and the abstraction operator 7; to abstract from a given set of actions I.

We note here that ACP],,-ID has the operationally conservative extension property for
BPA4,+-ID and the elimination property for BPAJ,,-ID. The first property means that,
for each term composed with the constants and operators of BPAg4,-ID, the meaning
according the operational semantics of BPAg4-ID and the meaning according the opera-
tional semantics of ACP}-ID are the same. The second property implies that, for each
term composed with the constants and operators of ACP},-ID, there is a term composed
with the constants and operators of BPAJ,,-ID with the same meaning according the
operational semantics of ACP7,-ID modulo branching bisimulation (see Section 5.2).

The structure of this chapter is as follows. First of all, the signature, axioms and an
operational semantics of ACP” are presented (Section 5.2). Then, its extension to ACP],
is presented (Section 5.3). Next, recursion is introduced (Section 5.4). After that, the
extensions for processes with propositional signals and processes interacting with states
are treated (Sections 5.5 and 5.6). Finally, the extension for conditional processes is
sketched (Section 5.7).

5.2 Algebra of communicating processes

This section gives the signature and axioms of ACP"as well as an operational semantics
of the terms over the signature of ACP”.

It is assumed that a fixed but arbitrary set A of actions has been given, such that § and
7 are not in A. It is further assumed that there is a partial commutative and associative
function | : A x A — A. The function | is regarded to give the result of the simultaneous
performance of any two actions for which this is possible, and undefined otherwise.

The signature of ACP” is as follows:
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Constants:

a a€A

§  deadlock (6§ ¢ A)

T  silent step (7 & A)
Binary operators:

sequential composition

+ alternative composition

|| parallel composition
Unary operators:

Oy encapsulation (H C A)

71 abstraction (I C A)

Given the signature, terms of ACP”, usually referred to as process expressions, are con-
structed in the usual way. We write P for the set of all variable-free process expressions.
We shall use the meta-variables x, 2, y and 3’ to stand for arbitrary process expres-
sions, the meta-variables a, b and ¢ to stand for arbitrary elements of AU {7}, and the
meta-variables H and I to stand for arbitrary subsets of A.

We will use the following abbreviations. Let (P;);cr be an indexed set of process
expressions where Z = {iy,...,i,}. Then, we write 3,7 P; and ||;ez P; for P, +...+ P,
and P;, || ... || P, respectively. We further use the convention that in the time free case
>icz P; stands for § if 7 = (.

We shall give a structured operational semantics for ACP” using rules in the style of
Plotkin to define the following relations on P:

action step CPx(AU{r})xP
action termination C P x (AU{7})

We write

r % ' for (z,a,z') € action step,
r % 4/ for (z,a) € action termination.

r —% 2’ represents non-terminating action execution and x - 4/ represents terminating
action execution. The rules for the structured operational semantics of ACP” are given
in Tables 5.1-5.3.

They constitute an inductive definition of the relations action step and action termina-
tion. A rule of the form

P1,-..yPm

Cly- -+ Cn

is to be read as “if p; and ...and p,, then ¢; and ...and ¢,”. If m = 0, the horizontal
bar is left out. Table 5.1 contains the rules for BPAs, understanding that the range of
the meta-variables a, b and c is restricted to A. The rules for ACP, i.e. ACP™ without
abstraction, can be obtained by adding the rules given in Table 5.2 to the rules for BPA;.

A branching bisimulation is a symmetric binary relation R on P U {4/}, satisfying:
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Basic process algebra:

a5/
A %/
z-y-—>1-y Toy-Sy
r 5 -5/

z4+y-S2,y+z S z+ySV,yt+z -/

Table 5.1: Rules for operational semantics of BPA;

Parallel composition:
-5 r -/
zlly=2lly, ylzSylla zllySy ylleSy

S yBy alb=c

C

zly =2y
tSa yB, alb=c -5y, alb=c
vy = ylle—=a zlly—=v

Encapsulation:

x5z, a¢dH z-%5./,a¢H
0H(.17) i> 6H(x') 6H(x) % \/

Table 5.2: Additional rules for ACP

Abstraction:
52, ag¢l -5/, a¢l
T](x) % T](.IT/) T](.IT) i> \/

x5, ael -5 ./,a€l
() 5 (2 m(x) S/

Table 5.3: Additional rules for ACP™

1. if xRy and v -% 2’ then either a = 7 and 2'Ry or there are v’ and y” such that
y— -9y 5y Ry and 2'Ry";
2. if /Ry theny — -+ D /.

x and y are branching bisimilar iff there is a branching bisimulation R with zRy. The
axioms of ACP” given in Table 5.4 are complete for the operational semantics modulo
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branching bisimulation. In order to get a finite axiomatization, two auxiliary operators

z+y=y+z Al T-T=2x B1
z+(y+z)=(+y) +2 A2 |z (r-(y+z)+y) =z (y+2) B2
r+z==c A3
(z+y)-z=(z-2)+(y-2) Ad
(z-y)-z=2z-(y-2) A5
z+d==z A6
§-z=94§ A7
alb=a|b if a|b defined CF1
a|b=2J otherwise CF2
zlly=(y)+@lz)+(z]y) CM1|(a-z)|b=(a|b) = CM5
al|lz=a-x CM2 |a|(b-z)=(a|b) -z CM6
(a-z)ly=a-(z]y) CM3 | (a-2) [ (b-y)=(a]b)-(z]y) CM7
+y llz=@2)+@Wlz) CMd|(z+y)lz=(z]2)+(y]z) CM8
zl(y+z)=(@|y)+(@[|z) CM9
Ou(a) =a ifa¢ H D1 (@) =a ifa gl TI1
Op(a) =0 ifac H D2 |r(a)=7 ifa€el TI2
Ou(z +y) = Ou(z) + Ou(y) D3 | m(z+y) = m(z) +71(y) TI3
Ou(z -y) = On(x) - 9u(y) D4 | m(z-y)=7i(z) 11(y) T14

Table 5.4: Axioms for ACP7

are used: left merge (||) and communication merge (|). The processes z || y and z | y can
proceed the same as x || y except that = || y must start with a step of  and z | y must
start with a communication step between x and y.

Let I be a finite set of ports and D be a finite set of data. Consider the following set
A of actions: A = {r;(d), si(d),c;(d) | i € I,d € D}, and let the communication function
|: Ax A — A be such that r;(d) | si(d) = ¢;(d) for all i € I and d € D and | is not defined
otherwise. The following recursion equation defines a one-place buffer with input port ¢
and output port j:

By = Y rid)-s;(d) By
deD

Using the axioms of ACP™ and RSP (introduced in Section 5.4), we can prove that two
one-place buffers Bis and Bs3 in sequence give a process with the same behaviour as the
one-place buffer Bys if one abstracts from the communication via the internal port 2, i.e.:

Bis = T{ca(d)|deD} (Ofrs(@)|deD}u{sa(d)lden} (Brz || Bas))

5.3 Discrete-time process algebra

This section gives the signature and axioms for the extension of ACP” to discrete-time
processes with relative timing and an operational semantics of the terms over the signature
of this extension of ACP”.

The signature extension for discrete-time processes with relative timing is as follows:
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Constants:
cts(a) a in the current time slice (a € AU {7})
cts(d) deadlock in the current time slice
Unary operators:
Orel relative discrete-time unit delay

The full signature of ACP},-ID is obtained by adding these constants and operators to
the ones fo ACP”. We write Py for the set of all variable-free discrete-time process
expressions. We shall now use the meta-variables z, z’, y and y' to stand for arbitrary
discrete-time process expressions.

In the discrete relative time case without immediate deadlock, we use the convention
that >;c7 P; stands for cts(d) if Z = 0.

We shall give a structured operational semantics for ACP},-ID using Plotkin-style
rules to define the action step and action termination relations on Pg,; as well as the
following relation:

time step  C Part X Part
We write
z % ' for (z,2') € time step.

x -%» z' represents the passage of time to the next time slice. The rules for the structured
operational semantics of ACP} -ID are the rules given in Tables 5.1-5.3 (Section 5.2) and
the rules given in Table 5.5. Here y —24 means that there is no 3’ such that y = 3’. Note

Discrete-time, relative timing:

cts(a) = / owel(z) =z aZa 6596

r 5o r-Sa y 24 r-5d y Sy
z-y->2-y sy, yt+terS x4y +y

x-S,y x5 7 x -
zlly -S|y O (x) = Og(z') T1(z) 5 (")

Table 5.5: Additional rules for ACP},,-ID

that the two rules concerning alternative composition have complementary conditions.

Together they enforce that the choice between two processes which both can pass to the

next time slice is postponed till after the passage to the next time slice. This is corresponds

to time determinism property reflected by the axiom DRT1 of ACP],,-ID (see Table 5.6).

The rules for BPA4,4-ID are obtained by adding the rules given in Table 5.5 that are not

referring to parallel composition, encapsulation and abstraction to the rules of BPAj.
The axioms of ACP},-ID are given in Tables 5.6 and 5.7.
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T+y=y+z Al Urel(x) + Orel (y) = Urel(x + y) DRT1
z+y+z)=(z+y)+z A2 orel(z) Yy = orel(z - y) DRT2
z+z==z A3 a = cts(a) + ovel(a) DRT3
(z4+y)-z=(z-2)+(y-2) Ad
(z-y)-z=z-(y-2) A5 vrel(cts(a)) = cts(a) DCS1
z+cts(d) =z DRTAG | vyel(z + y) = tyet(z) + Ve (y) DCS2
cts(d) - ¢ = cts(d) DRTAT | vei(z - y) = vrai(z) - 9 DCS3
Vrel(Grel (z)) = cts(9) DCSs4
z - (cts(7) - (et (¥) + 2) + e (¥)) = 2 - (Ve (y) + 2) DRTB1
z-(cts(7) - (Y + ei(2)) +y) =z - (y + Ve (2)) DRTB2

cts(a) - x = cts(a) - y = cts(a) - (ove1(z) + rei(2)) = cts(a) - (ovel(y) + trei(z)) DRTB3

Table 5.6: Axioms for BPA] ,-ID

zlly=(@ly)+wlz)+(zly) CM1

cts(a) || z = cts(a) - = DRTCM2

(cts(a) - z) || y = cts(a) - (z || y) DRTCM3

ty) 2=t )+ L2 CM4

cts(a) | cts(b) = cts(a | b) if a | b defined DRTCF1

cts(a) | cts(b) = cts(d) otherwise DRTCF2

(cts(a) - z) | cts(b) = (cts(a) | cts(d)) - DRTCM5

cts(a) | (cts(b) - z) = (cts(a) | cts(b)) - = DRTCM6

(cts(a) - z) | (cts(b) - y) = (cts(a) | cts(d)) - (z || y) DRTCMT

(@+y) 2= (]2)+]2) CMs

2l +2)=(ly)+ (] 2) CM

orel(z) || el (y) = cts(d) DRT4

el (7) || (el () + orer(2)) = over(@ | 2) DRT5

orel(2) | Vel (y) = cts(9) DRT6

Vrel () | ovel(y) = cts(d) DRT7

orel() | 0vel(y) = orer(z | Y) DRT38
On(cts(a)) = cts(a) if a ¢ H DRTD1 | 77(cts(a)) = cts(a) if a ¢ I DRTTII
On(cts(a)) = cts(6) if a € H DRTD2 | 77(cts(a)) = cts(r) if a € I DRTTI2
Ou(z+y) = 8H(x)+3H( ) D3 Ti(z +y) =71r(x) +11(y) TI3
Ou(z-y) =0u(z)-Ou(y) D4 m1(z-y) =m(z)-m(y)  TH4
8H(Jrel(x)) = Jrel(aH( )) DRT9 TI (Urel(x)) = Oye| (’l’](a})) DRT].O

Table 5.7: Additional axioms for ACP},-ID

In order to get a finite axiomatization, an auxiliary operators is used: the “now”
operator (V). The process v () can proceed as the part of z that does not require an
initial time step.

Recall the notational conventions at the end of Section 5.2. The following recursion
equation defines a one-place buffer that allows one input in every time slice, and outputs

Lecture Notes: DesCaRTeS Course, August 1997 UNU/IIST, P.O. Box 3058, Macau



46 Recursion in process algebra

with no delay:
Cij = Y ri(d) - cts(sj(d)) - v (Ciy)
deD
Using the axioms of ACP},,-ID and RSP, we can prove that the two one-place buffers Ci
and (b3 in sequence give a process with the same behaviour as the one-place buffers Cy3
if one abstract from the communication via the internal port 2, i.e.:

Ciz = Tea(@)|deD} (Oprs(@)lde Dy Asa(@)]aen} (Crz || C23))

5.4 Recursion in process algebra

In this section we introduce recursion into the theory of ACPj,,-ID. The obtained theory
will be denoted by ACP],-IDrec.
Let V' be a set of variables. A recursive specification E = E(V') in ACP],-ID is a set
of equations
E:{X:SX|X€V}

where each sx is a ACP],-ID term that only contains variables from V. We shall use
X,Y, ... for variables bound in a recursive specification. A solution of a recursive specifi-
cation E(V) is a set of processes {(X|E) | X € V} (in some model of ACP],) by which
the equations of E (V') are satisfied.

The signature of ACP},-IDrec consists of the signature of ACP},-ID plus for each
X € V and for each recursive specification E(V') a constant (X|E). Let ¢ be a ACP],,-ID
term and let E be a recursive specification. Then we write (¢|E) for ¢ with all occurrences
of X € V in t replaced by (X |E).

The rules for the structured operational semantics of ACPJ,-IDrec are the rules given
in Tables 5.1-5.3, 5.5 and Table 5.8.

Recursion:
(sx|E) 52" (sx|E) 5/
(X|E) 52 (X|E) %5/

(sx|E) = o'
(X|E) = o

Table 5.8: Additional rules for ACP}  rec

The axioms of ACP}-IDrec consist of the axioms of ACPj,-ID plus for each X € V
and for each recursive specification E(V) = {X = sx | X € V} an axiom (X|E) =
(sx|E).

Let s be a ACP},-ID term containing a variable X. We call an occurrence of X
in s guarded if s has a subterm of the form cts(a) - t or o,(t) with a € A and t a
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ACP},, term containing this occurrence of X. We call a term completely guarded if all
occurrences of all its variables are guarded. We call a term guarded if we can rewrite
it to a completely guarded term by use of the axioms. We call a recursive specification
completely guarded if the right-hand sides of its equations are completely guarded. We call
a recursive specification guarded if we can rewrite it to to a completely guarded recursive
specification by use of the axioms and/or its equations.

The (restricted) recursive definition principle (RDP(7)) is the assumption that every
(guarded) recursive specification has a solution. For any model M of ACP},-IDrec, RDP
holds. Let E(V') be a recursive specification. Then {[(X|E)|y | X € V} is a solution.
Here [z]y is the interpretation of the process x in the model M.

The recursive specification principle (RSP) is the assumption that every guarded recur-
sive specification has at most one solution. RSP can be described by means of conditional
axioms. For each X € V and for each recursive specification E(V') we have the axiom E
= X = (X|E).

We call a recursive specification F linear if each equation in E is of one of the following
two forms:

o Y cts(a;) X+ X cts(by)

® f::l cts(ai) . Xz + Zé:l CtS(bi) + 2111 O're|(Y;')

5.5 Processes with propositional signals

This section contains a brief survey of the extension of BPAg4-ID with propositional
signals. In [8], propositional signals are introduced in process algebra for the time-free
case. Here, we present the signature extension for propositional signals, an operational
semantics of the terms over the signature of BPAy-ID with propositional signals only,
and no axioms. For ACPg4,-ID with propositional signals, the operational semantics and
the axioms are presented in [23].

The signature extension for processes with propositional signals is as follows:

Constants:

1 nonexistence (L ¢ A)
Binary operators:

™ root signal emission

The first operand of ™™ is a propositional formula. We consider propositional formulae
that can be built from a set P,; of atomic propositions, T, F, and the connectives — and
=. We write P for the set of all propositional formulae. We shall use the meta-variable ¢
to stand for an arbitrary propositional formula. We write P, for the set of all variable-
free process expressions composed with the constants and operators of the extension of
BPA4,+-ID with propositional signals.

We shall give a structured operational semantics for BPAg4-ID with propositional
signals using Plotkin-style rules to define the action step, action termination and time step
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relations on Pj;,. The rules for this structured operational semantics are obtained from
the rules for BPA4,-ID by (1) replacing the four rules for BPA 4,4-ID for which there are
more restrictive rules amongst the first six rules in Table 5.9 by these more restrictive
ones and (2) adding the remaining three rules given in Table 5.9. In these rules, use is

Propositional signals:

sp(z) #F =/, sp(y) #F
ow(z) Dz Toy-Sy
r-5a, s,(e+y)#F z -5/, st +y)#F
r+y->2,y+r-5a r+y -5, yt+tr -5
r-5d,y-Hs(e+y)#F -5, y-Sv, s(e+y) #F
r+y -S>, y+r 5o z+y -S> +y
r -5, s,(¢p Tre)£F T -5/, s,(¢ x)#£F
¢ x-S a x5/

Tz >, Sp(ﬁbdx)?éF
o x-S

Table 5.9: Rules for root signal emission

made of an operator to extract the propositional signal associated with a process. This
operator is defined by equational axioms in Table 5.10. The presence of conditions of the

sp(L) = F
Sp(CtS( ) =T
sp(cts(d)) = T
sp(z-y) = sy(2)
Sp(x+y) = Sp(x)/\sp(y)
sp(orei(z)) = T
5p(¢ r) = ¢/\5p(x)

Table 5.10: Axioms for root signal
form s,(z) # F in the rules reflects the intuition that a process where F is made to hold
at its start does not exist — so action execution and delay are out of the question.
5.6 Processes interacting with states

This section contains a brief survey of a further extension to processes interacting with
states. In [3], this extension is introduced in process algebra for the time-free case without
propositional signals. Here, we present the signature extension for interaction with states,
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an operational semantics of the terms over the signature of BPA4-ID with propositional
signals and interaction with states, and no axioms. For ACPg4,-ID with propositional
signals and interaction with states, the operational semantics and the axioms are presented
in [23].
It is assumed that a fixed but arbitrary set .S of states has been given, together with

functions

act: AXx S — Pp(A4)

eff: AxXxSxA—-S

eff, : S — Ppn(S5)

sig: S—FP

val: Py xS —B

For the extension of the valuation val from P, to P, in the usual homomorphic way, we
will use the name val as well.
The signature extension for processes interacting with states is as follows:

Unary operators:
As; state operator (s € S)

We shall give a structured operational semantics for BPA 44-ID with propositional signals
and side effects on states using Plotkin-style rules in the same way as before. The rules
for this structured operational semantics are obtained from the rules for BPA4.-ID with
propositional signals by adding the rules given in Table 5.11. The extension of the root

Interaction with states:
r -5, beact(a,s), s,(As(2)) #F x4/, b€ act(a, s), sp(As(z)) #F
As() by Aeff(a,s,5) (') As(2) by v
-5, s eeffy(s), s,(As(x)) #F
As(z) == Aa (')

Table 5.11: Rules for state operator

signal operator s, is defined by the following additional axiom:

sy(A(x) = sig(s) Aval(s,(a), s)

5.7 Conditions in process algebra

We are interested in the extension of discrete relative time process algebra with proposi-
tional signals and conditions, and its further extension with interaction with states. In [8],
propositional signals and conditions are introduced in process algebra for the time-free
case. In Section 5.5, a survey of BPA4,-ID with propositional signals is given. Here,
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we present the further signature extension for conditions, an operational semantics of
the terms over the signature of BPA4,-ID with propositional signals and conditions, and
no axioms. For ACPg4,-ID with propositional signals and conditions, the operational
semantics and the axioms are presented in [23].

The signature extension for conditions is as follows:

Binary operators:
:— conditional operator

The first operand of :— is a propositional formula. We write Phy for the set of all variable-

free process expressions composed with the constants and operators of the extension of
BPA4,+-ID with propositional signals and conditions.

The following abbreviation is sometimes used. Let P and () be process expressions.
Then we write P<i¢>Q for (¢ :— P) + (—¢ :— Q).

We shall give a structured operational semantics for BPA4,-ID with propositional
signals and conditions using Plotkin-style rules to define slightly different action step,
action termination and time step relations:

action step C P xPx(AU{r}) x Phe
action termination C PYy x P x (AU{r})
time step C P x P x PEE

We write

z 2% ¢ for (z,¢,a,a') € action step,

z 2% \/ for (z,¢,a) € action termination,

z 2% 2 for (z,¢,2") € time step.
DALY , T da, Vv and 0Ty ! represents conditional non-terminating action execution,
terminating action execution and passage to the next time slice, respectively. The rules
for this structured operational semantics are obtained from the rules for BPA4.-ID with
propositional signals by (1) replacing % and -Z in the unconditional rules by =% and

1% respectively, (2) replacing -% and -Z» in the conditional rules by 2% and 2%,
respectively, and (3) adding the rules given in Table 5.12.

Conditions:
T ¢7a xl T ¢7a ‘\/ T ¢70- xl

w:%xmx’ ¢_>xM\/ Vs N

Table 5.12: Rules for conditional operator

For the further extension with interaction with states, the rules for the state operator
have to be replaced by the rules in Table 5.13.
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Interaction with states:

z 2% 2/ beact(a,s), s,(\s(z)) #F & 2%/, beact(a,s), s,(A\(z)) #F

/\s(x) M /\eff(a,s,b) (.Zl?/) >\s(£l?) M \/

x 2% 2 ¢ € eff,(s), s,(\(z)) #F
Ag(z) 2070 3 ()

Table 5.13: Adapted rules for state operator
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Chapter 6

Process Algebra Semantics of Flat
SDL

6.1 Introduction

All behavioural aspects of SDL are covered by ¢SDL, including the time related ones. In
this chapter, a detailed presentation is given of a semantics of @SDL without delaying
channels. This semantics describes the meaning of constructs in this language precisely
using process algebra. Leaving out delaying channels simplifies the presentation. Besides,
the process algebra semantics of full ¢SDL presented in [18] made clear that pSDL system
definitions can always be transformed to a semantically equivalent one in ¢SDL without
delaying channels. Throughout this chapter we will write ¢SDL for ¢SDL without delay-
ing channels.

The process algebra semantics of ¢SDL agrees with the semantics of SDL as far as
reasonably possible. This means in the first place that obvious errors in [62] have not
been taken over. For example, the intended effect of SDL’s create and output actions
may sometimes be reached with interruption according to [62] — allowing amongst other
things that a process ceases to exist while a signal is delivered to it instantaneously.
Secondly, the way of dealing with time is considered to be unnecessarily complex and
inadequate in SDL and has been adapted as explained below.

In SDL,Time and Duration, the pre-defined sorts of absolute time and relative time,
are both copies of the pre-defined sort Real (intended to stand for the real numbers, but
in fact standing for the rational numbers, see [60]). When a timer is set, a real expiration
time must be given. However, the time considered is the system time which proceeds
actually in a discrete manner: the system receives ticks from the environment which
increase the system time with a certain amount (how much real time they represent is
left open). Therefore, the timer is considered to expire when the system receives the first
tick that indicates that its expiration time has passed. So nothing is lost by adopting
in SDL a discrete time approach, using copies of Natural for Time and Duration, where
the time unit can be viewed as the time between two ticks but does not really rely upon

33
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the environment. This much simpler approach also allows us to remove the original
inadequacy to relate the time used with timer setting to the time involved in waiting for
signals by processes.

We generally had to make our own choices with respect to the time related aspects of
SDL, because they are virtually left out completely in the ITU/TS recommendation Z.100.
Our choices were based on communications with various practitioners from the telecom-
munications field using SDL, in particular the communications with Leonard Pruitt [47].
They provided convincing practical justification for the premise of our current choices:
communication with the environment takes a good deal of time, whereas internal pro-
cessing takes a negligible deal of time. Ease of adaptation to other viewpoints on time
in SDL is guaranteed relatively well by using a discrete time variant of process algebra,
essentially ACPq, (see [7, 6]), as the basis of the presented semantics.

The structure of this chapter is as follows. First of all, we give a brief summary
of the ingredients of process algebra which make up the basis for the semantics of ¢SDL
presented in this chapter (Section 6.3). Then, we describe specifics on the operator used to
formalize execution of a process in a state (Section 6.4). After that, we present the process
algebra semantics of pSDL (Section 6.5). Finally, we make some additional remarks
about the work reported on in this paper as well as some remarks about related work
(Section 6.6).

6.2 Syntax summary of flat SDL without channels

This section describes the syntax of ¢SDL without channels. The meaning of the lan-
guage constructs of the various forms distinguished by these production rules is explained
informally in Chapter 2. Some peculiar details, inherited from full SDL, are left out from
Chapter 2 to improve the comprehensibility of the overview. These details will, however,
be taken into account in the current chapter.

<system definition> ::=
system <system nm> ; { <definition>}" endsystem ;

<definition> ::=
dcl <variable nm> <sort nm> ;
| signal <signal nm> [ ( <sort nm> {, <sort nm>}*)1;
| signalroute <signalroute nm>
from {<process nm> | env} to { <process nm>|env}
with <signal nm> {, <signal nm>}*;
| process <process nm> ( <natural ground expr>);
[ fpar <variable nm> {, <variable nm>}* ;]
start ; <transition> {<state def>}*
endprocess ;

Lecture Notes: DesCaRTeS Course, August 1997 UNU/IIST, P.O. Box 3058, Macau



Summary of process algebra ingredients 55

<state def> =
state <state nm>;
[save <signal nm> {, <signal nm>}* ;] {<transition alt>}*

<transition alt> ::=
{<input guard> |input none;} <transition>

<input guard> :=
input <signal nm> [ ( <variable nm> {, <variable nm>1}*)1;

<transition> =
{<action>}* {nextstate <state nm> | stop | <decision>};

<action> =
output <signal nm> [ ( <expr> {, <expr>}*)]
[to <pid expr>] via <signalroute nm> {, <signalroute nm>}*;
| set ( <time expr>, <signal nm> [ (<expr> {, <expr>}*)]);
| reset (<signal nm> [ ( <expr> {, <expr>}*)1);
| task <variable nm> := <expr>;
| create <process nm> [ ( <expr> {, <expr>}*)];

<decision> ::=
decision {<expr>|any};
([ <ground expr>]) : <transition>
{([<ground expr>]): <transition>}*
enddecision

<expr> =
<operator nm> [ ( <expr> {, <expr>1}*)]
| if <boolean expr> then <expr> else <expr> fi
| <variable nm>
| view ( <variable nm>, <pid expr>)
| active ( <signal nm> [ ( <expr>{, <expr>}*)])
| now | self | parent | offspring | sender

6.3 Summary of process algebra ingredients

This section gives a brief summary of the ingredients of process algebra which make up
the basis for the semantics of ¢SDL presented in Section 6.5. A survey of them is given
in Chapter 5.

We will make use of ACP},, and its extensions described in Chapter 5. In ACP},,
we have the constants a (for each action a),  and §. The process a is a performed in
the current time slice. Similarly, 7 is a silent step performed in the current time slice

and ¢ is a deadlock in the current time slice. Processes can be composed by sequential
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composition, written P - (), alternative composition, written P + (), parallel composition,
written P || @, encapsulation, written Oy (P), abstraction, written 7;(P) and time unit
delay, written o (P). The process o.e(P) is P delayed one time slice.

We will also use the root signal emission operator ~*, the state operator A\ and the
conditional operator :—. ¢ ~* P is the process P where the proposition ¢ is made to hold
at its start. As(P) stands for the process P executed in a state s. ¢ :— P is the process
P if the condition ¢ holds and ¢ otherwise.

Additionally, we will use a counting variant of the process creation operator Eg, added
to ACP in [12]. The counting process creation operator E} allows, given a mapping ®
from natural numbers and data to process expressions, the use of actions of the form
cr(d) to create processes ®(n, d). The crucial equation from the defining equations of this
operator is E% (cr(d) - P) = eF(n,d) - ER™(®(n,d) || P). Counting process creation leaves
a trace of actions of the form ¢7(n, d).

Further we will use actions parametrized by data and summation over a data domain
as in uCRL [32, 33]. The notation a(ti,...,t,), where the ¢;s denote data values, is used
for instances of parametrized actions. In },., P, the scope of the variable z is exactly P.
The behaviour of }°,.p P is a choice between the instances of P for the different values
that x can take, i.e. the values from the data domain D.

6.4 Processes interacting with states

SDL’s input guards and actions constitute its mechanisms for storage, communication,
timing and process creation. In the process algebra semantics of ¢SDL, which will be
presented in Section 6.5, the state operator explained in Chapter 5 is used to describe
these mechanisms in whole or in part. This means that input guards and SDL actions
correspond to ACP actions that interact with a global state. In this section, we will
describe the state space, the actions that transform states, and the result of executing
processes, built up from these actions, in a state from this state space.

6.4.1 Preliminaries

We mentioned before that ¢SDL does not deal with the specification of abstract data
types. We assume a fixed algebraic specification covering all data types used and an
initial algebra semantics, denoted by A, for it. We will write Sort4 and Op_4 for the
set, of all sort names and the set of all operation names, respectively, in the signature of
A. We will write U for Uresor , T4, where T is the interpretation of the sort name T
in A.! We will assume that nil € U. In the sequel, we will use for each op € Op4 an
extension to U, also denoted by op, such that op(ty,...,t,) = nil if at least one the t;s
is not of the appropriate sort. Thus, we can change over from the many-sorted case to

'We have that B C U and N C U because of the assumption made in Section 6.1 that Boolean ¢
Sort 4 and Natural € Sort 4.
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the one-sorted case for the description of the meaning of SDL constructs. We can do
so without loss of generality, because it can (and should) be statically checked that only
terms of appropriate sorts occur.

Uncustomary notation concerning sets, functions and sequences, used in this section,
is explained in Appendix 6.7.1.

6.4.2 Basic domains and functions, the state space

The state space, used to describe the meaning of system definitions, depends upon the spe-
cific variables, types of signals and types of processes introduced in the system definition
concerned. They largely make up the contextual information extracted from the system
definition by means of the function {Je]} defined in Appendix 6.7.2. For convenience,
we define these state space parameters for arbitrary contexts x (the notation concerning
contexts introduced in Appendix 6.7.2 is used):

Vi = wars(k) U {parent, offspring, sender}
Sk = sigs(k)
P, = procs(k)

First, we define the set Sig, of signals and the set ExtSig, of extended signals, which
fit into the picture of the communication mechanism. A signal consist of the name of its
type and the sequence of values that it carries. An extended signal contains, in addition
to a signal, the pid values of its sender and receiver.

S1g = S, xU*
EﬁL‘tS’ig,g = Szgn X Ny x Ny

We write snm(sig) and wvals(sig), where sig = (s,vs) € Sig,, for s and vs, respectively.
We write sig(zsig), snd(zsig) and rcv(xsig), where zsig = (sig,i,1') € ExtSig,, for sig, i
and 7', respectively. Note that 0 is excluded as pid value of the sender or receiver of a
signal. It is a special pid value that never refers to any existing process; in full SDL this
pid value is denoted by null.

The local state of a process includes a storage which associates local variables with
the values assigned to them, an input queue where delivered signals are kept until they
are consumed, and a component keeping track of the expiration times of active timers.
We define the set Stg, of storages, the set Inp@), of input queues and the set Timers, of
timers as follows:

Stgx = Uvcy, (V= 0)
InpQ = EztSig.*
Timersx = Urepg, (sig.) (T — NU{nil})

We will follow the convention that the domain of a function from Stg, does not contain
variables with which no value is associated because a value has never been assigned to
them. We will also follow the convention that the domain of a function from Timers,
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contains precisely the active timers. While an expired timer is still active, its former
expiration time will be replaced by nil. The basic operations on Stg, and Timers, are
general operations on functions: function application, overriding (6) and domain sub-
traction (<). Overriding and domain subtraction are defined in Appendix 6.7.1. In so far
as the communication mechanism of SDL is concerned, the basic operations on InpQ), are
the functions

getnzt  : InpQ. X Pgn(Sy) — ExtSig, U {nil},
rmufirst : InpQx X Sigx — InpQ,
merge  : Bfin(InpQx) — Pin(InpQx)

defined below. The value of getnzt(o,ss) is the first (extended) signal in o that is of a
type different from the ones in ss. The value of rmufirst(o, sig) is the input queue o from
which the first occurrence of the signal sig has been removed. Both functions are used to

describe the consumption of signals by SDL processes. The function getnzt is recursively
defined by

getnzt((), ss) = nil
getnat((sig,1,i') & o, 88) = (sig,1,7") if snm(sig) & ss
getnat((sig,i,i') & 0, s8) = getnzt(o,ss) if snm(sig) € ss

and the function rmufirst is recursively defined by

rmufirst((), stg) = ()
rmufirst((sig,i,i') & o, 819) = o
rmufirst((sig,i,i') & o, sig") = (sig,1,1'") & rmufirst(o, sig’)  if sig # sig’

For each process, signals noticing timer expiration have to be merged when time pro-
gresses to the next time slice. The function merge is used to describe this precisely. It is
inductively defined by

() € merge(0)
o € merge({o})

() € merge({(),()})
o € merge({o1,02}) = (sig,1,i') & o € merge({(sig,i,i') & o1,02})
o € merge({o1,02}) A o2 € merge(X) = o € merge({o1} UX)

We define now the set L, of local states. The local state of a process contains, in
addition to the above-mentioned components, the name of its type. Thus, the type of the
process concerned will not get lost. This is important, because a signal may be sent to
an arbitrary process of a process type.

Ly = Stg, X InpQ, X Timers, X Py

We write stg(L), inpq(L), timers(L) and ptype(L), where L = (p, 0,0, X) € L, for p, o,
f and X, respectively.
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The global state of a system contains, besides a local state for each existing process,
a component keeping track of the system time. To keep track of the system time, natural
numbers suffice.

We define the state space G, of global states as follows:

G = NxUrepg, i) (L = L)

We write now(G) and Ists(G), where G = (n,X) € G, for n and X, respectively. We
write ezists(i,G), where i € N and G € Gy, for ¢ € dom(lsts(G)). Note that the local
states are indexed by a subset of Ny. This means that 1 will never serve as the pid value
of a process that exists within the system. But it is not excluded from being used as a
pid value; 1 is reserved for the environment.

6.4.3 Actions and expressions

In this subsection, we will introduce the actions that are used for the semantics of ¢SDL.
Most of the actions used are parametrized. The arguments of the instances of these
actions are often values that depend on the state in which the instances are executed,
or they have such values as constituents. The conditional operator :— is used to supply
such instances with the right values. The syntax of the expressions used in the conditions
concerned is described in this subsection as well.

Actions:

We will make a distinction between the state transforming actions and the actions that
do not transform states. For each action a from the latter kind, the action that appears
as the result of executing a in a state is always the action a itself; i.e. Ag(a-P) =
sig(G) "™ a- Ag(P). These actions are called inert actions.

The state transforming actions are parametrized by various domains. In addition to
the sets N, U, V., S., Px, Sig. and EztSig,, the set SigP, of signal patterns, the set
SaveSet,, of save sets and the set PrCrD, of process creation data are used. A signal
pattern is like a signal, but variables are used instead of values. A save set is just a finite
set of names of signal types. A process creation datum consists of the name of the type
of the process to be created, its formal and actual parameters, and the pid value of its
creator.

SigP = S, x V,*
SaveSet, = Ppn(Sk)
PrCrD, = P,xV, " x U*xNy

Each process creation datum contains the sequence of formal parameters for the pro-
cess type concerned. The alternative would be to make the association between process
types and their formal parameters itself a parameter of the state operator, which is very
unattractive.

The following state transforming actions are used:
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nput : SigP, X SaveSet, X Ng
output  : ExtSigy

set : N x Sig, X No

reset : Sigr X N

ass Vi X U XNy

T :Ng x PrCrDy

stop : Ny

inispont : Ng

These are the ACP actions that correspond to input guards, SDL actions, the terminator
stop and the void guard input none. The second argument of an nput action is the save
set being in force. The last argument of all actions is the pid value of the process from
which the action originates, except for the output and ¢r actions where the pid value
concerned is available as component of the last argument — as the pid value of the sender
and creator, respectively. Similar remarks also apply to the corresponding actions after
execution, and to a cr action (see below).
The following inert actions are used:

cr : PrCrD,,
input’  : ErtSig,
output’ : ExtSig,

set’ : N X Sig, x No
reset’ 1 Sig, X Ny
t

They do not transform states. They are the actions that appear as the result of executing a
state transforming action, except for cr. The instances of cr are used for process creation,
leaving instances of ¢ as a trace. The action ¢ is a special action with no observable
effect whatsoever. It appears, for example, as the result of executing an instance of ass,
cr, stop or inispont.

Expressions:

As explained above, we also need expressions that stand for values that generally depend
on the state in which they are evaluated. The syntax of these expressions, called value
expressions, is as follows:

vexpr> =
<operator nm> [ ( <vexpr> {, <vexpr>}*)]
| cond ( <boolean vexpr>, <vexpr>, <vexpr>)
| value ( <variable nm>, <pid vexpr>)
| active ( <signal nm> [ ( <vexpr> {, <vexpr>}*)], <pid vexpr>)
| now
| <value nm>
| <vexpr> = <vexpr>
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| waiting ( <signal nm> {, <signal nm>}* , <pid vexpr>)
| type (<pid vexpr>)
| hasinst ( <process nm>)

We assume that the terminal productions of <operator nm>, <variable nm>, <signal nm>
and <process nm> yield the sets Op4, V4, Sk and Py, respectively. We also assume that
the terminal productions of <value nm> yield a fixed set of variables in the sense of yCRL
and that this set includes the special value name self.

The first five cases correspond to operator applications, conditional expressions, view
expressions, active expressions and the expression now, respectively, in SDL. The SDL
expressions parent, offspring and sender are regarded as variables accesses, and variable
accesses are treated as a special case of view expressions. The sixth case includes self,
which corresponds to the SDL expressions self.

The remaining four cases are needed to reflect the intended meaning of various SDL
construct exactly. Expressions of the form = = t, where z is a value name, are used,
together with the conditional operator :—, to supply instances of parametrized actions
with state dependent values. Expressions of the form ¢; = ¢, are, as a matter of course,
also used to give meaning to SDL’s decisions. Expressions of the form waiting (s, ..., Sn,t)
are used to give meaning to SDL’s state definitions. They are needed to model that signal
consumption is not delayed till the next time slice when there is a signal to consume.
Expressions of the forms type(t) and hasinst(X) are used to give meaning to SDL’s output
actions. They are needed to check (dynamically) if a receiver with a given pid value is of
the appropriate type for a given signal route and to check if a receiver of the appropriate
type for a given signal route exists.

6.4.4 State transformers, observers and propositions

In the process algebra semantics of ¢SDL, which will be presented in Section 6.5, ACP
actions that transform states from G, are used to describe the meaning of input guards,
SDL actions and stop. State transforming actions are also needed to initiate spontaneous
transitions (indicated by inputnone). In the next subsection, we will define the result of
executing a process, built up from these actions, in a state from G,. That is, we will
define the relevant state operator. This will, for the most part, boil down to describing
how the actions, and the progress of time (modelled by the delay operator o), transform
states. For the sake of comprehensibility, we will first define matching state transforming
operations, and also some state observing operations.

Two of the state observing operations are used directly to define the state operator;
the others are used to define the evaluation function for the value expressions introduced
in Section 6.4.3 — such expressions stand for values that generally depend on the state in
which they are evaluated. In the next subsection, we will define, in addition to the state
operator, the above-mentioned evaluation function.

Every state from G, produces a proposition which is considered to hold in the state
concerned. In this way, the state of a process is made partly visible. In this subsection,
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we will also define a function that gives for each state the proposition produced by that
state. This function will be defined such that a state makes visible exactly what may
be modified by SDL actions as well as be interrogated by SDL expressions. That is, the
current value of all local variables and the current set of active timers are made visible
for all existing processes. It is obvious that some of the state observing operations used
to define the evaluation function are also used to define this function.

State transformers:

In general, the state transformers change one or two components of the local state of
one process. The notable exception is csmsig, which is defined first. It may change all
components except the process type. This is a consequence of the fact that the storage,
communication and timing mechanisms are rather intertwined on the consumption of
signals in SDL. For each state transformer it holds that everything remains unchanged if
an attempt is made to transform the local state of a non-existing process. This will not
be explicitly mentioned in the explanations given below.

The function csmsig : ExtSig, X V,.* x G, — G, is used to describe how ACP actions
corresponding to SDL’s input guards transform states.

csmsig((sig,1,1'),(v1,...,vn),G) =
(now(QG),lsts(G) & {i' — (p,0,0,X)}) if exists(i,G)

G otherwise
where p = stg(lsts(G)y) ® {v1 — vals(sig)1, ..., vy — vals(sig),,sender — i},
o = rmufirst(inpq(lsts(G)y), sig),
0 = {sig} < timers(lsts(G)y),
X = ptype(lsts(G)y)
csmsig((sig,i,1'), (v1,...,v,), G) deals with the consumption of signal sig by the process

with pid value 7'. It transforms the local state of the receiver as follows:

e the values carried by sig are assigned to the local variables vy, ..., v, of the receiver
and the sender’s pid value (7) is assigned to sender;

e the first occurrence of sig in the input queue of the receiver is removed;

e if sig is a timer signal, it is removed from the active timers.

Everything else is left unchanged.
The function sndsig : FxtSig, X G, — G, is used to describe how ACP actions corre-
sponding to SDL’s output actions transform states.

sndsig((sig,1,1'),G) =
(now(G),lsts(G) & {i' — (p,0,0,X)}) if emists(i,G)
G otherwise
),
i) ((sig,i,7')),

where p = stg(lsts(G)y
o = inpq(lsts(G)y)
60 = timers(lsts(G)y),
X = ptype(lsts(G)y
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sndsig((sig,i,1'), G) deals with passing signal sig from the process with pid value i to the
process with pid value ¢'. It transforms the local state of the receiver as follows:

e sig is put into the input queue of the receiver, unless i’ = 1 (indicating that the
environment is the receiver of the signal).

Everything else is left unchanged.
The function settimer : N x Sig, X Ny X G, — G, is used to describe how ACP actions
corresponding to SDL’s set actions transform states.

settimer(t, sig,1,G) =
(now(G), Ists(G) @ {i — (p,0,0,X)}) if exists(i,G)

G otherwise
where p = stg(lsts(G);),
o = rmufirst(inpq(lsts(G);), sig) if ¢t > now(G)
rmufirst(inpq(lsts(G);), sig) — {((s1g,1,7)) otherwise,
0 = timers(lsts(G);) ® {sig — t} if t > now(G)
timers(lsts(G);) @ {sig — nil} otherwise,
X = ptype(lsts(G);

settimer(t, sig, i, G) deals with setting a timer, identified with signal sig, to time ¢. If
t has not yet passed, it transforms the local state of the process with pid value 7, the
process to be notified of the timer’s expiration, as follows:

e the occurrence of sig in the input queue originating from an earlier setting, if any,
is removed;

e sig is included among the active timers with expiration time ¢; thus overriding an
earlier setting, if any.

Otherwise, it transforms the local state of the process with pid value 7 as follows:

e sig is put into the input queue after removal of its occurrence originating from an
earlier setting, if any;
e sig is included among the active timers without expiration time.

Everything else is left unchanged.
The function resettimer : Sig, X Ny x G, — G, is used to describe how ACP actions
corresponding to SDL’s reset actions transform states.

resettimer(sig,i,G) =
(now(Q),lsts(G) & {i — (p,0,0,X)}) if exists(i,G)
G otherwise

where p = stg(lsts(G)i),
o = rmufirst(inpq(lsts(G);), sig),
0 = {sig} < timers(lsts(G);),

X = ptype(lsts(G):)
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resettimer(sig, i, G) deals with resetting a timer, identified with signal sig. It transforms
the local state of the process with pid value 7, the process that would otherwise have been
notified of the timer’s expiration, as follows:

e the occurrence of sig in the input queue originating from an earlier setting, if any,
is removed;
e if sig is an active timer, it is removed from the active timers.

Everything else is left unchanged.
Notice that settimer(t, sig, i, G) and settimer(t, sig, i, resettimer(sig, i, G)) have the same
effect. In other words, settimer resets implicitly. In this way, at most one signal from
the same timer will ever occur in an input queue. Furthermore, SDL keeps timer signals
and other signals apart: not a single signal can originate from both timer setting and
customary signal sending. Thus, resetting, either explicitly or implicitly, will solely remove
signals from input queues that originate from timer setting.

The function assignvar : V, x U X Ny x G, — G, is used to describe how ACP actions
corresponding to SDL’s assignment task actions transform states.

assignvar(v,u,1,G) =

(now(Q),lsts(G) & {i — (p,0,0,X)}) if exists(i,G)

G otherwise
where p = stg(lsts(G);) & {v — u},
o = inpq(lsts(G):),
60 = timers(lsts(G);),

X = ptype(lsts(G):)

assignvar(v, u, i, G) deals with assigning value u to variable v. It transforms the local
state of the process with pid value 7, the process to which the variable is local, as follows:

e u is assigned to the local variable v, i.e. v is included among the variables in the
storage with value u; thus overriding an earlier assignment, if any.

Everything else is left unchanged.
The function createproc : Ny X PrCrD . x G, — G, is used to describe how ACP actions
corresponding to SDL’s create actions transform states.

createproc(i', (X', (v1, ..., o), (u1,...,un),1),G) =
(now(Q),Ilsts(G) & {i — (p,0,0,X),i — (p/,0',0, X")}) if exists(i,G)

G otherwise
where p = stg(lsts(G);) @ {offspring — '},
o = inpq(lsts(G);),
0 = timers(lsts(G);),
X = ptype(lsts(G);),
P =A{vi— u,..., v, — uy,, parent — i, offspring — 0, sender — 0},
OJ = <>’
o =1}
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createproc(i', X', (vy, ..., vn), (U1, ..., up), i, G) deals with creating a process of type X'.
It transforms the local state of the process with pid value 7, the parent of the created
process, as follows:

e the pid value of the created process (i) is assigned to offspring.
Besides, it creates a new local state for the created process which is initiated as follows:

e the values uq,...,u, are assigned to the local variables vy,...,v, of the created
process and the parent’s pid value (i) is assigned to parent;
e X' is made the process type.

Everything else is left unchanged.
The function stopproc : Ny x G, — G, is used to describe how ACP actions corre-
sponding to SDL’s stop transform states.

stopproc(i,G) = (now(G),{i} 4 lsts(G))

stopproc(i, G) deals with terminating the process with pid value i. It disposes of the local
state of the process with pid value 7. Everything else is left unchanged.

The function inispont : Ny X G, — G, is used to describe how ACP actions used to
initiate spontaneous transitions transform states.

inispont(i,G) =
(now(Q),Ilsts(G) & {i — (p,0,0,X)}) if exists(i,G)
G otherwise

where p = stg(lsts(G);) @ {sender — i},
o = inpq(lsts(G)i),
0 = timers(lsts(G);),

X = ptype(lsts(G):)

inispont(i, G) deals with initiating spontaneous transitions. It transforms the local state
of the process with pid value 7, the process for which a spontaneous transition is initiated,
by assigning ¢ to sender. Everything else is left unchanged.

The function unitdelay : G, — Ppn(Gs) is used to describe how progress of time
transforms states. In general, these transformations are non-deterministic — how signals
from expiring timers enter input queues is not uniquely determined. Therefore, this
function yields for each state a set of possible states.

G' € unitdelay(G) <
now(G') = now(G) + 1 A
Vi € dom(lsts(@)) -
stg(lsts(G");) = stg(lsts(G);) A
(o € InpQ -
inpq(lsts(G");) = inpq(lsts(G)i) ~ oA
o € merge( {((sig,i,1)) | timers(lsts(G);)(sig) < now(G)}))A
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timers(lsts(G');) =
timers(lsts(G);) @ {sig — nil | timers(lsts(G);)(sig) < now(G)} A
ptype(lsts(G');) = ptype(lsts(G);)

unitdelay(G) transforms the global state as follows:

e the last issued pid value is left unchanged;
e the system time is incremented with one unit;
e for the local state of each process:

— the storage is left unchanged;

— the signals that correspond to expiring timers are put into the input queue in
a non-deterministic way;

— for each of the expiring timers, the expiration time is removed;

— its process type is left unchanged.

State observers:

In general, the state observers examine one component of the local state of some process.
The only exception is has-instance, which may even examine the process type component
of all processes. If an attempt is made to observe the local state of a non-existing process,
each non-boolean-valued state observer yields nil and each boolean-valued state observer
yields F. This will not be explicitly mentioned in the explanations given below.

The functions nztsig : SaveSet, x Ny x G, — FxtSig,U{nil} and nztsignm : SaveSet, x
Ny x G, — S, U{nil} are used to define the result of executing ACP actions corresponding
to SDL’s input guards in a state.

natsig(ss,i,G) = getnzt(inpq(lsts(G);),ss) if exists(i, G)
nil otherwise

natsig(ss, i, G) yields the first signal in the input queue of the process with pid value i
that is of a type different from the ones in ss.

natsignm(ss,i,G) = snm(sig(natsig(ss,i,G))) if naztsig(ss,i, G) # nil
nil otherwise

natsignm(ss, i, G) yields the type of the first signal in the input queue of the process with
pid value 7 that is of a type different from the ones in ss.

The function contents : V., x Ny x G, — U U {nil} is used to describe the value of
expressions of the form wvalue(v,t) which correspond to SDL’s variable accesses and view
expressions.

contents(v,i,G) = p(v) if exists(i,G) ANv € dom(p)
nil otherwise

where p = stg(lsts(G);)
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contents(v, i, G) yields the current value of the variable v that is local to the process with
pid value .

The function is-active : Sig, x Ny X G, — B is used to describe the value of expressions
of the form active(sig,t) which correspond to SDL’s active expressions.

is-active(sig,i,G) = T if exists(i,G) N sig € dom(timers(lsts(G);))
F otherwise

is-active(sig, i, G) yields true iff sig is an active timer signal of the process with pid value
i.

The function is-waiting : SaveSet, X Ny X G, — B is used to describe the value of
expressions of the form waiting(si, ..., sn,t) which are used to give meaning to SDL’s
state definitions.

is-waiting(ss,1,G) = T if exists(i, G) A nxtsig(ss,i, G) = nil
F otherwise

is-waiting(ss, i, G) yields true iff there is no signal in the input queue of the process with
pid value 7 that is of a type different from the ones in ss.

The function type : Ny x G, — (P, U {env}) U {nil} is used to describe the value of
expressions of the form type(t) which are used to give meaning to SDL’s output actions
with explicit addressing.

type(i,G) = ptype(lsts(G);) if exists(i, G)
env ifi=1
nil otherwise

type(i, G) yields the type of the process with pid value i. Different from the other state
observers, it yields a result if ¢ = 1 as well, viz. env.

The function has-instance : (P, U {env}) x G, — B is used to describe the value of
expressions of the form hasinst(X), where X is a process name, which are used to give
meaning to SDL’s output actions with implicit addressing.

has-instance(X,G) = T if i€ Ny- (i =1V exists(i,G)) A type(i,G) = X
F otherwise

has-instance(X, G) yields true iff there exists a process of type X.

State propositions:

The propositions produced by states from G, can be built from a set Atom, of atomic
propositions, T, F, and the connectives = and —. We consider conjunctions and disjunc-
tions abbreviations as usual. We define the set Atom, as follows:

Atom,, =
(v,u,i) € Ve x U x Na} U
(sig,i) € Sigx X Na}

{value(v, u,1)
{active(sig, 1)
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We write Prop, for the set of all propositions that can be built as described above. An
atomic proposition of the form wvalue(v,u, i) is intended to indicate that u is the value of
the local variable v of the process with pid value i. An atomic proposition of the form
active(sig, ) is intended to indicate that the timer of the process with pid value i identified
with signal sig is active. By using only atomic propositions of these forms, the state of
a process can not be made fully visible via the proposition produced. The proposition
produced by each state, given by the function sig defined below, makes only visible the
value of all local variables and the set of active timers for all existing processes.

First, we define the function atoms : G, — P(Atom,) giving for each state the set of
atomic propositions that hold in that state. It is inductively defined by

contents(v,i,G) = u = value(v,u,i) € atoms(G)
is-active(sig,i,G) = T = active(sig,i) € atoms(G)

We define now the functions sig : G, — Prop, and val : Atom, x G, — B as follows:

Sig(G) = /\¢€atom5(G)¢
and

val(¢,G) = T if ¢ € atoms(G)
F otherwise

So sig(G) is the conjunction of all atomic propositions that hold in state G and val(¢, G)
yields true iff ¢ is one of the atomic propositions that hold in state G.

6.4.5 State operator and evaluation function

In this subsection, we will finally define the state operator that is used to describe, in
whole or in part, the SDL mechanisms for storage, communication, timing and process
creation. We will not define the action and effect functions explicitly, as in [3]. Instead
we will define, for each state transforming action a, the result of executing a process of
the form a - P in a state from G,.?> Because progress of time transforms states as well, we
will also define the result of executing a process of the form o, (P) in a state. In addition,
we will define the evaluation function that is used to describe the value of an expression
t in a state G.

State operator:

The state transformers defined in Section 6.4.4 are used below to describe the state G’
resulting from executing a state transforming action a in a state G. The action a' that
appears as the result of executing a state transforming action a in a state GG is reminiscent

>We follow the convention that, for each equation Ag(a - P) = sig(G) ~ = da' - Aa'(P), the equation
Aa(a) =sig(G) ~ ™o’ is implicit.
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to a, provided the action is concerned with communication or timing. In case of an input
action, the connection is most loose. An input action a has a signal pattern, a save
set and a pid value as its arguments and the corresponding action a’ has an extended
signal matching this pattern as its sole argument. If the action is not concerned with
communication or timing, the special action ¢ appears as the result of executing it.

We will first define the result of executing a process of the form a - P in a state
from G, for the state transforming ACP actions corresponding to SDL’s input guards,
output actions, set actions, reset actions, assignment task actions, create actions and
the terminator stop, and for the state transforming ACP actions of the form inispont(u)
which will be used to set sender properly when spontaneous transitions take place. All
this is rather straightforward with the state transformers defined in Section 6.4.4; only the
case of the ACP actions corresponding to SDL’s input guards needs further explanation.
Different from the other cases, the execution of an action input((s, (vi,...,v,)),ss, X)
may fail in certain states. It fails if the type of the first signal in the input queue of the
process with pid value ¢ with a type not occurring in ss is different from s. Otherwise, it
succeeds, the values carried by this signal are assigned to the local variables vy, ..., v, of
the process concerned, and the signal is removed from the input queue.

AG(inpu’f((sﬂ<v17"'7vn>)7587i) P) =
Sig(G) - inPUtl(iSig) : Acsmsig(isig,{vl,...,vn>,G)(P) if nmtSignm(ssa i, G) =S
sig(G) ~ ™9 otherwise

where isig = naxtsig(ss,i, Q)

OUtPUt(o‘%g) P) = Sig( OUtPUt (0‘%9) )‘sndsig(osig,G)(P)

S t(t, tSigai) : P) = Sig( s€ (t tszg, ) )‘settimer(t,tsig,i,G)(P)

ss(v,u, ) - P) = sig(G) " & Nassignvar(v,u,i,c) (P)
cr(i',ped) - P) = sig(G) "t - Acreateproc(it ped,c) (P)
stop(i) - P) = sig(G) ~™ &t - Astopproc(i,c) (P)
Ag(inispont(i) - P) = sig(G) ™™ &+ Ninispont(i,c) (P)

a( )
( )
AG(reset(tsig,i) - P) = sig(G) ~~ reset(tsig, i) - Aresctimer (tsig,i,c) (P)
( —~
(
(

Recall that for each inert action a, we simply have
Ac(e- P) =sig(G) ""a- Aa(P)

We will now proceed with defining the result of executing a process of the form oy (P)
in a state from G,. This case is quite different from the preceding ones. Executing a
process that is delayed till the next time slice in some state means that the execution
is delayed till the next time slice and, in general, that it takes place in another state
due to the progress of time. Usually, it is not uniquely determined how progress of time
transforms states. This leads to the following equation:

)‘G(Urel(P)) = Slg(G) A‘arel(ZG’Eunitdelay(G) )‘G’(P))
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Evaluation function:

We will end this section with defining the evaluation function that is used to describe the
value of an expression t in a state G. Most state observers defined in Section 6.4.4 are
used to define this function.

The SDL expressions are covered by the first six cases, as explained in Section 6.4.3.
These cases do not need any further explanation except the remark that the fixed set of
value names ranged over by the meta-variable z is also used as a set of variables in the
sense of uCRL.

evalg(op(t1,...,tn)) =
op(evalg(t),...,evalg(t,)) if evalg(ty) # nil A... Aevalg(t,) # nil
nil otherwise

evalg(cond(ty,ta,t3)) =
evalg(ta) if evalg(t;) =T
evalg(tz) if evalg(t;) =F
nil otherwise

evalg(value(v,t)) =
contents(v,evalg(t),G) if evalg(t) € Ny
nil otherwise

evalg(active(s(ty, ..., ty),t)) =
is-active(sig,evalg(t),G) if evalg(t1) #nil A... Aevalg(t,) # nil A
evalg(t) € Ny

nil otherwise
where sig = (s, (evalg(t1),...,evalg(t,)))
evalg(now) = now(G)

evalg(z) = =«

The remaining four cases are about expressions which are also needed in Section 6.5, as
explained in Section 6.4.3 as well. They are very straightforward.

evalg(ty =t3) =
T if evalg(t1) = evalg(t2) A evalg(t1) # nil Aevalg(ta) # nil
F otherwise

evalg(waiting(s1,...,8n,t)) =
is-wasting({s1,...,sn},evalg(t),G) if evalg(t) € No
F otherwise

evalg(type(t)) =
type(evalg(t),G) if evalg(t) € Ng
nil otherwise
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evalg(hasinst(X)) = has-instance(X,G)

We write Cond,, for the set of all expressions ¢ that evaluate to a boolean value, i.e.
evalg(t) € {T,F} for all G € G.. The set Cond, is a set of atomic propositions that are
used as conditions. We define now the function val : Cond, x G, — B as follows:

val(¢,G) = evalg(o)

The union of the valuations val for Atom, and Cond, make up the valuation function
associated with the state operator defined in this section.

6.5 Process algebra semantics

In this section, we will present a process algebra semantics of @SDL. It relies heavily upon
the specifics of the state operator defined in Section 6.4.5. Here, all peculiar details of the
semantics, inherited from full SDL, become visible.

The semantics of ¢SDL is defined by interpretation functions, one for each syntactic
category, which are all written in the form [e]*. The superscript « is used to provide
contextual information where required. The exact interpretation function is always clear
from the context. We will be lazy about specifying the range of each interpretation
function, since this is usually clear from the context as well. Many of the interpretations
are expressions, equations, etc. They will simply be written in their display form. We will
in addition assume that the interpretation of a name is the same name. If an optional
clause represents a sequence, its absence is always taken to stand for an empty sequence.
Otherwise, it is treated as a separate case.

In this section, we will use the following abbreviation. Let a(us, ..., u,) be an instance
of a parametrized action a : Dy x ... x D,, where D; C U (for 1 < ¢ < n) and let ¢; be
a value expression. Then we write a(uq, ..., ui—1,t;, Uiy1,...,u,) for ¥ ..p. x; = t; :—
a(uy, ..., U1, T, Uir1, - - -, Up). We will also use the obvious extensions of this notation
to the cases where D; is somehow composed of subsets of U and other domains by cartesian
product. Note that this abbreviation covers exactly the use of the conditional operator
:— mentioned in Section 6.4.3: to supply instances of parametrized actions with state
dependent values.

6.5.1 System definition

The meaning of a system definition is a process expression describing the behaviour of
the system. The meaning of each process definition occurring in a system definition is a
singleton mapping {X — E} where X is the process name introduced and E is a set of
equations recursively defining the behaviour of the process. Taking an empty mapping as
the meaning of the other definitions facilitates the expression of the meaning of a system
definition in terms of the meaning of the definitions occurring in it.
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[system S;D; ... D, endsystem;] :=
Trugy (Aeo (Bg*(P) || Bnv))

where P = [I7% @@+ 1,(pt(i +1),(),(),0)),
®(i, (X, f,a,p)) = (X|([D1]" @ ... @ [Dn]")x[i/ self]),
Go = (0,0, {t + 1 Lo(i + 1)}),
Lo(7) = ({parent — 0, offspring — 0,sender — 0}, (),{ }, pt (7)),
no = ZXGprocs(n) init (K, X),
K = {system S;D; ... D, endsystem;]}

and pt:{1+4+1,...,n0+ 1} — procs(x) is such that
VX € procs(k) - card(pt=(X)) = init(k, X).

[process X (k); fpar vy, . ..,v,; start; tr d; ... d, endprocess;]" =
{(X =2 X = [er]™ [a]" - [da]" })

where k' = updscopeunit(x, X)

[D]* := {} if the definition D is not of the form
process X (k); fpar vy, . ..,vp;start; tr d; ... d, endprocess;

The process expression Fnv and the set of actions I are to be regarded as parameters of
the semantics. Env is restricted by the following condition:

a(Env) C {output(osig) | osig € EnvSigy}

The set EnvSig, of possible environment signals is defined in Appendix 6.7.2. The notation
a(P) is used for the alphabet of P, i.e. the set of actions that P can perform (see e.g. [10]).

The process expression that corresponds to a system definition expresses that, for each
of the process types defined, the given initial number of processes are created and these
processes are executed in parallel, starting in the state (o, while they receive signals via
signal routes from the environment EFnv. Additionally, the internal action ¢ as well as the
actions in [ are hidden. G is the state in which the system time is zero and there is a
local state for each of the processes that are created initially. Recall that the pid value
1 is reserved for the environment. The set of equations that corresponds to a process
definition describes how a process of the type concerned behaves at its start (the equation
X = [tr]*') and how it behaves from each of the n states in which it may come while it
proceeds (the equations [di]*', ..., [d.]*).

We consider the meaning of a system definition obtained by taking EnvS and I%
defined below for Env and I, respectively, as its standard meaning.

Envs® = o (Envst) + Zosig:EmSign output(osig) - EnvSt

I3t = {input'(isig) | isig € ExtSig, }U
{output'(0sig) | osig € ExtSig,, snd(osig) # 1, rcv(osig) # 1}U
{set'(t, tsig,i) | t € N, tsig € Sigy,i € Na}JU
{reset'(tsig, 1) | tsig € Sigy,i € Na}
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If one takes Envs* for Env, the only assumptions about the environment that are taken
into account are the ones made explicit in the signal route definitions. If one takes I** for I,
one gets an abstract meaning corresponding to the viewpoint that only the communication
of the system with the environment is observable.

6.5.2 Process behaviours

The meaning of a state definition, occurring in the scope of a process definition, is an
equation defining the behaviour of a process of the type concerned from the state. It
is expressed in terms of the meaning of its transition alternatives, which are process
expressions describing the behaviour from the state being defined for the individual signal
types of which instances may be consumed and, in addition, possibly for some spontaneous
transitions. The meaning of each transition alternative is in turn expressed in terms of
the meaning of its input guard, if the alternative is not a spontaneous transition, and its
transition.

[state st; save s, ... ,spmialty ... alt,]" =
X = - ([[altl]]“' 4+ ..+ [[altn]]"’ + waiting(s1, . . . , Sm, self) :— ore1(Xst))

where X = scopeunit(k),

k' = updsaveset(k,{s1,...,5m})

[input s(vi,...,v.)tr]" = input((s, (v1,...,v,)),ss,self) - [tr]"

where ss = saveset(k)
[input none; ¢tr]*® := inispont(self) - [tr]”

The equation that corresponds to a state definition describes that the processes of type X
behave from the state st as one of the given transition alternatives, and that this behaviour
is possibly delayed till the first future time slice in which there is a signal to consume if
there are no more signals to consume in the current time slice. Entering a state is supposed
to take place by way of some internal action — thus it is precluded that a process is in more
than one state. In equations, we use names of process types with state name subscripts,
such as X,; above, as variables; in process expressions elsewhere, we use them to refer to
the processes defined thus. Notice that, in the absence of spontaneous transitions, a delay
becomes inescapable if there are no more signals to consume in the current time slice. The
process expression that corresponds to a guarded transition alternative expresses that the
transition ¢r is initiated on consumption of a signal of type s. In case of an unguarded
transition alternative, the process expression expresses that the transition ¢r is initiated
spontaneously, i.e. without a preceding signal consumption, with sender set to the value
of self.

The meaning of a transition, occurring in the scope of a process definition, is a process
expression describing the behaviour of the transition. It is expressed in terms of the
meaning of its actions and its transition terminator.
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[a1 ... a, nextstate st;]* = [a1]" ...  [an]" - Xy
where X = scopeunit(k)
[a1 ... a,stop;]® := [a1]" - ... [an]" - stop(self)

[a1 ... an dec;]® = [a1]" - ... [an]” - [dec]”

The process expression that corresponds to a transition terminated by nextstate st ex-
presses that the transition performs the actions ay, ..., a, in sequential order and ends
with entering state st — i.e. goes on behaving as defined for state st of the processes of
the type defined. In case of termination by stop, the process expression expresses that it
ends with ceasing to exist; and in case of termination by a decision dec, that it goes on
behaving as described by dec.

Of course, the meaning of a decision is a process expression as well. It is expressed in
terms of the meaning of its expressions and transitions.

[decision e;(e1):try ... (e,):tr, enddecision]® :=
([e] = [e1] := [tr1]®) + ... + ([e] = [en] :— [tra]®)

[decision any; ():try ... ():tr, enddecision]” := [tri]" + ... + [tr,]”®

The process expression that corresponds to a decision with a question expression e ex-
presses that the decision transfers control to the transition tr; for which the value of e
equals the value of e;. In case of a decision with any instead, the process expression ex-
presses that the decision transfers non-deterministically control to one of the transitions
tri, ..., try.

The meaning of an SDL action is also a process expression. It is expressed in terms
of the meaning of the expressions occurring in it. It also depends on the occurring names
(names of variables, signal types, signal routes and process types — dependent on the kind
of action).

[output s(ey,...,ep) toeviary, ... ,ry;]" =
type([e]) = X1 V... V type([e]) = Xm :— output(((s, ([er], ..., [eal)), self , [€])) +
—(type([e]) = X1 V...V type([e]) = Xom) :— &

where for 1 <j <m: X; = rcv(k,rj)

[output s(ey,...,ep)viary,...,m;]" =

i, (type(i) = X1 V...V type(i) = Xo :— output (((s, ([er],- .-, [en])), self,4))) +
—(hasinst(X1) A ... A hasinst(Xp,)) :— ¢

where for 1 < j <m: X; = rcv(k,rj)
[set (e,s(e1s ... en))s]" = set([e], (s, ([ei],---,[en])), self)
[reset (s(e1,...,eq)):]" := reset((s,([ei],---,[en])), self)
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[task v:=e;]" := ass(v, [e], self)
[create X (eq,...,en)s]" = cr((X, fpars(k, X),([ei], ..., [en]), self))

All cases except the ones for output actions are straightforward. The cases of output
actions need further explanation. The receiver of a signal sent via a certain signal route
must be of the receiver type associated with that signal route. Therefore, the conditions of
the form type(t) = X1 V...V type(t) = X,, are used. In the case of an output action with
a receiver expression e, if none of the signal routes 7y, ..., r, has the type of the process
with pid value e as its receiver type, or a process with that pid value does not exist,
the signal is simply discarded and no error occurs. This is expressed by the summand
(type([e]) = X1 V...V type([e]) = X;) :— #. In the case of an output action without
a receiver expression, first an arbitrary choice from the signal routes 7y, ..., r,, is made
and thereafter an arbitrary choice from the existing processes of the receiver type for the
chosen signal route is made. However, there may be no existing process of the receiver
type for that signal route. Should this occasion arise, the signal is simply discarded. This
is expressed by the summand —(hasinst(X1) A ... A hasinst(X,,)) :— #. Note that this
occasion may already arise if there is one signal route for which there exists no process of
its receiver type.

6.5.3 Values

The meaning of an SDL expression is given by a translation to a value expression of the
same kind. There is a close correspondence between the SDL expressions and their trans-
lations. Essential of the translation is that self is added where the local states of different
processes need to be distinguished. Consequently, a variable access v is just treated as
a view expression view (v,self ). For convenience, the expressions parent, offspring and
sender are also regarded as variable accesses.

lop(e1s ... en)] = op([ei],---,[en])

[if e1 then ey else es fi] := cond([e1],[e2], [es])

[v] = value(v, self)

[view (v,e)] := wvalue(v,[e])

[active (s(e1,-..,€n))] := active((s,{[e1],---,[en])), self)
[now] := now

[self] := self

[parent] := wvalue(parent, self)

[offspring] := wvalue(offspring, self)

[sender] := wvalue(sender, self)

All cases are very straightforward and need no further explanation. This is due to the
choice of value expressions and the evaluation function defined on them in Section 6.4.5.
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6.6 Closing remarks

In [14], timed frames, which are closely related to the kind of transition systems used for
the operational semantics of ACPg4,4, are studied in a general algebraic setting and results
concerning the connection between timed frames and discrete time processes are given.
In [15], a general first-order logic of timed frames, called TFL, is proposed and results
concerning its strong distinguishing power and its connections with the logics underlying
two model checkers are given. A survey of the work reported in [14] and [15] is given in
Chapter 7. The results of this work, together with the semantics of SDL given in this
chapter, are meant to be used to devise a general logic of discrete time processes, and
to adapt an existing model checker to ¢SDL and a fragment of this logic where model
checking is feasible.

We are also elaborating a more abstract semantics for SDL, based on dataflow net-
works. The intended result is expected to provide convincing mathematical arguments
in favor of the choice of concepts concerning storage, communication, timing and process
creation around which SDL has been set up. The prelimanary results are presented in
Chapter 10.

In [28] a foundation for the semantics of SDL, based on streams and stream processing
functions, has been proposed. This proposal indicates that the SDL view of systems
gives an interesting type of dynamic dataflow networks, but the treatment of time in the
proposal is however too sketchy to be used as a starting point for the semantics of the time
related features of SDL. In [30] and [31] attempts have been made to give a structured
operational semantics of SDL, the latter including the time related features. However,
not all relevant details were worked out, and the results will probably have to be turned
inside out in order to deal with full SDL. At the outset, we also tried shortly to give a
structured operational semantics of SDL, but we found that it is very difficult, especially
if time aspects have to be taken into account.

6.7 Appendices

6.7.1 Notational Conventions
Meta-language for syntax

The syntax of ¢SDL is described by means of production rules in the form of an extended
BNF grammar. The curly brackets “{” and “}” are used for grouping. The asterisk “*”
and the plus sign “*” are used for zero or more repetitions and one or more repetitions,
respectively, of curly bracketed groups. The square brackets “[” and “” are also used
for grouping, but indicate that the group is optional. An underlined part included in a
nonterminal symbol does not belong to the context free syntax; it describes a semantic
condition.
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Special set, function and sequence notation:

We write P(A) for the set of all subsets of A, and we write P, (A) for the set of all finite
subsets of A.

We write f : A — B to indicate that f is a total function from A to B, that is
fCAXBAVz € A-Fyy € B-(z,y) € f. We write A — B for the set of all total function
from A to B. We write dom(f), where f : A — B, for A. For an (ordered) pair (z,y),
where x and y are intended for argument and value of some function, we use the notation
z +— y to emphasize this intention. The binary operators < (domain subtraction) and &
(overriding) on functions are defined by

Adf ={z—yl|lzecdom(f)rzg AN f(z)=1y}
fe&g = (dom(g)<f)Ug

For a function f : A — B presenting a family B indexed by A, we use the notation f;
(for i € A) instead of f(1).

Functions are also used to present sequences; as usual we write (zy,...,z,) for the
sequence presented by the function {1 +— zq,...,n + x,}. The unary operators hd and
tl stand for selection of head and tail, respectively, of sequences. The binary operator ~
stands for concatenation of sequences. We write z & ¢ for (z) ™ t.

Furthermore, we write [n], where n € N, for {1,...,n}.

6.7.2 Contextual information

The meaning of a ¢SDL construct generally depends on the definitions in the scope in
which it occurs. Contexts are primarily intended for modeling the scope. The context
that is ascribed to a complete system definition is also used to define the state space used
to describe its meaning. The context of a construct contains all names introduced by
the definitions of variables, signal types, signal routes and process types occurring in the
system definition on hand and additionally:

e if the construct occurs in the scope of a process definition, the name introduced by
that process definition, called the scope unit;

e if the construct occurs in the scope of a state definition, the set of names occurring
in the save part of that state definition, called the save set.

These names are in addition connected with their static attributes. For example, a name
of a variable is connected with the name of the sort of the values that may be assigned
to it; and a name of a process type is connected with the names of the variables that are
its formal parameters and the number of processes of this type that have to be created
during the start-up of the system.

Context =

Ppin(VarD) x Pfn(SigD) x Ppn(RouteD) X Ppn(ProcD) x (Procld U {nil}) x Pgy,(Sigld)
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where
VarD = Varld x Sortld
SigD = Sigld x Sortld*
RouteD =  Routeld x (Procld U {env}) x (Procld U {env}) x Pg,(Sigld)
ProcD = Procld x Varld* x N

We write vards(k), sigds(k), routeds(k), procds(k), scopeunit(k) and saveset(x), where
k = (V,S,R,P,X,ss) € Context, for V, S, R, P, X and ss, respectively. We write
vars(k) for {v | 3T - (v,T) € wards(k)}. The abbreviations sigs(x) and procs(k) are
used analogously. For constructs that do not occur in a process definition, the absence
of a scope unit will be represented by nil and, for constructs that do not occur in a state
definition, the absence of a save set will be represented by (.

Useful operations on Context are the functions

rCcY : Context x Routeld — Procld U {env},
fpars : Context x Procld — Varld*,

inat : Context X Procld — N,

updscopeunit : Context x Procld — Context,
updsaveset : Context X Pgn(Sigld) — Context,
envsigd : Context — Ppyn(Sigld x Sortld™)

defined below. The function rcv is used to extract the receiver type of a given signal route
from the context. This function is inductively defined by

(r, X1, X2, 88) € routeds(k) = rcv(k,r) = Xo,

The functions fpars and wnit are used to extract the formal parameters and the initial
number of processes, respectively, of a given process type from the context. These func-
tions are inductively defined by

(X, vs,k) € procds(k) = fpars(k, X) = vs,
(X,vs,k) € procds(rk) = init(k, X) =k

The functions updscopeunit and updsaveset are used to update the scope unit and the
save set, respectively, of the context. These functions are inductively defined by

k= (V,S,R, P, X, ss) = updscopeunit(k, X') = (V, S, R, P, X', ss),
k= (V,S,R, P, X, ss) = updsaveset(x,ss') = (V, S, R, P, X, ss')

The function enwvsigd is used to determine the possible environment signals, i.e. signals
that the system may receive via signal routes from the environment. It is inductively
defined by

s€ssA(s,(Th,...,Tn)) € sigds(k) A (r,env, Xo, ss) € routeds(k) =
(s,(Th,...,Tn)) € envsigd(x)
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The context ascribed to a system definition is a minimal context in the sense that
the contextual information available in it is common to all contexts on which constructs
occurring in it depend. The additional information that may be available applies to the
scope unit for constructs occurring in a process definition and the save set for constructs
occurring in a state definition. The context ascribed to a system definition is obtained by
taking the union of the corresponding components of the (partial) contexts contributed
by all definitions occurring in it, except for the scope unit and the save set which are
permanently the same — nil and (), respectively.

{Isystem S;D; ... D, endsystem;]} :=
(vards({D1]}) U... U vards({{Dyn]}),
sigds({D1}) U ... U sigds ({Da]}).
routeds({{D1]}) U ... U routeds({{Dy]}),
proc(;l)s({[Dl]}) U...U procds({{Dnl}),
nil,

{dclv T;} = ({(v, T)},0,0,0,0,nil,0)
{signal (T, ... Ta)ill i= (0,{(s,(Ti, ..., T))},0,0,0, nil, 0)

{[signalroute r from X; to Xy with s1,...,s,;]} =

((Z)a wa (2)7 {(Ta XlaX2a {81, SRR Sn})}, (Z)a nila Q))

{lprocess X (k); fpar v1, ... ,vp;start; ¢r d; ... d, endprocess;]} :=
((Z)a wa (Z)a wa {(Xa <1)1, SR Um>, k)}a nila Q))

The set EnvSig, of possible environment signals is determined by the specific types of
signals and signal routes introduced in the system definition concerned. It can be obtained
from the environment signal description yielded by applying the function envsigd to the
context ascribed to the system definition. EnvSig, C FExtSig.. For an arbitrary context
k, the set of environment signals is obtained as follows:

EnvSig, =
U(s,(Tl,...,Tn>)€6m}sigd(n){((3’ (U, ... up)), 1,49) | uy € TlA’ ceesUn € T1;4’i € N2}
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Chapter 7

Timed Frame Algebra and Logic

7.1 Introduction

In this chapter, we will give a survey of timed frame algebra, including signal insertion,
and a first-order logic for signal inserted timed frames. Signal inserted timed frames are
meant to be used for an operational semantics of ¢SDL. The logic for signal inserted timed
frames is meant to be taken as the starting point for devising a logic that is suitable to
express behavioural properties of systems described in ¢SDL.

With a systematic approach to devise suitable logics for reasoning about discrete-time
processes, starting with a full first-order logic of timed frames, we hope to be able to
separate process algebra issues from model checking issues in work on tools for validating
specifications written in ¢SDL.

We also introduce a timed frame model of BPA 4,4-ID with finite linear recursion using
timed frame algebra to define the interpretation of its constants and operators.

Timed frame algebra, introduced in [14], is a simple, general algebraic setting for
the objects of the kind that generally underlies models for theories concerning discrete-
time process behaviour. Timed frames are built from states and labelled transitions.
Two kinds of transitions are distinguished: action steps and time steps — representing the
execution of actions and the passage of time to the next time slice, respectively. Equipped
with a root marker and optionally with termination markers, timed frames make up
the transition systems that match with the two-phase functioning scheme for modeling
timed processes [45]. There is a well-developed tradition of thinking about transition
systems from modal logic (for an overview of modal formalisms for describing transition
systems, see e.g. [51]). Process algebra studies transition systems at a more abstract level:
transition systems modulo an appropriate “process equivalence”, e.g. bisimilarity.

Time determinism, the property that passage of time by itself can not determine a
choice, is not built into timed frame algebra: states may have more than one outgoing
time steps. The connection between timed frames and discrete-time processes is studied
in the setting of ACPg4,¢. A special kind of bisimilarity, called o-bisimilarity, is introduced
to see to time determinism.
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Further structure on timed frames is provided by adding an operation, called signal in-
sertion, to assign propositional formulae to the states of a timed frame. The propositional
formula assigned to a state is considered to hold in that state. Thus the interplay between
the performance of actions and the consequent visible state changes can be modelled.

There is also a first-order logic for timed frames, called timed frame logic [15]. Various
other well-known logics can be embedded into timed frame logic. Among these logics
are CTL and Dicky logic, which underlie the model checkers EMC [29] and MEC [2],
respectively. Timed frame logic is expressive enough to distinguish any timed frame from
another one.

The structure of this chapter is as follows. First of all, the algebra of timed frames
is presented (Section 7.2). Next, the logic of timed frames is introduced (Section 7.3).
After that, a frame model for BPA4-ID is given (Section 7.4). And finally this model is
extended to cover finite linear recursion (Section 7.5).

7.2 Algebra of timed frames

In simple timed frames there are two kinds of transitions, which we shall call action
steps and time steps. They represent the execution of actions and the passage of time
to the next time slice, respectively. This fits in very well with the two-phase functioning
assumption for timed processes which is also adopted for ACPq,. By the addition of an
operation, called signal insertion, propositional formulae can be assigned to the states
of timed frames. This section contains a survey of simple timed frame algebra and its
extension with signal insertion. We refer to [14] for further details. The survey is preceded
by a small example to illustrate the use of timed frames.

7.2.1 Example

The example concerns the simple telephone answering machine of which the control com-
ponent is described using ¢SDL in Section 2.3. Here we use timed frame algebra for the
description of the control component.

It is obvious that the behaviour of the controller is time dependent. We will use time
steps to describe this behaviour. They are denoted by terms of the form s <= s’. Action
steps are denoted by terms of the form s -2 s, where a is an action. The behaviour of
the controller is represented by the timed frame TAMCO defined by

Lecture Notes: DesCaRTeS Course, August 1997 UNU/IIST, P.O. Box 3058, Macau



Algebra of timed frames 83

TAMCO =
(0 25 0) @ (0 Z(necatt)y 1)y
}21((2' <4 (i) & (i r(revlifted) 0) & (i r(endcall) 0))@
(11 SCIW, 19 @ (12 20, 1 3) g

(13 25 13) @ (13 299, 14) @ (13 ZCndedll, 4g)e
(14 s(beep) 15) @ (15 s(startrec) 16)@

O 15(( = S() @ (j 1, 47))0

(46 s(stoprec) 48) & (47 s(stoprec) 48) & (48 s(onhook) 0)
By designating state 0 as the root state, we obtain a transition system. Instead of its
usual graphical representation, we give here a term for it.

It may be useful to know whether the state of the answering machine is one of playing,
recording or otherwise. Using signal insertion to assign to each state of TAMCO a propo-
sitional formula that indicates whether it is a state of playing, recording or otherwise, we
get the signal inserted timed frame TAMC1 defined by

TAMC1 =
TAMCO & ®}%,((—playing A —recording) ™ 1)@
((playing N —recording) ~13) & @;%,4((—playing A recording) ~ j)
Among the states that are states of not playing and not recording, further distinctions

can be made, e.g. between states of idling and states of waiting to answer. However, we
will not elaborate this example further here.

7.2.2 Simple timed frames

Simple timed frames are built from states and transitions between states. The states are
obtained by an embedding of natural numbers in states, and a pairing function on states.
Simple timed frames contain two kinds of transitions: action steps and time steps. We
consider action steps with a label from a finite set A of actions.

The signature of (simple) timed frames is as follows:
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Sorts:
N natural numbers;
S states;
e timed frames;
Constants & Operators:
0 :N Z€ero;
S N —= N successor;
w :N— S8  embedding of natural numbers in states;
Y:5%2 — S pairing of states;
/I empty timed frame;
15 : S —=Fy  embedding of states in timed frames;
%:8%2 — F action step construction (one for each a € A);
25:82 5 [F, time step construction;
® :F2 —F, timed frame union.

Given the signature, (closed) terms are constructed in the usual way. We shall use the
meta-variables n and m to stand for arbitrary terms of sort N, the meta-variables s, s
and s” to stand for arbitrary terms of sort S, and the meta-variables X, Y and Z to
stand for arbitrary terms of sort F;. We write n instead of u(n) or is(uy(n)) as well
as s instead of 1s(s) when this causes no ambiguity. Terms of the forms 15(s), s = '
and s =+ s’ denote atomic timed frames, i.e. timed frames that contain a single state
or transition. The constant () denotes the timed frame that contains neither states nor
transitions. The operator @ on timed frames gives the union of the states and transitions
of its arguments. The pairing function )~ is a simple means to define “fresh” states. The
axioms for timed frames are given in Table 7.1. These axioms characterize timed frames

(FA1) XY = YoX

(FA2) Xo(Y®Z) = (XeY)eZ
(FA3) XeX = X

(FA4) Xo0 = X

(FA5) s (s—>s) = s ¢
(FA6) sd(s—>s) = s
(TFA1) s (s> s) = s5 ¢
(TFA2) '@ (s5s') = sS4

Table 7.1: Axioms for timed frames

as objects consisting of a finite set of states and a finite set of transitions (axioms (FA1)-
(FA4)). In addition, timed frames are identified if they are the same after addition of the
states occurring in the transitions to the set of states (axioms (FA5), (FA6), (TFA1) and
(TFA2)).

The axioms of timed frames are not concerned with properties that are primarily
relevant to the higher level of abstraction provided by discrete-time processes. Therefore
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the axioms do not identify frames according to some notion of equivalence that is used
to obtain an adequate level of abstraction for processes — such as bisimulation. For the
same reason they do not identify timed frames that represent the same process behaviour
if time determinism is assumed. Consequently, time steps are not treated different from
action steps in the axioms for simple timed frames. However, the distinction between
action steps and time steps is of vital importance to relate timed frames to discrete-time

processes.
We define iterated frame union by
r=nsr X, @ EB;“:nHX,- otherwise.

Every frame has a finite number of states and transitions, and can be denoted by a term
of the form @, X;, where the X; are atomic. In [25], frame polynomials are introduced
to deal with the countably infinite case as well. This paper focusses on timed frames
corresponding to regular discrete-time processes, i.e. only frames with a finite number of
states and transitions are considered.

7.2.3 Process extraction and o-bisimulation

In order to investigate the connection with discrete-time process algebra, we introduce
in Definition 7.2.3 a special kind of bisimulation, called o-bisimulation, which takes into
account the identifications due to time determinism. That definition and subsequent ones
need some conditions that are related to the transitions contained in a given frame. These
frame conditions are as follows.

Definition 7.2.1.

a.. n T if(s>Hs)eF=F
s = slr = { F otherwise
oon | T if(sSHs)eF=F
s = slr = { F otherwise
N T if[s B slp=Tforsomeaor[s > s|p=T
s = slr = { F otherwise
T if[s—=4d]p=Tor

[s =5 slr = s = §"]p =T and [s" =% s'|p = T for some s" € S
F  otherwise

In the sequel, we will write [s = §'|p instead of [s % §'|p = T, [s = §|r instead of
[s = §'|r = T, etc. when this causes no ambiguity. We write |F| for {s € S |1s(s)® F =
F}. For s € |F|, we write [ 2 s'|r to indicate that there exists no s € |F| such that

[

(s = §'lp.
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Below bisimulation and o-bisimulation are defined as equivalences on pointed frames,
i.e. frames equipped with a root marker and a termination marker. Pointed frames, which
are closely related to transition systems, are defined first.

Definition 7.2.2. A pointed timed frame is a triple (F,p,q) where F is a timed frame
and p,q € |F.

In the definition of o-bisimulation given below, a relation on sets of states is used
instead of a relation on states. Rules 1-3 are the normal rules for (strong) bisimulation
in the untimed case lifted to sets of states. The non-singleton sets are due to rule 4. This
rule is the main rule for time steps. In a well-defined sense, it takes care of consistently
identifying states reachable from the same state via one time step. In this way, time
determinism is taken into account. However empty sets of states, standing for no state
at all, may occur. Without rule 5, this would allow to relate two (sets of) states where
the one has an outgoing time step and the other has no outgoing time step, provided that
the time step concerned ends in a state without outgoing transitions. This should not be
generally allowed. Rule 5 allows it only if the state without an outgoing time step has an
outgoing action step. Thus time persistency is taken into account as well.!

Definition 7.2.3. Let F' and F’ be timed frames, and let p, g € |F|and p’, ¢’ € |F'|. The
pointed timed frames (F, p,q) and (F',p', q') are o-bisimilar, written (F,p, q) < (F',p',q"),
if there exists a relation R on P(|F|) x P(|F'|) such that:

L. R({p}.{p'});

2. if R(S,T) and [s = & for some s € S and ¢’ € |F|\ {q}, then [t = '] and
R({s'},{t'}) for some t € T and ' € |F'|\ {¢'};

2¢. rule 2 vice versa;
3. if R(S,T) and [s % g|r for some s € S, then [t > ¢'|p for some t € T}

3¢. rule 3 vice versa;

4. if R(S,T), then R(S’,T") where S' = {s' € |F|\{q} | 3s € S-[s = §'|r} and
T'={t e|F'|\{¢}|FHteT [t-=tp};

5. if R(S,T) and [s % s'|p for some s € S and s’ € |F|, then [t — ¢'|p for some t € T
and t' € |F'|;

5¢. rule 5 vice versa.

(F,p,q) and (F',p',q') are bisimilar, written (F,p, q) < (F', p', q'), if there exists a relation
R that satisfies, in addition to the above-mentioned conditions, the following one:

!Both time determinism and time persistency are built into the operational semantics of ACPg.s.
Time persistency is the property that in all cases where there is a choice between execution of actions
and passage of time, the latter can not lead to an immediate deadlock at the beginning of the next time
slice.
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6. if R(S,T), then card(S) = card(T) < 1.

We also define time determinism and time persistency for frames, because together
they characterize the kind of frames that corresponds to the timed transition systems
that underlie the model of ACPg,; presented in [7]. Frames of this kind are called proper
timed frames.

Definition 7.2.4. A timed frame F is o-deterministic if it satisfies:

if [s 5 t]p and [s -5 t'|p for some s,¢,t' € |F|, then t = ¢t'.
A timed frame F' is o-persistent if it satisfies:

if [s = t]p and [s = t']p for some s,t,t' € |F|, then [t' — t"|p for some t" € |F|.
A timed frame F' is proper if it is o-deterministic and o-persistent.

In [7], the model of ACPg, is based on transition systems corresponding to pointed frames
(F,p,q) where F is proper and ¢ has no incoming time steps (i.e. [ 24 ¢]r). For pointed
frames satisfying these conditions, the definition of bisimulation given here is equivalent
to the one given in that paper. Three kinds of termination states can be distinguished
in the transition systems considered in [7]: states representing successful termination,
states representing immediate deadlock, and states representing deadlock in the current
time slice. States of the last kind are no termination states in pointed frames; they
are modelled as states with one outgoing transition, being a time step, to an immediate
deadlock state. Thus, deadlock in the current time slice is identified with immediate
deadlock at the beginning of the next time slice. This is in accordance with [7] where
it corresponds to the axiom (DRT3): o,(§) = cts(d). Besides, pointed frames have at
most one successful termination state. This does not give any loss of generality in case of
relative timing.

According to the following lemma, every pointed frame is o-bisimilar to one of the
pointed frames that correspond to the transition systems that underlie the model of
ACPg,y presented in [7].

Lemma 7.2.5. Every pointed timed frame (F,p, q) is o-bisimilar to a pointed timed frame
(F',p,q) where F' is proper and | % q|p.

Proof. Immediate from Lemmas 3.5 and 3.6 of [14]. O

Below a process extraction operation is defined on pointed timed frames. The ex-
tracted processes are defined using the constants and operators of ACPgy,, that is discrete
relative time process algebra with immediate deadlock. In the discrete relative time case
with immediate deadlock, we use the convention that ;.7 P; stands for § if Z = (). We
also use a different conditional operator, (::—) which leads to immediate deadlock if the
condition does not hold, i.e. F::— z = .
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Process extraction is defined such that o-bisimilarity of the pointed frames coincides
with bisimilarity of the extracted processes. Process extraction is such that all states
without an outgoing transition are interpreted as states representing immediate deadlock if
it is not the state marked as termination state. For incoming action steps, the termination
state is interpreted as a state representing successful termination. For incoming time steps,
it is interpreted as a state representing immediate deadlock (in this case, it does not make
sense to interpret it as a state representing successful termination).

Definition 7.2.6. Let F be a timed frame and s, € S. Then s~ * tF is the process X,
recursively defined by the following finite set of equations:

{Xy =Py | s =sor (s =gy §lrand s" #1)}

where

8" = t]p i cts(a)+

[8" T t]p i cts(d)+

Sareirpin (87 -2 8" n— cts(a) - Xon)+
Soreippin (8" = 8"lp i 0 (Xen))

PS’ = ZaeA

We assume a model in which every set of guarded process equations has a unique solution
(see Chapter 5). Note further that a set of linear process equations can be obtained here
by rewriting each term of the form b ::— P in accordance with the value of the condition
b in the frame F'.

According to the following lemma, o-bisimilarity of the pointed timed frames coincides
with bisimilarity of the extracted processes.

Lemma 7.2.7. For timed frames F and F', p,q € |F| and p',q' € |F'|, (F,p,q) &
(F'.p',d) iff p” > qF<p "> q'F'.

Proof. This is Lemma 3.9 of [14]. O

According to the following lemma, for each regular relative time process there is a
timed frame of which it is the extracted process (up to bisimilarity).

Lemma 7.2.8. A relative time process P is reqular iff P <> p > qF for some (finite)
timed frame F' and some states p,q € |F|.

Proof. This is Lemma 3.10 of [14]. O
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7.2.4 Signal inserted timed frames

In simple timed frames, states are not labelled. In signal inserted timed frames, we
consider states with a label from the set of propositional formulae that can be built from
a set P, of atomic propositions, T, F, and the connectives — and =-. The propositional
formula assigned to a state is considered to hold in that state.

The signature extension for signal inserted timed frames is as follows:

Sorts:

P propositions;

(F¢, P) signal inserted timed frames;
Constants & Operators:

P P for each p € Pyy;

T : P true;

F P false;

- P—=P negation;

= P2 =P implication;

: P x (F¢,P) — (Fy, P)  signal insertion.

The full signature of signal inserted timed frames can be graphically presented as follows:

(for all a € A)

We shall use the meta-variables ¢ and v to stand for arbitrary terms of sort P. As usual,
we write ¢ V ¢ for =¢ = ¥, ¢ A1) for =(—¢ V =), and ¢ < ¢ for (¢ = ) A (Y = &).
In Table 7.2 we give a complete proof system for propositional logic. The signal insertion
operation ~* assigns propositional formulae to the states contained in frames. The axioms
for signal inserted timed frames are the axioms given in Table 7.1 (see Section 7.2.2) and
the axioms given in Table 7.3. Additionally, we can use identities ¢ = 9 iff ¢ < 9 is
provable from the axiom schemas and the inference rule given in Table 7.2.

The axioms in Table 7.3 express that signal insertion to a frame is tantamount to
signal insertion to all states of that frame (axioms (Insl), (Ins5), (Ins6) and (TInsl)).
The axioms (Ins2)—(Ins4) cover the special cases where signal insertion is not applied
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(P1) ¢= (¥ =9

P2) (o= @W=9)=((¢=v¢)=(¢=9)

(P3) (m¢= )= (¢v=9)

(P4) T« (p=p)

(P5) Fe T

) ¢ =Y

()

Table 7.2: A proof system for propositional logic
(Ins1) o 0 = 0
(Ins2) T*X = X
(Ins3) ¢ (W X)) = (oY) X
(Insd) (¢ X))@ (¥ T X) (pAY) X
(Ins5) ¢ T (XaY) (¢ = X)® (oY)
(Ins6) d (s 58 (0 ™s)D(s-Bs)P(p ™)
(Ins7) (F ™s)® (s - ¢ (F ™s)a® s
(Ins8) (s 2 s)Y®(F ™) s® (F ¢
(TInsl) o (s D) (0 ™s)B(s D s)P(p )
(TIns2) (¢ *s)®(s D) = (s Ds)d(d¢)

Table 7.3: Additional axioms for signal insertion

once, but zero times or more than once. A signal inserted state F ~*s, i.e. a state where
F holds, is an inconsistent state which absorbs all its incoming and outgoing action steps
(axioms (Ins7) and (Ins8)). The axiom (TIns2) reflects the intuition that the passage of
time cannot change the propositions that hold in the current state. Axiom (TIns2) entails
that inconsistent states remain inconsistent with progress of time. Thus, one inconsistent
state would render all states inconsistent if there were also counterparts of the axioms
(Ins7) and (Ins8) for time steps. Note that the equation s® (¢ ~>s) = ¢ ~*s (reminiscent
of the axioms (FA5) and (FA6)) is derivable from the axioms (Ins2) and (Ins4).

The definitions of o-bisimulation and process extraction for simple timed frames can
easily be adapted to take into account the propositional formulae assigned to states
(see [14]). Lemmas 7.2.7 and 7.2.8, which concern simple timed frames, go through for
signal inserted timed frames.

7.3 Timed frame logic
Timed Frame Logic (TFL) is a classical first-order logic with:

1. quantification over natural numbers, states, transition labels and paths;
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2. standard constants and functions concerning natural numbers, states, propositions,
transition labels and paths;

3. equality and some additional standard predicates concerning paths.

TFL was first proposed as a logic for timed frames in [15]. That paper reports in detail
about various issues, including the distinctive power of TFL and the embedding of other
logics (CTL and Dicky logic) in TFL. In this section, we only present the syntax and
semantics of TFL.

7.3.1 Syntax

The signature for the terms of TFL is the signature of signal inserted timed frames
restricted to natural numbers, states and propositions with the following extension:

Sorts:
L transition labels;
M paths;
Constants & Operators:
+ N2 = N addition;
a :L for each a € A;
o L time step label;
15 : S — 11 embedding of states in paths;

—: MM xLxS—TM append of transitions to paths.

For the sorts N, S, L and [, we assume countably infinite sets of variables Vy, Vs, Vi
and Vp, respectively. Terms of these sorts are formed from the variables and the constant
and function symbols in the usual way. For the sort P, we only consider variable-free
terms. We shall use the meta-variables ¢ and ¢’ to stand for arbitrary terms of any sort,
the meta-variable p to stand for an arbitrary term of sort L. and the meta-variable 7 to
stand for an arbitrary term of sort [l.

The atomic formulae of TFL are inductively defined by the following formation rules:

1. if ¢,¢" are terms of the same sort, then ¢ = ¢’ is an atomic formula;
2. if n, m, and s are terms of sort N, [1 and S, respectively, then S¢(n, 7, s) is an atomic
formula;

3. if n, m, and p are terms of sort N, I and L, respectively, then Si(n, 7, u) is an atomic
formula;

4. if 7 is a term of sort [1, then E(7) is an atomic formula;
5. if ¢ is a variable-free term of sort P and s is a term of sort S, then H(¢, s) is an
atomic formula.

The formulae of TFL are inductively defined by the following formation rules:
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atomic formulae are formulae;

if ® is a formula, then =® is a formula;

if &, ¥ are formulae, then ® A ¥ is a formula;

if x € Vp, where D € {N,S, L, 1}, and @ is a formula, then Vz € D - ® is a formula.

=W e

The meaning of the atomic formulae of the first form is as usual. The meaning of the
atomic formulae of the last four forms can informally be explained as follows: Sq(n, 7, s)
is true iff s is the (n + 1)-th state in path m, Si(n,m, ) is true iff p is the label of the
(n + 1)-th transition in path 7, E(7) is true in a frame iff the path 7 exists in the frame,
and H(@, s) is true in a frame iff the proposition ¢ holds in the state s of the frame.
Obviously, the truth of the atomic formulae of the forms S¢(n, 7, s) and S,(n, 7, ) are not
frame dependent. For the selection of states and transition labels from paths, standard
predicates are provided instead of standard functions because the latter would be partial
functions.

7.3.2 Example

In Section 7.2.1, the control component of a telephone answering machine was modelled
by a timed frame. One of its properties mentioned in Section 2.3 is the following:

When the off-hook signal is issued to the telephone network, nothing has
happened since the detection of the last incoming call and meanwhile 10 time
units have passed.

This property can be expressed in TFL as follows:

Vo ell-Vn e N-
E(m) A Si(0, 7, r(inccall)) A Si(n + 1, 7, s(offhook)) A
(Vm e N-1<m <n= =S(m,n, r(inccall))) =
n=10AVkeN-1<k<n= S(k,mo0)
Here we write [ < m <nfordk e N-k+l=mAIFK'EN-E'+m =mn, and & = ¥ for
—(® A D).
There are various temporal logic devised to deal with quantative temporal properties
such as the ones used in Section 4.3 to express the same property: MTL (Metric Tem-
poral Logic) [39] and MVC (Mean Value Calculus) [53] — an extension of DC (Duration

Calculus) [52]. We conjecture that, under the discrete-time interpretation of these logics,
full MTL and an interesting subset of MVC can be embedded into TFL.

7.3.3 Semantics

The interpretation of the sort, constant and function symbols from the signature of the
TFL terms is the interpretation in the initial model for this signature and the usual
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equations concerning 0, .S and +. This interpretation can be extended to the TFL terms
in the usual way. We write [t], for the interpretation of term ¢ under an assignment a.
An assignment is a function mapping each variable to an element of the interpretation
of its sort in the initial model. If D is a sort symbol, we write D for its interpretation
as well. It is always clear from the context whether the symbol or its interpretation is
meant.

The predicates symbols S, S;, E and H have also a standard meaning which was
explained informally above. In case of Sy and S;, the meaning is frame independent.
These symbols stand for the ternary relations S € N x 1 x S and §; € N x 1 x L
inductively defined by

i<n = (i,s1 " s9... " sp41,8i01) € Ss
and

: : [ Hn

i<n = (i,81 =5 Sg... = Spi1, iv1) € S

In case of E and H, the meaning is frame dependent. For each frame F', these symbols
stand for the unary relation E(F') C [N and the binary relation H(F') C P x S inductively
defined by

ssi®@F=F = s €E(F),
"(sith s F=F = s ™s... s, € E(F)

and
(p *s)®@F=F = (¢,5)€ H(F)

The truth of a formula ® in frame F under assignment «, written F' =, ®, is induc-
tively defined by?

Freot=t < [t =1,
F o Ss(n,m,s) < ([nl, [7]., [s],) € S,
F o Sinma) < ([n], [, [e],) € S,
FE.E(r) & [, € E(F),
FEaH(@,s) < ([¢],,[sl) € H(F),
FlEa—® < notF .,
FE, ANV < FE,®and FE, V7,
&

FE,VzeD-® foralld € D, F =o(pa) ®

(for D € {N,S,L,M}).

A formula ® is valid in a frame F, written F' = @, iff F =, ® for all assignments a. A
formula ® is valid, written |= @, iff for all frames F', F' = ®.

2We write a(z — d) for the assignment o' such that o/ (y) = a(y) if y # = and o/(z) = d.
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A frame F has inconsistent states iff there is a state s such that (F ~s)® F = F.
For frames without inconsistent states equality coincides with the existence of a dis-
tinguishing TFL formula.

Lemma 7.3.1.

1. F#F' = (forsome®, FE=® & F'E 9)
2. if F and F' have no inconsistent states:
(for some &, Fl=® &4 F'E®) = F#£F'

Proof. This is a corollary of Theorem 2.6 of [15]. O

7.4 Timed frame model for BPA,,-I1D

In this section, we introduces a timed frame model for BPA4,-ID without recursion. We
extend this frame model for BPA 4,+-ID with finite linear recursion in the next section.

We use timed frame algebra to give an interpretation of the constants and operators
of BPAg-ID on frames. This immediately extends to a model of BPA4-ID since o-
bisimulation is a congruence with respect to the interpretation of the operators.

We first define some useful auxiliary operations on frames.

To begin with, we shall use the extension of the successor function S to states and
frames. This extension will be used to make the set of states of one frame disjunct from
the set of states of another frame. It is straightforward to define the extension:

Sin(n) = w(S(n))

S((s,s")) = (5(s),5(s)
S =0

S(s(s)) = 1s(5(s))

S(s—t) = S(s) - S(t)

S(sSt) = S(s) = S(t)

SXeY) S(X) @ S(Y)

We also simply write S™(F) for the nth successor of F, where FE is a term of sort N, S or
F;. This notation can be defined as follows:

SYE) = E
SH(E) = S(S™(E))

Furthermore, we shall use operations psec, pgg, Pfge © S X S X Fy — [y to replace a
state in each of its outgoing transitions, in each its incoming action steps and in each its
incoming time steps, respectively. These replacements operations will be used to identify
the root or termination state of one frame with the root or termination state of another
frame. It is rather straightforward to define the replacement operations:
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psrc(s/s’)(”) = @”
psrc(s/s’)(s ) = s
psrc(s/s’)(s = t) = ¢ S tDs
psrc(s/s’)(su - t) = s 5t if s # 5"
psrc(s/s’)(s = t) = ¢ S t®s
Psrc(s)s) (8" 1) = " 5t ifs#s"
psrc(s/s’)(X @ Y) psrc(s/s’)(X) ©® psrc(s/s’)(Y)
Pree(t/1) (u) wu
ptgt(t/t’)(s ) = s
ptgt(t/t’)(s i) t) = S i) tl 69 t
Prar(eyey (s —> ") = s t" it # 1"
Prar(yy (s — ") = s Dt
Prgr(t/) (X @) Prgr(t/1)(X) © Pegr(t /ey (Y)
ptgt (t/t") ( ) 0
ptgt t/t’ (5 ) = &'
Pign(e/e) (8 = t) = st
ptgt(t/t’ (s Zt) = s S tdt
ptgt(t/t, (s >t") = st it #£t"
Prar(t/) (X @Y) Prar(t/t)(X) © Prgr(s /ey (Y)

Note that, even if there will be no incoming or outgoing transitions left for the state to
be replaced, these operations do not remove a state from a frame.
Root unwinding can simply be defined in terms of the other operations:

U(er) = psrc(S(r)/O)(S(X))®S(X)

With these auxiliary operations, it is now easy to give the interpretation of the con-
stants and operators of BPA4-ID on pointed timed frames. The interpretations are given
by the definitions in Table 7.4. They are denoted by the constant or operator decorated
with the subscript .

Let F be the set of pointed timed frames (F),p, q) that satisfy:

1. [p — slp = (s =q) V[s — §'|p for some s’ € |F;
2. —[qg — §'p for all §' € |F.

o-bisimulation is a congruence on F with respect to the operations oz, +7 and - £.
Note that frames and graphs are closely related. This is reflected by the following
transformation. To a given frame a finite directed labelled graph can be attached in a
natural way. For each state of the frame there is a node in the graph. For each transition
in the frame there is an edge in the graph from the node corresponding to the source of
the transition to the node corresponding to the target of the transition. If the transition
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cts(a)r = (0-%1,0,1)
cts(d)r = (0--1,0,1)
oeir((X,7t) = (02 S(r)®S(X),0,5(t))
(X,r,t) - ( ,r! tl) = (Pfgt(t/sn(r/))(Pt.gt(t/sn(t/))(X)) @ S"(X’)),r, Sn(t/))

where n = S(max(| X))

(X,r,t) +7 (X', 0, ) = (P:gt(s(t)/gnﬂ(t/))(P:gt(s(t)/snﬂ(t/))(X u)) @X;‘uﬂo Sn+1(t/))
where X,,= v(X,r),
n = S(max(| Xrul)),
Xpu=v(S"(X"), S"(r))

Table 7.4: Interpretation of constants and operators

is an action step then the edge is labelled with the action concerned, otherwise the edge is
labelled with o. The graph obtained is unique modulo isomorphism and it will be referred
to as the graph underlying the original frame.

The above transformation is not enough to relate the frame model and the graph
model given in [7] in a satisfactory way. Between the graph model and the frame model
there are two major differences. Firstly, the latter admits time non-determinism, i.e. there
may be more than one time step outgoing from a certain state and, as a consequence, the
underlying graph of a frame is not necessarily a process graph. Secondly, although in both
models process behaviours have similar representations, the role of the nodes of a process
graph that represent deadlock in the current time slice is taken by the states of a frame
that have an outgoing final time step. This is a reasonable way to represent deadlock
because it allows for extensions to frame models for process algebras that include §, and
it yields consistency between the interpretation of processes as frames and the process
extraction operator introduced in [14] (see also Section 7.2).

We can devise a function gr2fr from G (the set of process graphs used in the graph
model presented in [7]) to F and a function fr2gr from F to G that are, up to bisimulation
and o-bisimulation, inverse functions of each other. This means that to prove that the
graph model and the frame model are isomorphic, it is enough to show that gr2fr is, up
to o-bisimulation, a homomorphism with respect to the operations o, 7, +7 and -r.

Theorem 7.4.1 For BPAg.-ID, the graph model and the frame model are isomorphic.
Proof: This is Theorem 5.17 of [24]. O

7.5 Recursion in timed frames

In this section we give an interpretation of the constants (X |E), for finite linear recursive
specifications F, on frames. First we extend the graph model of BPA4-ID for these
constants. The resulting model satisfies RDP and RSP. After that we extend the frame
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model for these constants as well, resulting in a model isomorphic with the extended
graph model.

7.5.1 Graph model for BPA 4:-IDlin

The construction of the process graph corresponding to (X|E) in case of finite linear
recursion follows the one for the untimed case (see for example [10]).

Let X € V and E = E(V) be a finite linear recursive specification. Then the process
graph (X|E)g is constructed as follows:

e there is a node in the graph for each variable Y € V' (also be denoted by Y);
e the root of the graph is the node X;
e for each equation Z = sz in E(V):
— for each summand cts(a;) - X; in sz there is an edge labelled with a; from the

node Z to the node X,

— for each summand cts(b;) in sz there is an edge labelled with b; from the node
Z to a new node that is marked as a successful termination node,

— for each summand o0, (Y;) in sz there is an edge labelled with o from the node
Z to the node Y;.

This model satisfies the principles RDP and RSP.

7.5.2 Timed frame model for BPA 4-IDlin

Next we give an interpretation in F to the constants (X|E) for finite linear recursive
specifications F.

Let X € V,let E = {X; = sx,,..., Xn, = Sx, } be a linear recursive specification and
let e : V — Ny be an enumeration of the variables V. Then the interpretation of the
constant (X|E) with respect to e is given by the definition in Table 7.5. The specific
enumeration used is not important.

Lemma 7.5.1 If E = E(V) is a finite linear recursive specification and e and €' are
two enumerations of the variables in V' then the frames F.((X|E)) and Fo({(X|E)) are
o-bistmilar.

Proof: This is Lemma 10.4.14 of [24]. O

The given interpretation of constants (X|E) on frames is an algebraic re-formulation of
the construction of the corresponding process graphs.

Theorem 7.5.2 For BPAg.-ID with finite linear recursion, the graph model and the
frame model are isomorphic.
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F((X[E)) = (08D Fe(Xi = Ex,), e(X),0)
where
Fe(Z = cts(8)) = (e(Z) = 0),

Fe(Z = Zle cts(a;) - X; + Zl 1 cts(b)) =
DLy (e(Z) 2 e(X;)) ® Dy(e(2) 2 0),
Fo(Z =3k cts(a;) - X; +zl Lcts(by) + X7 ovel (Vi) =
£ (e(Z) 5 o(X2) & By (e(Z) B 0) & DIy (e(2) % e(¥)

Table 7.5: Interpretation of the constants (X |E)

Proof: This is Theorem 6.16 of [24]. O

Using the simple algebraic setting for timed frames, we have built a model of BPA 4;¢-
IDlin. This model can be extended to include other features, such as propositions and
conditions.
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Chapter 8

Truth of DC Formulae in Timed
Frames

8.1 Introduction

In this chapter, we study the connection between timed frames with signal inserted states
and duration calculus, a temporal logic introduced in [52]. More precisely, we consider the
extension of the original duration calculus proposed in [53], known as the mean value cal-
culus. This study is motivated by the need to understand better the problem of verifying
whether the implementation of a software system obeys certain real-time requirements.
The semantic connection of duration calculus with timed frames can relatively easy be
lifted to timed processes as studied in the setting of ACPg4,¢ or any other discrete time
process algebra; or to timed processes as described in languages aimed at programming
such as, for example, SDL.

Duration calculus is an interval temporal logic meant for specifying and reasoning
about real-time requirements for systems at a high level of abstraction. In duration
calculus, real-time requirements are formulated as properties about the duration of phases
of system behaviour. These phases, which are called state variables, are interpreted as
functions from a time domain to the domain {0, 1}. One way to connect duration calculus
to timed frames is to extract interpretations of state variables from paths in frames.
Another way is to give the meaning of formulae directly with respect to paths in frames.
In this chapter, we connect duration calculus to timed frames in both ways.

Connecting duration calculus to timed frames by embedding of duration calculus into
timed frame logic (see Chapter 7), is doomed to fail, but embedding of an interesting
fragment is feasible. This matter is treated as well in this paper. Various other well-known
logics can be embedded into timed frame logic. Among these logics are CTL and Dicky
logic, which underlie the model checkers EMC [29] and MEC [2], respectively. Besides,
timed frame logic is expressive enough to distinguish any timed frame from another one.

The structure of this chapter is as follows. First of all, we give a survey of the syntax
and semantics of mean value calculus (Section 8.2). After that, we connect mean value
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100 Duration calculus

calculus to timed frames (Section 8.3). Finally, we discuss the connection between mean
value calculus and timed frame logic (Section 8.4).

8.2 Duration calculus

The original Duration Calculus (DC) was introduced in [52]. Its discrete time semantics
can be found in e.g. [36]. Several extensions have been proposed, notably the Mean Value
Calculus (MVC) in [53] and the Extended Duration Calculus (EDC) in [54]. Here we
consider MVC with discrete time semantics.

In both DC and MVC, a system is modelled by a number of functions from a time
domain to the Boolean domain {0, 1}. These functions are called the state variables of the
system. State variables, durations and the chop modality are the distinctive features of
DC. For a state variable (or a Boolean combination of state variables) P, its duration in a
time interval, written [P in DC, is the integral of P over the time interval. For formulae
® and ¥, the formula ® ; ¥, where ; denotes the chop modality, can be formed. This
formula is true at a time interval that can be divided into two intervals where ® is true
at the first interval and ¥ is true at the second interval. In MVC, durations are replaced
by mean values and interval-lengths. For a state variable (or a Boolean combination of
state variables) P, its mean value, written P, is the mean value of P over a time interval
if the interval is not a point interval, and the value of P at the point otherwise. ¢ stands
for the length of a time interval. In MVC, the duration of P can be written P * /.

8.2.1 Syntax

We assume a countably infinite set of logical variables ¥V and a countably infinite set
of state variables SV. Furthermore, we assume a finite sets of function symbols (each
with an associated arity) and a finite set of predicate symbols (each with an associated
arity). In MVC we have, in addition to the syntactic categories of terms and formulae,
the syntactic category of state expressions.

The state expressions are inductively defined by the following formation rules:

1. 0 and 1 are state expressions;

2. each v € SV is a state expression;

3. if P is a state expression, then —P is a state expression;

4. if P, () are state expressions, then P A () is a state expression.

The terms of MVC are inductively defined by the following formation rules:

1. £ is a term;
2. each x € V is a term;
3. if P is a state expression, then P is a term;

Lecture Notes: DesCaRTeS Course, August 1997 UNU/IIST, P.O. Box 3058, Macau



Duration calculus 101

4. if rq,...,r, are terms and f is an n-ary function symbol, then f(ry,...,r,) is a
term.

The formulae of MVC are inductively defined by the following formation rules:

1. T is a formula;
2. if r, 7' are terms, then r = 7' is a formula;

3. if rq,..., 7, are terms and A is an n-ary predicate symbol, then A(ry,...,r,) is a
formula;

4. if ® is a formula, then =& is a formula;
5. if &, ¥ are formulae, then ® A ¥ and & ; ¥ are formulae;
6. if x € V and @ is a formula, then Vz - ® is a formula.

The following abbreviations are frequently used: [P]° for ¢ = 0A P =1, and [P] for
£>0A-(>0;[-P]";¢>0). Their meaning can be informally explained as follows:
[P]° is true at an interval iff the interval is a point interval and P has the value 1 at that
point, and [ P] is true at an interval iff the interval is not a point interval and P has the
value 1 everywhere in the interval.

8.2.2 Semantics

We assume that there is a function [f]'R” — R associated with each n-ary function
symbol f and a relation [A]'R™ with each n-ary predicate symbol A. We write [b,¢],
where b,e € R™ and b < e, for bounded and closed intervals.

Let N € N. Then a (discrete) interpretation Z over the interval [0, N] is a function
Z:8V — (|0, N] — {0,1}) where, for each v € SV, the discontinuity points of Z(v) belong
to N. Likewise, we only consider discrete intervals, i.e. intervals [b, e] where b, e € N. We
write Intv(N) for {[b,e] | b,e € N,0 < b<e < N}.

The value of a state expression P under interpretation Z over [0, N] is the function
[P]Z : [0, N] — {0,1} inductively defined by

[0lZ(t) = o,

[z = 1,

[VIZ(t) = Z(v)(®),
[-PIZ(t) = 1-[P]Z(d),

0 otherwise.

[P AQIZ(t) = { 1 if [P]Z(t) = 1 and [Q]Z(¢t) =1

The value of a term r under interpretation Z over [0, N] and assignment « is the
function [r],Z : Intv(N) — R inductively defined by
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102 Duration calculus for timed frames

[(LZ([b,e]) = e—b,

[z],Z([b,e]) = a(z),

PLI(be]) — {/be[[P]]I(t)dt/(e—b) ife—b>0
‘ [P]Z(e) otherwise,

[f(ra, )L Z([bsel) = LA Z((b,e)), - [l Z([b, €])).-

The truth at interval [b, e] € Intv(N) of a formula ® under interpretation Z over [0, N]|
and assignment «, written Z, [b, e] =, ®, is inductively defined by

Z,[be] Eo T,
b, e]

bl Far=r" o [r,Z([be]) = ["LI([b el),
I,bel Fa Alr,..oma) & ([ Z([bse]), - -, Iral Z([b, €])) € [A]
Z,[be] Fa =® < notZ[be] Fa P,
Z,[be]l Fa @AY & ZI/[be]l=q® and Z,[b,e] =, 7,
Z,[be] Fa ®; ¥ < for some m € N where m € [b, €],

Z,[b,m] o ® and Z, [m, e] E, 7,
I,be] FaVz-® <« foralldeR, Z,[b €] Fa@sa) P

We write Z, [b, e] = ® to indicate that Z, [b, e] =, ® for all assignments a.
A formula ® is valid in an interpretation Z over [0, N|, written Z = @, iff Z, [0, N] = &.
A formula ® is valid, written = @, iff for all N, for all interpretations Z over [0, N], Z = ®.

8.3 Duration calculus for timed frames

In this section, we consider the truth of MVC formulae in signal inserted timed frames.
First of all, we show how paths in a frame induce interpretations of state variables and we
take the truth of an MVC formula under all interpretations induced by paths in a frame
as the validity of the formula in that frame. After that, we try to make a more direct
connection by introducing the truth of MVC formulae for paths in frames.

To begin with, we introduce some auxiliary notions and notations to make the main
definitions easier to comprehend.
A proper path is a path of the form s; *% s5... % s,.; where u,, # 0. So proper paths
can not end in a time step.
The partial path composition function e : [1 x 1 — [1 is inductively defined by

S®@S =S8
(r -t s)es=m7 s
T, ® Ty = T3 —> 7T1.(7T2i>8):7'('3i>8

Path composition yields the concatenation of two paths, provided that the last state of
the first path equals the first state of the second path. Otherwise its result is undefined.
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A timed action step s 2% §' (t € N) is a path of the form s - 5, ... % 5, % 5.

.. . . t tn,an . t1,
Similarly, a timed action path s; —*% sy ...8, —" s, is a path of the form (s; —*%
tn,an
Sy)e...0 (8 — Spyq).
. . t tn’ n 3
Note that a timed action path s; —2*% s5...s, —“* 5,1 hides the states sy, ..., si,

between s; and s;;1 (for 1 < i < n). However, the propositions that hold in these states
are the same as the ones that hold in s;. In the definitions to come, all paths of the form
corresponding to the same timed action path may be identified. Therefore we will loosely
write 7 = 51 2% 5.8, 2% s,.1. Note also that the timed action paths cover

exactly the proper paths.

8.3.1 Interpretations induced by paths

First of all, we consider the case where state variables simply correspond to atomic propo-
sitions that may hold in the states of a frame. Next, we admit state variables to correspond
alternatively to sequences of actions that may be performed from the states till time passes
to the next time slice. This latter case must be considered to be more appropriate for
signal inserted timed frames, because they exhibit the interplay between the performance
of actions and the consequent visible state changes.

Atomic propositions as state variables

In this case, we take the set P,; of atomic propositions as the set SV of state variables.
Let m = s; 2% g, .. .5, —mo Sni1 be a proper path. Then the time length of 7,
written £(r), is defined by

t1,01 tn,an

Let F' be a frame and m = sy —— s3...s5, —% 5,41 be a proper path such that
m € E(F). Then the set of atomic propositions that hold for m at time ¢, written
P(F)(m,t), is defined by

pe P(F)(n,t)

k k+1
FEeEN-E+1<nAY t; <t<D t; AP *sp1) ®F =FV
i=1 i=1

=1

With immediate transitions, i.e. with ¢; = 0 for some i (1 < ¢ < n), several transitions
seem to occur in sequence at the same discrete time point. This can be explained as
follows. The discrete time points divide real time into slices, but actions are performed
in real time and state changes take place in real time. This is in accordance with the
intended meaning of a time step, which it derives from its use in discrete time process
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algebra: the passage of time to the next time slice. The definition of P(F)(m,t) given
above is motivated by the fact that the discrete time semantics of MVC only allows
for state changes at the discrete time points. For this reason, the sequence of transitions
occurring within a time slice must be treated as a single transition and in consequence the
intermediate state changes must be considered to be invisible. Ongoing work on duration
calculus aims to deal with cases where several transitions seem to occur in sequence at
the same time point because of the existence of a “micro time” in a more satisfactory way.
We define the interpretation ZF over [0, £(7)] induced by a proper path 7 in frame F
by
1 ifve P(F)(rm,t)
0 otherwise

o -

In this way, proper paths in a frame correspond to interpretations for MVC.
A formula ® is valid in a frame F, written F' |= ®, iff for all proper paths 7 such that
E(F)(r), IF.[0,€(r)] |- ©.

Sequences of actions as state variables

Now we add the set AT of non-empty sequences of actions to the set SV of state variables.
Let F be a frame and m = s; BAELT S9...8, tnsGny Snt1 be a proper path such that
m € E(F). Then the set of sequences of actions that happen in 7 at time ¢, written

A(F)(m,t), is defined by

ay...a, € A(F)(m,t)
k+1 k+m

FkeN-E+m<nAd ti=t= > t;A
k =t =t k+m+1 m
(k#0:>2m<t)/\(k:+m7én:>t< Zti)/\/\akﬂ-:a;-
=1 i=1 7j=1

Note that the set A(F)(m,t) is either the empty set or a singleton set. In the former
case, no sequence of actions happens at time ¢. In the latter case, t must be a discrete
time point and the sequence of actions is the complete sequence of actions that happens
at that time point. Only the complete sequence is considered to happen because only the
state change corresponding to the complete sequence is visible.

We re-define the interpretation Z over [0, £(7)] induced by by proper path 7 in frame
F by
1 ifve P(F)(n,t)orve A(F)(m,t)
0 otherwise

z 0 -

8.3.2 Example

In Section 7.2.1, the control component of a telephone answering machine was modelled
by a signal inserted timed frame. One of its properties is the following:
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The waiting-to-answer phase lasts for at most 10 time units.

This property is easy to express in MVC using both atomic propositions and sequences
of actions as state variables:

[r(inccall)]’ ; [~playing A —recording] = £ < 10
In Section 7.3.2, the following property was expressed in TFL:

When the off-hook signal is issued to the telephone network, nothing has
happened since the detection of the last incoming call and meanwhile 10 time
units have passed.

This property can also be expressed in MVC — as already demonstrated in Section 4.3:
[r(inccall)]® ; [-r(inccall)] ; [s(offhook)s(playmsg)]® =
¢ =10 A [r(inccall)]’ ; [ V el; [s(offhook)s(playmsg)]°

ecAt

The formula [— \/ e] is used to characterize a non-point interval in which no actions
ecAt
happen.

8.3.3 Truth for paths in frames

We can also define the truth of a formula ® for a proper path in a frame (instead of under
its induced interpretation). Only the chop modality needs some special attention. We can
not simply chop a proper path 7 in any two proper paths m; and my for which 7 = 7, e 75.
Not all (proper) subpaths ' with £€(7’") = 0 consist of a single state. However, in order
to be in accordance with the interpretation induced by the path, such instant subpaths
have to be treated in a way like single states. To accommodate this, we introduce the set
of admissible divisions for a proper path m, written D(7). It is defined by

(m1,m) € D(7) <
71, To are proper paths A 3rj, 7', w5 € [0-
m=mniem' Amy=n"emiyNl(T") =0AT =m @)\
—(3r], 7" e N -x) £a] ANe(n") =0AT] =x] o)A
(3" mh e N -nh #my Ne(n") =0A Ty =7" o))

Atomic propositions as state variables

To begin with, we consider the case where state variables correspond to atomic proposi-
tions.

Let F be a frame and 7 = s; BALLIN S9...8 naln, Snt1 be a proper path such that
m e E(F).
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The value of a state expression P for path 7 in F is the function [P](F,7): S — {0,1}
inductively defined by

[I(F.7)(s) = O,
[IFms) = 1
I(F.m)(s) = {; to~er=F
FPIE ) = 1= [PIE )
P~ QIEm)(e) {1 if [P](F, 7)(s) = 1 and [QI(F,m)(s) = 1

0 otherwise.

The value of a term 7 for path 7 in F, under assignment «, is the value [r] (F,7) : R
inductively defined by

[,(F,m) = &)
[z],(F,m) = az),
L < { (SIPIFm)(s0) x t/8(x) i€ () > 0
|[15 (F,m)(Snt1) otherwise,
[f (e, (Bom) = [T (Fo 7)., [raly (F 7).

The truth of a formula ® for path 7 in F, under assignment «, written F, 7w =, ®, is
inductively defined by

FrmEaT,
Foreer=1r & [r] (Fr) =[] (Fr),
Firm g Alry, o) & (Iml (Fom), ..o [rn (B ) € [A]
FrEys—~® < not Fim, P,
FrE. ANV & FrnkE,®and Fir |, 7,
ForE,®;¥ & for some (m,ms) € D(m),

F,m o ® and F,m |, 7,
FiriaVe-® & foralld eR, F,7m Fopaa) @

We write F, 7 = @ to indicate that F, 7w =, ® for all assignments .
The following result relates the truth of formulae for paths with the interpretations
induced by paths.

Lemma 8.3.1. Truth for a path and truth under the interpretation induced by the path
are equivalent:

FrlEa® & IF)[0,£(7)] Eo @
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Proof. This is Lemma 1 of [43]. O

Corollary. The validity of a formula ® in a frame F can be characterized by

F = ® & for all proper paths w such that E(F)(n), F,m = ®

Sequences of actions as state variables

The definitions given above for the case where only atomic propositions are taken as
state variables are standard with the exception of the clauses concerning the distinctive
features of MVC: state variables, interval-lenghts, mean values and the chop modality.
With respect to paths in frames, their meaning turns out to be quite natural. The
possible presence of immediate transitions in paths is largely responsible for the small
complication with the chop modality.

If we take sequences of actions as state variables as well, we get the following additional
clause in the definition of the value of state expressions:

!

1 iff(r)=0,5= 8,41 and aj...a;,

/ ! _ =aj...an
loz - ap}(F, m)(s) = { 0 otherwise
It is questionable whether this counts for natural. The possible presence of immediate
transitions in paths is largely responsible here as well. Lemma 8.3.1 goes through for this
case.

8.4 From duration calculus to timed frame logic

In this section, we discuss the connection between MVC and TFL. First, we touch upon
the impossibility of embedding MVC into TFL. Thereafter, we show that a fragment of
MVC can be embedded. The fragment concerned is a propositional fragment which allows
only the use of integrals and point values, instead of the unrestricted use of mean values.

8.4.1 Embedding

In Section 8.3, we considered the truth of MVC formulae in signal inserted timed frames
from the angle of MVC — by using the standard discrete time semantics of MVC as the
starting point — and from the angle of signal inserted timed frames — by introducing a new
semantics in terms of paths in signal inserted timed frames. A rather different approach
is to study the embedding of MVC into TFL. An embedding of MVC into TFL is a
mapping that translates MVC formulae to TFL formulae. The mapping should be such
that validity in a frame, as defined in Section 8.3.1, remains the same after translation.
The characterization of validity in a frame, as given in Section 8.3.3, is deemed to facilitate
devising such a mapping.
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108 From duration calculus to timed frame logic

This approach will immediately fail because TFL does not support real numbers. Let
us therefore just assume that the sort R of real numbers, and sufficient standard functions
and predicates concerning real numbers, have been added to TFL. Even thus MVC can
not be embedded. In order to deal with interval-lenghts and mean values, support for
recursive definitions — e.g. a fixpoint operator — is needed as well. At first sight, it seems
that TFL lacks expressive power. However, any timed frame can be distinguished from
another one and, in consequence, at least any finite set of frames is definable in TFL. This
is not the case in MVC, whose distinctive power with respect to frames is less, due to the
fact that certain state changes are considered to be invisible. Besides, adding support for
real numbers or recursive definitions to TFL will not increase its distinctive power.

In retrospect, it is not very surprising that MVC and TFL are not more closely related.
MVC was designed to be a logic for specifying and reasoning about real-time requirements
for systems and additionally a logic that offers an interface to control theory. TFL was
designed to be a logic for expressing and verifying properties of objects that are meant
to model programs with timing constraints — derived from the real-time requirements
for the system in which the program concerned is embedded. In consequence, MVC has
been geared to properties about the duration of phases of system behaviour — which may
comprise many states and state changes — within a given time interval, while TFL is more
suited for properties about the time points at which program actions — which yield a
single state change — are performed. In other words, these logics are originally meant to
be used at quite different levels of abstraction.

8.4.2 Fragments

Although MVC and TFL are meant to be used at different levels of abstraction, it is
still useful to investigate whether there exist fragments of MVC that can be embedded
into TFL. The latter logic is more suitable than MVC to express and verify properties
of frames and has more distinctive power. Besides, it will presumably be refinements of
real-time requirements for which it is interesting to verify whether they are met by frames.
These refinements should anyhow be formulated in a fragment of MVC that precludes a
very high level of abstraction.

Identifying a fragment of MVC that can be embedded into TFL is not to difficult if
one realizes that: (1) with the discrete time semantics the value of terms of the form P * £
(i.e. fP) is always in N, and (2) the main reason for replacing integrals (fP) by mean
values (P) in MVC was to add the possibility to deal with point values ([P1°).

In the fragment that we have in view, the terms and formulae are restricted with
respect to the occurrences of terms of the form P such that integrals and point values are
covered. Further restrictions on the function symbols ensure that the value of all terms is
always in N. However, since TFL has no support for recursion, more restrictions on the
(atomic) formulae — mainly with respect to the occurrences of logical variables and terms
in which state expressions occur — are needed. These restrictions make quantification
useless, and thus they result in a propositional fragment of MVC.
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We assume a constant for each natural number. We shall use the meta-variable £ to
stand for an arbitrary such a term. The formulae of the fragment are inductively defined
by the following formation rules:

T is a formula;

if P is a state expression, then £ =0 A P = 1 is a formula;

if P is a state expression and k a constant, then P * { = k is a formula;
if ® is a formula, then —® is a formula;

if ®, ¥ are formulae, then ® A ¥ and & ; ¥ are formulae.

Al

Note that we introduced in Section 8.2 the abbreviations [P and [P]° for P * £ and
¢ =0 A P =1, respectively. We shall use these abbreviations from now on. Note further
that we can represent [P >k and /> k by [P=Fk; T and [1=Fk; T, respectively.

In the definition of the translation, we write:

eqlast(n,m) for (3s € S-Ss(n,m,s))A—(3s € S-Ss(n+1,m,s))

—eqlast(0, ) =
dn € N - eqlast(n+1, 1) ANJu e L-S(n,m,u) AN\u# o

[ Im € N - eqlast(m, m ) AVn € N-

(n <m=VseS-S¢(n,m,s) < Ss(n,m,s))A
com(my, ma, w) for (n<m=VYuel-S(n,m,u) < Si(n,m,uw)A
(Vs € S+ Sg(n,ma, s) < Ss(m+n,m,s))A
(Vp € L-Si(n,m, p) < Si(m+n,m, 1))

dry e -3n' €N Iny el
com(my, ', m) A com(n', wh, ma) A com(my, wh, ™)A
=(3In € N-Sy(n, 7', 0))A
(—eqlast(0, ) =
dn € N - eglast(n+1, 1) A Si(n, 71, 0))A
L (—eqlast (0, 7)) = S,(0,7h,0))

proper(m) for {

div(m, 7y, my) for

These abbreviations can informally be explained as follows: eglast(n, ) is true iff there
are n + 1 states in m, proper(m) is true iff 7 is a proper path, com(my, 7o, ) is true iff 7 is
the path composition of m; and 7y, and div(m, 7y, ms) is true iff (71, m2) is an admissible
division of 7. The abbreviation com(m, ms, m) is only used to define div(m, my, m3).

The translation of a MVC formula & from the fragment is the TFL formula V7 €
[1- proper(m) A E(m) = (®]), where (®]) is inductively defined by
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(SP=k]

(~®)
(@A)

(@; V)

=(3n' € N-S(n',7,0))A
dneN-dseS.
Ss(n, 7, s) A eqlast(n, m) A (P)),

dnqy e N-...3dn; € N-
ko oi-1

/\((/\nz ?énj)/\ﬂn eN-ds e G-
Ss(n,,5) A Si(n,m,0) An=ni A (P))A
=gy € N-

k
(A1 #nj) AIneN-3s € S
j=1

| Ss(n, m,8) ASy(n,m,0) An =ng A (P)),
~(®),
(@) A (%D,

dm € M- 3my € N - div(mw, 7, m2) A
(Frell-n=m A(@))AGrell-m=mA(¥])).

For state expressions P, the TFL formula (P)) is inductively defined by

(a1 ..

(0) = H(F,s),
(1) = H(T,s),
() = H(ps),

m—1

am) = eqlast(n,m) An=mA N Si(i, 7, ais1),

(=P) = ~(P),
(PAQ) = (P)A(Q)

=0

The translation appears to be rather intricate. This is mainly due to the use of predicates
in TFL to represent partial functions for the selection of states and transition labels from
paths. The following result shows that the translation is an embedding.

Lemma 8.4.1. Validity remains the same after translation:

FE® < FEVrellproper(m) NE(r) = ()

Proof. This is Lemma 2 of [43]. O
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8.5 Closing remarks

MVC is intended for the expression and refinement of the real-time requirements for sys-
tems. The systems concerned usually have one or more embedded software components.
Calculi aimed at programming should subsequently be used for the stepwise development
of these software components. Timed frames are objects of the kind that generally under-
lies models for the theories that can supply a semantic basis for such calculi. Therefore, a
promising approach to elaborate the semantic connections between MVC and such calculi
is to start with investigating the connection of MVC with timed frames.

In Section 8.3.1, we made this connection precise by defining how to extract inter-
pretations of state variables from paths in frames and how to establish validity of MVC
formulae in frames. In Section 8.3.3, we elaborated the connection further by giving a
new semantics for MVC by which the meaning of MVC terms and formulae is described
with respect to paths in frames instead of interpretations of state variables. This new
semantics is justified by the connection described in Section 8.3.1: for all MVC formulae,
validity in a frame is the same under both semantics. It shows that the meaning of most
distinctive features of MVC with respect to paths in frames is quite natural.

In Section 8.4, however, we found that only a fragment of MVC can be embedded into
TFL, while TFL is powerful enough to distinguish any timed frame from another one and
MVC is not. This bad match supports the anticipated view that the use of MVC itself is
not the most appropriate choice at the stage of software development and, in consequence,
that there is a need to elaborate the connections with calculi aimed at programming.
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Chapter 9

Asynchronous Dataflow Networks

9.1 Introduction

In this chapter, an equational theory of networks, called BNA (Basic Network Algebra),
is presented. It captures the basic algebraic properties of networks. Additional constants
and equational axioms for asynchronous dataflow are presented as well. Asynchronous
dataflow networks are objects of the kind that underlie a model that is being developed
for an abstract semantics of pSDL.

In [21], network algebra is proposed as a general algebraic setting for the description
and analysis of dataflow networks. A network can be any labelled directed hypergraph
that represents some kind of flow between the components of a system. For example,
flowcharts are networks concerning flow of control and dataflow networks are networks
concerning flow of data. Assuming that the components have a fixed number of input and
output ports, such networks can be built from their components and (possibly branching)
connections using parallel composition (+), sequential composition (o) and feedback (1).
The connections needed are at least the identity (I) and transposition (X) connections,
but branching connections may also be needed for specific classes of networks.

An equational theory concerning networks that can be built using the above-mentioned
operations with only the identity and transposition constants for connections, called BNA
(Basic Network Algebra), was presented in [21]. In addition to BNA, extensions for
synchronous and asynchronous dataflow networks were presented. In both cases, process
algebra models were given. These models provide for a very straightforward connection
between network algebra and process algebra.

In the next chapter, we adapt the process algebra model for time free asynchronous
dataflow to timed asynchronous dataflow and add some standard atomic components to
cover SDL-like dataflow. This includes a component corresponding to the timer mecha-
nism of SDL. The purpose is to find a model that is close to the concepts around which
SDL has been set up, i.e. a model well suited as the underlying model for an abstract
semantics of SDL. Such a model is expected to facilitate the quest for rules of reasoning
about pSDL [18] specifications.

113



114 Overview of network algebra

In this chapter we will give a survey of network algebra. It is first explained in
broad outline and without formal details (Section 9.2). Next the signature and axioms
of BNA are presented (Section 9.4). After that the additional constants and axioms for
asynchronous dataflow are introduced (Section 9.5).

9.2 Overview of network algebra

This section gives an idea of what network algebra is. The meaning of its operations and
constants is explained informally making use of a graphical representation of networks.
Besides, dataflow networks are presented as a specific class of networks and the further
subdivision into synchronous and asynchronous dataflow networks is explained in broad
outline. The formal details will be treated in subsequent sections.

9.2.1 General

In the first place, the meaning of the operations and constants of BNA mentioned in
Section 9.1 (+, o, 1, | and X) is explained. Following, the meaning of additional constants
for branching connections is explained.

It is convenient to use, in addition to the operations and constants of BNA, the ex-
tensions 1™, |, and ™X" of the feedback operation and the identity and transposition
constants. These extensions are defined by the axioms R5-R6, B6 and B8-B9, respec-
tively, of BNA (see Section 9.4, Table 9.1). They are called the block extensions of the
feedback operation and these constants. The block extensions of additional constants for
branching connections can be defined in the same vein.

In Figure 9.1, the meaning of the operations and constants of BNA (including the
block extensions) is illustrated by means of a graphical representation of networks. We
write f : kK — [ to indicate that network f has k input ports and [ output ports; & — [
is called the sort of f. The input ports are numbered 1,...,k and the output ports
1,...,0. In the graphical representation, they are considered to be numbered from left
to right. The networks are drawn with the flow moving from top to bottom. Note
that the symbols for the feedback operation and the constants fit with this graphical
representation. In Figure 9.2, the meaning of (block extensions of) additional constants
for branching connections is illustrated by means of a graphical representation. The
symbols for these additional constants fit also with the graphical representation.

9.2.2 Dataflow networks

In the case of dataflow networks, the components are also called cells. The identity
connections are called wires and the transposition connections are viewed as crossing
wires. The cells are interpreted as processes that consume data at their input ports,
compute new data, deliver the new data at their output ports, and then start over again.
The sequences of data consumed or produced by the cells of a dataflow network are called
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f:3—1 g:2—3

..........

gof:2—1 gtt:1—2

W X

ly:4—4 2X1:3—3

Figure 9.1: Operations and constants of BNA

A\ LA N4 a2

A2:3—6 13:3=0 Vg :4 — 2 To:0—2

Figure 9.2: Additional constants for branching connections

streams. The wires are interpreted as queues of some kind. The classical kinds considered
are firstly queues that never contain more than one datum and let data pass through
them with a negligible delay, and secondly queues that are able to contain an arbitrary
number of data and let data pass through them with a time delay. We call them minimal
stream delayers and stream delayers, respectively.

In synchronous dataflow networks, the wires are minimal stream delayers. Basic to
synchronous dataflow is that computation is driven by ticks of a global clock. The under-
lying idea of synchronous dataflow is that computation takes a good deal of time, whereas
storage and transport of data takes a negligible deal of time.

In asynchronous dataflow networks, the wires are stream delayers. Basic to asyn-
chronous dataflow is that computation is driven by the arrival of the data needed. The
underlying idea of asynchronous dataflow is that computation as well as storage and
transport of data take a good deal of time. In asynchronous dataflow networks, cells may
independently consume data from their input ports, compute new data, and deliver the
new data at their output ports. This means that there may be data produced by some
cells but not yet consumed by other cells. Therefore the wires have to be able to buffer
an arbitrary amount of data.
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Dataflow networks also need branching connections. Because there is a flow of data
which is everywhere in the network, the interpretation of the branching connections is not
immediately clear. At least two kinds of interpretation can be considered. For the binary
branching connections, they are the copy/equality test interpretation and the split/ merge
interpretation. The first kind of interpretation fits in with the idea of permanent flows of
data which naturally go in all directions at branchings. Synchronous dataflow reflects this
idea most closely. The second kind of interpretation fits in with the idea of intermittent
flows of data which go in one direction at branchings. Asynchronous dataflow reflects
this idea better. In order to distinguish between the branching constants with these
different interpretations, different symbols are used: R™ and ¥,, for the copy/equality test
interpretation, A™ and ¥, for the split/merge interpretation. Likewise, different symbols
for the nullary counterparts are used.

Dataflow networks have been extensively studied, see e.g. [27, 37, 38|.

9.3 Summary of process algebra ingredients

This section gives a brief summary of the ingredients of process algebra which make up
the basis for the process algebra models presented in the following sections. A survey of
the main ingredients is given in Chapter 5.

We will make use of ACP™ as described in Chapter 5. In ACP”, we have the constants
a (for each action a), 7 and §. Processes can be composed by sequential composition,
written P-Q), alternative composition, written P+ (@), parallel composition, written P || Q,
encapsulation, written 0y (P) and abstraction, written 77(P).

Additionally, we will use the following extensions:

renaming We need the possibility of renaming actions. We will use the renaming opera-
tor ps, added to ACP in [3]. Here f is a function that renames actions into actions,
§ or 7. The expression ps(P) denotes the process P with every occurrence of an
action a replaced by f(a). So the most crucial equation from the defining equations
of the renaming operator is ps(a) = f(a).

iteration We will also use the binary version of Kleene’s star operator *, added to ACP
in [13], with the defining equation P*Q = P- (P * Q) + Q. The behaviour of P * Q
is zero or more repetitions of P followed by Q.

early input and process prefixing We will additionally use early input action prefix-
ing and the extension of this binding construct to process prefixing, both added to
ACP in [5]. Early input action prefixing is defined by the equation er;(z) ; P =
Yaep Ti(d) - Pld/x]. We use the extension to processes mainly to express parallel
input: (eri(xq) || ... || ern(z,)) ; P. We have:
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(eri(z1) || era(z2)) 5 P = Y aepri(di) - (er2(z2) 5 Pld1/71])
+ > gpep T2(d2) - (eri(z1) 5 Pld2/z2])

Yaepri(di) - ((era(z2) || ers(zs)) ; Pldi/xz1])
+ > g,ep r2(d2) - ((er1(z1) || ers(z3)) ; Plda/x2])
+ > a,epr3(ds) - ((er1(z1) || era(z2)) 5 Plds/z3])

(eri(z1) || era(z2) || ers(z3)) ; P
etc.

communication free merge We will not only use the merge operator (||) of ACP, but
also the communication free merge operator (|||). The communication free merge
operator can be viewed as a special instance of the synchronisation merge operator
|g of CSP, also added to ACP in [5], viz. the instance for H = (). It is defined
by P|| Q=P || Q@+ Q || P, where ||| is defined as || except that a- P || Q =
a- (P || Q). Communication free merge can also be expressed in terms of parallel
composition, encapsulation and renaming.

9.4 Basic network algebra

In this section, the signature and axioms of BNA is presented. In a subsequent section,
an extension of BNA for asynchronous dataflow networks is considered.

9.4.1 Signature and axioms of BNA

Signature

In network algebra, networks are built from other networks — starting with atomic com-
ponents and a variety of connections. Every network f has a sort £ — [, where k,l € N,
associated with it. To indicate this, we use the notation f : kK — [. The intended meaning
of the sort k — [ is the set of networks with k input ports and [ output ports. So f : k — [
expresses that f has k input ports and [ output ports.

The sorts of the networks to which an operation of network algebra is applied determine
the sort of the resulting network. In addition, there are restrictions on the sorts of the
networks to which an operation can be applied. For example, sequential composition can
not be applied to two networks of arbitrary sorts because the number of output ports of
one should agree with the number of input ports of the other.

The signature of BNA is as follows:
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Name Symbol  Arity

Operations:

parallel comp. -+ k—=Dx(m-=n)—=(k+m—1+n)
sequential comp. o k—=0Dx({l—=m)—=(k—>m)
feedback 0 (m+1—-n+1)—= (m—n)
Constants:

identity I 1—-1

transposition X 2—2

Here k,l, m,n range over N. This means, for example, that there is an instance of the

sequential composition operator for each k,I,m € N.

As mentioned in Section 9.2, we will also use the block extensions of feedback, identity
and transposition. The arity of these auxiliary operations and constants is as follows:

Symbol  Arity
N (m+l—=n+1) — (m—n)
N m—m

mxm m+n—n+m

Axioms

The axioms of BNA are given in Table 9.1. The axioms B1-B10 are concerned with +-,

Bl fH#((g+Hh=((+Hg) Hh
B2 |0-H-f:f:f-|+|0

B3  fo(goh)=(fog)oh

B4 lpof=f=fol
B5  (fH f)o(g+9)=
B6 I H I =l

B7 le o le = |k+l

B8 kX0 =1,

B9 EXH™m = (AXE 4 1) o (I + FX™)
B10  (f 4t g)o™X" =*X'o (g f)

for f:k—m, g:l—n

R1
R2
R3
R4

(fog)+ (f'og)

R5
R6

F1
F2

go(f1™) = (g4 1m)o f) 1
(ft™)og=(fo(g+]I ))Tm
f%(ng)):(f%g)

(fo(li4 g)) 1= ((Ix +g) o f) 1"
for f:k4+m—1l4+n, g:n—>m
f1o=

f
(F 1) = £ et

I 5= lo
kxk Tk: Ik

Table 9.1: Axioms of BNA

o, l,, and ™X" and the remaining axioms characterize 1!. The axioms R5-R6, B6 and
B8-B9 can be regarded as the defining equations of the block extensions of 1, | and X,
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respectively. The axioms of BNA are sound and complete for networks modulo graph
isomorphism (cf. [50]).

9.4.2 Process algebra model of BNA

Network algebra can be regarded as being built on top of process algebra.

Let D be a fixed, but arbitrary, set of data. D is a parameter of the model. The
processes use the standard actions r;(d), s;(d) and c¢;(d) for d € D only. They stand
for read, send and communicate, respectively, datum d at port i. On these actions,
communication is defined such that r;(d) | s;(d) = ¢;(d) (for all i € N and d € D). In all
other cases, it is undefined.

We write H(i), where ¢ € N, for the set {r;(d) | d € D} U {s;(d) | d € D} and
I(i) for {c;(d) | d € D}. In addition, we write H(i,j) for H(i) U H(j), H(i + [k]) for
H(i+1)U...UH(i+k) and H(i+[k],j+[I]) for H(i+[k])UH(j+]l]). The abbreviations
I(i,7), I(i + [k]) and I(i+ [k],j + [I]) are used analogously.

in(i/j) denotes the renaming function defined by

in(i/j)(ri(d)) = rj(d) forde D
in(i/j)(a) = a for a ¢ {r;(d) | d € D}

So in(i/j) renames port ¢ into j in read actions. out(i/j) is defined analogously, but
renames send actions. We write in(i + [k]/j + [k]) for in(i+1/j+1)o...0in(i+k/j+ k)
and in([k]/j + [k]) for in(0 + [k]/j + [k]). The abbreviations out(: + [k]/j + [k]) and
out([k]/j + [k]) are used analogously.

Definition 9.4.1 (process algebra model of BNA)
A network f € Proc(D)(m,n) is a triple

f=(m,n,P)

where P is a process with actions in {r;(d) | ¢ € [m],d € D} U {s;(d) | i € [n],d € D}.
Proc(D) denotes the indexed family of sets (Proc(D)(m,n))y x N-
A wire is a network | = (1,1, w}), where w! satisfies:

for all networks f = (m,n, P) and u,v > max(m, n),

(P Trtue) Or(w (wy | wy)) Il P =P
(P2) Tru) Oruw) (Pingiju) (P) | wy) | wy)) = P for all i € [m]
(P3) T1(u,0) Or(u,e) (Pout(j ) (P) (Il wf) || wyy)) = P for all j € [n]

where w2 = pin(1/u) (Pout(1/v) (W 1)

The operations and constants of BNA are defined on Proc(D) as follows:

Lecture Notes: DesCaRTeS Course, August 1997 UNU/IIST, P.O. Box 3058, Macau



120 Basic network algebra

Name Notation
parallel comp. fHg €Proc(D)(m+p,n+gq) for f € Proc(D)(m,n), g € Proc(D)(p,q)
sequential comp. fog € Proc(D)(m,p) for f € Proc(D)(m,n), g € Proc(D)(n,p)
feedback 1 € Proc(D)(m,n) for f € Proc(D)(m + p,n + p)
identity I € Proc(D)(n,n)
transposition mxn € Proc(D)(m + n,n+m)
Definition
(mv n, P) +- (pa q, Q) = (m +p,n+q, R) where R = P ||| Pin([p]/m~+p]) (pout([q]/n+[q]) (Q))
R= TI(u+[n],v+[n})(8H(u+[n},v+[n])((pout([n]/u+[n})(P) ||| Pin([n]/v+[n]) (Q)) || ngr_% H cee H wg—_:-_:zl))
(m+pn+p,P)t? = (m,n,Q) where, for u = max(m,n),v = u + p,
Q = Tr(utip)o+1n) Or(ut [o], v+ 18]) (Pin(m 0] o+ 18]) (Pout(nt ) fut o) (P)) 1 wyd |- [ w3 i)
l, = (n,n,P) where P = w} || ... || w? ifn>0
T1(1,2) (OH(1,2) (w} || w?)) otherwise
mX" = (m +n,n+m,P) where P = wl | ||... || wr,, | || ... | wmt? ifm+n>0
T1(1,2) (OH(1,2) (w} || w?)) otherwise

O

The conditions (P1)—(P3) are rather obscure at first sight, but see the remark at the end
of this section. The definitions of sequential composition and feedback illustrate clearly
the differences between the mechanisms for using ports in network algebra and process
algebra. In network algebra the ports that become internal after composition are hidden.
In process algebra based models these ports are still visible; a special operator must be
used to hide them. For typical wires, 77(1,2)(0mq,2) (w3 || w?)) equals &, 7+ or £- 6 (the
latter only in case ACP},, is used).

In the description of a process algebra model of BNA given above, all constants and
operators used are common to ACP”™ and ACP}, or belong to a few of their mutual
(conservative) extensions (viz. renaming and communication free merge). As a result,
we can specialize this general model for a specific kind of networks using either ACP”
or ACP},; with further extensions at need. On the other hand, we can obtain general
results on these process algebra models: results that only depend on properties that are
common to ACP”™ and ACP],, or properties of the mutual extensions used above.

Theorem 9.4.2 (Proc(D), H,0, 71,1, X) is a model of BNA.
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Proof: This is Theorem 4.4 of [21]. O

So if we select a specific wire, such as and sd} in Section 9.5, we have obtained a model
of BNA if the conditions (P1)-(P3) are satisfied by the wire concerned. It is worth
mentioning that the conditions (P1)—(P3) are equivalent to the axioms B2 and B4 of
BNA: (P1) corresponds to lg #+ f = f = f + lo, (P2) to l, o f = f, and (P3) to
f=Ffol.

9.5 Asynchronous dataflow networks

In this section, an extension of BNA for (time free) asynchronous dataflow networks is
presented. That is, the additional constants and axioms for asynchronous dataflow are
given.

9.5.1 Signature extension and additional axioms
Signature

The signature of the extension of BNA for asynchronous dataflow networks is obtained
by extending the signature of BNA as follows with additional constants for branching
connections:

Name Symbol  Arity

Additional constants:

split am m — 2m
sink &m m — 0
merge ¥m 2m — m
dummy source *n 0—m

The symbols A™, ¥, indicating the split/merge interpretation, are used here. The
copy/equality test interpretation, indicated by the symbols ™ and ¥,,, is not dealt with.
Although the copy/equality test interpretation seems less close to asynchronous dataflow,
both interpretations are found in asynchronous dataflow. However, both interpretations
are dealt with in [21].

Axioms

In Table 9.2, axioms for the additional constants ™, L™, ¥,, and ?,, are given. The
axioms A12-A19 can be regarded as the defining equations of the block extensions of ¥,
¥, & and X. We consider the axioms A1-A9 and F3-F4 desired axioms for asynchronous
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A2 MX™ 6 Y = ¥m A6 M o mYM — gm
A3 (rm +- Im) o¥m = Im
A4 Yo b =T L™ A8 P o R =0 H Th

A9 fm0$m=|0

Al12 %=1 A16 L0 =1,
A3 Py =Pm H Pn AT LT =0 4
Al4d o=l A18 A0 =1,

AL Nin = (I 4+ "X™ 4 1) 0 (Vi + ¥n)  AL9 AT = (R™ + A7) 0 (I, + X" 4 )

F3 ¥y 17= b7 F4 A" 4=t

Table 9.2: Additional axioms for asynchronous dataflow networks

dataflow networks. They are all valid in the process algebra model described in Sec-
tion 9.5.2. However, various other models for asynchronous dataflow have been proposed
and the valid axioms differ from one model to another.

9.5.2 Process algebra model for asynchronous dataflow

In this subsection, the specialization of the process algebra model of BNA (Section 9.4.2)
for asynchronous dataflow networks is given. In this case, we will make use of ACP”.

In Section 9.4.2, only a few assumption about wires and atomic cells were made. In
this subsection these ingredients are actualized for asynchronous dataflow networks in the
time-free case.

Definition 9.5.1 (wires and atomic cells in asynchronous dataflow networks)
In the asynchronous case, the identity constant, called the stream delayer, is the wire
l; = (1,1,sdi(¢)), where sd} is defined by

sdi(0) = ery(z) ; sdi(ox) + |o| > 0:— s1(hd(0)) - sdj(t(o))

The constants |,,, for n # 1, and ™X" are defined by the equations occurring as axioms
B6 and B8-B9, respectively, of Table 9.1.
An atomic cell with m inputs and n outputs is a network

C=lno(m,n,P)ol,

where P is a time-free process with actions in {r;(d) | i € [m],d € D}U{s;(d) | i € [n],d €
D}.

The restriction of Proc(D) to the processes that can be built under this actualization
is denoted by AProc(D). O
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The definition of sd! simply expresses that it behaves as a queue.

Example 9.5.2 (cells computing functions and relations on data)

The deterministic cell computing a function f : D™ — D" is the network Cy = I, ©
(m,n, Py) ol, where P; is defined by
Py = ((eri(z1) || .- || erm(zm)) ; s1(fi(@y-eovzm)) || - || Su(fu(@y ey 2m))) * 0

where, for i € [n], fi(z1,...,2n) =i if f(@1,...,Zm) = (Y1, Yn)-

The non-deterministic cell computing a (finitely branching) relation R C D™ x D" is the
network Cg = |, o (m,n, Pg) o l,, where Pg is defined by

Pp = ((eri(z1) || || erm(am)) ;
(T<R(@1, - - Tm) = 0> E(ay,...an)eR(@1,mzm) (51(a1) [ - [ 8n(an)))) * 6

The definition of P; expresses the following. P waits until one datum is offered at each
of the input ports 1,...,m. When data is available at all input ports, P; proceeds with
producing data at the output ports 1,...,n. The datum produced at the ¢-th output port
is the -component of the value of the function f for the consumed input tuple. When data
is delivered at all output ports, P proceeds with repeating itself. The non-deterministic
case (Ppg) is similar. O

For AProc(D), the operations and constants of BNA as defined on Proc(D) can be
taken with sdl as wire. This means that only the additional constants for asynchronous
dataflow have to be defined.

Definition 9.5.3 (process algebra model for asynchronous dataflow)
The operations +, o, 1™ on AProc(D) are the instances of the ones defined on Proc(D)
for sd} as wire. Analogously, the constants I,, and ™X" in AProc(D) are the instances of
the ones defined on Proc(D) for sdj as wire.

The additional constants in AProc(D) are defined as follows:

Name Notation

split AY € AProc(D)(1,2)
sink bt € AProc(D)(1,0)
merge ¥1 € AProc(D)(2,1)
dummy source ?; € AProc(D)(0,1)
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Definition

Al = 11 o(1,2,split) oly  where split! = (er1(z) ; (s1(z) + s2(z))) * 8
&Y = 110 (1,0,sink!) where sink! = (ery(z) ;1) * 6

¥1 = lyo(2,1,merge;)ol; where merge; = ((eri(z) + era(z)) ; s1(x)) * 6
*. = (0,1,s0urce;)ol; where source; = ¢

For n # 1, these additional constants are defined by the equations occurring as axioms
A12-A19 in Table 9.2. O

Lemma 9.5.4 The wire l; = (1,1,sd}) gives an identity flow of data, i.e. for all f =
(m,n, P) in AProc(D), lp,of =f=fol,.

Proof: This is Lemma 6.3 of [21]. O

Theorem 9.5.5 (AProc(D),+,0,1,1,X) is a model of BNA. The constants R,4,%¥,?
satisfy the additional axioms for asynchronous dataflow networks (Table 9.2).

Proof: This is Theorem 6.4 of [21]. O
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Chapter 10

Dataflow Networks for a Semantics
of SDL

10.1 Introduction

In this chapter, we adapt the process algebra model of BNA for asynchronous dataflow
networks presented in Chapter 9, to discrete-time asynchronous dataflow. Besides, we
introduce some atomic components to deal with SDL-like dataflow, viz. mergers, dis-
tributors and timers. They are to be used in composing components that correspond
to processes in SDL. We also define an operation, corresponding to the kind of com-
position of processes within a system needed for ¢SDL, in terms of the connections for
discrete time asynchronous dataflow and the parallel composition, sequential composition
and feedback operations. Thus we obtain a model that is close to the concepts around
which SDL has been set up and well suited as the underlying model for a compositional
abstract semantics of SDL. Such a semantics is expected to be a suitable starting point
for devising proof rules for ¢SDL. From the process algebra model, more abstract models
similar to Kahn’s history model [38] and Jonsson’s trace model [37] are derived. As usual
for asynchronous dataflow, the trace model is fully abstract with respect to the history
model.

The chapter starts with some process algebra preliminaries (Section 10.2). An adapted
general process algebra model for BNA is presented in Section 10.3. This model is then
specialized for timed asynchronous dataflow and further to dataflow networks for SDL in
Section 10.4. The last model is used in Section 10.5 in order to define SDL networks,
i.e. networks corresponding to SDL systems. In Section 10.6 more abstract semantics for
SDL networks are proposed, and a full abstractness result is presented.
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10.2 Summary of process algebra ingredients

This section gives a brief summary of the ingredients of process algebra which make up
the basis for the process algebra models presented in the following sections. A survey of
the main ingredients is given in Chapter 5.

We will make use of ACP},,-ID as described in Chapter 5. So we have the following
in addition to the constants and operators of ACP7: the constants a (for each action a),
7, and ¢ and the unary operator o.. The process a is a performed in the current time
slice. Similarly, 7 is a silent step performed in the current time slice and § is a deadlock
in the current time slice. The process o, (P) is P delayed one time slice.

We will make use of the same extensions as in Chapter 9 and in addition of the priority
operator 6. The priority operator was originally introduced in [9] for ACP. It uses a partial
order on the atomic actions to give priority to some actions in alternative composition.
The crucial equation is 8(z+y) = 6(z)<y+6(y)<z. Here the auxiliary operator < behaves
like a filter: a<b = a unless a < b holds in the partial ordering; in that case a<b = §. For
the extension of ACPJ,-ID with priorities we refer to [49].

10.3 Adapted process algebra model of BNA

A general process algebra model of BNA is presented in the previous chapter, and this
model is specialized to give a model for asynchronous dataflow. In the current chapter, we
follow a similar approach, but we adapt the general model in order to allow giving priorities
to certain atomic actions. For that purpose, the definitions for sequential composition and
feedback are modified, using the priority operator (f). Note that the new definitions are
equivalent to the old ones in case the atomic actions are unordered (i.e., for all actions a
and b, a £ b). So the adapted model is actually more general.
We use the same notations as in Chapter 9.

Definition 10.3.1 (generalized process algebra model of BNA)
A network f € GProc(D)(m,n) is a triple

f=(m,n, P)

where P is a process with actions in {r;(d) | i € [m],d € D} U {s;(d) | i € [n],d € D}.
GProc(D) denotes the indexed family of sets (GProc(D)(m,n))N « |-
A wire is a network | = (1,1, w]), where w; satisfies:

for all networks f = (m,n, P) and u,v > max(m, n),

(P Truw) O (wy || wy)) || P =P

(P2) 7140 (0(@n ) (Pin(iye) (P) [l wp) || wi))) = P for all i € [m]
(P3) 71(u) (00 (uw) (Pout(sw) (P) |l wi) || wyy))) = P for all j € [n]

where wy = Pin(1/u) (pout(l/v)(w}))
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The operations and constants of BNA are defined on GProc(D) as follows:

Name Notation

parallel comp. f 4+ g € GProc(D)(m + p,n + q) for f € GProc(D)(m,n), g € GProc(D)(p, q)

sequential comp. fog € GProc(D)(m,p) for f € GProc(D)(m,n), g € GProc(D)(n,p)
feedback f 1 € GProc(D)(m,n) for f € GProc(D)(m + p,n + p)
identity [ € GProc(D)(n,n)

transposition X" € GProc(D)(m + n,n +m)

Definition

(ma n, P) + (pv q, Q) = (m +p,n+q, R) where R = P ||| pin([p]/er[;DD(pout([q}/nJr[qD (Q))

R = 710wt (], 0+[n) OO (wt (), 0-+1n]) (Pout () fut [n)) (P) I Pinin o) (@)) 1 wia Il - [ witih))

(m+pn+pP)1? = (m,n,Q) where, for v = max(m,n),v = u+ p,

Q = Tr(utp v+ o) (OOH (w16, 0+16]) (Pin(m-+ 1] o+ [6]) (Pout(nt 1] ut o)) (P)) | wikd [+ ([ wyiP)))

l, =(n,n,P) where P=w} ||| ... || w? ifn>0
T1(1,2) (OH(1,2) (w || w?)) otherwise

mX"=(m + n,n + m, P) where P=wl ;|| ... || w™,, [l w7 || ... | w™*" ifm+n>0
T1(1,2) (OH(1,2) (w || w?)) otherwise

O

In sequential composition and feedback, the priority operator enforces that resets are
never held up.

Theorem 10.3.2 (GProc(D), 4,0, 1,1, X) is a model of BNA if actions are not ordered.
Proof: When atomic actions are not ordered, this result reduces to Theorem 4.4 in [22].
O

Later it will be shown that this result also holds for the non-trivial order on atomic
actions introduced in Section 10.4.2.

10.4 Timed asynchronous dataflow networks

In this section, specialisations of the process algebra model of Section 10.3 for timed
asynchronous dataflow networks are described. This includes a model of dataflow networks

for SDL.
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10.4.1 Simple timed asynchronous dataflow networks

In this subsection, the specialisation of the process algebra model of BNA (Section 10.3)
for timed asynchronous dataflow networks is given. In this case, we will make use of
ACP],-ID.

First wires and atomic cells are actualised for timed asynchronous dataflow networks.
This is similar to the actualisation for time-free asynchronous dataflow networks given in
Section 9.5.2.

Definition 10.4.1 (wires and atomic cells in timed asynchronous dataflow networks)
In the timed asynchronous case, the identity constant, now called the timed stream delayer,
is the wire I; = (1,1, tsdj(¢)), where tsd] is defined by

tsdi(o) = eri(z) ; tsdl(z)<|o| = 0>
(er,(2) s tadb(o ™ 2) + s, (hd(0) - s} (t(0)

An atomic cell with m inputs and n outputs is a network
C=lpno(myn,P)ol,

where P is a discrete relative time process with actions in {r;(d) | i € [m],d € D}U{s;(d) |
i € [n],d € D}. The restriction of GProc(D) to the processes that can be built under this
actualisation is denoted by TAProc(D). O

The definition of tsd] expresses that it behaves as a queue, it is able to contain an
arbitrary amount of data, but data will always enter and leave it within the same time
slice. The definition of atomic cells is the same as in the time free case.

For TAProc(D), the operations and constants of BNA as defined on GProc(D) can be
taken with tsd! as wire. This means that only the additional constants for asynchronous
dataflow have to be defined.

Definition 10.4.2 (process algebra model for timed asynchronous dataflow)
The operations +, o, 1" and the constants I, and ™X" in TAProc(D) are the instances of
the ones defined on GProc(D) for tsd} as wire.

The additional constants in TAProc(D) are defined as follows:

Name Notation

split A € TAProc(D)(1,2)
sink b € TAProc(D)(1,0)
merge ¥ € TAProc(D)(2,1)
dummy source ® € TAProc(D)(0,1)
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Definition

A = lio(1,2,split')oly  where split' = (eri(z) ; (s,(z) + s5,(2))) * &

b = ly0(1,0,sink!) where sink! = (er1(z) ;1) * §

¥ = lo(2,1,merge;)ol; where merger = ((er1(z) + erz(2)) ; 5, (2)) ¥4
* = (0,1, sourcer)oly where source; = ¢

O

Lemma 10.4.3 The wire l; = (1,1,tsd}) gives an identity flow of data, i.e. for all
f=(m,n, P) in TAProc(D), lp,of = f = fol,.

Proof: This is Lemma 6.7 of [20]. O

Theorem 10.4.4 (TAProc(D), 4,0, 1,1, X) is a model of BNA if actions are not ordered.
Proof: This is Theorem 6.8 of [20]. O

10.4.2 Timed asynchronous dataflow networks for SDL

In this subsection we give another process algebra model for timed asynchronous dataflow
which will be mainly based on the definitions of TAProc(D). The difference is that a non-
trivial partial order on atomic actions is given such that the new model can deal with
asynchronous dataflow networks corresponding to systems described in SDL.

Let C be a fixed, but arbitrary, set of process names. C is an additional parameter of
the model. We write D for the cartesian product

(CU{env} U {timer} U {setr(i) | i € N} U {reset} U {nil}) x D

where env, timer, setr(i) (for i € N), reset, nil ¢ C. The processes now use the standard
actions 7;(d), s;(d) and ¢;(d) for d € D. The use of the “tagged data” is further explained
in Section 10.5.1. We define the priority relation < as the least partial order relation such
that

z < ¢;((reset,y)) and = < s;((reset, y))

for all actions = ¢ {c;((reset,y))|i € N, y € D} U {s;((reset,y))|i € N, y € D}.

Definition 10.4.5 (wires and atomic cells for dataflow networks with SDL-timers)
The identity constant is the wire I; = (1,1, ssd}(¢)), where ssd; is defined by

ssdl(o) =
(er1((z,y)) ; (s,((reset,y)) - ssdl(e)<iz = resetr>ssdl((z,y))))<|o| = 0>
(er, ((z, g;)) : (éll((reset, y)) - ssdl(reset(o,y)) <z = reseti>ssdi(c " (z,y)))+

5,(d(0)) - ssdl(11(0))

Lecture Notes: DesCaRTeS Course, August 1997 UNU/IIST, P.O. Box 3058, Macau



130 Dataflow networks for SDL

where reset(o,d), d € D, stands for the sequence o with all the occurrences of the data
(timer, d) and (setr(i),d), for any ¢ € N, removed from it.
The cells are defined as in Definition 10.4.1.

The restriction of GProc(D) to the processes that can be built under this actualisation
is denoted by SDLProc(C, D). O

The definition of ssd} expresses that it normally behaves as a queue, it is able to contain
an arbitrary amount of data, but the data will always enter and leave it within the same
time slice. However, if a datum (reset,y) enters it, all data (timer,y) and (setr(i),y) are
removed, and (reset, y) leaves it before any other datum has entered of left.

Definition 10.4.6 (process algebra model for dataflow networks with SDL-timers)

The operations H, o, 1" and the constants |,, and ™X" in SDLProc(C, D) are the instances
of the ones defined on GProc(D) for ssd} as wire.

The additional constants in SDLProc(C, D) are defined as in Definition 10.4.2 O

Theorem 10.4.7 (SDLProc(C, D), +,0, 1,1, X) is a model of BNA if the priority relation
given above is used.

Proof: This is Theorem 6.12 of [20]. O

10.5 Dataflow networks for SDL

In this section we make additions to the process algebra model SDLProc(C, D) from Sec-
tion 10.4.2 to obtain a model of networks representing SDL systems. We define some
atomic components that are to be used in composing components that correspond to
processes in SDL. We also explain how SDL processes fit into our framework. And an op-
eration is defined, in terms of the connections for discrete time asynchronous dataflow and
the parallel composition, sequential composition and feedback operations, corresponding
to the kind of composition of processes within a system needed for SDL.

10.5.1 Named components

For each name in C there is a corresponding named component. A named component is
built from a merger, a distributor, a timer, and a main cell. The main cell makes use of
the following read and send actions only:

r1((c, d)) reading datum d from ¢ € C U {env}

71 ((tlmer d)) reading the expiration notification of timer d
r1((reset, d)) reading the reset notification of timer d
s1((e,d)) sending datum d to ¢ € C U {env}
32((setr(z) d)) setting the timer d to ¢ units from now
s2((reset, d)) resetting the timer d
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A main cell has only one input port and two output ports; input port 1 and output port 1
are meant for communication with other named components and the environment, while
output port 2 is meant for setting and resetting of timers.

It is further assumed that there is a bijection p : [|C| + 1] — C U {env} such that
p(|C| + 1) = env. The bijection reflects the way the named components are connected,
namely such that at the input port i data from component p(i) is consumed and at
the output port i data for component p(7) is produced. This explain how mergers and
distributors transform data. When a pair (nil,d) is offered at input port i, a merger
produces the pair (p(i),d) at its only output port. When a pair (p(i), d) is offered at its
only input port, a distributor produces the pair (nil, d) at output port 4.

In the definition of a timer cell below, a process timer(a) is defined for each infinite
sequence « of finite sets of data. The process timer(a) is informed that i time units from
now the timers in the set (i) expire (for i € N).

Definition 10.5.1 (additional atomic cells for SDL)
A n-merger is a cell MERGER,, = |, o (n, 1, merger, ) o |;, where merger,, is defined by

merger, — (Zze[n] eri((nilv .CU)) ; §1((p(i)’ x))) * d

Similarly, a n-distributor is a cell DISTRIBUTOR,, = |; o (1,n,distributor,) o l,, where
distributor, is defined by

distributor, = (i er1((p(i), )) ; s,((nil, z))) * §

A timer is a cell TIMER = |; o (1,1, timer(0) ~ 0 ™ ...)) oIy, where

timer(a) = timer'(t(a))<thd(a) = 0>
(|lachd(a) él((timer, d)) - timer'(tl(a)))

timer'(a) = eri((setr(i),)) ; timer'(upd(a, i, z))+
ery((reset, z)) ; s, ((reset, z)) - timer'(rem(a, x))+
ZcGCU{env} 6?“1((6, x)) ; él((ca x)) ) timerl(a)+
Ore(timer(a))

where we write upd(a,i,d) for the infinite sequence o' such that o/(i) = (i) U {d} and
o (j) = a(j) \ {d} for all j € N, j # i; and rem(cq, d) for the infinite sequence o’ such that
o' (j) = a(j) \ {d} for all j € N.

O

The definition of timer expresses that there are two phases in the behaviour of timers
during a time slice. In one phase, for each timer that expires in the current time slice,
a datum representing expiration notification is produced at its only output port, and it
does so in arbitrary order. The expiration notification data are of the form (timer, d). In
the other stage, it consumes data representing timer setting and resetting requests. The
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purpose of sending (reset, d) is to cover the following aspect of the SDL-timer mechanism:
if a datum representing expiration notification has been produced but not yet consumed
and the timer concerned is set again or reset, this datum has to be removed. The non-
trivial priority relation and the wire ssd] are needed to do so instantaneously. Besides,
in this phase it consumes and delivers data received from other processes and from the
environment.

Definition 10.5.2 (named component)
Let n be the number of names in C. To each name ¢ € C we will assign a network N, of
sort n +1 — n + 1, called a named component, where

N, = MERGER,,; o ((¥ o TIMER o C,) 1) o DISTRIBUTOR,, 4

for some main cell C, of sort 1 — 2. O

merger

! distributor

Figure 10.1: The named component ¢

The graphical representation of a named component is given in Figure 10.1. Named
components correspond to processes in SDL.

Constructing a main cell

The main cells C,., for ¢ € C, are parameters for our construction, but they are meant
to correspond to SDL processes. We describe how to model, for some states of an SDL
process, the behaviour of the corresponding main cell by means of recursive specifications
in ACP},-ID.

Assume that we have the following signals and signal routes in a given SDL description:

signal Sig; signalroute from_env from env to c5 with Sig2;
signal Sig’; signalroute to_env from c5 to env with Sig,Sig3;
signal Sigi; signalroute from_cl from cl to cb with Sigl;
signal Sig2; signalroute to_c2 from c5 to ¢2 with Sig2;
signal Sig3; signalroute from_c3 from c3 to cb with Sig3;
signal Sig4; signalroute from_c4 from c4 to c5 with Sig4;
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We take C and D such that cl,...,¢5 € C and Sig, Sig’, Sigl, ..., Sigd € D. The SDL
processes with names cl, ..., 5 correspond to the main cells of named components with
these names. Each SDL process is either in a state or making a transition. We describe
how to model, for some states of the SDL process ¢5, the behaviour of the corresponding
main cell by means of recursive specifications in ACP},-ID.

We use the notation Disc(S) for set of discarded signals in state .S, i.e. the set D
without what is explicitly expected as signals in that state.

The input queue of the process is the sequence of data from the incoming wire of the
main cell, i.e. the wire |; in the construction C. =1, 0 (1,2, P)oly. The consumption of a
signal by the process P is the communication action between the process ssdi that makes
up its input queue and the process P. The behaviour of the main cell corresponding to
the SDL process ¢5 from the states that are presented in Figure 10.2 — using the graphical
representation form of SDL — is described by the following equations:

2) 3)
Sig2
reset ( Sig)
|
set (now set ( now
+10, Sig) +1, Sig’)

Figure 10.2: SDL states and transitions

So = ri((cl, Sigl)) - 5,((c2, Sig2)) - S1 + r1((env, Sig2)) - So+
Z(w,y)eDzsc(So) Tl(( )) So

S1 = r1((c3,Sig3)) - 5,((env, S’zg?))) s,((reset, Sig)) - s,((setr(10), Sig)) - Ss+
N )

S3 = ri((env, Sig2)) - 5,((reset, Sig)) - 5,((reset, Sig')) - s, ((setr(1), Sig')) - Ss+
Z(x,y)GDisc(S’g)Tl( )) 83

Setting a timer must be preceded by a reset request of the same timer. Note that a timer
can be set using relative time only, i.e. s ((setr(i), Sig)) is a request for setting the timer
referred to by Sig for ¢ time units from now.

According to [59], SDL processes may not send signals to themselves. The same
restriction applies the processes that make up the main cells. That is, the process that

z,y)EDisc(S1 T1 ( ))
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make up the main cell C, should not perform actions like 71((c, sig)) or s1((c, sig)), for
any sig € D. This restriction can be built-in. Recall that p is the bijection reflecting the
way the named components are connected. For each named component N,; (i € [n]),
the input and output port number ¢ can be eliminated, and the remaining ports can
be renamed from 1 to n. However, in that case we would need a different merger and
distributor for each i € [n].

Due to the special treatment the wire ssd} offers to data of the form (reset, y), it seems
that we do not model dataflow networks: the first-in-first-out discipline is not respected
by our wires. However, note that we only have data of the form (reset, y) inside a named
component. If we regard the named components as black-boxes, we only see wires that
behaves as the wires tsdl.

10.5.2 Composition of named components

In this subsection, we define networks representing SDL systems, which we will call SDL
networks. First we define an operation, called the inter-connection operation, to com-
pose an SDL network from named components. The notion of an SDL context will be
introduced as well. First of all, some auxiliary networks are introduced.

In order to build up an SDL network from named components, we need to make
connections between them. The network F,, will make these connections.

Definition 10.5.3 (connections between named components)
Let f, : [n?] — [n?], for every natural number n > 1, be the bijection:

folid) =n((i—1)modn)+(i—1)+n+1

where + and mod are integer division and modulo, respectively.
We define the network F, representing the bijection f, as follows:

F, = |n2 o (nza n2, fn) o In2

where f,, is defined by

O

Cf. [50], any bijection can be represented by a network, using identities, transpositions
and parallel and sequential composition, only.

An SDL network containing n named components is of sort n — n, which means that
it has n input ports and n output ports. The network ITF,, is used to connect the input
port 7 of the SDL network to the input port n+1 of the named component N, for each
i €n].
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Definition 10.5.4 (interfaces with the environment)
Let Z,, : [n(n + 1)] — [n(n + 1)], for every natural number n > 1, be the bijection:

 [in+1) ifi<n
In(i) = { Ui otherwise

where the values for y; are defined as follows: for every n +1 < i < n(n+ 1), y; is the
smallest number between 1 and n(n + 1) different from y;, for all j < .
We define the network ITF,, representing the bijection Z,, as follows:

ITF, = |n(n+1) o (n(n + 1), ’I’L(’I’L + 1), itfn) o |n(n+1)

where itf,, is defined by
itt,= (Y en(@); sy () 8
i€n(n+1)]
O

A network ITF,! connecting the output port n + 1 of the named component Nyiy to the
output port i of an SDL network containing n named components, for each i € [n], can
be defined analogously using the function Z*.

Definition 10.5.5 (inter-connection operator)
For n > 1, we define the inter-connection operation II,,, of arity

(n+1)—=(n+1)x...x((n+1) = (n+1))) = (n—mn).

~ 4

n times

The operator II,, is defined by
IL,(t1, ... tp) = ly o ((ITFp 0 (ty + ... 4 tn) 0 ITF o (I, 4 Fp)) 1) oy

O

Definition 10.5.6 (SDL network)
Let n be the number of names in C, and let Ny, ..., Nyn) be the named components in
C. Then IT,(Npay, - - -, Np(n)) is an SDL network. O

In Figure 10.3, Def. 10.5.6 is illustrated by means of a graphical representation, for the
case n = 3. We use the convention that the ¢-th entry and the i-th exit in the dotted
feedback line correspond to the ¢-th feedback.

In the next section, we will introduce more abstract models derived from the process
algebra model. More abstract models means models carrying less information. There are
some additional desiderata for such models including compositionality, i.e. the meaning
of a composed system is obtained using only the meaning of its components. The notion
of a context is useful to characterize compositionality. Informally speaking, a context is a
term containing “open places”, usually denoted by []. In our case, an adapted definition
of a context is given.
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Figure 10.3: SDL network

Definition 10.5.7 (SDL context)

Let n be the number of names in C, and i € [n]. Let Ny, for j € [n], j # 4, be the
components corresponding to the names in C except p(i). An SDL context C![ ] is an
expression of the following form:

Hn(Np(l)v SO Np(ifl)v [ ]a Np(1'+1)7 SO Np(n))
where the “open place” [ ] is on the i-th position. O

The open place stands for a term of sort n+1 — n+1. For a network N : n+1 —n+1,
we write C:[N] for the term obtained by replacing [ | by N in C¢[]. Intuitively, an SDL
context is an SDL network with an open place for a named component.

10.6 Abstract semantics for SDL networks

In this section, more abstract models for SDL networks are derived from the process
algebra model presented in Section 10.4.2 and their compositionality with respect to the
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inter-connection operation introduced in Section 10.5. The main result is that also in this
case trace equivalence is fully-abstract with respect to history equivalence.

10.6.1 Derivation of related models

In this subsection, the derivation of several models from the process algebra model
SDLProc(C, D) is described. We obtain these models by defining equivalences on SDL
networks.

In order to be able to use models of process algebra in the derivation of the history
model the input streams of a network have to be represented by networks. The resulting
input networks are then composed with the original network. The input streams concerned
contain data which are to be sent to the network, as well as os representing the time steps
in between.

Definition 10.6.1 (input network)
Let p be a stream over ({nil} x D) U {o}. The input network associated with p is the
network SOURCE;(p) = (0,1, source;(p)) where

source;(p) =
6<1|p| = 0>(s, (hd(p)) - source; (tl(p))<isd(hd(p))>0ve(source;(ti(p))))

where isd(d) yields true if d is a datum in ({nil} x D).
Let f : m — n be a network and py, ..., p, be streams. The network f(p1,...,pn) is
defined by

F(p1, .., pm) = (SQURCE; (p1) + ... - SOURCE; (pm)) o f

O

For given input streams, the output streams can be reconstructed from the complete
traces of the process corresponding to the composed network as described above. We
write trace(P), where P is a process, for the set of complete traces of P. We consider
as complete traces the union of the complete traces of P as defined in [17], the traces
of P that become complete if we identify livelock nodes (i.e. nodes that only permit an
infinite path of silent steps) with deadlock nodes, and the infinite traces of P. We treat
the time step o in these traces on the same footing as actions. Note however that the
distinction between successful termination and deadlock/livelock made in such traces is
irrelevant here because the processes modelling timed asynchronous dataflow networks do
not include successfully terminating processes.

Definition 10.6.2 (stream extraction)
Let 3 be a trace over

{s:(d) | i € [m],d € ({nil} x D)} U {r;(d) | j € [n],d € ({nit} x D)} U {o}.
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We write stream?(3) for the stream of data obtained by first removing all send actions and
after that replacing each action of the form 7;(d) by d. Analogously, we write stream?“!(3)
for the stream of data obtained by first removing all read actions and after that replacing
each action of the form s;(d) by d. Often, we write only the relevant part from these pairs
in {nil} x D. O

For a network f : m — n and an m-tuple of streams (p1, ..., pn ), the possible n-tuples
of output streams can now be obtained from the traces of the process corresponding to
the network f(p1,..., pm) using stream extraction.

Definition 10.6.3 (history relation)
We write trace(f), where f = (m,n, P) is a network, for trace(P). The input-output
history relation of a network f :m — n, written [f], is defined by

[f1(p1, -y pm) = {(stream3¥(p3),... stream®(3)) | B € trace(f(p1,-..,pm))}

O

Definition 10.6.4 (=pistory)
The history equivalence =yistory 0n timed asynchronous dataflow networks is defined by

f =history J ift [f] = [g] O

Various interesting models for process algebra are obtained by defining equivalence
relations on processes. We mention:

=. completed trace equivalence,
o branching bisimulation equivalence.

Branching bisimulation was introduced, in the setting of ACPJ],,, in [6] (see also Chap-
ter 5). P = Q iff trace(P) = trace(Q). The above-mentioned equivalences on processes
naturally induce corresponding equivalences on timed asynchronous dataflow networks,
and consequently on SDL networks.

Definition 10.6.5 (=;ace)
Let f = (m,n, P) and g = (p, q, Q) be two networks. f and g are trace equivalent, written
[ Strace g, ff m=p,n=gand P =, Q. O

Definition 10.6.6 (Ebisim)
Let f = (m,n, P) and g = (p, ¢, Q) be two networks. f and g are bisimulation equivalent,
written f =pisim g, iff m =p, n =q¢and P&, Q. O
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10.6.2 Full-abstractness of trace model

Trace equivalence is fully abstract with respect to history equivalence. Informally, this
result means that the trace equivalence adds the minimal amount of information (with
respect to history equivalence) in order to have compositionality.

Theorem 10.6.7 The trace model is fully-abstract with respect to the history model. That
18, if n is the number of names in C, and for a given name c € C we have two versions of
this named component, N. and N} of sort n+1 — n+ 1, then:

1. If Ncl =trace Nél then Né Ehistory N”

., 1.e. the trace semantics distinguishes more then
the history semantics.

2. For an arbitrary SDL context Ci[ |, i € [n], we have N! =iace N implies
Ci[N!] =grace CL[NY], i.e. the trace semantics is compositional.

8. If N! Zirace NI, then there is an SDL context Ci|[ | such that Ci[N.] Zpistory C5[NY],
i.e. if N, and N can be distinguished by trace semantics, there is an SDL context
such that the networks obtained by replacing | | by N. and N!', respectively, can be
distinguished by history semantics.

Proof: This is Theorem 8.12 of [20]. O
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