A formal definition based design of the
translation phase of a CHILL compiler

Author: C.A. Middelburg

Date: october 1980

Cover note

This paper has been prepared for the
"CHILL Implementors/Users Meeting"
held in Copenhagen, 20 - 24 october 1980.

© Copyright 1980 Dr. Neher Laboratory, Netherlands PTT
P.0.Box 421, 2260 AK Leidschendam, The Netherlands
tel. +31 70 755080, telex 31236 dnl nl

Abstract

This paper describes the design of the translation phase of the CHILL
compiler developed at the Dr. Neher-Laboratory of the Netherlands PTT.
Special attention is paid to the role of the formal definition of CHILL in
the design process.

Contents

1.0 INTRODUCTION 1
2.0 ENVIRONMENT 1
3.0 OVERVIEW OF THE COMPILER 2
4.0 THE DESIGN OF THE TRANSLATION PHASE 3
4,1 SUMMARY OF THE FORMAL DEFINITION 4
4,2 A MORE CONCRETE SEMANTICS 5
4,2.1 Sequential Elaboration 5
4,2.2 Linear Storage 6

4,3 AN ABSTRACT TRANSLATING ALGORITHM 7
4.3.1 The Description of Environment and State 8
4.3.2 The Translation Functions 9
4.,3.3 The Abstract Program Tree 10

4.4 A CONCRETE TRANSLATING ALGORITHM 12
4,4,1 The Machine Independent Translation Phase 12
4,4,2 The Machine Dependent Translation Phase N\ 13

Page 1

1.0 INTRODUCTION

In april 1975 a CHILL compiler construction project was initiated at the Dr.
Neher-Laboratory; the research and development 1laboratory of the
Netherlands Postal and Telecommunications Services. The actual compiler
construction was taken up in september 1977. Completion of the compiler is
to be expected at the begin of 1981. By that time the . manpower invested
will be about 13 man-years.

The aims of the project are twofold:

1. to gain knowledge and experience in the fields of high-level
languages for SPC programming, and of compiler construction;

to evaluate the proposed language CHILL, and to contribute to its
improvement.

<~

These aims have the following consequences for the design of the
compiler:

1. the most recent advances in compiler construction technology must
be taken into account;

2. efficiency of the compiler is far less important than flexibility
with respect to changes in the language definition.

The main part of this paper outlines the design of the translation
phase of the compiler. Besides it describes briefly the characteristics and
structure of the compiler. It must be stressed that for clearness' sake a
lot of details have been 1left out intensionally; e.g. concurrent
processing and mapped mode objects are completely left out of consideration.

2.0 ENVIRONMENT

The compiler will run on a DECsystem-10 and will generate symbolic assembly
code for PDP11 processors, acceptable to the MACRO11 assemblers available on
these processors and the DECsystem-10,.

The compiler and all of the auxiliary programs (such as a parser
generator) are written entirely in Pascal. The Pascal compiler used is an
adapted version of the one made at the University of Hamburg.

Page 2

3.0 OVERVIEW OF THE COMPILER

The compilation process can be conceptually divided into a recognition
(analysis) phase and a translation (synthesis) phase. For reasons of
flexibility, we have decided to maintain this division also in the
implementation.

The recognition phase has been implemented as a two-pass process., The
main reason for this is that complete analysis of a CHILL program may not be
done 1in one traversal of the program, since the syntactical and/or
semantical analysis of some constructs may depend on the applying definition
or declaration of an identifier, which in the absence of a "define before
use" rule may be unknown up to nearly the end of the traversal.

The first recognition pass includes:
1. lexical analysis;

2. (context-free and context-sensitive) syntactical analysis as far as
possible independent of the applying definitions/declarations of
identifiers;

3. complete syntactical and semantical analysis of definition and
declaration statements, including evaluation of literal expressions
within these constructs;

4. transformation of the program text, in order to be able to complete
the analysis in the next pass.

The second recognition pass includes:

complete syntactical and semantical analysis; of course already
treated definition and declaration statements are not analysed
again.

Each of these passes is a syntax-driven, bottom-up recognizer. The
actual parsing 1is done by interpreting an instruction code for a push-down
transducer. This parser code is generated, from the syntax for either pass,
by a semi-automatic LALR(1) parser generator of our own construction.

In the first pass, the semantical analysis of definition and
declaration statements may not be done completely "on the fly", since the
semantical analysis may depend on other definitions/declarations which are
either not yet semantically analysed or incompletely analysed too.
Therefore, this pass is further divided into an "on the fly" part and a
"completion™ part.

In the second pass, semantical analysis is done completely "on the fly"
except for the evaluation of constant expressions in synonym definitions.
At the time that the implementation of this pass was taken up only the draft
language definition (known as the "Blue Document") [1] was available. This
document was considered unsuitable as a basis for implementation. For this
reason we decided to make an attribute grammar formulation of CHILL. Later

Page 3

we found the greater part of the revised language definition (known as the
"Brown Document") (2] may be considered a less formal version of our
attribute grammar!

The translation phase has been implemented as an one-pass process;
thus no global optimization is performed. In contrast, much attention is
paid to local optimizations. The translation pass is a "piecewise coding"
translator, driven by "sequential interpretation" rules. The actual
translation is directed by interpreting an instruction code for a push-down
transducer. This "translator"™ code is generated, from the interpretation
rules, by a generator of our own construction. For reasons of flexibility
and portability, this (machine independent) part of the translator is
completely isolated from the (machine dependent) coding part.

4.0 THE DESIGN OF THE TRANSLATION PHASE

As will be put forward in the following outline, the design of the
translation phase has been based on the formal definition of CHILL ([3].
This definition, which is not (yet) part of the official language
definition, provides a "denotational semantics™ for CHILL expressed in the
so-colloquially-called META-IV notation.

The considerations to proceed this way are:

1. The description of CHILL as offered in the Brown Document is 1less
suitable as a basis for the design of the translation phase; it is
conveniently arranged to get a clear view of the syntax and the
static semantics, by which the rules with respect to the dynamic
semantics become too much scattered. On the contrary, the formal
definition gives a clear "global" as well as "local" description of
the dynamic semantics.

2. The approach of Denotational Semantics is at present one of the
most precise methods to obtain a constructive definition of the
dynamic semantics of CHILL and as such pre-eminently suitable to
obtain a reliable implementation. So its use is in full agreement
with the aims of the project.

In the sequel it is assumed that the reader is familiar with the
approach of Denotational Semantics and with the META-IV notation. He who is
not is referred to [4] and [5] respectively.

Page 4

4.1 SUMMARY OF THE FORMAL DEFINITION

The "context free" syntax of CHILL 1is specified by defining syntactic
domains which are mathematical abstractions of the concrete syntactic
categories. Thus, abstraction has been made from representational details.

The static "context™ conditions of CHILL are specified by defining
is~-well-formed functions which map syntactic construets to truth values,
designating whether or not the context conditions are met.

The "dynamic" semantics of CHILL is specified by defining semantic
domains which model the concepts by means of which the meaning of the
various syntactic constructs is explained, and by defining elaboration
functions which map syntactic constructs to their mathematical "meaning"
(i.e. the semantic objects which they denote).

The meaning of the various syntactic constructs is basically explained
by means of the following concepts:dictionary (static context), environment
(dynamic context) and state.

Dictionaries are finite maps which primarily map each identifier to an
object which reflects its current static properties:

DICT = (Id => Descr) UV ...

Descr = Loed | Vald | Proed | ...
Environments are finite maps which primarily map each identifier to its
current denotation, i.e. the semantic object (location, value, procedure,

etc.) it currently denotes:

ENV

(Id => Den) U ...

m —

Den = LOC | VAL | PROC | ...
The principal component of a state is a storage. Storages are finite maps
which map each allocated location to its current contents, i.e. the value
it currently contains:

STATE = (STG &> STG) V...

STG = LOC -> VAL
m

The basic elaboration functions have the following functionalities:
int~Action: Action => ((DICT ENV) => (STATE => STATE))
eval-ValExpr: ValExpr => ((DICT ENV) x> (STATE x> (STATE VAL)))

eval-LocExpr: LocExpr => ((DICT ENV) => (STATE *> (STATE LOC)))

Page 5

4.2 A MORE CONCRETE SEMANTICS

The task of the translation phase is to produce appropriate machine code
from a CHILL program. Here, the machine code is considered appropriate if
the effect of its execution is that given by the semantics for the program.
The denotational semantics however, is too abstract to direct the actual
translation. Consequently we need an equivalent but more concrete
semantics, which is, 1like present-day computers, based on sequential
elaboration (execution) and a simple linear storage (memory).

-

4,2.1 Sequential Elaboration

All conditional, iterative and recursive elaboration which must be fixed
dynamically is realized by means of a simple jump mechanism. For that
purpose META-IV has been extended with two construets:

hop label [unless expr]

stmt1 ; entry label ; stmt2
This "hop mechanism" can be considered a simplified exit mechanism; suffice
it to say that the constructs introduced can be given a mathematical meaning
expressed in lambda notation, 1i.e. they are sugared forms of 1lambda
expressions just like true META-IV constructs. '

To outline the approach it is shown how the conditional elaboration of
an If-action is realized.

The (simplified) "conditional™ elaboration function:
int-If(mk-If(e,al1,al2))(dict)(env)=
if eval-ValExpr(e)(dict)(env)
then int-Actlst(all)(dict)(env)

else int-Actlst(al2)(dict)(env)

The "sequential"™ elaboration function:
s-int-If(mk-If(e,al1,al2))(dict)(env)=
let lelse : new-1bl(),
lout : new-1bl();
((let b : s-eval-ValExpr(e)(dict)(env);
execute(mk-Jmpf(b,lelse))(dict) (env);

s-int-Actlst(altl)(dict)(env);

Page 6

execute(mk-Jmp(lout))(dict) (env);
entry lelse; I);
s-int-Actlst(al2)(dict)(env);
entry lout; I)
where
execute(op)(dict) (env)=

(cases op:

mk-Jmpf(b,1bl) -> hop 1bl unless b,

mk-Jmp(1bl) -> hop 1bl .

)

Rigorous arguments for the correctness of such sequential elaborations are
relatively simple. However formal proofs involve "desugaring" of the

notation.

4,2.2 Linear Storage

Linear storage is considered a list of "directly addressable memory units",
e.g. bytes. Therefore it is obvious to model locations by natural numbers
which are indices (in machine terms: addresses) of the storage and to model
values by 1lists of directly addressable memory units which are sublists of
the storage. To support those aspects of storage which can be fixed
statically, "ghost components" must be joined to these objects:

cSTG :: s—-stg: Byte®* s-locs: cLOC-set
cLOC :: s-addr: Nat, s-md: Mode [BASE-LOC]
cVAL :: s-bytes: Byte+ s-md: Mode

Functions can be defined to reconstruct the abstract storages, locations and
values from their concrete counterparts:

retr-stg(mk-cSTG(cstg,cloes))=
[retr-loc(cloc) -> retr-val(mk-cVAL(cstgls-addr(cloe)l,s-md(cloc))) |

cloec € clocs])

type: eSTG * STG

Page 7

retr-loc(mk-cLOC(addr ,md))=
(cases md:
mk-ArrayMode(imd ,emd) ->
let mk-DiscrMode(1lb,ub)=imd,
step=size(emd) "in

<retr-loc(mk-cLOC(addr+(i-1b)%*step,emd)) | 1b <= i <= ub > ,

)

type: cLOC %> LOC

retr-val (mk-cVAL(bytes,md))=

type: cVAL *> VAL

The operations on the concrete representations of storages , locations and
values which model the operations on the abstract storages, locations and
values can be specified implicitly in terms of these "retrieve functions",

4.3 AN ABSTRACT TRANSLATING ALGORITHM

The essential realization idea is that the translation of a program is
carried out by simulating the (concrete) elaboration of the program as
follows:

1. When the elaboration indicates that the enviromment or state should
be altered, then code to perform the alteration is emitted and a
description of the environment and/or state is updated.

2. When the elaboration indicates that a location or value should be
determined, then code to determine the location or value is emitted
and a description of that location or value is produced.

Page 8

4.3.1 The Description of Environment and State

Storage descriptions are rather complex since they must supply the needs of
such aspects of storage management as dynamic storage allocation for
declared locations (including formal parameters) and anonymous locations
(temporaries), accessing of locations and calling of procedures. A storage
description contains a component which gives for the current procedure and
its statically embracing procedures a description which contains a reference
to the access description of the pointer whose (changeable) value will be
the "base address" of the Dynamic "data Storage/save Area" (DSA) allocated
for the locally declared locations and formal parameters of the most recent
invocation of the procedure concerned, and the sizes of the components of
the DSA.

Another component maps references to access descriptions to the actual
access descriptions. This indirection step is introduced to support the
optimization of address computation. ‘

Stated = (STG > Stgd) V ...

Stgd :: (Proclvl -> DsaDescr) (AccRef -> AccDescr)

DsaDescr :: s-bp-acc: AccRef s-sz-fpl: Nat, s-sz-lvl: Nat, ...
AccDescr :: Addrspec Sizespec [TMP] ...

Addrspec = Regno | StaticAddr | BasedAddr | IndexedAddr

Regno :: Nat,

StaticAddr :: Nat,

BasedAddr :: s-bp-acc: AccRef s-disp: Intg

IndexedAddr :: s-aggr-acc: AccRef s-ind-acc: AccRef s-step: Nat

The addressing structure introduced here, on the one hand fits properly with
the CHILL 1location structure and on the other hand takes into account the
architecture of most present-day computers and familiar methods of storage
management .

The environment descriptions are maps which map each identifier to a
description containing all the information pertaining to the determination
of its changeable denotation in procedure invocations. It is obvious, that
location and value descriptions both contain a reference to an access
description as principal component. Procedure descriptions contain a 1label
indicating the start of the code generated for the procedure concerned and a
reference to the access description of the pointer whose changeable value
will be the base address of the DSA associated with the most recent
invocation of the statically direct embracing procedure, 1i.e. it is a
description of a "closure" (see [2]).

Page 9

Envd = (Id => cDenDescr) V ...

cDenDescr = cloed | cVald | cProcd | ...
clocd :: AccRef Mode [BASE-LOC 1 ...
cVald :: (AccRef | IMM) Mode [ConstVal]

¢cProed :: s-1bl: Proclbl s-epa-bp-acc: AccRef

. ae >

Functions can be defined to extract a concrete storage, etec. from its
description and the actual machine state comprising of a machine storage, a
register set, etec.

The simulation of the operations on concrete storages, etc. can be

specified implicitly in terms of these functions.

4.3.2 The Translation Functions

For each elaboration function a corresponding translation function need to
be defined. Given the sequential elaboration functions, ¢this 1is a
straightforward process.

To outline this process, it is shown how the translation of If-actions
(the sequential elaboration of which is already shown) is realized.

transl-If(mk-If(e,al1,al12))(dict)=
let lelse : new-1bl(),
lout : new-1bl();
let vd : transl-ValExpr(e)(dict);
simulate(JMPF,<vd,lelse>)(dict);
transl-Actlst(alt)(dict);
simulate(JMP,<lout>)(dict);
emit-1bl(lelse);
transl-Actlst(al2)(dict);
emit-1b1l(1lout)

type: If => (DICT > (tSTATE %> tSTATE))

Page 10

where

tSTATE = (ENV -> Envd) VU (STATE -»> Stated)V
(LBLS ;) Lbl-set) _/ (CODE ;) mCode)

A great deal of confidence in the correctness of the translation is provided
by proceeding in the way outlined sofar.

>

4.3.3 The Abstract Program Tree

Because an abstract program (as defined in the formal definition) reflects
the syntax of a program (it may be considered a parse tree), it is not well
suited to translate from. Better suited is an object which differs from an
abstract program in the following ways:

1. all of its structure is relevant from a semantical point of view,

2. the meaning of each of its components is independent of its static
context.

Such an object is an "Abstract Program Tree" (APT):
Apt :: Op [Apt]

Op = Module | ... | If | ... | Boolor | Bitwor | Union i ...

Module :: Opnd

If :: Opnd Opnd Opnd

Boolor :: Opnd Opnd

Opnd = PrimOpnd | Op | OpndSeq

PrimOpnd = DefObj | ConstVal | FldSel | AuxilObj
DefObj :: DefObjRef Descr

AuxilObj = DecTbl | RcvCaseTbl | ...

OpndSeq :: Opnd*®

It must be noted that the APT can be produced by the recognition phase
without increasing its complexity.

In the following, the rather straightforward

sketched.
transl-Apt(mk-Apt(op,apt))=

transl-Op(op,nil);

if apt = nil then I else transl-Apt(apt)

type: Apt ¥> (tSTATE *> tSTATE)

*

transl-Op(op,tmode)=
(cases op:
mk-Add(opnd1,0opnd2) ->
let vd1 : transl-Opnd(opndil,nil);
let vd2 : transl-Opnd(opnd2,nil);

simul-~-op(ADD,<vd1,vd2>) ,

)

type: (Op [QUOT]) => (tSTATE => (tSTATE

transl-Opnd(opnd,tmode)=

(cases opnd:

translation of an

[cDenDescr 1))

mk-PrimOpnd(prim) -> simul-primopnd(prim,tmode),

mk-Op (op) -> transl-Op(op,tmode),

mk-OpndSeq{opnds) ->
let t-opnds(opnds',tmode')=
(if opnds' = <

then 1

Page 11

APT

is

else transl-Opnd(hd opnds',tmode');t-opnds(tl opnds',tmode'))

in t-opnds(opnds,tmode)

Page 12

type: (Opnd [QUOT]) > (tSTATE => (tSTATE [cDenDescr]))

The environment describing component of the "translator state" (tSTATE) must
be changed as follows:

Envd = (DefObjRef -> cDenDescr) V ...

4.4 A CONCRETE TRANSLATING ALGORITHM

The main part of the functions shown, only directs the translation:
production of machine code and maintenance of descriptions is only done by
the functions simul-op and simul-primopnd. In other words the translation
process can be divided into a machine independent phase which produces code
for a hypothetical (sequential) machine especially designed for CHILL, and a
machine dependent phase which simulates the execution of this code. In the
sequel, the instructions for this hypothetical machine will be called CML
instructions (CML for "CHILL Machine Language").

4.4,1 The Machine Independent Translation Phase
The translation of the different operations have a common pattern:

1. The operands of an operation are translated "from left to right".

2. CML instructions are generated (if applicable to the operation
concerned) :
- before the translation of the first operand (prefix encounter),
- between the translation of two operands (infix encounters),
- after the translation of the last operand (postfix encounter).

3. The arguments of each CML instruction generated always correspond
to the last translated operands.

4, If certain operands of an operation have to be translated in an
"abnormal translation mode"™, tranlation mode transition always
occurs with an encounter of the operation.

Thus this translation can be performed by intefpretation of a set of
"translation rules" (loosely called "interpretation rules"), one for each

(APT) operation; e.g.:

IF => prefix : .newlbl lelse,lout
infix1 : Jmpf lelse
infix2 : jmp lout;

entry lelse

postfix: entry lout .

Page 13

A linear representation of the APT is used. This representation is
based on knowledge for each operation about the encounters at which CML
instructions must be generated and/or the translation mode must be changed.
The resulting representation of a subtree of which the root denotes an
operation Op, has one of the following forms:

prefix form:
"Op" <opnd repr> { "INFIX" <opnd repr> }# WPOSTFIX"

infix form:
{ <opnd repr> }+
"Op" <opnd repr> { "INFIX" <opnd repr> }# ®"POSTFIX"

postfix form:
{ <opnd repr> }#* ngpn

e.g.
- "IF" 'valexpr' "INFIX" 'actlst1' "INFIX" 'actlst2' "POSTFIX"

'valexpr' "BOOLOR" 'valexpr' "POSTFIX"
'locexpr or valexpr' 'valexpr' "INDEXING"

4.4.2 The Machine Dependent Translation Phase
The simulation of the execution of CML instructions involves the following:

1. making arguments machine addressable;

2. allocating and freeing machine storage space and registers:
3. generating symbolic assembly code; |

k., creating, updating and deleting descriptions;

5. analysing special cases.

The original idea was to perform this simulation by interpretation of a set
of "coding rules", one for each CML operation, expressed in a special
"Interpretive Coding Language" (ICL); a language with commands to perform
the tasks mentioned above. However, the special case analysis needed to
produce reasonable efficient machine code requires a high-level conditional
construct such as a "decision table" case conditional, interpretation of
which was considered unfeasible.

The final approach was to create an explicit specification of the simulation
of each operation, i.e. 1its coding rule, expressed in an extended META-IV
notation and to realize these coding rules in Pascal.

To illustrate the special case analysis involved, it is shown how the
execution of the Add instruction is simulated.

Page 14

simul-add(srci,srec2)=
(if (knd(src1)=CONST A val(srcl) € {-1,0,1}) #
(knd (src2)=CONST A val(src2) € {-1,0,1})

then ...

else

(cases knd(srecl) , knd(src2):

(CONST),(CONST) -> cplt-eval (ADD,<src1,src2>),
(CONST),(REGTMP,STKTMP) -> g-gen2 (ADD,srct1,src2),
(CONST),(VAR) -> let tmp : g-push(src2);

g~gen2 (ADD,src1,tmp),

(REGTMP,STKTMP), (REGTMP) -> g-gen2 (ADD,src1,srec2),

(REGTMP, STKTMP) , (CONST, STKTMP, VAR) -> g-gen2(ADD,src2,srcl),

(VAR),(CONST) -> let tmp : g-push(src1);
g-gen2 (ADD,src2,tmp) ,

(VAR),(REGTMP,STKTMP, VAR) -> let tmp : g-load(srec2);

g-gen2 (ADD,src1,tmp)

Given such simulation functions, their realization in Pascal is a
rather straightforward process.

Page 15

References

[1] The HLL Team of Specialists
"Proposal for a Recommandation for a C.C.I.T.T.
High Level programming Language (2nd edition)"
The "Blue Document" of CCITT Study Group XI
CCITT Secretariat, may 1977

[2] CCITT Study Group XI
"CHILL Language Definition (Brown Document)"
CCITT Secretariat, may 1980

(3] D. Bjorner, P.L. Haff
"CHILL Formal Definition"
Danish Datamatics Centre, august 1980

[4] J.E. Stoy
"Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory"
MIT Press, june 1977

[5] D. Bjorner, C.B. Jones
"The Vienna Development Method:
The Meta-Language"
Springer Lecture Notes in Computer Science,
number 61, january 1978

i,;‘

	img182
	img183

