Design Calculi in Software Development:
Theory and Practice

Kees Middelburg*

United Nations University, International Institute for Software Technology,
P.O. Box 3058, Macau; E-mail: cam@iist.unu.edu; Fax: +853 712 940

Design calculi, also known as formal methods, allow to express descriptions of
software systems formally, i.e. in a mathematically precise way, and to calculate
properties of single descriptions and relations between pairs of them. Theoretical
computer science has provided the foundations of practically useful design calculi,
such as RAISE (Rigorous Approach to Industrial Software Engineering) [1, 2]. It
has been demonstrated that the software development process and the resulting
product can be improved by using such design calculi. In particular, design
calculi facilitate the development of reliable, adaptable and reusable software
systems. Nevertheless, there is still much resistance to use them.

First of all, I will explain the nature of formal descriptions and the importance
of the ability to calculate properties of them and relations between them. There-
after I will discuss the existing resistance to use design calculi and a policy to
take away this resistance, pursued at various places in Europe and at UNU/IIST.

A design calculus offers the possibility to start the actual development of a
software system by creating a formal specification for it. A formal specification
of a software system is a formal description that:

e arises before the software system is constructed by a suitable abstraction
from an application;

e conveys all that we may legitimately expect from the software system to
be constructed;

e serves as a frame of reference against which the correctness of the eventual
software system can be established.

A design calculus provides means to calculate properties of the formal specifica-
tion and thus to validate it, i.e. to check whether it meets the requirements for
the system.

The result of subsequent design steps, also known as refinements, can be
recorded in more concrete formal descriptions, containing more implementation
details. For each design step, we are able to calculate relations between the old
description and the new one and thus to verify the design step, i.e. to check

*On leave (1996-1997) from KPN Research, Dept. of Network & Service Control, and
Utrecht University, Dept. of Philosophy, the Netherlands.

Postprint from EU-China High Tech Conference, pages 307-311, SSTCC and EU DG XII, 1996.
1

whether the properties represented by the old description are preserved in the
new one. After a number of steps, a formal description arises that can be auto-
matically implemented — whether it is efficient depends upon the design decisions
made.

Summarizing, a typical sequence of stages in development using a design
calculus is:

specification;

validation of the specification;

design steps consisting of:

— refinement of a previous description,
— verification of the refinement;

e implementation of the final description.

It is easy to see that in this way we can ascertain, in an early stage of development
and to a high degree of precision, that the software system to be developed will
match the user’s requirements; and that we can establish, while developing the
software system, a high degree of certainty that it will satisfy its specification,
i.e. that it will be reliable. Besides, all details relevant to the adaptation of the
system and the re-use of parts of the system or their design are recorded in a
fully precise way.

Why is there so much resistance to use design calculi? The informal, in
particular graphically based, techniques used in existing practice, are intuitively
comprehensible to their user community. This is much less the case with most
existing design calculi. Besides, introducing design calculi amounts to revolution-
izing industrial practice. My conclusion is that acceptance requires a smooth
evolution from techniques used in existing practice towards full-fledged design
calculi.

Let me give an example from my experience. In the telecommunications
field, SDL (Specification and Description Language) [3, 4] is widely used for
specification and design. The first version of SDL. became a recommendation of
the ITU (International Telecommunication Union) in 1976. Since it has been
extended several times. It originated from an informal graphical description
technique already commonly used in the telecommunications field at the time of
the first computer controlled telephone switches. In the telecommunications field,
SDL has survived description techniques that are more design calculus oriented,
such as LOTOS [5], and it will presumably still be used for a long time. Fig. 1
gives a description, using SDL’s graphical representation, of the controller of a
simple telephone answering machine.

It is interesting to see what tools and techniques there exist to complement
SDL. It turn out that at present tools are available for:

e syntax-directed editing, syntax checking, etc.;
e simulation and limited checking of properties, test case generation;

e code generation.

| I

inccall ‘ endcall revlifted wtimer ‘ endcall ‘endmsg ‘ endcall

| | | | l l | | |

=t ‘ rm(w{imer)‘ offhook ‘ < end > beep ‘

‘(mmimer)
T T C T T
(o) (o) (o) o o] o] () (o)

EREs

rtimer none

rm(w{imer)‘ r&set(rtimer)‘ stoprec ‘ onhook ‘

Figure 1: SDL description of a telephone answering machine

There is one complementing technique: Message Sequence Charts (MSCs), al-
lowing very simple properties of SDL descriptions to be represented graphically.
Given the available tools, it is not surprising that current practice in development
using SDL differs from the one described above. A typical sequence of stages in
development using SDL is:

specification;

limited validation of the specification;

design steps consisting of refinement of a previous description;

implementation of the final description;

limited validation of the implementation.

To give an idea of what is meant here by limited validation, I will mention some
properties of the telephone answering machine which should be respected by the
behaviour described in Fig. 1, but which can not be checked by means of current
tools:

e When the off-hook signal is issued to the network, nothing has happened
since the detection of the last incoming call and meanwhile 10 time units
have passed;

e When the recorder of the answering machine is stopped, at most 30 time
units have passed since it was started.

In this way we can not ascertain to a reasonably high degree of precision that the
software system will match the user’s requirements; and we can only establish,
after having developed the software system, a very low degree of certainty that
it satisfies its specification.

This current practice is not in accordance with the needs in the development
of telecommunications software using SDL. The intrinsic highly reactive and dis-
tributed nature of the systems developed in telecommunications demands more
advanced analysis of SDL descriptions than currently possible. Besides, the in-
creasing complexity is becoming a compelling reason to use, at least to a certain
extent, formal verification to justify design steps. In other words, SDL should
be complemented with techniques which would turn it into a full-fledged design
calculus. However prerequisites for this are a dramatically simplified version of
SDL and an adequate semantics for it. Only after that possibilities for advanced
analysis can be elaborated and proof rules for formal verification devised.

Work in this area is, for example, being done at KPN Research and Utrecht
University in the Netherlands and at UNU/IIST in Macau. At UNU/IIST we have
the research programme DesCaRTeS (Design Calculi and Research for Telecom-
munications Systems) with the following primary aims:

1. to enhance the possibilities for advanced analysis of SDL descriptions, thus
enabling better grounded validation of specifications.

2. to turn SDL into a full-fledged design calculus, thus enabling design steps
made using SDL to be justified by formal verification.

To give an impression of what is involved here, I give the following list of research
topics that are expected to be addressed:

e Operational semantics for a simplified version of SDL (SDL™).

e Logics that are suitable to express the properties that can be represented
by SDL™ descriptions.

e Tools that permit to check whether properties expressed in such logics are
actually represented by given SDL™ descriptions.

e Semantic models for SDL™ that match the concepts around which SDL~
has been set up well.

e Semantics of SDL™, based on such a model, that is fully abstract w.r.t. its
operational semantics.

e Rules of reasoning for SDL~ which are sound with respect to its semantics.

Similar research projects, with respect to other techniques used in existing prac-
tice, are currently carried at a few places in Europe. I believe that this is an
important development. Software engineering depends for its success on apply-
ing relevant computing science theory. For a long time, computing science was
studying issues that were further and further ahead of the actual practical prob-
lems instead of, for example, trying to understand the concepts used in practice.
The times are changing and here is an important area for academic and industrial
research institutes in industrialized and developing countries to work together on
the narrowing of gaps between theory and practice that are impeding software
engineering to mature.

References

[1] RAISE Language Group. The RAISE Specification Language. Prentice-Hall,
1992.

[2] RAISE Method Group. The RAISE Development Method. Prentice-Hall,
1995.

[3] F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from Protocol
Specification. Prentice-Hall, 1991.

[4] A. Olsen, O. Fergemand, B. Mgller-Pedersen, R. Reed, and J.R.W. Smith.
Systems Engineering Using SDL-92. Elsevier (North-Holland), 1994.
[5] LOTOS - a formal description technique based on the temporal ordering of

observational behaviour. International Standard ISO 8807 (draft final text),
1988.

