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Abstract

We propose a first-order predicate logic TFL of timed frames extended
with signals. This logic combines a simple syntax with a high expressivity;
it can distinguish frames that are not the same as sets of transitions and
states. We show how Dicky logic and CTL can be embedded in TFL.

1 Introduction

In recent years, a multitude of process algebras have evolved. Bergstra and Ponse
[8, 9] proposed to study basic properties of such process algebras on the level of
frames, which are labelled, directed graphs. Essentially, frames are transition
systems without explicit start and termination nodes. Frames can be converted
into processes by means of process extraction, which means that two states are
singled out, which represent the start state and the successful termination state
respectively. Thus, the algebra of frames constitutes a common platform for the
study of basic properties of process algebras. In [7], frames have been extended
with discrete time, following [4], and with signals, following [5]

Many process algebras have been supplied with various kinds of modal and
temporal logics, usually with the aim to distinguish processes up to some desir-
able equivalence. That is, two processes are equivalent if and only if they make
true exactly the same formulae in the logic. Examples of such an approach are
Hennessy and Milner [18], where the logic distinguishes up to strong bisimulation,
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and De Nicola and Vaandrager [14], where the logic distinguishes up to branching
bisimulation.

In this paper, we propose a first-order predicate logic, called timed frame logic
(TFL), for the algebra of signal-inserted timed frames, which may serve as a
common platform for the diversity of process logics. We abandon the usual
strategy for constructing logics in process theory. That is, we do not yet have a
particular equivalence in mind. We aim for a logic which combines a simple syntax
with a strong distinctive power. This is more conform the classical approach to
modal logic; first, define a highly expressive logic, then determine sub-logics which
distinguish up to some desirable relation. TFL distinguishes all frames that are
not the same on a set theoretic level. TFL can serve as a basis for constructing
sub-logics which distinguish up to nice equivalences such as strong bisimulation,
trace equivalence, or o-bisimulation from [7].

Unlike most other process logics, in TFL state names are allowed to occur in
formulae explicitly. Owing to this particular feature, in TFL it is possible to
express interesting properties such as ‘the process contains a loop’. We show
by a number of small examples, together with three larger examples based on
specifications in SDL from [19], how basic properties of frames can be expressed
in TFL.

Finally, we show how the modal logics Dicky logic [15] and CTL [12], which
both make the theoretical basis for a model checker, can be translated into TFL.
Hence, we obtain fragments of TFL where model checking is feasible.

Acknowledgements. Dennis Dams and Marco Hollenberg provided useful com-
ments.

2 Timed Frames Logic

2.1 Timed frames

We define the notion of a timed frame [7]. We start from a countably infinite
set S of state names s,t,u,v,.... Furthermore, we assume a non-empty set A of
actions a, b, ..., together with a special time step o which represents evolving into
the next time slice. In the sequel, p ranges over A U {o}, and this last set is
abbreviated to A,.

A timed frame F' is composed by means of the binary frame union & from
atomic constructs of the following forms, where s, s’ represent state names:

® 3,
a /
e s — S,
o /
® S — S.

The empty frame is denoted by 0.

Table 1 presents the axioms FA1-6 for frames from [8] together with axioms
TFA1,2 for timed frames from [7]. In the remainder of this section, F = F’
denotes that this equality between frames can be deduced from FA1-64+TFA1,2.



FA1 XoY = Yax
FA2 (XeY)eZ = Xo((YeZ2)

FA3 XX = X
FA4 Xad = X
FA5 s@(s—5s) = 54
FA6 s @(s—>s) = s
TFAl s@(s 2 s') = 524
TFA2 s'@ (s s') = 524

Table 1: Axioms for frames

Remark 2.1 A frame can be converted into a process using process extraction, from
[9, 7], which means that a start state and a termination state in the frame are determined.
The expression s * ¢tF denotes the frame F with start state s and termination state ¢.
See [7] for the precise definition of process extraction for timed frames.

2.2 Paths

We assume a set Paths of paths p,q,..., where S C Paths, and a composition
function (_,_,_) : Paths x A, x Paths — Paths. Paths are considered modulo
associativity, that is,

(Pos o5 (P15 115 p2)) = ((Pos o5 P1), 1115 D2)-

Also, we have the set N of natural numbers with the standard functions suc-
cessor, addition, and multiplication. These functions are axiomatized by the
standard equations.

The set m C Nx Paths X S contains the consecutive states of paths: (n,p,s) €
if and only if the nth state of p is s.

(0,s,s) €
(0, (ss p1sp);s) €T
(n + ]-) (SOHUHP))SI) S i (’n,)p) Sl) €.

Remark 2.2 A simpler version of © would be a function Nx Paths — S, where 7(n, p)
returns the nth state of p. However, a problem arises if p has length shorter than n; a
special state ‘bottom’ is to be added in order to define 7 (n, p) for such cases. The current
formulation of 7 avoids the complication of adding such a bottom state.

The set @« C Nx Paths x A, returns the consecutive actions of paths: (n,p, pu) €
« if and only if the nth action of p is p.

(0, (s, p1p) 1) €
(TL +1, (S)ﬂﬂ)p)’ﬂl) € aiff (n)p)ﬂl) €.



Finally, we have a function £ from frames to the power set of Paths, which for
each frame F' yields the paths that are induced by the frame F'.

scE(F)iff Fos=F
(s0,1,51) € B(F) iff F & (s9 = s1) = F
(507M07(317M1:p)) € E<F) iff & (30 ﬂ) 31)) =F A (31,#1,]?) € E<F)

2.3 The syntax

In this subsection we define the syntax of the timed frame logic TFL. We assume
an initial model (see e.g. [10]) for Paths, which satisfies the required equations.

From now on, we assume four countably infinite sets Vg of variables, together
with four sets T(S) of terms of sort S, for S € {S, A,, Paths,N}. The sets of
terms are defined inductively as follows.

The collection T(S), with typical elements s, t,u, is SU Vs.

The collection T

Ag), with typical element p, is A, U Vy, .

(
(

The collection T(Paths), with typical elements p, ¢, is Paths U Vpgs.
(

The collection T(N), with typical elements m,n, is built from:

0,

the variables in Vy,

succ : T(N) — T(N),

the functions +,- : T(N) x T(N) — T(N),

Let p,p' € T(A,) and s,s" € T(S) and n,n’ € T(N) and p € T(Paths). The
formulae ¢, in TFL are built inductively from the following constructs:

! 3

SIS
Il
CIJ\

Il
:\

atomic formulae

A

2

33

=
NG

&
S

7

f;\ ¥ } boolean operators
Vi€ Ay (¢)
Vs €S (¢)

Vp € Paths (¢)
Vn € N (¢)

quantification

We shall use the following abbreviations.

* ¢V for =(=¢ A —1),



¢ = 1 for = V1,
e n<n'forImeN (n+m=n'),
o s 5t for E((s, p,t)),

e J_€_(¢) for =V_€ _ (—9).

2.4 The semantics

We define the semantics of TFL. F' |=, ¢ denotes that frame F' makes true formula

¢ under the valuation p, which maps variables in Vg to closed terms in T(S), for
S € {S, A, Paths,N}.

Fipa=d & pla)=p(d)
FE,s=5 & p(s)=p(s)
FlEe,n=n" & pn)=pn')
Flpm(n,p,s) < (p(n),p(p),p(s)) €
Flpaln,p,p) < (p(n),p(p), p(n)) € o
FlyEp) & pp) € B(F)
FlEyony & Fly¢and F =)0
Flp-¢ < notFl=)¢
FiEpyVue A, (¢) & foral peAs, FlEjppoa) ¢
FlE,VseS(¢) & forallse€S, Fl=pus ¢
F =, Vp € Paths (¢p) < for all p € Paths, F [Fyu_p) ¢
FE,VneN(¢) & forallneN, F ;.. ¢

In the sequel we write F' |= ¢ for Vp(F =, ¢).

2.5 TFL distinguishes up to equality

The following simple example learns that TFL can distinguish frames which after
process extraction (see [7]) yield the same term.

Example 2.3 Let s € S, and define F; = {s} and Fy = (). Process extraction
with respect to F; and Fy will yield immediate deadlock. However, F} |= s and

FQ[#S.

TFL can distinguish timed frames up to their axiomatization FA1-64+TFA1,2 in
Table 1.

Theorem 2.4 V¢ (Fi = ¢ < Fy | ¢) <= FAL-6+TFA12+ F| = F5.

Proof. (<) Assume that FA1-6+TFA1,2 - F} = F5. Then it is not hard to see,
by induction on the structure of frames, that for all p € Paths, p € E(Fy) if and
only if p € E(Fy). Then, by induction on the structure of formulae ¢, it follows
that Fy = ¢ if and only if F» = ¢.

(=) Assume that FA1-6+TFA1,2 I/ F; = Fy. Then it is not hard to see that



1. either there is a state s such that F} & s = F} is provable from the axioms,
while F5 & s = Fy is not provable from the axioms (or vice versa),

2. or there is a transition s - s’ such that Fy @ (s - s') = F} is provable
from the axioms, while Fy @ (s - §') = Fj is not provable from the axioms
(or vice versa).

In the first case, F = s but Fy = s. In the second case, Then Fy = s - s’ but
RlEst s O

Remark 2.5 For many purposes, the distinctive level of TFL is too fine. Future work
will be to determine sub-logics of TFL which distinguish processes up to coarser process
equivalences, such as strong bisimulation and trace equivalence. An interesting equiva-
lence in this respect is the notion of o-bisimulation, as defined in [7], which takes into
account the special character of the time step o. Notably, o-bisimulation incorporates
time non-determinism, that is, it does not distinguish whether a process p can evolve
into both p’ and p” by the execution of a o, or whether p can evolve into the alternative
composition of p’ and p” by the execution of a o.

2.6 Some expressions in TFL
We give some examples of expressions in TFL. For a start, we state some general
properties of frames.

1. Each path has a start state:
Vp € Paths 3s € S (7(0,p, s)).

2. Each path attains one state at a time:

Vp € Paths Vs, t € SVn € N ((m(n,p,s) Aw(n,p,t)) = s=1).

Next, we assume a frame F', and we express some properties in TFL that may
be valid for the frame F'.

4. All paths in F' that start in s once enter a loop:

dn € NVp € Paths (E(p) N w(0,p,s)
= JteSIkleN(k<l A wlk,p,t) N w(l,p,t))).

5. Paths p in F that start in s and do progress beyond s’ satisfy formula ¢:

Vp € Paths (E(p) N ©(0,p,s) A IneNIteES
(w(n,p,s') Am(n+1,p,t)) = ¢).

6. The process s~ - F contains a deadlock:

Ju € S dp € Paths dn € N

E(p)

7(0,p,s)

m(n,p,u)

VmeN(1<m<n = -n(m,p,t))
Vi€ Ay Yo €S (=(u -5 v))

> > > >~



2.7 Signals

In practical cases, behaviour can often only reach a specific situation if certain
external conditions are satisfied. For example, a camp-fire can only be lit if it is
not raining, or a train can only traverse a level crossing if its barriers are closed.

In order to capture such external conditions, Baeten and Bergstra [6, 3] ex-
tended the process algebra ACP with signals. A new approach towards signals
was advocated in [5], and this approach was adapted to frames by Bergstra and
Ponse [9]. Basically, a signal is a propositional formula, built from a collection
of atomic propositions and t and f together with the connectives negation — and
conjunction A. Each state can be supplied with a signal, which means that this
state is accessible only if the signal holds. The construct ® ~* F expresses that
signal ® is assigned to frame F', which means that the states s in |F| are accessi-
ble only if @ is true. For example, (f ™ s) @ (s - s') equals (f ~*s) @ s', while
(t ™ 5) @ (s £ ) equals s -5 .

Table 2 presents the axioms Ins1-8 for signal inserted frames from [9], together
with axioms TIns1,2 from [7] to describe the interplay between signals and time.

Insl 0 =0

Ins2 t X = X

Ins3 (T X) = (PAD) X

Insd (@ “X)o(¥ “X) = (BAT) X

Ins5 P T XaY) = (2T X)) (P TTY)

Ins6 P N(s5s) = (@ TT)D(s s (@ TS
Ins7 f s\ e(s5s) = f ™ s)@s

Ins8 (s L ™) = sa(f ™)

TInsl d rs-Ds) = (@ Tr)D(s D) (@ TS
TIns2 (& *s)® (s = 5') (s L s @ (® s

Table 2: Axioms for signal inserted frames

A complication in the synthesis of signals and time is that it is desirable that
signals are not influenced by the passing of time, that is, if s —— s/, then s’
inherits the signal of s, and vice versa, see [7]. This interaction is expressed by
axiom TIns2.

Table 3 presents axioms Ext1-6 from [7] which define a function x(F,s), which
extracts the signal that frame F' induces on state s. Axiom Ext4 expresses that
signals are inherited under time steps. Axiom Ext6 would not be sound if the
condition s’ @ X # X were omitted from it. Namely, if s’ occurs in X, then the
signal of s’ can be transmitted to s, if it is possible to evolve from s’ into s by
o-transitions only. Hence, before Ext6 can be applied, first occurrences of s’ in
X have to be eliminated by means of axioms Ext2-4 and Ins3-6.

TFL is extended with signals by adding for each signal ® and each state s an



Ext1 x(@,5) = t

Ext2 x(s e X,s) = x(X,s)

Extd x((s' = s @ X,s) = x(X,s)

Extd x((s' s @ X,s) = x((x(X,s") 7s) @ ((X,s) 7s") @ X, 5)
Exts  x((® s)@X,s) = PAx(X,s)

Ext6 x((@ )@ X,s) = x(X,s) ifs’#sand s X #X

Table 3: Axioms for signal extraction

atomic formula H(®, s), which expresses intuitively that signal ® holds in state s.
We assume a complete proof system for propositional logic, see for example [9].
The extraction function x is used in the semantics of TFL with signals, namely,
we add the following clause to the semantics of TFL as defined in Section 2.4.

F =, H®,s) & (x(F p(s)) = @) can be derived from the axioms for
signal inserted timed frames and for signal extraction together with the
proof system for propositional logic.

Assume a signal inserted frame F. Perhaps surprisingly, the following TFL
formula does not guarantee in general that state s’ is not accessible from state s
in F.

Jp € Paths 3n € N (E(p) Am(0,p,5) A7w(n,p,s')).

Namely, the path p may encounter a state ¢ in between s and s’ which is not
accessible, because in F' it is provided with the signal f. In order to be sure that
state s’ is accessible from state s in F it is sufficient to validate the following

formula.
dp € Paths In € N (E(p) A7 (0,p,s) Aw(n,p,s’)
AVYm <nVteSs (rm(m,p,t) = -H(f,t))).
TFL extended with signals distinguishes signal inserted frames up to the axioms

FA1-64+TFA1,24+Ins1-64+TIns1,2, under the assumption that signals ® and ¥ are
equivalent if & < ¥ can be derived from the proof system for propositional logic.

Theorem 2.6 V¢ (F = ¢ < Fy = ¢) <= FA1-6+TFA1,24+1Ins1-6+TInsl,2
Fi = Fs.

Note that TFL does not respect the axioms Ins7,8. Namely, (f > s) @ (s —
s') s - s, while (f 7™ s) @ s’ s - 5.

3 Some Examples

In order to give a feel of how TFL can be applied, we present three basic ex-
amples of signal-inserted timed frames, together with expressions in TFL which
hold for these frames. These examples are based on specifications in Mauw [19],



where they are formulated in the language ¢SDL. Some of the properties in TFL
that we will present are based on characteristics for these specifications that are
described in [19]. In [19], information is exchanged between the thermometer
and its environment. Here we abstract from this interaction, in order to keep the
examples clean.

3.1 A thermometer

We consider a thermometer with a rough scale. If this thermometer is switched
on, then it assumes that the temperature is undefined, and it performs a mea-
surement. If this measurement does not agree with the assumption, or if they
are both undefined, then the thermometer assumes the temperature it last mea-
sured, and after one time unit it performs a new measurement to corroborate
the new assumption. This procedure is repeated until the measurement and the
assumption agree, or in other words, until the thermometer measures the same
temperature two times in a row. Then a beep signal is issued and the process
ends.

We assume a data domain T of possible temperature values, which consists
of integers in between -10 and 40 degrees Celcius, together with a value undef,
which represents the temperatures that cannot be measured by the thermometer.

The state sy denotes the inactive thermometer. The state si(k) for k € T
represents the active thermometer, which assumes the temperature k.

The state sg can evolve either into the next time slice by the performance of a
o, or into si(undef) by the performance of a start signal.

The state s1(k) for k € T can either perform a o and evolve into a state s1(k')
with &' € T unequal to k, or it can issue a beep and evolve into the inactive state
S0-

Summarizing, we have the actions ¢ and start and beep, and the following
possible transitions:

50 — 80
@ s star s1(undef)
S B werkrrvieundesy $10k) = s1(k')

beep

© DOreriprundesy 51(k) — s0

We formulate some requirements for this frame. The first two requirements
stem from [19].

1. For each temperature kg, the state si(kg) either performs a beep, or it
evolves into a state s1(k) in the next time slice:

beep) =

Vs' €S (51(ko) = s' A —(a=
V s'=51(=10) V---V s = 51(40))).

a=0c N (s = si(undef)

2. For each temperature kg # undef, the state s1(kg) cannot evolve into itself
in the next time slice:

=(s1(ko) == s1(ko)).



3. If a path starts in sg, and at some time it performs a beep, then in the
meantime it has evolved into a next time slice:

Vp € Paths ¥Yn € N (E(p) AN 7(0,p,s0) N afn,p, beep) =
dmeN(m<n A a(m,p,0))).

4. If a path starts in state sg, and at some time it reaches a state sj(kg), then
in the meantime it has performed a start.

Vp € Paths Vn € N (E(p) A w(0,p,s0) A m(n,p,si(ko)) =
dm eN(m <n A a(m,p,start))).

3.2 An answering machine

We consider a simple telephone answering machine. When it perceives an incom-
ing call, it waits for one time unit to see whether the receiver is lifted. If so,
then the answering machine is de-activated. Otherwise, a pre-recorded tape is
started, which contains some instructions, and subsequently the incoming call is
recorded, for at most five time units. When the call is ended, or when the time
is up, then the session is ended.

The state sg denotes the inactive answering machine. In state s;, the answering
machine has been activated. State sy represents the situation where the pre-
recorded tape is played. In state s3(k) for k£ = 0,...,5, the incoming message is
recorded, and there are at the most k& time units to go before the session will be
ended.

The state sg can evolve either into the next time slice by the performance of a
o, or into s; by the performance of a start signal.

The state s; can either return to sg if the incoming call is ended or if the
receiver is lifted, or it can evolve into so by the performance of a o.

In s9, the pre-recorded tape is played, after which it evolves into s3(5) by the
performance of a o.

The state s3(k) for £ > 0 can either perform a ¢ and evolve into s3(k — 1), or
it can return to s if the incoming call is ended. The state s3(0) ends the session
and returns to sg.

Summarizing, we have the actions o and start and end and receiver-lifted and
call-ended, and the following possible transitions:

ag
S0 — So 5> S0 — 51
recetver-lifted call-ended
sy $1 —2> 59 @ S1 —>f so B s1 — S

® 59— s3(5)
Dl m(k) D sa(k—1) By (k) T s @ s3(0) 24 s
We formulate two requirements for this frame, which originate from [19].
1. One session takes no more than eight time units.
Vp € Paths Vn € N (E(p) A 7(0,p, so) A m(n,p, so)A

VmeN (0 <m < n= -mw(m,p,s0)) = n<9).

10



2. Each session is ended properly.

Vp € Paths Ym,n € N (E(p) Am < n A a(m,p, start) A a(n,p, start)
= 3Jl € N (a(l,p, end) V a(l, p, receiver-lifted) V a(l, p, call-ended))).

3.3 Traffic lights

We end this series of examples with a somewhat more complicated case study,
which incorporates signals and communication. For a precise description how to
deal with frame communication see [8].

We consider a crossing, regulated by two traffic lights A and B. In both
directions, detectors are used to sense the presence of traffic. If a traffic light
detects traffic, and if it is showing red, then it issues a request to be allowed to
change to green. Then the other traffic light changes to red, possibly after some
delay if it has been showing green only for a short period of time. Next, the first
traffic light changes into green. The frame representation of the behaviour of the
traffic light A is depicted in Figure 1. The signals greenA and redA express that
traffic light A is showing green and red, respectively. The behaviour of traffic
light B can be represented by the same frame, with the signals greenB and redB
instead of greenA and redA, respectively.

The intuition for the frame in Figure 1 is as follows. Suppose that light A has
just become green, which means that it is in the state 0, and that light B is
showing red, which means that is in the state 5. Lights A and B pass through
a o-loop until B detects the presence of traffic, and it executes detect. Next, it
emits a request, which communicates with requested. Thus, light B evolves into
state 7, while light A evolves into state 3 either immediately, if in the meantime
it has evolved into state 2, or after a delay of one time unit, otherwise. After a
delay of one more time unit, in order to be sure that the crossing is empty, light
A emits a grant, which communicates with granted, and lights A and B evolve
into states 5 and 0, respectively.

The behaviour at the crossing consists of the merge of the two traffic lights,
where one light is showing red and the other is showing green. That is, the full
system is captured by the expression Oy equest, requested, grant, granted} (red @ green). We
formulate some requirements for this frame. The first two requirements originate

from [19].
1. The lights are never green at the same time.

Vp € Paths ((E(p)An(0,p, red@green)) = ¥n € N (=m(n,p, green®green))).

2. A detection of traffic is followed by a green light within two time units.

Vp € Paths ((E(p) A a(0,p, detect)) = (a(1, p, request @ requested )
A (a3, p, grant @ granted) V a(4,p, grant ® granted)))).

3. If a traffic light turns into green, then traffic has been detected.

Vp € Paths ¥n € N ((E(p) A 7(0,p, red & green) A w(n,p, green & red))
= dm < n (a(m, p, detect))).

11



greenA

Figure 1: The behaviour of traffic light A
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4 Comparison with Other Logics

We study how TFL relates to two other logics on finite transition systems in the
literature, namely Dicky logic and computation tree logic.

4.1 Translation of Dicky logic into TFL

We study how the logic for finite transition systems from Dicky [15] relates to
TFL. Dicky logic makes the theoretical basis for the tool Mec [1], which is tailored
to computing boolean properties of finite transition systems.

We give a brief description of Dicky logic, following Arnold [2]. The logic as-
sumes finite sets of states and of transition parameters. Dicky logic distinguishes
between formulae on states and on transitions. First of all, there are sets of atomic
propositions on states and on transitions. Now state and transition formulae are
built inductively as follows:

each atomic proposition on states is a state formula,
- each atomic proposition on transitions is a transition formula,

- if ¢ and 1 are state formulae, then ¢ A, 1 and ¢V, 9 and ¢ —, ¢ are state
formulae,

- if ¢ and v are transition formulae, then ¢ A; ¢ and ¢ V; ¢ and ¢ —; 9 are
transition formulae,

- if ¢ is a transition formula, then src(¢) and tgt(¢) are state formulae,
- if ¢ is a state formula, then in(¢) and out(¢) are transition formulae.

State formulae ¢ are either valid or not valid in a state s, denoted by s = ¢.
Likewise, transition formulae ¢ are either valid or not valid with respect to a
transition s —— ', denoted by s = s’ |= ¢. The semantics of Dicky logic is
defined as follows:

- Special functions assign to each state the atomic propositions on states that
are valid in this state, and to each transition the atomic propositions on
transitions that are valid with respect to this transition.

-sE(NYIff s|= ¢ and s = .
sEOVs Y iff s|=¢or s =
sE¢—c¢iff s |=¢ and s = 9.
-s s =oniff s 2 s = ¢ and s - s = .
s s EoV,iff s 2 s = gors - s =
s s =g 1piff s s = ¢and s - 8 [~ .
- 5 |= src(¢) iff there is a transition s —— s’ such that s — s’ |= ¢.

s |= tgt() iff there is a transition s’ % s such that s’ - s |= ¢.

13



-5 5 s = in(e) iff s’ = ¢
5~ 5 = out(¢) iff s = ¢.

Assume non-empty, finite sets A of atoms and S of states. We assume atomic
propositions ® on states, together with a single atomic proposition < on tran-
sitions. The intuition behind this last atomic proposition is that it yields the
possible transitions. We define a translation 7' from expressions s |= ¢ and
s - s' |= ¢ in Dicky logic into TFL inductively as follows.

T(s - ®) = H(3,s)

T(s % 5" |=0) = s-5L 4

T(s = ¢ Ao ) = T(sF ) AT(s )

T(s = ¢ Vo ) = T(sF ¢)VT(s =)

T(s = ¢~ ¥) = T(s | ¢) A-T(s | )

T(s s EdNY) = T(s—s=¢)AT(s 2 s =)
T(s ' ¢V, ) = T(s s EQ)VT(s s )

T(s ——s'E¢—9) = T(s s EAT(s s EY)
T(s k= sre(d)) = JacAIseS (T(s -5 s | ¢))
T(s k= tgt(e)) = JacAIses (T(s -5 s ¢))
T(s s Ein(e) = T(sF¢)

T(s s | out(¢) = T(s = 9)

Let the frame F' consist of the frame composition of the following expressions:

- & s if the atomic proposition ® holds in state s, or (—=®) ~* s if & does
not hold in s.

a . a
-s— s ifs — 5 EO.

Then s = ¢ holds in Dicky logic if and only if F' |=T'(s |= ¢) holds in TFL, and
s - s' = ¢ holds in Dicky logic if and only if F |= T(s = s’ |= ¢) holds in
TFL.

4.2 Translation of CTL into TFL

Computation tree logic (CTL) from Clarke and Emerson [11] is a popular formal-
ism to express properties of transition systems. CTL allows model checking in
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linear time [12], which has been automated in the tool EMC. We will determine a
fragment of TFL that is equivalent with CTL, in order to have a sub-logic where
model checking is feasible.

In a similar fashion we can establish a fragment of TFL that is equivalent
with the logic CTL* [16], which is more expressive than CTL, because it handles
quantification in a more liberal way. However, the model checking problem has
been shown to be PSPACE-complete for CTL* [17, 20], so we refrain from this
translation.

We give a brief description of CTL. This logic too assumes a finite set of states,
and a transition system induced by a binary relation R between states. It is
required that for each state s there is a state ¢t with sRt. Hence, each path in the
transition system can be extended to an infinite path in the transition system.
Furthermore, CTL assumes a set of atomic propositions. Formulae in CTL are
constructed inductively as follows, where ¢ and 1) represent formulae:

each atomic proposition is a formula,
- =¢ and ¢ A ¢ are formulae,
-V [¢ U ¢ and 3 [¢ U 1] are formulae,
- 3 X ¢ is a formulae.
The expressions V and 3 denote universal and existential quantification over the
collection of infinite paths in the transition system, respectively.
Formulae ¢ are either valid or not valid in a state s, denoted by s = ¢. The

semantics of CTL is defined as follows:

A special function assigns to each state the atomic propositions that are
valid in this state.

- s iff s [E ¢
s = ¢ ANy iff both s = ¢ and s |= 9.

s =V [¢ U ¢] iff each infinite path that starts in s once reaches a state
where ¢ holds, and until that time ¢ holds along this path.

s = 3 [¢ U ] iff there exists an infinite path that starts in s and once
reaches a state where ¢ holds, and until that time ¢ holds along this path.

- s =3 X ¢ iff there exists a state ¢ such that sRt and ¢ holds in ¢.

Assume a finite set S of states. The set of atomic propositions contains elements
®. We define a translation 7' from formulae s = ¢ in CTL into TFL inductively
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as follows.

T(s = @) = H(®,s)
T(s = —9) = T(sk¢)
T(s k¢ A) = T(sRENT(s =)

T(sE=VI[pU~) = Vq¢€ Paths (E(q) N7(0,q,5) =
dp € Paths (E(p) ANVl € NYv € S (n(l,q,v)
= 7n(l,p,v)) N IneNIteS (n(n,p,t) NT(t =)
AVYm <nVu €S (r(m,p,u) = T(u = 9)))))

T(sE3I[oUW) = 3Ip¢€ Paths (E(p) N w(0,p,s) A
IneNIteS (m(n,p,t) NT(t = Y)A
Vm < nVYu €S (r(m,p,u) = T(u = ¢))))

T(s=3X ¢) = 3t €S dp e Paths (E(p) A7(0,p,s) An(1,p,t)
NT(t = ¢))

The difficult case is the expression for T'(s =V [¢ U ¢]) in TFL, which says that
each infinite path starting in s once reaches a state where 1 holds, and until that
time ¢ holds along this infinite path. Since we consider finite paths, the TFL
translation says: each (finite) path ¢ starting in s can be extended to a (finite)
path p such that p reaches a state ¢ where 1 holds, and until that time ¢ holds
along p.

Let the frame F' consist of the frame composition of the following expressions:

- & s if the atomic proposition ® holds in state s, or (=®) ~* s if ® does
not hold in s.

- s — s if sRs'.
Then s |= ¢ holds in CTL if and only if F' = T'(s = ¢) holds in TFL.

Remark 4.1 In spirit, TFL is even more closely related to ACTL* and ACTL from
De Nicola and Vaandrager [13], which extends CTL* and CTL to labelled transition
systems. Similar as we did for CTL, it is possible to give a direct translation of ACTL
formulae into TFL. In [13] a linear algorithm is given to translate ACTL formulae into
CTL formulae.
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