’Prepared for Modularization Workshop, 67 October 1992 at NPL, London‘

A Framework for Defining Modular Structuring
Facilities *

C.A. Middelburg **
Dept. of Computer Science, PTT Research
and
Dept. of Philosophy, University of Utrecht

September 1992

Abstract

A mathematical framework for the semantics of modular structuring facilities
of specification languages is described informally and in broad outline. Its use for
defining the modular structuring facilities of VVSL, a specification language which
incorporates most of VDM-SL, is briefly explained as well. The sketched approach is
claimed to be applicable to a wide variety of specification languages. The approach
further permits the analysis of the consequences of different degrees of semantic force
of the modular structuring facilities. Some general consequences are also mentioned.

1 Introduction

Specification languages have been developed, and are being developed, which provide fa-
cilities for the modular structuring of specifications. Supporting modularity is obviously
considered important. The following goals of the modular structuring of a formal specifi-
cation are generally recognized: (1) to enhance the comprehensibility of the specification,
(2) to improve the adaptability of the specification and (3) to make reuse of existing mod-
ules possible. As the size or complexity of the system being specified increases, it becomes
more difficult to achieve these goals without facilities for the modular structuring of the
specification. So modular structuring facilities especially supply a need in case of large
and complex systems.

It is worth noting that in case of a good modular structure, the development of theories
about the separate modules becomes possible. This can be very useful in formal reasoning

*This is a draft. A later version will be made available as PTT Research report.
**Correspondence to: C.A. Middelburg, PTT Research, Dr. Neher Laboratories, P.O. Box 421, 2260 AK
Leidschendam, The Netherlands; e-mail: C.A.Middelburg@research.ptt.nl.

about a specification. Further, it enhances the potential of the modules concerned for
reuse. One might also want of a modular structure that it is suitable for subsequent
development of the system being specified, but it is questionable whether this is generally
obtainable.

The goals of modular structuring lead to the use of the following main criteria for
the choice of modular structure: (1) the intuitive clarity of the modular structure, (2)
the simplicity of the separate modules and (3) the suitability of the separate modules for
reuse. Of course, modular structuring facilities of specification languages should make it
easy to meet these criteria.

In [Fit91], Fitzgerald investigates what modular structuring facilities ought to be sup-
plied in a model-oriented, state-based specification language such as VDM-SL. His choice
of facilities is primarily grounded on practical experience gained in attempts to write mod-
ularly structured specifications. The basis for the semantics of the facilities concerned is
developed “on the fly”.

This is usually the case for the structuring facilities provided by other specification
languages as well. It suggest a need for a general mathematical framework for the se-
mantics of modular structuring facilities of specification languages. There is evidence
that the mathematical basis used for the structuring sublanguage of VVSL, a specifica-
tion language which incorporates the version of VDM-SL used in [Jon90], can be used
for any specification language with modular structuring facilities provided that there are
no features that inhibit semantic orthogonality of the modular structuring facilities and
the other facilities. The mathematical basis concerned consists of an algebraic model
for modularization of specifications, called Description Algebra [Jon89al, and a variant
of classical lambda calculus, called Ar-calculus [Fei89], for parameterization of specifica-
tions. It permits the analysis of the consequences of different degrees of semantic force of
modular structuring facilities.

Description Algebra (DA) has some special features which make it more suitable as
the underlying model for modularizing model-oriented, state-based specifications than the
models proposed for modularly structured algebraic specification. Nevertheless, many
laws commonly holding in those models also hold in DA. In Am-calculus, no essential
deviations from classical typed lambda calculus are imposed: Arw-calculus has parameter
restrictions in lambda abstractions and consequently a conditional version of the rule (/3).
This extension permits to put requirements on the actual parameters to which parameter-
ized modules may be applied. DA and Ar-calculus were originally developed as the math-
ematical framework for defining the modular structuring facilities of COLD-K [Jon89b].

In this paper we consider this mathematical framework. It is described informally and
in broad outline in Sections 3 to 5. A more comprehensive exposition, which is not overly
mathematical, is given in [Mid92]. All the mathematically precise definitions can always
be found in [Jon89a] as well as [Mid90] (or [Mid93] which is a major revision of [Mid90]).
The modular structuring facilities of VVSL are sketched in Section 2 and the use of DA and
Am-calculus for defining these facilities is briefly explained in Sections 6 and 7. The issues
of the semantic force of modular structuring facilities and the semantic orthogonality of
modular structuring facilities and other facilities are discussed in Section 8.

2 Modular Structuring in VVSL

In VVSL, the usual flat VDM specifications are the basic building blocks of modularly
structured specifications. For modularization, there are rename, import and export con-
structs. The basic modularization concepts of decomposition and information hiding are
supported by the import construct and the export construct, respectively. The rename
construct provides for control of name clashes in the composition of modules. For param-
eterization (over modules), there is an abstraction construct, and parameterized modules
can be instantiated by means of an application construct. The concept of reusability is
primarily supported by the abstraction and application constructs. It is worth noting
at this point that object-oriented design is supported by VVSL. For example, a module
about a type T is inherited in a module about a type 7’ by importing the former module
into the latter and defining the type 7" as a subtype of T.

The approach to modular structuring adopted for VVSL deviates somewhat from
established approaches. Firstly, the meaning of a module is a theory presentation. It
has this in common with the approach of the Larch Shared Language [GH86]. In other
approaches, its meaning is usually more abstract — viz. a theory or a model class. Secondly,
the origins of names are taken into account in the treatment of name clashes in the
composition of modules. It has this in common with the approach of Clear [BG80]. In
other approaches, name clashes are usually treated in an ad hoc way.

Together, these two deviations from established approaches to modular structuring
make it possible for several modules to have hidden state components in common. This is
considered important. Effective separation of concerns often motivates the hiding of state
components from a module. In case a suitable modular structuring requires that the same
state components are accessed from several modules, it is indispensable for the adequacy
of a modularization mechanism that it permits two or more modules to have hidden state
components in common. It is usually wanted if loosely connected operations interrogate
and/or modify the same state component(s). This occurs in many large software systems.

For example, operations for querying and updating a database are not specified in
the same module as operations for changing the schema of the database, only operations
are exported from the modules concerned, but the operations of both kinds interrogate
or modify the current database as well as the current database schema. Such a modular
structure allows separate reasoning about data manipulation and data definition — which
are not fully independent — to the highest possible degree, provided that the modular
structuring facilities have appropriate semantics — as in VVSL.

DA and Arm-calculus are used in [Mid90] to give a formal semantics for the modu-
lar structuring facilities of VVSL. The semantics describes the meaning of modularly
structured VVSL specifications as terms from the instance of Ar-calculus for a particular
subalgebra of DA extended with higher-order generalizations of the operations of that
algebra. The building blocks of these terms are the constants of the subalgebra of DA
concerned. These constants are the above-mentioned theory presentations.

The next three sections provide a brief and informal introduction to DA and Ax-
calculus. How it is used to give a formal semantics for the modular structuring facilities
of VVSL is sketched in subsequent sections.

3 Description Algebra

Description Algebra (DA) is a heterogeneous algebra consisting of the following domains,
constants and operations:

Domains: ~ Nam (names)

Ren (renamings)

Sig (signatures)

Des (descriptions)
Constants: u Nam (for each u € Nam)

p : Ren (for each p € Ren)

D) . Sig (for each X' € Sig)

X . Des (for each X € Des)
Operations: e Ren x Nam — Nam (name renaming)

o Ren x Ren — Ren (renaming composition)

. Ren x Sig — Sig (signature renaming)

+ Sig x Sig — Sig (signature union)

a Sig x Sig — Sig (signature intersection)

A Nam x Sig — Sig (signature deletion)

pX Des — Sig (taking the signature)

. Ren x Des — Des (renaming)

+ Des x Des — Des (importing)

O Sig x Des — Des (exporting)

1 Des — Des (unifying)

T Des — Des

For each domain of DA, all elements of the domain are taken as constants. No special
symbols are introduced to denote these constants. They are considered to be symbols
themselves.

The symbols introduced above to denote the domains, constants and operations of DA
constitute the signature of DA. The terms of DA, i.e. the terms used to denote elements
of the domains of DA, are constructed from the constant and operation symbols in the
usual way.

In DA, the objects of interest are descriptions. A description consists of an externally
visible signature, an internal signature, a set of formulae and an origin partition. It is
essentially a presentation of a logical theory extended with an encapsulating signature and
a component for dealing with name clashes in the composition of descriptions. How name
clashes are dealt with in DA is explained in section 4. It permits two or more modules to
have hidden state components in common.

The underlying logic of DA is MPL,, [KR89].! To each description corresponds an
MPL,, theory which is regarded as an abstract meaning of the description. For two

IMPL,, is obtained by additions to classical first-order logic which make it more suitable as a semantic
basis for specification languages which are intended for describing software systems.

4

descriptions X; and X5, Xj is an implementation of Xs, written X; T Xj, if the externally
visible signature of X; includes the externally visible signature of X, and the theory
corresponding to Xj includes the theory corresponding to Xs.

Descriptions can be adapted and combined by means of operations on descriptions.
The symbols used in a description — to refer to, for example, types, functions, state
variables and operations — can be changed by means of renaming. Two descriptions can
be combined into a new one by means of importing. The visible signature of a description
can be restricted by means of exporting. Unifying is a special operation for dealing with
name clashes.

Many algebraic laws holding in most other models hold for DA as well. These laws
include most axioms of Module Algebra (MA) [BHK90]. Below a number of algebraic
laws that hold for DA are presented. The laws followed by *x are also axioms of MA
and the laws followed by * are similar to axioms of MA. The remaining laws are laws
concerning operations of DA which have no counterpart in MA.

X(peX)=peX(X) (S1) *ok
(X 4+ X)) =2(X) + 2(Xy) (S2) Kok
(Yo X)=XYoOX(X) (S3) *%
S(u(X)) = 2(X) (54)
E(r(X)) = {} (S5)
pre(p2e X)=(prop)e X (R1) *
po (Xt Xo)=(pe X0+ (poXy) (RD)
pe (XOX)=(peX)O(pe X) (R3) ok
peu(X)=(peX)+m(u(X)) (R4)
pen(X)=m(X) (R5)
X+(XoX)=X (I1) *k
X+ X=X+X (12) *ok
(X1 4+ Xo) + X5=X1 + (X2 + X3) (I3) ok
X+ p(X) = p(X) (14)
X+7nX)=X (I5)

X + w(u(X)) = p(X) (16)
(X)oX=X (E1) sk
YoOoXi+X)=(XoXx)+((XoX, (E2 *
0, 0X)=(20%)0X (E3) *ok
YO uX) = p(50 X) + n(u(X) (B4)
Yon(X)=mn(X) (E5)

(p e p(X)) = p(pe X) (M1)
p(p(Xh) + Xo) = p(Xy + Xy) (M2)

u(5 0 (X)) = £ 0 u(X) (\3)
u(u(X)) = u(X) (M4)
p(r(X)) = 7m(X) (Ms)

m(pe X)=m(X) (P1)
(X + Xo) = 7(Xy) + 7(Xp) (P2)
(X0 X)=n(X) (P3)
m(m(X)) = 7(X) (P4)

The proofs are straightforward from the definitions of the operations. X + X = X, the
idempotent law for +, is a special case of law (I1).
The next section gives an idea of how name clashes are dealt with in DA.

4 Name Clashes in DA

Descriptions are meant to correspond to system components which consists of named
parts — modelled by sorts, functions and predicates. The presence of the name of a part
in the encapsulating signature of a description indicates that the part concerned is an
external part of the system component concerned.

If the names given to parts are used to refer to them in descriptions, then there is
a problem with name clashes in the composition of descriptions by means of importing,
since there is no way to tell whether parts denoted by the same name are intended to
be identical. Any solution to this problem has to make some assumptions. Commonly
it is assumed that external parts denoted by the same name are identical and internal
parts are never identical. By these assumptions visible names (i.e. names of external
parts) are allowed to clash, while clashes of hidden names (i.e. names of internal parts)
with other names are avoided by automatic renamings. However, this creates a new
problem. In state-based specification, we are dealing with a state space where certain
names denote variable parts of that state space. They should not be duplicated by
automatic renamings. Such duplication would make it impossible for several modules to
have hidden state components in common.

The root of the above-mentioned problems is that the information of the identity of
the definition that introduces a name has been lost where the name is used. Therefore the
solution is to endow each name with an origin representing the identity of the definition
that introduces the name. The use of combinations of a name and an origin rather than
names as symbols in descriptions solves the problem with name clashes in the composition
of descriptions. In general, origins of names cannot simply be viewed as pointers to their
definitions. This is mainly due to parameterization. Origin constants, origin variables,
which can later be instantiated with fixed origins, and compound origins are needed. If,
within a description, the origins of visible symbols with the same name can be unified,
simultaneously for all such collections of origins, then the description is called origin
consistent. For an origin consistent description, abstraction from the origins associated
with the visible names is possible.

Note that the requirement of origin consistency does not take hidden names into
account. Since the hidden names of a description may not be used outside that description,
there exists no identification problem for hidden names. However, by endowing each
hidden name with an appropriate origin, undesirable automatic renamings are no longer
necessary and modules may have hidden state components in common.

5 Am-calculus

In Am-calculus, lambda terms have unique types. The types assigned to the terms are as
usual for typed lambda terms. Every type is of the form 0 or (¢ — 7), where o and 7 are
types. The type 0 is interpreted as a non-empty domain of values and the other types
are interpreted as domains of (higher-order) functions. The types are used to exclude
the formation of problematic lambda terms, like terms expressing self-application of a
function.

Am-calculus is put “on top” of an algebraic system with pre-order, i.e. a heterogeneous
algebra together with a pre-order on one of its domains, such as DA together with the
implementation relation C on descriptions. The Ar-calculus obtained for a given algebraic
system with pre-order A is denoted by Arm[A.

Given the signature of A, the terms of Ar[A] can be constructed as usual for typed
lambda terms, except that a parameter restriction has to be added to lambda abstractions.
More precisely, instead of lambda terms of the form (Az.M), there are lambda terms of
the form (Az T L.M) (where both L and M are lambda terms). Herein L is called a
parameter restriction. The intended meaning is the function that maps z to M, provided
that z is an implementation of L, and is undefined otherwise. This is reflected in the
rule (7) of Am-calculus, which is a conditional version of the rule ((3) of classical lambda
calculus.

Am[A] is a derivation system for statements of the form I" F ¢, where:

v is a formula of the form L = M or L T M, where L and M are lambda terms of the
same type;

I is a finite set of assumptions, each of the form [¢'], where ¢’ is a formula of one of the
above-mentioned forms.

These statements are called sequents. Intuitively, I' F ¢ indicates that the assumptions I
entail ¢. Sequents are derived by means of the derivation rules given below. They make
it possible to compare not only terms that can be interpreted in A, but also to compare
(in a syntactic way) terms that can only be interpreted in extensions of A with function
domains.

In the derivation rules of Aw[A] given below, we write I, [¢] for I' U {[p]} and we
write x ¢ I' to indicate that z is not free in any ¢ for which [p] € I'. [z:= L]M denotes
the result of replacing L for the free occurrences of z in M, avoiding that free variables
in L become bound by means of renaming of bound variables. The notation [z := L]y is
defined analogously. In the rule (1), we write “f monotonic” for the formula stating
that the function f is monotonic (with respect to the implementation relation C).

'L, C M,
(F1) F'ef(o. L.)Ef(.., M, ..)

provided A = f monotonic

(F=2) FEo provided A |= ¢, ¢ closed

(refl_)

IFL=1
Fvly:==Llp I'FL=M
subst
() 't y:=Mlp
efl) FIEI
trans) LFHEL IFLCL
rans I'F L C L
(oppl) I'F L C Ly
WPV TR (M) T (IM)
F,[l’;L]}_MlgMQ .
I r
AL P OwE LM T (w C Ly Provided o ¢
I'F L C Ly
(ML)
T+ O\ C LoM)C (A C Li.M)
F,[I'EL]}_MleQ .
I r
ML) W C L) = (w T Lagy) Provided o ¢
I IL,C L
() —
TF O C LMLy = [2:= LM

A sequent I' = ¢ is derivable if it is the conclusion of one of the derivation rules, all
premises of this derivation rule (none, for the cases of (), (cxt), (refl-) and (refl))
are derivable, and all side-conditions are satisfied (for the cases of (|=1), (E2), (M) and
(AL3)).

A lambda calculus based approach is used to provide for a parameterization mechanism
in various existing languages for structured specifications, e.g. ASL [Wir86]. In [BG80]
an approach to parameterization is used for Clear, where parameterized modules are
viewed as morphisms in the category of “based theories”. The similarities between these
approaches are presented in [Wir90].

6 Specializations and Generalizations

Generally, a proper subalgebra of DA is needed for the semantics of a particular specifi-
cation language. Furthermore, the instance of Aw-calculus for the subalgebra concerned
may need higher-order generalizations of the operations of that subalgebra. This section
outlines the specializations and generalizations needed for VVSL. Remarks about the
resulting semantics for the structuring sublanguage of VVSL are made in Section 7.

MDA

For the semantics of VVSL, symbols corresponding to user-defined names, symbols corre-
sponding to pre-defined names, symbols corresponding to constructed types and special
symbols must be distinguished.? This means that there are VVSL specific restrictions on
the ways in which symbols may be built. The restrictions on symbols lead to restrictions
on names, signatures, renamings and descriptions. The resulting subsets of the domains
of DA are closed under the operations of DA. This means that they are the domains of a
subalgebra of DA. This subalgebra, which is precisely defined in [Mid90], is called Module
Description Algebra (MDA). Because it remains a pre-order, the implementation relation
can be restricted to the new domain of descriptions — just as the operations on descrip-
tions. MDA together with this implementation relation make up an algebraic system with
pre-order, which is denoted by M.

A M|

Am[M] is the Ar-calculus with M as underlying algebraic system with pre-order. In
VVSL, all constituent modules of modularization constructs may be parameterized mod-
ules. In the terms of Ar[M] of the forms

pe L, Ly + Lyand X O L,

L, Ly and Ly are terms of Aw[M] of type 0, i.e. terms that denote descriptions. Using the
intuition that terms of the form (Az C L.M) denote functions, this means that renaming,
importing and exporting are not generalized to (higher-order) functions on descriptions.
The generalizations are straightforward except for renaming, but unfortunately none of
them can be treated as an abbreviation. They must all be treated as extensions. The
resulting calculus, which is precisely defined in [Mid90], is denoted by Axwt+[M].

The intention is that, with the introduction of the extensions, renaming, importing and
exporting become interchangeable with application. For generalized renaming, this means
that it has to yield functions which when applied to renamed arguments deliver results as if
renaming has been applied to the value of the original function for the original arguments.
Unlike with the other operations, renaming does not have the suitable properties to make
this derivable by a simple additional rule. The rule concerned has to be very explicit
about how terms with generalized renamings are to be “unfolded”.

At M] has the following additional derivation rules:

(+) I'+ L = unfold(L)

(+1) provided = ¢ M,

T'F MY+ (Ao C LMy) = Az C L.(M, + M)

(+2) provided z ¢ M,

(0) I'cX20MeCLM)=XC L(Z0O M)

20ne of the special symbols is a special sort symbol for the state space. It allows function symbols
and predicate symbols which correspond to names of state variables and operations, respectively.

In the rule (+;), we write M_ to indicate that M; must have type 0.

The simple rules (+1), (+2) and (O) are sufficient to make the intended interchange-
ability of importing and exporting with application derivable. The rule (o) must be very
explicit about how terms with generalized renamings are to be unfolded. In order to
unfold a term of the form p e L, all subterms of L with generalized renamings have to be
unfolded first. It is important that, when L is of the form (Az C L'.M’), free occurrences
of z in M’ are not renamed (i.e. not replaced by the term p e z). The operation unfold
accomplish this by “remembering” the variables that may not be renamed.

7 Semantics of Structuring Languages

[Mid90] contains a logic-based semantics for flat VVSL by which the meaning of constructs
in flat VVSL is described in terms of formulae from the language of the logic MPL,,. The
semantics for the structuring sublanguage of VVSL, which describes the meaning of the
modularization and parameterization constructs complementing flat VVSL in terms of
lambda terms of Ar ™[M], is built on top of that logic-based semantics for flat VVSL. The
building blocks of the terms of Ar ™[M] are the constants of MDA and these constants
are essentially presentations of theories by sets of formulae of MPL,,,.

The semantics of the structuring sublanguage of VVSL is compositional in the sense
that for every module the corresponding term is composed of the terms corresponding
to its constituents (in perhaps different contexts). The correspondence is very straight-
forward (modules of the form rename R in M correspond to terms of the form p e L,
etc.).

The outlined approach is applicable to any model-oriented specification language, pro-
vided that its features do not inhibit semantic orthogonality of the modular structuring
facilities and the other facilities.> The only prerequisite is a logic-based semantics for
the flat specification language concerned. Other proposed approaches commonly have
the same prerequisite, but notwithstanding formal semantics for flat model-oriented spec-
ification languages are generally not logic-based. For example, the formal semantics of
VDM-SL presented in the draft ISO standard is not logic-based. However, the logic-based
semantics of flat VVSL presented in [Mid90] includes a logic-based semantics for most of
VDM-SL.

In the next section some further remarks about the outlined approach are made.
They concern semantic force of modular structuring facilities and semantic orthogonality
of modular structuring facilities and other facilities.

8 Other Issues

8.1 Semantic Force

As an abstract meaning, a logical theory can be attached to each origin consistent de-
scription. The mapping from origin consistent descriptions to their theories can be split
into three mappings.

3An example of features which inhibit semantic orthogonality is discussed in the next section.

10

The first mapping yields “origin consistency enforcing” descriptions. Origin consis-
tency enforcing descriptions are roughly descriptions with an origin partition which de-
clares the origins of symbols in the externally visible signature with the same name to be
equal.

The second mapping yields “semi-abstract” descriptions. In semi-abstract descrip-
tions, symbols from the externally visible signature with the same name must have the
same origin. The origin partition of a semi-abstract description is a dummy component.
Semi-abstract descriptions correspond to Bergstra’s module objects [Ber86].

The third mapping yields “abstract” descriptions. The externally visible signature,
the internal signature and the origin partition of an abstract description are superfluous
for an abstract description. An abstract description is a theory in disguise.

Presenting module objects and theories as special kinds of descriptions, eases analysis
of the basic consequences of different degrees of semantic force of modular structuring
facilities. The first mapping corresponds to the operation g of DA. The second and third
mapping correspond to the additional operations “identifying” (v) and “abstracting” ()
of an extended version of DA, called Extended Description Algebra (DA™, see [Mid90]).
These operations are meant for abstracting from the origins of externally visible names
and for abstracting from the names that are not externally visible. By means of the
operations u, v and 7, each origin consistent description can be adapted in such a way
that the resulting description is essentially the theory of the description. Thus, the theory
of an origin consistent description can be obtained within DA™. The additional operations
of DA™ can also be used to derive the counterparts of e, + and O on module objects and
theories.

The following (loosely stated) results about the above-mentioned mappings present
some basic general consequences of different degrees of semantic force of modular struc-
turing facilities:

e The mapping which assigns to each origin consistent description its abstraction to
a module object can be proven to be a homomorphism under mild restrictions on
the use of importing and exporting.

e The mapping which assigns to each origin consistent description its abstraction to a
theory can be proven to be a homomorphism under a mild restriction on the use of
renaming, the above-mentioned restrictions on the use of importing and exporting,
and an additional restriction on the use of importing which is generally severe for
state-based specification.

Of course, these mappings can always be used to provide the modularization constructs
of a specification language with a more abstract semantics. However, the above results
show that, generally, such a semantics will not be compositional.

8.2 Semantic Orthogonality

Note that, as a result of the approach outlined in the previous sections, features of flat
VVSL can be well understood without understanding of the modularization and parame-
terization features of VVSL and the other way round. Indeed, the high degree of orthog-
onality is relevant.

11

It supports the development of proof rules which allow theorems about a module to be
inherited from the modules from which it has been constructed. Such proof rules naturally
suggest general proof strategies which exploit the modular structure of specifications,
which matters to the issue of formal correctness proofs of design steps (i.e. verified design).
Besides, they enable compositional development of theories about modules, which seems
essential to the issue of module reusability. The proof rules concerned can be devised
almost without understanding of the features of flat VVSL.

For example, the following are some of the proof rules:

thm in M if the common state variables on which
thm in import M into M’ thm depends are visible in M and M’

thm in M if sig(thm) C X and
thm in export Y from A hidden names are origin unique

thm in M
p(thm) in rename p in M

if p is injective

The restrictions on these rules are stated informally above but can be made mathemati-
cally precise. The intended meaning of I' - ¢ in M is that the formula ¢ logically follows
from the formulae in I and the theory of the description corresponding to the module
M. 1t is easy to prove that the rules are sound. They are strongly related to the results
about the mapping from descriptions to theories mentioned in the previous subsection.
Only the restriction on the first rule requires some understanding of the features of flat
VVSL.

If efficiency is an issue, it seems rarely possible to maintain the modular structure of a
specification in the ultimate software system. This justifies the supply of conversion rules
which allow to transform a specification to another specification with a different modular
structure in a meaning preserving way. Such conversion rules can also be devised without
understanding of the features of flat VVSL. Of course, all this is also relevant to other
model-oriented specification languages.

VVSL does not provide the ability to create multiple instances of imported modules
and then to refer to the appropriate instances dynamically. Without going into the details
of the semantic consequences of the provision of these special features, one important
resulting effect is clear: they inhibit semantic orthogonality of the modular structuring
facilities and the other facilities.

A main problem is that the qualified names used in definitions — in order to relate
names (for types, state variables, functions and operations) to the appropriate instances of
parameterized modules — may contain expressions whose value depends upon the state(s)
in which they are evaluated. Therefore, it is possible that even the qualifier of one
particular occurrence of a qualified name does not constantly refer to the same instance
of the parameterized module concerned. This means that qualified names cannot be
regarded as names with structure that is irrelevant for the interpretation of definitions.
For this reason, the mathematical basis for the semantics of flat VVSL (MPL,) would
no longer suffice for the interpretation of definitions. Furthermore, the special features
require support of parameterization over values. So at least the basis for parameterization
(Am-calculus) would need non-trivial adaptations, because it supports parameterization
of modules over modules — and consequently over (collections of) names — but it does

12

not support parameterization over values. Note also that this would also cause a rather
strong dependence of the basis for parameterization upon the basis for flat VVSL.

As a consequence, the special features would make it much more difficult to devise
proof rules and conversion rules. The conjecture is that the proof rules concerned and the
conversion rules concerned will become too complex to be actually used. Another obvious
effect is that the special features impede comprehension of all features of the language.

9 Concluding Remarks

The current practice in defining the modular structuring facilities of specification lan-
guages suggests a need for a relatively general mathematical framework for the semantics
of modular structuring facilities of specification languages. Such a framework should con-
sist of a few general and orthogonal elements based on assumptions which are generally
met by specification languages. It should be complemented with some rules for refining
these elements for a particular specification language. How elementary the elements of
the framework are is also relevant to its usability. This paper provides evidence that
DA together with Am-calculus form a suitable candidate, especially for model-oriented,
state-based specification languages such as VDM-SL.

References

[Ber86] J.A. Bergstra. Module algebra for relational specifications. Technical Report
LGPS 16, University of Utrecht, Logic Group, 1986.

[BG80] R.M. Burstall and J.A. Goguen. The semantics of Clear, a specification lan-
guage. In D. Bjgrner, editor, Abstract Software Specifications, pages 292-332.
Springer Verlag, LNCS 86, 1980.

[BHK90] J.A. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of the ACM,
37(2):335-372, 1990.

[Fei89] L.M.G. Feijs. The calculus Aw. In M. Wirsing and J.A. Bergstra, editors,
Algebraic Methods: Theory, Tools and Applications, pages 307-328. Springer
Verlag, LNCS 394, 1989.

[Fit91] J.S. Fitzgerald. Modularity in model-oriented formal specification and its inter-
action with formal reasoning. Technical Report UMCS-91-11-2, University of
Manchester, Department of Computer Science, 1991.

[GH86] J.V. Guttag and J.J. Horning. Report on the Larch shared language. Science
of Computer Programming, 6:103-134, 1986.

[Jon89a] H.B.M. Jonkers. Description algebra. In M. Wirsing and J.A. Bergstra, editors,
Algebraic Methods: Theory, Tools and Applications, pages 283-305. Springer
Verlag, LNCS 394, 1989.

13

[Jon89b] H.B.M. Jonkers. An introduction to COLD-K. In M. Wirsing and J.A. Bergstra,

[Jon90]

[KR89)

[Mid90]

[Mid92]

[Mid93]

[Wir86]

[Wir9o]

editors, Algebraic Methods: Theory, Tools and Applications, pages 139-205.
Springer Verlag, LNCS 394, 1989.

C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall, sec-
ond edition, 1990.

C.P.J. Koymans and G.R. Renardel de Lavalette. The logic MPL,,. In M. Wirs-
ing and J.A. Bergstra, editors, Algebraic Methods: Theory, Tools and Applica-
tions, pages 247-282. Springer Verlag, LNCS 394, 1989.

C.A. Middelburg. Syntaz and Semantics of VVSL — A Language for Structured
VDM Specifications. PhD thesis, University of Amsterdam, September 1990.
Available from PTT Research.

C.A. Middelburg. Modular structuring of VDM specifications in VVSL. Formal
Aspects of Computing, 4(1):13-47, 1992.

C.A. Middelburg. Logic and Specification — Extending VDM-SL for advanced
formal specification. Chapman & Hall, Computer Science: Research and Prac-
tice 1, 1993.

M. Wirsing. Structured algebraic specifications: A kernel language. Theoretical
Computer Science, 42(2):123-249, 1986.

M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume B, chapter 13. Elsevier, 1990.

14

