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Abstract

This paper reports on a quest for a language for expressing properties of telecom-
munication services and features, which may play a part in feature interaction
detection. A language is sought with a restricted, but practically sufficient,
expressive power, which can be complemented with computer-based tools for
verification of models described in SDL with respect to properties expressed in
the language. A language is suggested which allows the observer technique to
be used for checking whether properties expressed in the language are satisfied
by models described in SDL. This language can be viewed as a restricted version
of the full branching-time temporal logic ACTL*.

1 Introduction

New features are added in telecommunication systems to provide new telecommuni-
cation facilities. However these facilities may be somehow in conflict with the existing
ones. Feature interaction is the general name for this phenomenon. An extreme kind
of feature interactions occurs when characteristic properties of a new feature are in-
consistent with properties of the core service or additional features that are already
provided. For example, with the Terminating Call Screening feature subscriber C may
enforce that he will not receive calls from subscriber A, but subscriber B may use the
Call Forwarding Unconditional feature to enforce that subscriber C will receive all his
incoming calls — including calls from subscriber A — which is impossible. There are,
however, many milder kinds of feature interactions conceivable; from unforeseen, un-
desirable ones to intended, desirable ones. An undesirable feature interaction occurs,
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for example, if the Call Forwarding Unconditional feature can be used to circum-
vent the blocking intended when using the Originating Call Screening feature. This
is possible if the number being forwarded to is not considered to be a dialled num-
ber. However, although it is undesirable, this interaction does not give rise to an
inconsistency.! A comprehensive survey of current features can be found in [5], which
also suggests a categorization of feature interactions.

New features are usually viewed as functionality extensions to the existing services.
There are, of course, no feature interactions present if the existing functionality re-
mains unaffected by the newly created functionality, but that is rather the exception
than the rule. It is appropriate to call the feature concerned a conservative exten-
sion if this favourable situation occurs. However, the situation is unlikely to occur,
because new facilities tend to add to the special cases that have to be taken into
account by the existing ones. For example, all three above-mentioned features affect
dialling such that certain properties of the existing services concerning dialling will
no longer hold in the general case. There is at least empirical evidence that useful
features are almost inevitably non-conservative extensions. This means among other
things that the interactions caused by them are at least partly intended. Further-
more, unintended interactions may be unforeseen but desirable ones. However, this
does not mean that there are no undesirable interactions and even ones that should
be absolutely excluded.

This paper reports on work done concerning feature interaction detection. It is about
a language for expressing properties of telecommunication services and features. The
quest is for a “property language” with a restricted, but practically sufficient, expres-
sive power, which can be complemented with computer-based tools for verification
of models described in SDL [2] with respect to properties expressed in the language.
The underlying idea is that a property language for SDL together with a suitable
“model checker” may play a part in feature interaction detection before new features
are actually added (see also [3]).

The current section already touched upon the fact that feature interactions are gen-
erally inescapable and not necessarily undesirable. Section 2 explains that the way in
which a property language for SDL, together with an accompanying model checker,
may play a part in feature interaction detection is currently still very limited. Sec-
tion 3 sketches the approach followed to find a suitable property language and Sec-
tion 4 presents the results. In Section 5, the observer technique is proposed to check
whether properties expressed in the language concerned are satisfied by models de-
scribed in SDL. Pre-defined functions and predicates that are needed in this language
are mentioned in Section 6. Finally, some closing remarks are made in Section 7.

2 Connections with feature interaction detection

In order to minimize the danger of having modelled services and features different
from the intended ones, it is important to check whether the models concerned satisfy

!Because either is described in isolation, the properties of Call Forwarding Unconditional and
Originating Call Screening, as expressed in Section 4, are inconsistent.



anticipated properties. Because SDL is the language generally used in the telecommu-
nication world for modeling, this means that it is useful to have a property language
for SDL and an accompanying model checker — to check whether models described in
SDL satisfy properties formulated in the property language. But which part can they
play in a systematic way to detect feature interactions?

Let us assume that the existing services have been modelled using SDL, that their
characteristic properties have been given in the property language, and that it has
been checked that the model satisfies these properties. An example of such properties
is the following crucial property of the Terminating Call Screening feature: subscriber
B should not receive calls from subscriber A when A is on B’s screening list. It must
be considered to be a major problem in itself to reach the situation sketched above,
but we suppose that this problem can be solved. In [16], the following desirable, but
not very realistic scenario for the addition of a new feature is mentioned.

The characteristic properties of the new feature are identified and they are expressed
in the property language. Next, a model of the new feature is described in SDL and
it is checked, using the model checker, whether this model satisfies the characteristic
properties. Finally, the model of the existing services and the model of the new feature
are combined and it is checked whether the combined model satisfies the union of all
the characteristic properties concerned (it is not made precise in [16] what is meant
by combining models).

Because new features are frequently non-conservative extensions, there are several
shortcomings of this scenario. If the final step does not succeed, this does not have to
mean that a case of inconsistent properties has been detected;? it does not even have
to mean that there is an undesirable feature interaction. It might indicate that the
model of the existing services is not suited to extension without changes — the question
remains how this must be dealt with. It is moreover likely that the characteristic
properties of the existing services have to be adapted — to take new special cases into
account — and that the model described in SDL has to be changed accordingly. This
has to be accomplished before the final step can be performed.

Suppose, for the sake of simplicity, that only the Basic Call service exists and that the
Call Forwarding Unconditional feature has to be added. The latter feature changes
the effect of dialling such that the characteristic properties of the Basic Call service
concerning dialling will no longer hold. The original characteristic properties would
now, for example, lead to such impossible situations as getting at the same time a
ring-back tone from the subscriber that a call is intended for as well as a busy tone
from the subscriber that the call is forwarded to. So clearly, they must be adapted
and so must be the model of the Basic Call service.

The adaptations needed in cases such as the one described above are the result of
interactions introduced by the new feature. They are needed to turn the undesirable
interactions into acceptable ones. But how do we detect these undesirable interac-
tions? They must have been detected before the step meant for the detection of
undesirable feature interactions can be performed! In the example just given, we
should have detected beforehand that the addition of the Call Forwarding Uncondi-

2Some generic model checkers, e.g. SMV [4], can be used for checking the consistency of properties.



tional feature leads to situations in which a subscriber gets a ring-back tone as well
as a busy tone.

All this indicates that the systematic approach to add new features, which incor-
porates detection of undesirable interactions with existing ones, suggested by the
scenario given above, is not to be expected soon. We are, for example, far away from
having identified the kinds of feature interactions that are likely to be undesirable; the
empirical results needed to identify them require a lot of experiments in adding new
features to existing ones and in detecting feature interactions. However, as explained
at the beginning of this section, it remains useful to check whether a new model, ob-
tained by adapting an existing one to the needs of a new feature, satisfies all relevant
properties.

3 Finding a suitable property language

In this section the approach followed to find a suitable property language is described.

The following approach has been followed in order to find a property language with
a restricted, but practically sufficient, expressive power, which can be complemented
with a model checker for verifying models described in SDL with respect to properties
expressed in the language.?

Characteristic properties of features have been expressed, from the subscriber’s point
of view, in a highly expressive language, viz. a first-order version of ACTL™ [15]. But
it has been further investigated whether there are common forms of formulae of this
logic, which suffice for expressing these properties.

As in [10], we focussed on the subscriber’s point of view. This means that we dealt
with properties that can be expressed in terms of:

the events that can be produced by subscribers at their telephones, such as
taking off-hook, putting on-hook and dialling a number;

the observable states of the subscriber’s telephones, such as being idle, emitting
a dial-tone, etc.;

the phases of a call that are recognizable through the observable states, such as
the ready phase, the calling phase, etc.;

the features that subscribers have activated.

Observable states and phases are global states, i.e. they comprise a succession of
internal states of the telecommunication system. They are viewed as (basic and
derived, respectively) predicates on the internal states. The properties on which we
focus in this manner are the ones that are really relevant to telephone subscribers.
This also means that, in an explanation of features meant for their (potential) users,
other properties do not matter.

3An alternative to the official semantics of SDL [17], defining the meaning of SDL specifications
as labelled transition systems like in [11], is assumed.



The connection with models described in SDL is clear. Events correspond to signals
from the environment. Each observable state may encompass many consecutive SDL
states satisfying a common predicate explicitly definable in terms of the values of
certain variables, the contents of the input port queue of certain process instances,
etc.; and so does each phase (see also Section 6). Note, however, that by giving the
characteristic properties these predicates are only specified up to the point that is
relevant from the subscriber’s point of view. Unlike this is the way in which char-
acteristic properties of features are expressed in [7]. A specialization of linear-time
temporal logic for SDL is used there to express the properties directly in terms of the
specifics of a given model of the services and features involved.

In order to make analysis practically feasible, a suitable abstraction is made. For
example, an event produced by a subscriber is regarded to happen at the moment that
the telecommunication system starts to handle the event. Thus, some exceptional
cases are not covered; but otherwise even the Basic Call service appears to be a
complete chaos.

ACTL*, for Action-based CTL*, can be viewed as CTL™ extended with relativized
next operators.* This highly expressive logic is a sublogic of the logic used as the
general SPECS property language (SPECS PL) described in [18]; it is essentially the
SPECS PL without its fixed-point operator, but with an until operator — which can
be introduced as an abbreviation in the SPECS PL using the fixed-point operator.

ACTL* has, in addition to the usual logical operators — T (true), = (not), A (and), V
(for all) — of classical first-order logic, the following temporal operators: X (nexttime),
X for each transition label « (relativized nexttime), U (until) and A (for all paths).
A transition label « is either an element a from a set of actions A or the special label
7 (silent action). The intuition behind these operators is as follows:

e X ¢ means that ¢ will be true after the next transition,

e X ¢ means that the next transition will be an « transition and ¢ will be true
after this transition,

e o U 1 means that ¢ will eventually be true and until then ¢ will be true,

e Ay means that ¢ will be true for all paths starting from the current state.

T transitions are used to model transitions where the action involved is hidden from
the environment, e.g. the internal steps of a system. The first-order version of ACTL*
is precisely defined in Appendix A.

Some well-known temporal operators that can be introduced as abbreviations are F'
(finally or sometime), G (globally or always), and [a] (inevitably after a):

o F' ¢y stands for T U ¢,
o Gy stands for = F = ¢,
e [a] p stands for A—~ Xq = (X7 T) U o).

[a] ¢ means that for all paths from the current state with an a transition as its first
transition, after this a transition and zero or more directly following 7 transitions,

4CTL* [9] is the standard full branching-time temporal logic.



¢ will be true. So the operator [a] is slightly different from the one in the stan-
dard Hennessy-Milner Logic of [12], where it is allowed to have 7 transitions directly
preceding the a transition as well. We also use the abbreviation [ay,...,a,] ¢ for

[a1] @ A .o A [an] .

Before we proceed with our quest for a suitable property language, it is worth recalling
that we are not looking here for a language which allows us to formulate any property
as elegantly or naturally as possible; the emphasis is on the practical feasibility of
model checking. We are also not looking for a language which allows us to express the
purpose of a new feature as described by the service provider who wants to provide
the feature; it is the functionality extension agreed with the service provider to reach
this purpose what matters to feature interaction detection. The purpose is elusive;
what it means to reach the purpose is usually not even considered. For example, the
purpose of the Terminating Call Screening feature is: not to be disturbed by telephone
calls from certain people. This gives us little clue about the interactions this feature
may cause; what is offered to prevent such disturbance determines these interactions.
Of course, the purpose of the feature suggests potential interactions to experts. This
means that it is suitable for guesswork, but it is not amenable to rigorous analysis.

4 Common forms of formulae

In practice, the crucial properties of most features can be expressed by formulae of
the following general forms:

1. AGyp
2. AG(p = [a]v)

where ¢ and v are formulae without temporal operators, i.e. formulae of classical
first-order logic. They are mainly built from atomic formulae concerning the observ-
able states of the subscriber’s telephones, the phases of a call that are recognizable
through the observable states, and the features that subscribers have activated. a
is an action label corresponding to an event that can be produced by subscribers at
their telephones.

In principle, we might also need formulae of the following general form:®
3. AG(p = — [a]v)

Indeed, we actually need a few formulae of this additional form to formulate some
general response properties of the system. For example, the following formula is
needed to express that if the telephone of a subscriber is ready for dialling, it is
possible for him or her to dial another subscriber:

AG(A # B A ready(A) = - [dial(A,B)] 1)

5The conjecture is that the additional form allows for any degree of non-bisimilarity to be distin-
guished (see [14]).



None of the properties of this kind is specific to a certain feature. The technique to
check whether properties are satisfied by a model described in SDL, which is explained
in Section 5, can be adapted to properties expressed by formulae of this additional
form. But, unlike the original technique, the use of the adapted one is not supported
by any commercially available SDL-toolset.

A formula of the form 1 expresses a state invariance property, i.e. property that will
hold at all states along all possible paths. A formula of the form 2 is a transition
rule; it expresses a property that will hold for all state transitions along all possible
paths. For example, the crucial properties of the Originating Call Screening (OCS)
feature can be expressed by the following formulae if we assume that only the Basic
Call service exists:

AG(A# BN OCS(A,B) = — calling(A, B))
AG(A# BA OCS(A, B) A ready(A) A idle(B) = [dial(A, B)] rejecting(A))
AG(A# BA—- OCS(A,B) A ready(A) A idle(B) = [dial(A, B)] calling(A, B))

The first formula is of the form 1. It expresses that the phase where subscriber A is
calling subscriber B will never occur when B is on A’s screening list. The last two
formulae are of the form 2. The first of them expresses that, if A’s telephone is ready
for dialling and B’s telephone is idle, but B is on A’s screening list, the phase where
A’s call attempt is rejected will occur after A dials B. The second of them expresses
that the calling phase will occur after A dials B, as previously being usual, if it is
instead not the case that B is on A’s screening list. For clearness’ sake, we mention
here that calling(A, B) indicates the phase during which B’s telephone is ringing and
A gets a ring-back tone and that rejecting(A) indicates the phase during which A gets
a busy tone.

Note that the last two formulae change the property of the Basic Call service expressed
by the following formula:

AG(A # B A ready(A) A idle(B) = [dial(A, B)] calling(A, B))

This adaptation is needed because the Originating Call Screening feature affects di-
alling.

The crucial properties of many other features can be expressed in the same vein,
e.g. Terminating Call Screening, Call Forwarding Unconditional and Call Forwarding
on Busy/No Answer. Call Forwarding Unconditional (CFU), for example, can be
described as follows if we again assume that only the Basic Call service exists:

AG(A#BAA#C A CFU(A, B) A ready(C) A idle(B) = [dial(C, A)] calling(C, B))
AG(A#BAA#C A CFU(A, B) A ready(C) A busy(B) = [dial(C, A)] rejecting(C))
AG(A #C A~ (3B CFU(A, B)) A ready(C) A idle(A) = [dial(C, A)] calling(C, A))
AG(A#C A= (3B CFU(A, B)) A ready(C) A busy(A) = [dial(C, A)] rejecting(C))

~—  ~—



The first two formulae express how dialling is affected if Call Forwarding Unconditional
is activated by the called party and the last two formulae express that dialling is not
affected if it is not activated. Note that if we instead assume that both the Basic Call
service and the Originating Call Screening feature exist, several additional formulae
are needed to cover the combinations of features as well. For the sake of simplicity,
we will also assume in the remaining examples that only the Basic Call service exists.

The Abbreviated Dialling (ABD) feature can also be described naturally in the same
way:

G(A# B AN ABD(A, B,N) A ready(A) A idle(B) = [dial(A, abbr(N))] calling(A, B))
G(A# B AN ABD(A, B,N) A ready(A) A busy(B) = [dial(A, abbr(N))] rejecting(A))

Here abbr(N) is used to tag N as an abbreviated number — to make it distinguishable
from a subscriber number.

Most features need mainly formulae of the form 2, but some features only need formu-
lae of the form 1, e.g. Calling Number Delivery (CND) and Unlisted Number (UN):

G(A # B N CND(A) A calling(B, A) = delivering(B, A))
AG(UN(B) = (VC - = delivering(B,C)))

Note that these two features are trivially inconsistent. If subscriber B is calling
subscriber A while A has activated CND, A should have B’s number delivered during
the calling phase. But if additionally B has activated UN, this is in contradiction to
B’s demand that his or her number should never be delivered to anybody.

The Automatic Call Back (ACB) feature can be described as well, but at the cost of
introducing an auxiliary predicate acbsubscr indicating which subscriber is called if
the Automatic Call Back code is dialled:

G(A# B AN ACB(A) = [dial(B, A)] acbsubscr(A B))

G(A # B A acbsubscr(A, B) A ready(A) A idle(B) = [dial(A, acbeode)] calling(A, B))
G(A # B A acbsubscr(A, B) A ready(A) A busy(B) = [dial(A, acbeode)] rejecting(A))
G(A # B A acbsubscr(A, B) = [dial(A, acbeode)] achsubscr(A, B))

G(A # B A acbsubscr(A, B) = [offhook(C),onhook(C)] acbsubscr(A, B))
G(A#BAC#DANA#D A acbsubser(A, B) = [dial(C, D)] acbsubscr(A, B))
G(ACB(A) A acbsubscr(A, B) A acbsubscr(A,C) = B =C)

The first formula expresses that, if subscriber A has activated ACB, subscriber B
becomes the subscriber to be automatically called back immediately after B has di-
alled A5 The second and third formula express that such an automatic call back

6There are also descriptions of this feature where B would become the subscriber to be automat-
ically called back immediately after a connection with A had been established.



will take place immediately after A dials the ACB code — acbcode is used to repre-
sent this code. The following three formulae together express that events other than
another subscriber dialling A keep the subscriber to be automatically called back un-
changed. The last formula expresses that there can be at most one subscriber to be
automatically called back.

In formulae of the form 2, the until operator only plays an inessential part; it is
only used to deal with internal steps of the system as modelled by means of SDL. In
general, one expects intuitively that the until operator will play an essential part in
describing the Automatic Call Back feature. It is surprising that it turned out to be
relatively easy to devise the formulae given above, while a satisfactory formulation
using the until operator in an essential way could not be found.

In case of the Automatic Call Back feature, the auxiliary predicate that had to be
introduced does not seem to be artificial; the notion of the subscriber to be automat-
ically called back, in case the ACB code is dialled, is natural and very relevant to the
subscriber having activated the feature. A similar remark applies to the Automatic
Recall feature — what could be expected — and also for various other features that re-
quire the introduction of auxiliary predicates. It also applies to the predicate needed
for the Call Waiting feature. It presents the essentials of a call waiting situation,
viz. the subcriber to whom is spoken and the subscriber being on hold. However,
this predicate could also be viewed as a phase of a call where at least one subscriber
having activated the Call Waiting feature is involved. Note that, from this viewpoint,
the Call Waiting feature adds to certain calls a new phase which did not occur before
its introduction.

5 Observers to check properties

Observers, which are explained below, can be used to check whether properties ex-
pressed by linear-time formulae are satisfied.

Linear-time formulae are formulae of the general form A ¢ where ¢ is a temporal
formula without the operator A. The formulae of the form 1 given in the previous
section are linear-time formulae, but the formulae of the form 2 are not (they are
true branching-time formulae). However, for formulae ¢ and ¢ without temporal
operators,

AG(p = [dv)

is equivalent to
AG(p = = Xa ~((Xr T)U ¥))

in ACTL* — where all paths through the underlying transition systems are considered
(see also [6]).

We first used the branching time form, because it is intuitively less clear for the linear
time form that it is an appropriate one to express state transition rules.

An observer is essentially a deterministic automaton accepting certain paths. The
principle of model checking by means of observers is that, for a formula A ¢ to be



checked, a deterministic automaton is constructed that accepts a path if and only if ¢
is true of that path. This means that, for the formula A ¢ to hold, all paths must be
accepted by the corresponding observer. Such an observer can always be constructed
for a linear-time formula if variables range over a finite domain. The use of observers
is supported by, for example, the SDL-toolset GEODE [1], but the construction of
observers from temporal formulae — as described in, for example, [8] — has to be done
manually yet.

However, the observer for a formula of the form 1 is trivial and the observer for a
formula of the form 2, i.e. AG(p = [a] ), is as follows:

e

where transition p is labelled with = (o A Xq T), ¢ with o A Xq T, 7 with = ¢ A
X+ T and s with ©. The observer will start in state 0 and it will keep this state as
long as = (p A Xg T) holds. It will pass to state 1 as soon as ¢ A Xq T holds and
it will keep this state as long as =¥ A X7+ T holds. It will pass back to state 0 as
soon as 1 holds. Thereafter, this pattern of behaviour will repeat itself indefinitely.
Note that it may not occur that = ¢ A = X+ T holds while the observer is in state
1. Thus, it will accept exactly the paths that satisfy G(¢ = [a] ¥)!

So, if we stick to temporal formulae of the above-mentioned two general forms, the
construction of observers for them is quite easy. The automation of this construction
will require only a small effort.

6 Pre-defined functions and predicates

In the previous sections, we used predicates for the observable states of telephones,
the phases of telephone calls, etc. To check whether a model described in SDL satisfies
properties formulated in (a restricted version of) ACTL*, these predicates must be
defined explicitly in terms of the values of certain variables, and the like, that are

extant in the model. This section gives an overview of a specialization of ACTL*
suited for SDL.

In appendix A, the uninterpreted first-order version of ACTL* is defined. A partially
interpreted version appears to be more suited for SDL. This means that temporal
structures with specific functions and predicates are assumed for certain function and
predicate symbols. It seems also useful to have several different domains instead of
one, which requires a many-sorted version with sort symbols to distinguish between
them. Specific domains are assumed for certain sort symbols as well. Thus, we get a
specialization of ACTL™ for SDL which offers a number of pre-defined sorts, functions
and predicates. First the envisaged specialization is sketched and next the grounds
for it are given. In the following saved signals and timers are not taken into account.

10



The pre-defined sorts needed include the pre-defined sorts of SDL (including PId, the
set of process instance identifiers) and additionally:

ChanNm  a finite set of channel names;
StateNm  a finite set of state names;
Signal a countably infinite set of signals.

Each pre-defined sort of SDL comes together with certain pre-defined functions to
construct values of the sort or to extract other values from them; and so does the
pre-defined sort Signal. In addition to these state-independent functions, some state-
dependent functions and predicates are needed.

For each variable declared in an SDL system definition by dcl vnm Snm, a function
vnm : PId — Snm is needed; vnm(pid) yields the current contents of the variable with
name vnm owned by the process instance with identifier pid. Besides, the following
functions are needed:

state : PId — StateNm state(pid) yields the name of the current process
state of the process instance with identifier pid;

ipfirst : PId — Signal ipfirst(pid) yields the first signal in the input port
queue of the process instance with identifier pid;

chfirst : ChanNm — Signal  chfirst(cnm) yields the first signal in the channel
with name cnm.

The following predicates are also needed:

it Pld init(pid) is true if the process instance with identifier pid is
in the start state;

ipempty : PId ipempty(pid) is true if there are no signals in the input port
queue of the process instance with identifier pid;

chempty : ChanNm  chempty(cnm) is true if there are no signals in the channel
with name cnm;

existing : PId existing(pid) is true if the process instance with identifier
pid exists.

In what precedes, we viewed the observable states of the subscriber’s telephones, the
phases of a call that are recognizable through the observable states and the features
that subscribers have activated as predicates on the internal states of the telecom-
munication system. In order to verify a model described in SDL with respect to
properties expressed as ACTL* formulae of certain forms, these predicates have to
be defined explicitly in terms of functions and predicates that depend on the system
states extant in the model. Such a system state consists of a collection of process
instances, where each instance is uniquely identified by a process instance identifier,
and a collection of named channels. The process instances contained in the former
collection may vary from system state to system state, but the channels contained in
the latter collection are the same channels in all system states. The channels convey
signals which may catch a delay. A process instance comprises a named process state
prescribing its future behaviour, a storage of variables, which determines the value of
the variables associated with it, and an input port queue containing signals received
by the process instance but not consumed by it.

11



Clearly, the sorts, functions and predicates proposed above as the pre-defined ones
are sufficient to consult any detail of the system states. The whole is essentially part
of the sorts, functions and predicates proposed as the pre-defined ones in [19]. Only
the fundamental ones to consult all details of the system states are left in the current

paper.

7 Closing remarks

Although the crucial properties of many features can currently be expressed by for-
mulae of the above-mentioned two general forms, it is possible that these forms will
turn out to be too restrictive in the future. Preliminary investigations indicate that
the SMV model checker [4] can be adapted such that it can be used to check whether
models described in SDL satisfy properties formulated in ACTL. Roughly, ACTL dif-
fers from ACTL™ in that each occurrence of A in a ACTL formula must be followed
by a boolean combination of formulae of the forms X ¢, Xo ¢ and ¢ U 1), where
¢ and ¥ must be ACTL formulae as well. Of course, quantification could also be
allowed, provided that the variables concerned range over finite domains.

The description of features by formulae of the above-mentioned two general forms
seems closely related to the specification style with state invariants and pre- and
post-condition style specifications of operations that is used with VDM [13]. This
style enables to associate a number of relatively simple proof obligations with two
specifications of a program, whose discharge is sufficient to show that one specifi-
cation correctly refines the other specification in the following sense: each program
satisfying the former specification simulates — when viewed as a transition system —
some program satisfying the latter one. A similar approach is advocated to be used
with Z [20]. It is useful to investigate whether there are connections between this
notion of refinement and undesirable feature interactions.

There are also close connections with the approach to feature interaction detection
proposed in [10]. What is new in the current paper, is that 7 transitions are taken into
account. The “network properties” from that paper are exactly the temporal formulae
of the form 1, and the “declarative transition rules” are the temporal formulae of the
form 2 apart from the account of 7 transitions. There would be an exact match if we
had chosen [a] ¢ to stand for A — X — . There is nothing like 7 transitions in the
official semantics of SDL [17]. However, recent proposals for an operational semantics
by which the meaning of a system definition is defined as a labelled transition system,
all introduce 7 transitions to model the internal steps of the system (see e.g. [11]). The
current paper also indicates how the notation used in [10] relates to ACTL* and how
it can be checked with existing techniques whether models described in SDL satisfy
properties expressed in such a notation.
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A Definition of first-order ACTL*

Syntax

The language of the first-order version of ACTL*, containing terms and formulae, is
defined over a set F of function symbols, a set P of predicate symbols, a set X of
variable symbols, and a set A of actions. The silent action 7 is not in A. Every
function or predicate symbol has an arity n (n > 0).

The terms of ACTL* are inductively defined by the following formation rules:

e variable symbols are terms;
e if f is a function symbol of arity n and t;,...,t, are terms, then f(t1,...,t,) is
a term.

The formulae of ACTL* are inductively defined by the following formation rules:

T is a formula;

if P is a predicate symbol of arity n and ¢y, ...,t, are terms, then P(ty,...,t,)
is a formula;

if t; and t5 are terms, then ¢; = t5 is a formula;

if ¢ is a formula, then — ¢ is a formula;

if ¢1 and ¢y are formulae, then 1 A ¢ is a formula;

if ¢ is a formula and z is a variable symbol, then Vx - ¢ is a formula;
if ¢ is a formula, then X ¢ is a formula;

if ¢ is a formula and a € AU {7}, then X ¢ is a formula;

if o1 and py are formulae, then ¢y U 5 is a formula;

if © is a formula, then A ¢ is a formula.

The string representation of formulae suggested by these formation rules can lead to
syntactic ambiguities: parentheses are used to avoid such ambiguities.
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Semantics

The semantics of ACTL* terms and formulae is defined with respect to a temporal
structure. A (first-order) temporal structure KC is a quintuple (S, A, —, D, L) where:

e S is a set of states;

e A is the set of actions;

o — C Sx(AU{r}) x S is the transition relation, the elements from — are called
transitions;

D is a set, the domain of IC;

L maps each state s € S to an interpretation L(s) that assigns an appropriate
meaning over D to all function and predicate symbols of the temporal language,
ie.:

— for every n-ary function symbol f, a total function fX) : D" — D;
— for every n-ary predicate symbol P, a total function PX*) : D™ — {T F}.

A temporal structure (S, A,—, D, L) can be viewed as a labelled transition system
(S, A, —) together with a structure (D, L(s)) of classical first-order logic for each state
s € S so as to provide for functions and predicates which may vary from state to state.

The truth of formulae is defined for fullpaths in K. A path in K is an element m =
(80, ({1, 81), {v2, $2),...)) from S x ((AU{7}) x S)™ such that (s;, a1, 8i41) € —
for all ¢ < |7|. Here |7| is the length of the second component of 7, i.e. the number of
transitions represented. 7 is a fullpath in IC iff there is no (a,s) € (AU{7}) x S that
appended to the second component of 7 yields again a path.

Let m = (s, ({a1, 81), (@, S2), .. .)) be a path. Then we write 7 for sq, m; for oy, and
7 (0 <4 < |x|) for the path (s;, ({ir1,Si41),--.)). We also write fullpaths,(s) for
the set {m|m is a fullpath in K and my = s}.

The interpretation of terms and formulae of ACTL* in K is further given under an
assignment in K — assigning a value to each variable symbol. An assignment in K is
a function £ : X — D. For every assignment &, variable symbol z and element d € D,
we write £(z — d) for the assignment &’ such that '(y) = £(y) if y # x and &'(z) = d.

The meaning of terms is given by a function mapping term ¢, structure K, fullpath
7 and assignment £ to the element of D that is the value of ¢ in the first state of
7 under assignment {. We write [[t]]lg’7r to denote the value of this function for the
arguments ¢, IC, m and £. Similarly, the meaning of formulae is given by a relation
associating formula ¢, structure IC, fullpath m and assignment £ if ¢ is true of 7 in KC
under assignment . We write K, 7 =¢ ¢ to indicate that this relation holds for the
arguments o, IC, m and £. The interpretation functions for terms and formulae are
inductively defined by

[«]e™ = (),
[f(tr,. o t)]ET = fEE([G]ET, . [ta]ET)
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and

Komke=e T always

K,m e P(ty, ... t,) iff PEEO([H]E™, L8 =T,

K,m ety =ty iff [t]87 = [t]E7

IC,’]T)Zg_!QO iff not /C,T('):£§0,

KC,m = o1 A o ifft K7 =e@rand K7 =¢ 92,

K,mlEe Vo iff forall de D, K,7 E¢paa) ¢

K.mEe X ¢ iff |7|>1 and K, 7' ¢ o,

K,mle Xa ¢ iff |7|>1 and m3 =aand K, 7' ¢ ¢,

K,mEe 01U o iff for some i, K, 7" ¢ o and for all j <4, K, @ ¢ ¢,
K,mlEe Ay iff for all ©" € fullpaths(m), IC, 7' |=¢ ¢ .

A formula ¢ is true of fullpath 7 in temporal structure I, written K, 71 | ¢, iff
IC, 7 [=¢ ¢ for every assigment €.

A formula ¢ is valid, written |= ¢, iff IC, 7 |= ¢ for every temporal structure K and
every fullpath 7 in K.
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