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Abstract

In VVSL, a language for structured VDM specifications is combined with a language
of temporal logic in order to support implicit specification of ‘non-atomic operations’, i.e.
procedures whose behaviour depends on the interference of concurrently executed procedures
through state variables.

The language of temporal logic that can be used in VVSL has been inspired by various
temporal logics based on linear and discrete time.

The sublanguage of VVSL for structured VDM specifications can be considered a user-
oriented version of COLD-K. Full VVSL is provided with a well-defined semantics by defining
a translation to COLD-K extended with constructs which are needed for translation of the
VVSL constructs which support implicit specification of non-atomic operations.

In this paper the role of temporal formulae in VVSL is explained and an overview is given
of the language of temporal logic that can be used in VVSL. Some aspects of the required
COLD-K extensions are briefly outlined in an appendix.
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1 Introduction

VVSL is a VDM specification language which is similar to the one used in [Jon86], but extended
with modularization constructs allowing sharing of hidden state variables and parameterization
constructs for structuring specifications, and extended with constructs for expressing temporal
aspects of the concurrent execution of operations which interfere via state variables.

The concrete syntax of the sublanguage of VVSL for flat VDM specifications is very similar to the
concrete syntax of the VDM specification language used in Jones’ book [Jon86], which is roughly a
restricted version of the emerging standard VDM specification language VDM SL [BSI88, Lar92].
The semantics of this sublanguage agrees for the greater part with the semantics of the STC
VDM Reference Language [Mon85], which is roughly the language used in [Jon86] with another
concrete syntax.

A short introduction to this part of VVSL is given in the report [Mid89b]. For a more complete
presentation, see [Jon86]. The modularization and paramerization constructs of VVSL are also
briefly explained in [Mid89b]. A more comprehensive introduction to these structuring features
can be found in [BM88], which also contains a formal definition of VVSL. The constructs for
expressing temporal aspects of the concurrent execution of operations which interfere via state
variables are explained in this paper.

In [BM88], VVSL is provided with a well-defined semantics by defining a translation to COLD-K
extended with constructs which are needed for translation of the VVSL constructs for expressing
temporal aspects of the concurrent execution of interfering operations.1 The required COLD-K
extensions are also formally defined in [BM88]. Some aspects of these extensions are briefly
outlined in Appendix B.

2 Atomic Operations and Interference through State Variables

In the sublanguage of VVSL for structured VDM specifications, like in other VDM specification
languages, operation is a general name for imperative programs and meaningful parts thereof (e.g.
procedures). Unlike functions, operations may yield results which depend on a state and may
change that state. The states concerned have a fixed number of named components, called state
variables, attached to them. In all states, a value is associates with each of these state variables.
Operations change states by modifying the value of state variables. Each state variable can only
take values of a fixed type. State variables correspond with programming variables of imperative
programs.

State Variables
A state variable is interpreted as a function from states to values of its type, that assigns to each
state the value taken by the state variable in that state.

A state variable is declared by a variable definition of the following form:

v : t

1The translation of the VVSL constructs for structuring specifications is outlined in the papers [Mid88]
and [Mid89c].
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The type name defines the type from which the state variable can take values. A state invariant
and an initial condition, of the form

invEinv and initEinit

respectively, can be associated with a collection of variable definitions. The state invariant is a
restriction on what values the state variables can take in any state. The initial condition is a
restriction on what values the state variables can take initially, i.e. before any modification by
operations.

Operations
An operation is interpreted as an input/output relation, i.e. a relation between ‘initial’ states,
tuples of argument values, ‘final’ states and tuples of result values.

An operation is implicitly specified by an operation definition of the following form:

op(x1 : t1 , . . . , xn : tn) xn+1 : tn+1 , . . . , xn ′ : tn ′

ext rd v1 : t ′1 , . . . , rd vm : t ′m ,wr vm+1 : t ′m+1 , . . . ,wr vm ′ : t ′m ′
pre Epre

post Epost

The header introduces a name for the specified operation and defines the arity of the operation,
that is its sequence of argument types and its sequence of result types. The header also introduces
names for the argument values and result values to be used within the body. The external clause
indicates which state variables are of concern to the behaviour of the operation and also indicates
which of those state variables may be modified by the operation. The pre-condition defines the
inputs, i.e. the combinations of initial state and tuple of argument values, for which the operation
should terminate and the post-condition defines the possible outputs, i.e. combinations of final
state and tuple of result values, from each of these inputs. The pre-condition may be absent, in
which case the operation should terminate for all inputs (i.e. it is equivalent to the pre-condition

true). In the post-condition, one refers to the value of a state variable v in the initial state by ↼−v
and to its value in the final state by v .

An initial state may lead to a final state via some intermediate states. However, one cannot refer
to these intermediate states in operation definitions. The underlying idea is that intermediate
states does not contain essential details about the behaviour of the operation being defined, since
operations are always regarded to be atomic, i.e. not to interact with some environment during
execution (although they may certainly be implemented as combinations of sub-operations).

Interference
Sometimes, operations are not as isolated as this. An important case that occurs in practice
is that termination and/or the possible outputs depend on both the input and the interference
of concurrently executed operations through state variables. In that case, intermediate states
do contain essential details about the behaviour of the operation being defined. A language of
temporal logic seems an useful language for specifying such non-atomic operations implicitly.

In full VVSL, a language for structured VDM specifications is combined with a language of
temporal logic in order to support implicit specification of non-atomic operations. The design of
VVSL aimed at obtaining a well-defined combination that can be considered a VDM specification
language with additional syntactic constructs which are only needed in the presence of non-atomic
operations and with an appropriate interpretation of both atomic and non-atomic operations
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which comprises the original VDM interpretation.

3 Non-atomic Operations, Computations and Temporal Formu-
lae

In VVSL, a formula from a language of temporal logic can be used as a dynamic constraint
associated with a collection of state variable definitions and as an inter-condition associated with
an operation definition. With a dynamic constraint, global restrictions can be imposed on the set
of possible histories of values taken by the state variables being defined. With an inter-condition,
restrictions can be imposed on the set of possible histories of values taken by the state variables
during the execution of the operation being defined in an interfering environment.

The temporal language has been inspired by a temporal logic from Lichtenstein, Pnueli and Zuck
that includes operators referring to the past [LPZ85], a temporal logic from Moszkowski that
includes the chop operator [HM87], a temporal logic from Barringer and Kuiper that includes
transition propositions [BK85] and a temporal logic from Fisher with models in which finite
stuttering can not be recognized [Fis87].2 For details on the form and meaning of the temporal
formulae of VVSL, see Sections 4 and 5. In this section, the role of the temporal formulae in
operation definitions and state variable definitions is explained.

Interpretation of Non-atomic Operations
For atomic operations, it is appropriate to interpret them as input/output relations. This so-called
relational interpretation is in accordance with the usual semantics of VDM specification languages.
For non-atomic operations, such an interpretation is no longer appropriate, since intermediate
states contain essential details about the behaviour of the operation; e.g. the possible outputs
depend on the input as well as the interference of concurrently executed operations through state
variables. Non-atomic operations require an operational interpretation as sets of computations
which represent possible histories of values taken by the state variables during execution of the
operation concerned in possible interfering environments. There are several ways to define the
notion of a computation. The choice made for VVSL is motivated following on the informal
definition.

A computation of an operation is a non-empty finite or infinite sequence of states and transition
labels connecting them. The transition labels indicate which transitions are atomic steps made
by the operation itself and which are steps made by the environment. The former are called
internal steps, the latter external steps. In every step some state variable that is relevant for the
behaviour of the operation has to change, unless the step is followed by infinitely many steps where
such changes do not happen.3 In the case of an internal step, the variable can only be a write
variable. In the case of an external step, it can be either a read variable or a write variable. The
computation can be seen as generated by the operation and the environment working interleaved

2The operators referring to the past, the chop operator and the transition propositions obviate the need to in-
troduce auxiliary state variables acting as history variables, control variables and scheduling variables, respectively.

3This exclusion of ‘finite stuttering’ corresponds with the view that if nothing actually happens then one can
not tell that time has passed, unless nothing happens for an infinitely long time. It makes computations much like
computations in ‘real time’ models based on the view that things happen at a finite rate, viz. the model of the
temporal logic of the reals with the ‘finite variability’ restriction [BKP86] and the model of the temporal logic for
‘conceptual state specifications’ with the ‘local finiteness’ restriction [Sta88].
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but labelled from the viewpoint of the operation.

The introduction of transition labels for distinguishing between internal and external steps is
significant. Such a distinction is essential to achieve an open semantics of a non-atomic operation,
i.e. a semantics which models the behaviour of the operation in all possible environments. The
kind of transition labelling, which is presented here, is introduced in [BKP84].

Definition of Non-atomic Operations
In full VVSL, an operation is implicitly specified by an operation definition of the following form:

op(x1 : t1 , . . . , xn : tn) xn+1 : tn+1 , . . . , xn ′ : tn ′

ext rd v1 : t ′1 , . . . , rd vm : t ′m ,wr vm+1 : t ′m+1 , . . . ,wr vm ′ : t ′m ′
pre Epre

post Epost

inter ϕinter

That is, an inter-condition is added to the usual operation definition. This inter-condition defines
the possible computations of the operation.

For atomic operations, only the relational interpretation is relevant. Therefore the relational
interpretation of the operation is maintained in VVSL. This interpretation is characterized by
the external clause (only for an atomic operation), the pre-condition and the post-condition. The
operation has in addition the operational interpretation, which is mainly characterized by the
inter-condition. The inter-condition is a temporal formula which must hold for the computations
from the operational interpretation (for details on the term ‘holds for’, see Section 4). The
inter-condition may be absent, which indicates that the operation is atomic. This means that
atomic operations are implicitly specified like in other VDM specification languages. The possible
computations of an atomic operation have at most one transition and their transitions are always
internal steps.

The computations from the operational interpretation must agree with the relational interpreta-
tion. To be more precise, its finite computations must have a first and last state between which
the input/output relation according to the relational interpretation holds and its infinite compu-
tations must have a first state which belongs to the domain of this relation. The inter-condition
expresses a restriction on the set of computations that agree with the relational interpretation.
The requirement on the infinite computations means that the pre-condition does not always de-
fine the inputs for which the operation necessarily terminates. For non-atomic operations, the
pre-condition defines the inputs for which the operation possibly terminates. In other words, it
defines the inputs for which termination may not be ruled out completely by interference.

For non-atomic operations the values taken by a read variable in the initial state and the final
state must be allowed to be different, since a read variable may be changed by the environment.
This has as a consequence that the external clause does not contribute to the characterization of
the relational interpretation of non-atomic operations. It contributes only to the characterization
of the operational interpretation. Read variables cannot be changed during an internal step but
can be changed during external steps. Write variables can be changed during any step. Only
read and write variables are relevant for the behaviour. Other variables are not relevant for the
behaviour, but can be changed during external steps.

With the combined possibilities of the inter-condition and the external clause, VVSL offers the
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specifier considerable power to define non-atomic operations while maintaining the VDM style of
specification where possible.

The pre-condition of a non-atomic operation only defines the inputs for which the operation
possibly terminates. This allows that the operation only terminates due to certain interference
of concurrently executed operations. Moreover, the post-condition of a non-atomic operation
will be rather weak in general, for inputs must often be related to many outputs which should
only occur due to certain interference of concurrently executed operations. The inter-condition
is mainly used to describe which interference is required for termination and/or the occurrence
of such outputs.

Apart from finite stuttering, the operational interpretation of interfering operations characterized
by a rely- and a guarantee-condition, as proposed in [Jon83], can also be characterized by an inter-
condition of the following form:

inter 2((is-E ⇒ ©ϕrely) ∧ (is-I ⇒ ©ϕguar )),

where the temporal formulae ϕrely and ϕguar are the original rely- and guarantee-condition with

each occurrences of an expression ↼−v replaced by the temporal term
↼−
©v . Rely- and guarantee-

conditions can only be used to express invariance properties of state changes in steps made by
the environment of the operation concerned and invariance properties of state changes in steps
made by the operation itself. This is often inadequate; e.g. for operations that should wait until
something occurs, like most operations defined in [Mid89a].

Dynamic Constraints
In full VVSL, a dynamic constraint , of the form

dynϕdyn

can be associated with a collection of variable definitions. A dynamic constraints is a restriction
on what histories of values taken by the state variables can occur.

The role of dynamic constraints is similar to that of state invariants. State invariants impose
restrictions on what values the state variables can take. Therefore they should be preserved by
the relational interpretation of all operations. Dynamic constraints impose restrictions on what
histories of values taken by the state variables can occur. Likewise they should be preserved
by the operational interpretation of all operations. A dynamic constraint is a temporal formula
which must hold always for the computations of any operation (for details on the term ‘holds
always for’ see Section 4).

4 The Language of Temporal Logic

In this section a short overview is given of the language of temporal logic that can be used in
VVSL. An example of its use is given in Appendix A.

Syntax
The syntax of the temporal language is outlined by the following production rules from the
complete BNF-grammar given in [BM88]:
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<temporal-formula> ::=
is-I
| is-E
| <truth-valued-function-name> ( <temporal-term-list> )
| <temporal-term> = <temporal-term>
| <temporal-formula> ; <temporal-formula>
| © <temporal-formula>
| <temporal-formula> U <temporal-formula>

|
↼−
© <temporal-formula>
| <temporal-formula> S <temporal-formula>
| ¬ <temporal-formula>
| <temporal-formula> ∨ <temporal-formula>
| ∃ <object-name> ∈ <type-name> · <temporal-formula>
| let <object-name> : <type-name> 4 <temporal-term> in <temporal-formula>

<temporal-term-list> ::=
| <nonempty-temporal-term-list>

<nonempty-temporal-term-list> ::=
<temporal-term>
| <temporal-term> , <nonempty-temporal-term-list>

<temporal-term> ::=
<expression>
| © <temporal-term>

|
↼−
© <temporal-term>
| <function-name> ( <temporal-term-list> )

Semantics
The semantics of the temporal language is explained by giving an informal description of what
it means that a temporal formula holds for a computation at a certain point in time (treated as
‘now’, i.e. the current point in time) and of what it means that a temporal term is evaluated for a
computation at a certain point in time. The positions within the computation are treated as the
points in time; corresponding with the simple view that the i -th state of the computation (if it
exists) is reached at the i -th point in time. To say that a temporal formula holds for a computation
(without mentioning a point in time explicitly) means that the formula holds initially, i.e. at the
first point in time. To say that a temporal formula holds always for a computation means that
the formula holds at all points in time. The informal description of the meaning is given for a
fixed but arbitrary computation, which is not mentioned explicitly, except for formulae of the
form ϕ1 ;ϕ2 .

The meaning of the temporal formulae are as follows:

is-I holds now if there is a next point in time and the transition from the current state
to the next state is an internal step.

is-E holds now if there is a next point in time and the transition from the current state
to the next state is an external step.
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P(τ1 , . . . , τn) holds now if the truth-valued function denoted by P yields true for the values to
which τ1 , . . . , τn evaluate now.

τ1 = τ2 holds now if equality holds between the values to which τ1 and τ2 evaluate now.

ϕ1 ;ϕ2 holds now if either the computation is infinite and ϕ1 holds now or it is possible to
divide the computation at some future point in time into two subcomputations4 in
a way that makes ϕ1 hold now for the first subcomputation and ϕ2 hold initially
for the second one.

© ϕ holds now if there is a next point in time and ϕ holds at the next point in time.

ϕ1 U ϕ2 holds now if ϕ2 holds now or at some future point in time and ϕ1 holds at all
points in time until then.

↼−
© ϕ holds now if there is a previous point in time and ϕ holds at the previous point

in time.

ϕ1 S ϕ2 holds now if ϕ2 holds now or at some past point in time and ϕ1 holds at all points
in time since then.

¬ ϕ holds now if ϕ does not hold now.

ϕ1 ∨ ϕ2 holds now if ϕ1 holds now or ϕ2 holds now.

∃x ∈ t · ϕ holds now if for some value of type t , ϕ holds now in case x stands for that value.

let x : t 4 τ inϕ holds now if ϕ holds now in case x stands for the value to which τ evaluates now.

The meaning of the temporal terms is as follows:

e evaluates now to the value of the expression e evaluated in the current state.

©τ evaluates now to the value τ evaluates to at the next point in time if there is a
next point in time and is undefined otherwise.

↼−
©τ evaluates now to the value τ evaluates to at the previous point in time if there is

a previous point in time and is undefined otherwise.

f (τ1 , . . . , τn) evaluates now to the value that the function denoted by f yields for the values to
which τ1 , . . . , τn evaluate now.

Notational Conventions
The sugared notations P , P τ1 and τ1 P τ2 are used. They stand for P(), P(τ1 ) and P(τ1 , τ2 )
respectively. Similarly, the sugared notations f , f τ1 and τ1 f τ2 are used. They stand for f (),
f (τ1 ) and f (τ1 , τ2 ) respectively.

The abbreviative notations ϕ1 ∧ ϕ2 , ϕ1 ⇒ ϕ2 , ϕ1 ⇔ ϕ2 , ∀x ∈ t · ϕ and ∃! x ∈ t · ϕ are also
used. They have their usual notational definitions:

4Note that the state corresponding to this point in time becomes the final state of the first subcomputation and
the initial state of the second subcomputation.
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ϕ1 ∧ ϕ2
def
= ¬(¬ϕ1 ∨ ¬ϕ2 ),

ϕ1 ⇒ ϕ2
def
= ¬ϕ1 ∨ ϕ2 ,

ϕ1 ⇔ ϕ2
def
= (ϕ1 ⇒ ϕ2 ) ∧ (ϕ2 ⇒ ϕ1 ),

∀x ∈ t · ϕ def
= ¬(∃x ∈ t · ¬ϕ),

∃! x ∈ t · ϕ def
= ∃x ∈ t · (ϕ ∧ ∀x ′ ∈ t · (ϕ[x := x ′] ⇒ x = x ′)).5

Furthermore, the abbreviative notations 2ϕ, 3ϕ, ↼−2ϕ and ↼−3ϕ, are used. They have the following
notational definitions:

3ϕ
def
= true U ϕ,

2ϕ
def
= ¬(3¬ϕ),

↼−3ϕ
def
= true S ϕ,

↼−2ϕ def
= ¬(↼−3¬ϕ).

5 Computations and Satisfaction of Temporal Formulae

In this section the satisfaction relation is introduced as a precisely defined instance of the intuitive
term ‘holds now’ which is used in Section 4.

Computations
A model of a VVSL specification document is a structure A in which, among other things, a
special pre-defined name State is associated with a non-empty set StateA (of states).

A (labelled) computation w.r.t. A is a pair 〈σ, λ〉 where σ is a non-empty finite or infinite sequence
over StateA and λ is a sequence over the set {I,E} (of transition labels) whose length is 1 less
than the length of σ, if σ is finite, and is infinite otherwise.

The representation of a finite computation 〈〈s0 , . . . , sn〉, 〈l0 , . . . , ln−1 〉〉 used in this section is

s0
l0→ s1→· · ·→sn−1

ln−1→ sn

and the representation of an infinite computation 〈〈s0 , s1 , . . .〉, 〈l0 , l1 , . . .〉〉 used in this section is

s0
l0→ s1

l1→ · · ·.

By labelling the transitions between consecutive states of a computation, distinction between
transitions effected by the operation under consideration and those effected by the environment
is achieved.
Whenever a transition is labelled by I, i.e. si

I→ si+1 , this is considered an atomic step made by
the operation under consideration.

5The notation ϕ[x := τ ] is used to denote the substitution of τ for the free occurrences of x in ϕ.
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Whenever a transition is labelled by E, i.e. si
E→ si+1 , this is considered a step made by the

environment.
Two atomic temporal formulae, called ‘transition propositions’, correspond directly with the two
transition labels: is-I and is-E .

A computation can be seen as generated by the operation under consideration and the environ-
ment working interleaved but labelled from the viewpoint of the operation.

The kind of transition labelling, which is presented here, is introduced in [BKP84].

If γ = s0
l0→ s1→· · ·→sn−1

ln−1→ sn then the length of γ, |γ|, is defined by |γ| 4 n + 1 . If γ is
infinite, then |γ| 4 ω.
The notation sti(γ) (for 0 ≤ i < |γ|) is used to denote the state si , and the notations inti(γ) and
exti(γ) (for 0 ≤ i < |γ| − 1 ) are used to indicate the truth of li = I and li = E respectively.

Furthermore, the notations pref (γ, i) and suff (γ, i) are used to denote s0
l0→ s1→· · ·→si−1

li−1→ si

and si
li→ si+1→· · ·→sn−1

ln−1→ sn (in the finite case) or si
li→ si+1

li+1→ · · · (in the infinite case)
respectively.

Satisfaction of Temporal Formulae
The notation 〈γ, i〉 |=g ϕ will be used to indicate the truth of temporal formula ϕ in computation
γ at position i under assignment g , and the notations [[τ ]]g〈γ,i〉 and [[e]]gs will be used to denote
the value of temporal term τ in computation γ at position i under assignment g and the value of
expression e in state s under assignment g respectively. By an assignment is meant a function
which assigns to each object name (i.e. variable in the usual mathematical sense) a value of the
appropriate type.

The definition of satisfaction, i.e. 〈γ, i〉 |=g ϕ , is now given by induction over the structure of
the temporal formulae ϕ:

〈γ, i〉 |=g is-I iff 0 ≤ i < |γ| − 1 and inti(γ)

〈γ, i〉 |=g is-E iff 0 ≤ i < |γ| − 1 and exti(γ)

〈γ, i〉 |=g P(τ1 , . . . , τn) iff P([[τ1 ]]g〈γ,i〉, . . . , [[τn ]]g〈γ,i〉)

〈γ, i〉 |=g ϕ1 ;ϕ2 iff for some j , i ≤ j < |γ|, 〈pref (γ, j ), i〉 |=g ϕ1 and 〈suff (γ, j ), 0 〉 |=g ϕ2 ,
or |γ| = ω and 〈γ, i〉 |=g ϕ1

〈γ, i〉 |=g ©ϕ iff i + 1 < |γ| and 〈γ, i + 1 〉 |=g ϕ

〈γ, i〉 |=g ϕ1Uϕ2 iff for some k , i ≤ k < |γ|, 〈γ, k〉 |=g ϕ2 and
for every j , i ≤ j < k , 〈γ, j 〉 |=g ϕ1

〈γ, i〉 |=g
↼−
©ϕ iff i > 0 and 〈γ, i − 1 〉 |=g ϕ

〈γ, i〉 |=g ϕ1Sϕ2 iff for some k , 0 ≤ k ≤ i , 〈γ, k〉 |=g ϕ2 and
for every j , k < j ≤ i , 〈γ, j 〉 |=g ϕ1

〈γ, i〉 |=g ¬ϕ iff not 〈γ, i〉 |=g ϕ

〈γ, i〉 |=g ϕ1 ∨ ϕ2 iff 〈γ, i〉 |=g ϕ1 or 〈γ, i〉 |=g ϕ2
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〈γ, i〉 |=g ∃x ∈ t · ϕ iff 〈γ, i〉 |=g ′ ϕ,
for some g ′ such that g ′(x ) is of the type denoted by t and
for every x ′, x ′ 6= x implies g ′(x ′) = g(x ′)

〈γ, i〉 |=g let x : t 4 τ inϕ iff 〈γ, i〉 |=g ′ ϕ,
for some g ′ such that g ′(x ) = [[τ ]]g〈γ,i〉 and

for every x ′, x ′ 6= x implies g ′(x ′) = g(x ′)

The definition of evaluation, i.e. [[τ ]]g〈γ,i〉, is now given by induction over the structure of the
temporal terms τ :

[[e]]g〈γ,i〉 = [[e]]gsti (γ)

[[©τ ]]g〈γ,i〉 = [[τ ]]g〈γ,i+1 〉 if i + 1 < |γ|, and undefined otherwise

[[
↼−
©τ ]]g〈γ,i〉 = [[τ ]]g〈γ,i−1 〉 if i > 0 , and undefined otherwise

[[f (τ1 , . . . , τn)]]g〈γ,i〉 = f ([[τ1 ]]g〈γ,i〉, . . . , [[τn ]]g〈γ,i〉)

In this paper, the definition of evaluation of expressions, i.e. [[e]]gs , is assumed to be given. It is
intended to be the ‘standard’ evaluation of expressions for VDM specification languages.
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A Example

In this appendix an example is given of the use of the language of temporal logic that can be used
in VVSL. It is a definition of a command from a transaction-oriented access handler for concurrent
access to a database. The definition shows how all possible ways, in which the command may
be scheduled, can be characterized using this temporal language. This definition is from the
report [Mid89a]. In that report, it is presented with accompanying informal explanation of its
meaning and role.
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INSERT (trid : Transaction id , rnm: Relation name, sf : Simple formula)st : Status
ext rd curr dbschema: Database schema ,

wr curr database: Database ,
wr curr acctable: Access table ,
wr curr logtable: Log table

pre in-use(curr acctable, trid) ∧ in use(curr database, rnm) ∧
is wf (sf , structure(curr dbschema, rnm))

post let acc: Access 4 mk-Access(WRITE, rnm, sf ) and
r : Relation 4 tuples(curr dbschema, acc) and
r ′′: Relation 4 relation(curr database, rnm) and
tr : Transition record 4 mk Transition record(NORMAL, rnm, empty , r) in

(st = GRANTED ⇒
(∀t ∈ Tuple · member(t , r) ⇒ member(t , r ′′)) ∧
(∃tr ′ ∈ Transition record ·

weaker(tr ′, tr) ∧
log(curr logtable, trid) = add(log(

↼−−−−−−−−−
curr logtable, trid), tr ′))) ∧

(st = GRANTED ⇔ granted(trid , acc, curr acctable))
inter let acc: Access 4 mk-Access(WRITE, rnm, sf ) in

((¬
↼−
©true ⇒

is-I ∧
© (curr database =

↼−
©curr database ∧ curr logtable =

↼−
©curr logtable ∧

curr acctable = add to waits(
↼−
©curr acctable, trid , acc))) ∧

(
↼−
©true ⇒ is-E )) U
(¬conflicts(trid , acc, curr acctable, curr dbschema) ∧ is-I ∧
let r : Relation 4 tuples(curr dbschema, acc) and

r ′: Relation 4 relation(curr database, rnm) and
tr : Transition record 4 mk-Transition record(NORMAL, rnm, empty , r) in

© (curr database = update(
↼−
©curr database, rnm, union(r ′, r)) ∧

curr acctable = add to grants(
↼−
©curr acctable, trid , acc) ∧

curr logtable = add(
↼−
©curr logtable, trid ,weaken(tr , r ′)) ∧

st = GRANTED ∧ ¬© true)) ∨
(deadlock liable(trid , acc, curr acctable, curr dbschema) ∧

st = REJECTED ∧ ¬© true)

B COLD-K Extensions

The required COLD-K extensions are formally defined in [BM88]. In this appendix some aspects
of the COLD-K extensions are briefly outlined. Familiarity with the formal definition of COLD-K
and its mathematical foundations in [F+87] is assumed.

Algebra of Class+ Descriptions
As far as the mathematical foundations are concerned, the main point is the introduction of an
appropriate extension of the algebra of class descriptions (CA).
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The following additional symbols are introduced:

1. Computation: a special sort symbol; representing the global computation space of a class.

2. stn (for all n < ω): a special function symbol; stn(c) represents the (n + 1 )-th state of
computation c.

3. intn (for all n < ω): a special predicate symbol; intn(c) expresses the fact that the (n +1 )-th
state transition in computation c is considered internal.

4. extn (for all n < ω): a special predicate symbol; extn(c) expresses the fact that the (n+1 )-th
state transition in computation c is considered external.

5. CComp: a set of object symbols, which are called class computation symbols and represent
computations of classes.

6. compp (for all p ∈ CProc): a special predicate symbol; compp(x1 , . . . , xn , c, y1 , . . . , ym)
expresses the fact that the procedure call p(x1 , . . . , xn) (executing interleaved with an en-
vironment) can generate computation c yielding objects y1 , . . . , ym .

The set of class+ symbols is the union of the set of class symbols and the set of all the additional
symbols. Given the extension of class symbols to class+ symbols, the corresponding extensions
of class renamings, class signatures, class descriptions and class parameters are straightforward.
With the sets of symbols, renamings, signatures, descriptions and parameters which are the results
of these extensions, an algebra of class+ descriptions is obtained from the algebra of descriptions
(DA) as for the algebra of class descriptions.

With the algebra of class+ descriptions, an extended class+ calculus and a corresponding extended
signature calculus are obtained as for the extended class calculus and its corresponding extended
signature calculus.

Temporal Assertions and Temporal Expressions
The additional constructs are mainly assertions and expressions concerning computations. For the
most part, they have COLD-K assertions and expressions concerning states as counterparts. The
production rule for temporal assertions has, in addition to the productions from the production
rule for COLD-K assertions, productions for assertions corresponding to the temporal formulae
of VVSL. Similarly, the production rule for temporal expressions has additional productions for
expressions corresponding to the temporal terms.

A temporal assertion or expression has a context-dependent meaning. Like a COLD-K assertion
or expression, the meaning in given context is a MPLω formula. This is illustrated below for
the temporal assertions of the form chop(P ,Q), which correspond to temporal formulae of the
form ϕ1 ;ϕ2 . The notation form(P ,C , c, k) is used to denote the MPLω formula that expresses
the fact that the temporal assertion P holds in a context where we have visible symbols C and
computation c at position k . Furthermore, the notation prefix (c, c′, k) is used to denote the
formula that expresses the fact that computation c′ is the prefix of computation c ending at the
(k + 1 )-th state of c, and the notation suffix (c, c′, k) to denote the formula that expresses the
fact that computation c′ is the suffix of computation c starting at the (k + 1 )-th state of c.
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form(chop(P ,Q),C , c, k) :=
∃c1 :Computation ∃c2 :Computation

(
∨

n(prefix (c, c1 ,n) ∧ suffix (c, c2 ,n)) ∧ form(P ,C , c1 , k) ∧ form(Q ,C , c2 , 0 )) ∨∧
n(stn(c)↓) ∧ form(P ,C , c, k),

where c1 , c2 are fresh computation symbols.
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